Knowledge

Nucleophilic substitution

Source 📝

906: 509:
carbocation will react faster than a secondary which will react much faster than a primary. It is also due to this carbocation intermediate that the product does not have to have inversion. The nucleophile can attack from the top or the bottom and therefore create a racemic product. It is important to use a protic solvent, water and alcohols, since an aprotic solvent could attack the intermediate and cause unwanted product. It does not matter if the hydrogens from the protic solvent react with the nucleophile since the nucleophile is not involved in the rate determining step.
472: 387: 500:
reaction. This means that the better the leaving group, the faster the reaction rate. A general rule for what makes a good leaving group is the weaker the conjugate base, the better the leaving group. In this case, halogens are going to be the best leaving groups, while compounds such as amines, hydrogen, and alkanes are going to be quite poor leaving groups. As S
396: 439:
drive the reaction speed. In the intermediate step, the nucleophile is 185 degrees from the leaving group and the stereochemistry is inverted as the nucleophile bonds to make the product. Also, because the intermediate is partially bonded to the nucleophile and leaving group, there is no time for the
499:
1 reactions. Instead of having two concentrations that affect the reaction rate, there is only one, substrate. The rate equation for this would be Rate=k. Since the rate of a reaction is only determined by its slowest step, the rate at which the leaving group "leaves" determines the speed of the
508:
1 reactions are determined by bulky groups attached to the carbocation. Since there is an intermediate that actually contains a positive charge, bulky groups attached are going to help stabilize the charge on the carbocation through resonance and distribution of charge. In this case, tertiary
440:
substrate to rearrange itself: the nucleophile will bond to the same carbon that the leaving group was attached to. A final factor that affects reaction rate is nucleophilicity; the nucleophile must attack an atom other than a hydrogen.
136: 1169: 1209:
2 mechanism does not generally occur with vinyl or aryl halides or related compounds. Under certain conditions nucleophilic substitutions may occur, via other mechanisms such as those described in the
985:
halides or sulphonates, for example, the nucleophile may attack at the Îł unsaturated carbon in place of the carbon bearing the leaving group. This may be seen in the reaction of 1-chloro-2-butene with
262: 423:
2 implies that there are two concentrations of substances that affect the rate of reaction: substrate (Sub) and nucleophile. The rate equation for this reaction would be Rate=k. For a S
304: 451:
1 reactions tend to be important when the central carbon atom of the substrate is surrounded by bulky groups, both because such groups interfere sterically with the S
71: 331:
and related compounds. They proposed that there were two main mechanisms at work, both of them competing with each other. The two main mechanisms were the
996: 1424: 1871: 157:. The nucleophile may be electrically neutral or negatively charged, whereas the substrate is typically neutral or positively charged. 1374:
Electrophilic Bimolecular Substitution as an Alternative to Nucleophilic Monomolecular Substitution in Inorganic and Organic Chemistry
1346:
253. Reaction kinetics and the Walden inversion. Part II. Homogeneous hydrolysis, alcoholysis, and ammonolysis of -phenylethyl halides
435:
2 reactions, they would react with the nucleophile and severely limit the reaction rate. Since this reaction occurs in one step,
431:
is best, such as acetone, DMF, or DMSO. Aprotic solvents do not add protons (H ions) into solution; if protons were present in S
153:) and bonds with it. Simultaneously, the leaving group (LG) departs with an electron pair. The principal product in this case is 905: 1329:
Timothy P. Curran, Amelia J. Mostovoy, Margaret E. Curran, and Clara Berger Journal of Chemical Education 2016 93 (4), 757-761
1636: 1513: 272: 197: 1470: 1211: 1777: 1417: 1315: 1280: 1254: 366:
2 reaction, the addition of the nucleophile and the elimination of leaving group take place simultaneously (i.e. a
1685: 1680: 1490: 869: 1850: 1845: 1410: 727:
There are many reactions in organic chemistry involving this type of mechanism. Common examples include:
471: 1815: 1505: 822: 419:
2 reactions, there are a few conditions that affect the rate of the reaction. First of all, the 2 in S
1542: 756: 687: 395: 1772: 1190: 1186: 1820: 1621: 876: 324: 1575: 58:). The molecule that contains the electrophile and the leaving functional group is called the 1805: 1737: 1595: 1585: 970: 966: 59: 1327:
Introducing Aliphatic Substitution with a Discovery Experiment Using Competing Electrophiles
1800: 1528: 861: 703: 600: 8: 1810: 1742: 1727: 1670: 1179: 955: 786: 131:{\displaystyle {\text{Nuc}}\mathbf {:} +{\ce {R-LG -> R-Nuc}}+{\text{LG}}\mathbf {:} } 1835: 1605: 1434: 367: 1390: 386: 1830: 1825: 1787: 1732: 1651: 1631: 1567: 1311: 1276: 1250: 731: 647: 546: 356: 268: 35: 962:
1 except that the nucleophile is delivered from the same side as the leaving group.
