Knowledge

Aerocapture

Source 📝

136:
never flown. In the late 1990s, aerocapture was considered for the Mars Odyssey mission (then referred to as Mars 2001 Surveyor), but was later dropped in favor of aerobraking due to cost reasons and heritage with other Mars missions. In the early 2000s, aerocapture was identified as the focus area by the NASA In-Space Propulsion Technology (ISPT) program. A multi-center Aerocapture Systems Analysis Team (ASAT) was put together under this project to define reference aerocapture missions at various Solar System destinations and identify any technology gaps to be closed before implementation on a flight project. The ASAT team led by Mary Kae Lockwood at the NASA Langley Research Center studied in substantial detail aerocapture mission concepts to Venus, Mars, Titan, and Neptune. Since 2016, there is renewed interest in aerocapture particularly with respect to small satellite orbit insertion at Venus and Mars, and Flagship-class missions to Uranus and Neptune in the upcoming decade.
222:
a rigid nosepiece and an inflated, attached decelerator to increase the drag area. Just prior to entering the atmosphere, the inflatable aeroshell extends from a rigid nose-cap and provides a larger surface area to slow the spacecraft down. Made of thin-film material and reinforced with a ceramic cloth, the inflatable aeroshell design could offer many of the same advantages and functionality as trailing ballute designs. While not as large as the trailing ballute, the inflatable aeroshell is roughly three times larger than the rigid aeroshell system and performs the aerocapture maneuver higher in the atmosphere, reducing heating loads. Because the system is inflatable, the spacecraft is not enclosed during launch and cruise, which allows more flexibility during spacecraft design and operations.
20: 243:
rigid aeroshell design, such as not constraining the spacecraft size and shape, and subjecting the vehicle to much lower aerodynamic and thermal loads. Because the trailing ballute is much larger than the spacecraft, aerocapture occurs high in the atmosphere where much less heat is generated. The ballute incurs most of the aerodynamic forces and heat, allowing the use of minimal thermal protection around the spacecraft. One of the primary advantages of the ballute configuration is mass. Where the rigid aeroshell may account for 30–40% of the mass of a spacecraft, the ballute mass fraction could be as little as 8–12%, saving mass for more science payload.
205:. The module was used for six uncrewed space flights from February 1966 to April 1968 and eleven crewed missions from Apollo 7 in October 1968 through the final crewed Apollo 17 lunar mission in December 1972. Because of its extensive heritage, the aeroshell system design is well understood. Adaptation of the aeroshell from atmospheric entry to aerocapture requires mission-specific customization of the thermal protection material to accommodate the different heating environments of aerocapture. Also, higher-temperature adhesives and lightweight, high temperature structures are desired to minimize the mass of the aerocapture system. 214: 119: 165: 2147: 2158: 69:. The vehicle also requires autonomous closed-loop guidance during the maneuver to enable the vehicle to target the desired capture orbit and command the vehicle to exit the atmosphere when sufficient energy has been dissipated. Ensuring that the vehicle has enough control authority to prevent the spacecraft penetrating too deep into the atmosphere or exiting prematurely without dissipating enough energy requires either the use of a lifting 347: 528: 177:
inflatable heat shield, known as the inflatable aeroshell design or a mechanically deployed drag skirt. The third major design option is of an inflatable, trailing ballute—a combination balloon and parachute made of thin, durable material towed behind the vehicle after deployment in the vacuum of space.
144:
NASA technologists are developing ways to place robotic space vehicles into long-duration scientific orbits around distant Solar System destinations without the need for the heavy fuel loads that have historically limited vehicle performance, mission duration, and mass available for science payloads.
221:
The deployable or inflatable aeroshell design looks much like the aeroshell or blunt body design. But unlike the lifting aeroshell, the deployable or inflatable systems produce no lift. The only control variable is the drag area. The inflatable aeroshell is often referred to as a hybrid system, with
155:
Aerocapture technology has also been evaluated for use in crewed Mars missions and found to offer significant mass benefits. For this application, however, the trajectory must be constrained to avoid excessive deceleration loads on the crew. Although there are similar constraints on trajectories for
126:
Aerocapture has been studied for planetary missions since the early 1960s. London's pioneering article on using aerodynamic maneuvering to change the plane of a satellite in Earth orbit, instead of using a propulsive maneuver is considered a precursor for the concept of aerocapture. The aerocapture
92:
using existing entry vehicles and thermal protection system materials. Until recently, mid-L/D (lift-to-drag) vehicles were considered essential for aerocapture at Uranus and Neptune, due to the large uncertainties in entry state and atmospheric density profiles. However, advances in interplanetary
45:
generated as the vehicle descends into the atmosphere slows the spacecraft. After the spacecraft slows enough to be captured by the planet, it exits the atmosphere and executes a small propulsive burn at the first apoapsis to raise the periapsis outside the atmosphere. Additional small burns may be
242:
material. The ballute is much larger than the spacecraft and is towed behind the craft, much like a parachute, to slow the vehicle down. The "trailing" design also allows for easy detachment after the aerocapture maneuver is complete. The trailing ballute design has performance advantages over the
135:
In the late 1980s, the Aeroassist Flight Experiment (AFE) was conceived to use a Shuttle-launched payload to demonstrate aerocapture at Earth. The project resulted in a number of significant developments including guidance flight software, but was eventually cancelled due to cost overruns and was
176:
The aerocapture maneuver can be accomplished with three basic types of systems. The spacecraft can be enclosed by a structure covered with thermal protection material also known as the rigid aeroshell design. Similarly another option is for the vehicle to deploy an aerocapture device, such as an
263:
upon lunar return were aerocapture maneuvers, since they turned a hyperbolic orbit into an elliptical orbit. On these missions, since there was no attempt to raise the perigee after the aerocapture, the resulting orbit still intersected the atmosphere, and re-entry occurred at the next perigee.
152:) would allow for a significant increase in scientific payload for missions ranging from Venus (79% increase) to Titan (280% increase) and Neptune (832% increase). Additionally, the study showed that using aerocapture technology could enable scientifically useful missions to Jupiter and Saturn. 172:
To perform aerocapture, the vehicle must enter the atmosphere within the aerocapture theoretical entry corridor. Entering too steep will result in the vehicle failing to exit the atmosphere. Entering too shallow will result in the vehicle exiting the atmosphere without depleting enough energy.
189:
system encases a spacecraft in a protective shell. This shell acts as an aerodynamic surface, providing lift and drag, and provides protection from the intense heating experienced during high-speed atmospheric flight. Once the spacecraft is captured into orbit, the aeroshell is jettisoned.
502:
One of the main advantages of using an aerocapture technique over that of an aerobraking technique is that it enables mission concepts for human spaceflight due to the rapid process of transitioning to the desired orbit, shortening the length of the mission by months.
101:
is considered a long-term goal, as their huge gravity wells result in very high entry speeds and harsh aerothermal environments, making aerocapture a less attractive, and, perhaps, infeasible option at these destinations. However, it is possible to use an
131:
refers to a different "aeroassist" maneuver and is not to be confused with aerocapture. Cruz's 1979 article was the first to use the word aerocapture, and was followed by a series of studies focusing on its applications to Mars Sample Return (SR).
433:
is another aeroassist maneuver that shares some similarities but also some important differences with aerocapture. While aerocapture is used for inserting a spacecraft into orbit from a hyperbolic trajectory, aerobraking is used for reducing the
57:
used for the orbit insertion burn. The saving in propellant mass allows for more science instrumentation to be added to the mission, or allows for a smaller and less-expensive spacecraft, and, potentially, a smaller, less-expensive
297:
in which two spacecraft (one Russian, one Chinese) both use aerocapture in Jupiter's atmosphere to shed their excess velocity and position themselves for exploring Jupiter's satellites. This can be seen as a special effect in the
322:, the ship Destiny's autopilot employs aerocapture within the atmosphere of a gas giant at the edge of a star system. This puts the ship on a direct heading into the star at the center of the system. 127:
concept was then referred to as aerodynamic braking or "aerobraking", and was investigated as a potential orbit insertion method for Mars and Venus missions by Repic et al. In modern terminology,
93:
navigation and atmospheric guidance techniques have shown that heritage low-L/D aeroshells such as Apollo offer sufficient control authority for aerocapture at Neptune. Aerocapture at
53:, this nearly fuel-free method of deceleration could significantly reduce the mass of an interplanetary spacecraft, as a substantial fraction of the spacecraft mass is often 515:
provides rapid mission analysis capability for aerocapture and Entry, Descent, and Landing (EDL) mission concepts to atmosphere-bearing destinations in the Solar System.
65:
Because of the aerodynamic heating encountered during the atmospheric pass, the spacecraft must be packaged inside an aeroshell (or a deployable entry system) with a
1306:
Way, David; Powell, Richard