455:
2 reaction (discussed above) and because a highly substituted carbon forms a stable
1762: 1711: 1665: 1357: 1330: 987: 951: 897: 854: 807: 320: 146: 51: 43: 307:
A graph showing the relative reactivities of the different alkyl halides towards S
1840: 1752: 1701: 1175: 865: 674: 665: 626: 574: 1334: 1164:{\displaystyle {\ce {CH3CH=CH-CH2-Cl -> CH3CH=CH-CH2-OH + CH3CH(OH)-CH=CH2}}} 1547: 1536: 589: 436: 428: 374:
2 occurs when the central carbon atom is easily accessible to the nucleophile.
1865: 1795: 1767: 1675: 1626: 1600: 1349: 1222: 913: 608: 559: 495:
2 reactions, there are quite a few factors that affect the reaction rate of S
180: 1402: 1275:
1 Mechanism, ACS Monograph Series No. 178, American Chemical Society, 1983.
1747: 1553: 1460: 1450: 746: 670: 532: 523: 340: 332: 328: 55: 515:
Table 1. Nucleophilic substitutions on RX (an alkyl halide or equivalent)
1706: 1641: 1361: 456: 47: 1389:
Unimolecular Nucleophilic Substitution does not Exist! / N.S.Imyanitov.
774: 161: 924:
2 components with 61% (3,5 M, 70 Â°C) taking place by the latter.
65:
The most general form of the reaction may be given as the following:
1757: 275: 20: 864:, a halide exchange reaction. Phosphorus nucleophiles appear in the 16:
Chemical reaction in which a nucleophile is affixed to the substrate
1218: 940:
2, other mechanisms are known, although they are less common. The
833: 303: 279: 172: 39: 888:
An example of a substitution reaction taking place by a so-called
171:, R-Br under basic conditions, where the attacking nucleophile is 790: 735: 656: 642: 184: 168: 1297:, 5th ed., Prentice Hall, Upper Saddle River, New Jersey, 2003. 750: 650: 892:
as originally studied by Hughes and Ingold is the reaction of
1660: 1226: 982: 837: 165: 1193:
reaction occurs with a nucleophilic substitution mechanism.
1348:
Edward D. Hughes, Christopher K. Ingold and Alan D. Scott,
1480: 1157: 1117: 1093: 1064: 1040: 1011: 942: 479: 403: 54:
within another electron-deficient molecule (known as the
355:
stands for nucleophilic, and the number represents the
999: 200: 74: 990:
to give a mixture of 2-buten-1-ol and 1-buten-3-ol:
965:
Nucleophilic substitutions can be accompanied by an
257:{\displaystyle {\ce {OH- + R-Br -> R-OH + Br-}}} 1163: 564:Never unless additional stabilising groups present 267:Nucleophilic substitution reactions are common in 256: 130: 1863: 981:2' reaction (depending on the kinetics). With 327:studied nucleophilic substitution reactions of 160:An example of nucleophilic substitution is the 879:, the reaction of alkyl halides with cyanides. 1432: 1418: 1196: 1310:, Cambridge University Press, London, 1973. 857:, a ring-closing reaction of aminoalcohols. 285: 1425: 1411: 708:Common, especially with basic nucleophiles 567:Good unless a hindered nucleophile is used 973:. This type of mechanism is called an S 603:likely if heated or if strong base used 302: 290: 883: 711:Only with heat & basic nucleophiles 504:2 reactions were affected by sterics, S 278:carbon. Less often, they may attack an 1864: 1451:Unimolecular nucleophilic substitution 1376:. J. Gen. Chem. USSR (Engl. Transl.) 950:mechanism is observed in reactions of 1461:Bimolecular nucleophilic substitution 1406: 1244: 465:Nucleophilic substitution at carbon 380:Nucleophilic substitution at carbon 1872:Nucleophilic substitution reactions 1514:Electrophilic aromatic substitution 1308:Aliphatic Nucleophilic Substitution 1201:Nucleophilic substitution via the S 927: 13: 1481:Nucleophilic internal substitution 1471:Nucleophilic aromatic substitution 1212:nucleophilic aromatic substitution 14: 1883: 1398: 1249:(4th ed.). New York: Wiley. 969:as seen in reactions such as the 447:1 reaction involves two steps. S 904: 470: 394: 385: 124: 81: 1637:Lindemann–Hinshelwood mechanism 469: 461: 393: 384: 376: 315:2 reactions (also see Table 1). 1686:Outer sphere electron transfer 1681:Inner sphere electron transfer 1491:Nucleophilic acyl substitution 1383: 1366: 1339: 1320: 1300: 1287: 1271:Aromatic Substitution by the S 1263: 1238: 1217:Substitution can occur at the 1182:. Competing mechanisms exist. 1130: 1124: 1051: 511: 271:. Nucleophiles often attack a 226: 100: 1: 1851:Diffusion-controlled reaction 1269:R. A. Rossi, R. H. de Rossi, 1232: 621:I > Br > Cl >> F 145:) from the nucleophile (Nuc) 722: 7: 1506:Electrophilic substitutions 1335:10.1021/acs.jchemed.5b00394 10: 1888: 1816:Energy profile (chemistry) 1778:More O'Ferrall–Jencks plot 1443:Nucleophilic substitutions 1247:Advanced Organic Chemistry 1197:Unsaturated carbon centres 870:Michaelis–Arbuzov reaction 823:Williamson ether synthesis 1846:Michaelis–Menten kinetics 1786: 1720: 1694: 1650: 1614: 1566: 1527: 1504: 1441: 540: 531: 522: 519: 514: 464: 379: 351:stands for substitution, 25:nucleophilic substitution 1773:Potential energy surface 1652:Electron/Proton transfer 1537:Unimolecular elimination 1191:nucleophilic abstraction 1187:organometallic chemistry 958:, and it is similar to S 916:is found to the sum of S 286:Saturated carbon centres 1821:Transition state theory 1622:Intramolecular reaction 1548:Bimolecular elimination 877:Kolbe nitrile synthesis 282:or unsaturated carbon. 1615:Unimolecular reactions 1576:Electrophilic addition 1165: 894:1-phenylethyl chloride 325:Sir Christopher Ingold 316: 258: 132: 1806:Rate-determining step 1738:Reactive intermediate 1596:Free-radical addition 1586:Nucleophilic addition 1529:Elimination reactions 1166: 971:Ferrier rearrangement 967:allylic rearrangement 306: 259: 133: 1801:Equilibrium constant 1362:10.1039/JR9370001201 997: 890:borderline mechanism 884:Borderline mechanism 862:Finkelstein reaction 198: 72: 1811:Reaction coordinate 1743:Radical (chemistry) 1728:Elementary reaction 1671:Grotthuss mechanism 1435:reaction mechanisms 1180:inorganic chemistry 1159: 1119: 1095: 1066: 1042: 1013: 141:The electron pair ( 1836:Arrhenius equation 1606:Oxidative addition 1568:Addition reactions 1380:; 60 (3); 417-419. 1245:March, J. (1992). 1161: 1147: 1107: 1083: 1054: 1030: 1001: 732:Organic reductions 368:concerted reaction 317: 254: 128: 36:chemical reactions 1859: 1858: 1831:Activated complex 1826:Activation energy 1788:Chemical kinetics 1733:Reaction dynamics 1632:Photodissociation 1306:S. R. Hartshorn, 1295:Organic Chemistry 1150: 1141: 1129: 1122: 1110: 1103: 1086: 1077: 1069: 1057: 1050: 1033: 1024: 1016: 1004: 777:reactions such as 720: 719: 489: 488: 443:By contrast the S 413: 412: 359:of the reaction. 269:organic chemistry 246: 239: 231: 225: 217: 205: 121: 113: 105: 99: 91: 78: 1879: 1763:Collision theory 1712:Matrix isolation 1666:Harpoon reaction 1543:E1cB-elimination 1427: 1420: 1413: 1404: 1403: 1393: 1387: 1381: 1370: 1364: 1343: 1337: 1324: 1318: 1304: 1298: 1291: 1285: 1267: 1261: 1260: 1242: 1170: 1168: 1167: 1162: 1160: 1158: 1155: 1148: 1146: 1139: 1138: 1133: 1127: 1120: 1118: 1115: 1108: 1101: 1100: 1094: 1091: 1084: 1082: 1075: 1074: 1067: 1065: 1062: 1055: 1048: 1047: 1041: 1038: 1031: 1029: 1022: 1021: 1014: 1012: 1009: 1002: 988:sodium hydroxide 952:thionyl chloride 928:Other mechanisms 908: 898:sodium methoxide 855:Wenker synthesis 841: 810: 793: 762: 753: 512: 474: 462: 398: 389: 377: 321:Edward D. Hughes 263: 261: 260: 255: 253: 252: 251: 244: 237: 236: 229: 223: 222: 215: 211: 210: 203: 190: 178: 156: 152: 137: 135: 134: 129: 127: 122: 119: 114: 111: 110: 103: 97: 96: 89: 84: 79: 76: 52:functional group 44:chemical species 34:) is a class of 1887: 1886: 1882: 1881: 1880: 1878: 1877: 1876: 1862: 1861: 1860: 1855: 1841:Eyring equation 1782: 1753:Stereochemistry 1716: 1702:Solvent effects 1690: 1646: 1610: 1591: 1581: 1562: 1557: 1523: 1519: 1500: 1496: 1486: 1476: 1466: 1456: 1437: 1431: 1401: 1396: 1388: 1384: 1372:N.S.Imyanitov. 1371: 1367: 1344: 1340: 1325: 1321: 1305: 1301: 1292: 1288: 1274: 1268: 1264: 1257: 1243: 1239: 1235: 1221:group, such as 1208: 1204: 1199: 1176:Sn1CB mechanism 1156: 1151: 1142: 1134: 1123: 1116: 1111: 1096: 1092: 1087: 1078: 1070: 1063: 1058: 1043: 1039: 1034: 1025: 1017: 1010: 1005: 1000: 998: 995: 994: 980: 976: 961: 946: 939: 935: 930: 923: 919: 886: 866:Perkow reaction 845: 831: 814: 805: 801: 797: 784: 766: 760: 755: 745: 725: 716:esp. if heated 715: 666:Stereochemistry 627:Nucleophilicity 620: 575:Secondary alkyl 536: 527: 507: 503: 498: 494: 483: 454: 450: 446: 434: 429:aprotic solvent 427:2 reaction, an 426: 422: 418: 407: 373: 365: 344: 336: 314: 310: 301: 298: 294: 288: 247: 243: 232: 218: 206: 202: 201: 199: 196: 195: 188: 176: 154: 150: 149:the substrate ( 123: 118: 106: 92: 88: 80: 75: 73: 70: 69: 32: 17: 12: 11: 5: 1885: 1875: 1874: 1857: 1856: 1854: 1853: 1848: 1843: 1838: 1833: 1828: 1823: 1818: 1813: 1808: 1803: 1798: 1792: 1790: 1784: 1783: 1781: 1780: 1775: 1770: 1765: 1760: 1755: 1750: 1745: 1740: 1735: 1730: 1724: 1722: 1721:Related topics 1718: 1717: 1715: 1714: 1709: 1704: 1698: 1696: 1695:Medium effects 1692: 1691: 1689: 1688: 1683: 1678: 1673: 1668: 1663: 1657: 1655: 1648: 1647: 1645: 1644: 1639: 1634: 1629: 1624: 1618: 1616: 1612: 1611: 1609: 1608: 1603: 1598: 1593: 1589: 1583: 1579: 1572: 1570: 1564: 1563: 1561: 1560: 1555: 1551: 1545: 1540: 1533: 1531: 1525: 1524: 1522: 1521: 1517: 1510: 1508: 1502: 1501: 1499: 1498: 1494: 1488: 1484: 1478: 1474: 1468: 1464: 1458: 1454: 1447: 1445: 1439: 1438: 1430: 1429: 1422: 1415: 1407: 1400: 1399:External links 1397: 1395: 1394: 1382: 1365: 1338: 1319: 1299: 1286: 1272: 1262: 1255: 1236: 1234: 1231: 1223:acyl chlorides 1206: 1202: 1198: 1195: 1172: 1171: 1154: 1145: 1137: 1132: 1126: 1114: 1106: 1099: 1090: 1081: 1073: 1061: 1053: 1046: 1037: 1028: 1020: 1008: 978: 974: 959: 944: 937: 933: 929: 926: 921: 917: 910: 909: 885: 882: 881: 880: 873: 858: 850: 849: 848: 847: 843: 826: 825: 819: 818: 817: 816: 812: 803: 799: 795: 779: 778: 771: 770: 769: 768: 764: 758: 740: 739: 724: 721: 718: 717: 712: 709: 706: 700: 699: 698:Side reaction 696: 693: 690: 688:Rearrangements 684: 683: 681: 678: 668: 662: 661: 659: 653: 645: 638: 637: 635: 632: 629: 623: 622: 617: 614: 611: 605: 604: 598: 595: 592: 590:Tertiary alkyl 586: 585: 583: 580: 577: 571: 570: 568: 565: 562: 556: 555: 552: 549: 543: 542: 539: 534: 530: 525: 521: 517: 516: 505: 501: 496: 492: 487: 486: 481: 476: 475: 467: 466: 452: 448: 444: 437:steric effects 432: 424: 420: 416: 411: 410: 405: 400: 399: 391: 390: 382: 381: 371: 363: 342: 334: 312: 308: 300: 296: 292: 289: 287: 284: 265: 264: 250: 242: 235: 228: 221: 214: 209: 139: 138: 126: 117: 109: 102: 95: 87: 83: 30: 15: 9: 6: 4: 3: 2: 1884: 1873: 1870: 1869: 1867: 1852: 1849: 1847: 1844: 1842: 1839: 1837: 1834: 1832: 1829: 1827: 1824: 1822: 1819: 1817: 1814: 1812: 1809: 1807: 1804: 1802: 1799: 1797: 1796:Rate equation 1794: 1793: 1791: 1789: 1785: 1779: 1776: 1774: 1771: 1769: 1768:Arrow pushing 1766: 1764: 1761: 1759: 1756: 1754: 1751: 1749: 1746: 1744: 1741: 1739: 1736: 1734: 1731: 1729: 1726: 1725: 1723: 1719: 1713: 1710: 1708: 1705: 1703: 1700: 1699: 1697: 1693: 1687: 1684: 1682: 1679: 1677: 1676:Marcus theory 1674: 1672: 1669: 1667: 1664: 1662: 1659: 1658: 1656: 1653: 1649: 1643: 1640: 1638: 1635: 1633: 1630: 1628: 1627:Isomerization 1625: 1623: 1620: 1619: 1617: 1613: 1607: 1604: 1602: 1601:Cycloaddition 1599: 1597: 1594: 1587: 1584: 1577: 1574: 1573: 1571: 1569: 1565: 1559: 1552: 1549: 1546: 1544: 1541: 1538: 1535: 1534: 1532: 1530: 1526: 1515: 1512: 1511: 1509: 1507: 1503: 1492: 1489: 1482: 1479: 1472: 1469: 1462: 1459: 1452: 1449: 1448: 1446: 1444: 1440: 1436: 1428: 1423: 1421: 1416: 1414: 1409: 1408: 1405: 1392: 1391:SciTecLibrary 1386: 1379: 1375: 1369: 1363: 1359: 1355: 1351: 1350:J. Chem. Soc. 1347: 1342: 1336: 1332: 1328: 1323: 1317: 1316:0-521-09801-7 1313: 1309: 1303: 1296: 1290: 1284: 1282: 1281:0-8412-0648-1 1278: 1266: 1258: 1256:9780471601807 1252: 1248: 1241: 1237: 1230: 1228: 1224: 1220: 1215: 1213: 1194: 1192: 1188: 1183: 1181: 1177: 1152: 1143: 1135: 1112: 1104: 1097: 1088: 1079: 1071: 1059: 1044: 1035: 1026: 1018: 1006: 993: 992: 991: 989: 984: 972: 968: 963: 957: 953: 949: 948: 925: 915: 914:reaction rate 907: 903: 902: 901: 900:in methanol. 899: 895: 891: 878: 874: 871: 867: 863: 859: 856: 852: 851: 839: 835: 830: 829: 828: 827: 824: 821: 820: 809: 806:O → R−OH + 800: 792: 788: 783: 782: 781: 780: 776: 773: 772: 761: 752: 748: 744: 743: 742: 741: 738:, for example 737: 733: 730: 729: 728: 714:Side reaction 713: 710: 707: 705: 702: 701: 697: 694: 691: 689: 686: 685: 682: 679: 676: 672: 669: 667: 664: 663: 660: 658: 654: 652: 649: 646: 644: 640: 639: 636: 633: 630: 628: 625: 624: 619:For halogens, 618: 615: 612: 610: 609:Leaving group 607: 606: 602: 599: 596: 593: 591: 588: 587: 584: 581: 578: 576: 573: 572: 569: 566: 563: 561: 560:Primary alkyl 558: 557: 553: 550: 548: 545: 544: 538: 529: 518: 513: 510: 485: 478: 477: 473: 468: 463: 460: 458: 441: 438: 430: 409: 402: 401: 397: 392: 388: 383: 378: 375: 369: 360: 358: 357:kinetic order 354: 350: 346: 338: 330: 329:alkyl halides 326: 322: 305: 283: 281: 277: 274: 270: 248: 240: 233: 219: 212: 207: 194: 193: 192: 186: 182: 181:leaving group 174: 170: 167: 163: 158: 148: 144: 115: 107: 93: 85: 68: 67: 66: 63: 61: 57: 53: 50:) replaces a 49: 45: 41: 37: 33: 26: 22: 1748:Molecularity 1442: 1385: 1377: 1373: 1368: 1353: 1345: 1341: 1326: 1322: 1307: 1302: 1294: 1293:L. G. Wade, 1289: 1270: 1265: 1246: 1240: 1216: 1200: 1184: 1173: 964: 941: 931: 911: 893: 889: 887: 785:R−Br + OH → 726: 704:Eliminations 671:Racemisation 490: 442: 414: 361: 352: 348: 318: 266: 159: 142: 140: 64: 56:electrophile 46:(known as a 38:in which an 28: 24: 18: 1707:Cage effect 1642:RRKM theory 1558:elimination 1178:appears in 673:(+ partial 631:Unimportant 601:Elimination 484:1 mechanism 457:carbocation 408:2 mechanism 299:2 reactions 48:nucleophile 1233:References 811:  (S 775:Hydrolysis 641:Preferred 345:2 reaction 337:1 reaction 179:) and the 162:hydrolysis 1758:Catalysis 1654:reactions 1214:article. 1136:− 1098:− 1080:− 1052:⟶ 1045:− 1027:− 932:Besides S 842:  (S 763:  (S 723:Reactions 680:Inversion 677:possible) 675:inversion 634:Important 616:Important 613:Important 594:Excellent 554:Rate = k 541:Comments 319:In 1935, 276:aliphatic 273:saturated 249:− 234:− 227:⟶ 220:− 208:− 108:− 101:⟶ 94:− 60:substrate 21:chemistry 1866:Category 1219:carbonyl 956:alcohols 868:and the 802:R−Br + H 736:hydrides 582:Moderate 579:Moderate 551:Rate = k 547:Kinetics 362:In the S 347:, where 339:and the 280:aromatic 173:hydroxyl 40:electron 1356:, 1201 983:allylic 977:1' or S 936:1 and S 920:1 and S 832:R−Br + 657:aprotic 643:solvent 520:Factor 311:1 and S 295:1 and S 185:bromide 169:bromide 147:attacks 1433:Basic 1314:  1279:  1253:  1227:esters 1205:1 or S 754:using 692:Common 655:Polar 651:protic 491:Like S 164:of an 42:-rich 1661:Redox 1497:Acyl) 954:with 896:with 838:R−OR' 798:2) or 757:LiAlH 734:with 648:Polar 597:Never 370:). S 166:alkyl 155:R−Nuc 1550:(E2) 1539:(E1) 1378:1990 1354:1937 1312:ISBN 1277:ISBN 1251:ISBN 1225:and 1189:the 1174:The 912:The 875:The 860:The 853:The 840:+ Br 787:R−OH 695:Rare 415:In S 323:and 151:R−LG 23:, a 1520:Ar) 1477:Ar) 1358:doi 1331:doi 1185:In 836:→ 834:OR' 808:HBr 751:R−H 749:→ 747:R−X 191:). 183:is 112:Nuc 77:Nuc 62:. 19:In 1868:: 1588:(A 1578:(A 1516:(S 1493:(S 1487:i) 1483:(S 1473:(S 1467:2) 1463:(S 1457:1) 1453:(S 1352:, 1273:RN 1229:. 1149:CH 1140:CH 1128:OH 1121:CH 1109:CH 1102:OH 1085:CH 1076:CH 1068:CH 1056:CH 1049:Cl 1032:CH 1023:CH 1015:CH 1003:CH 846:2) 815:1) 794:(S 791:Br 789:+ 767:2) 459:. 245:Br 238:OH 224:Br 204:OH 189:Br 177:OH 120:LG 98:LG 1592:) 1590:N 1582:) 1580:E 1556:i 1554:E 1518:E 1495:N 1485:N 1475:N 1465:N 1455:N 1426:e 1419:t 1412:v 1360:: 1333:: 1283:. 1259:. 1207:N 1203:N 1153:2 1144:= 1131:) 1125:( 1113:3 1105:+ 1089:2 1072:= 1060:3 1036:2 1019:= 1007:3 979:N 975:N 960:N 947:i 945:N 943:S 938:N 934:N 922:N 918:N 872:. 844:N 813:N 804:2 796:N 765:N 759:4 537:2 535:N 533:S 528:1 526:N 524:S 506:N 502:N 497:N 493:N 482:N 480:S 453:N 449:N 445:N 433:N 425:N 421:N 417:N 406:N 404:S 372:N 364:N 353:N 349:S 343:N 341:S 335:N 333:S 313:N 309:N 297:N 293:N 291:S 241:+ 230:R 216:R 213:+ 187:( 175:( 143:: 125:: 116:+ 104:R 90:R 86:+ 82:: 31:N 29:S 27:(

Index

chemistry
chemical reactions
electron
chemical species
nucleophile
functional group
electrophile
substrate
attacks
hydrolysis
alkyl
bromide
hydroxyl
leaving group
bromide
organic chemistry
saturated
aliphatic
aromatic

Edward D. Hughes
Sir Christopher Ingold
alkyl halides
SN1 reaction
SN2 reaction
kinetic order
concerted reaction
mechanism
SN2 reaction of CH3Cl and Cl-
SN2 mechanism

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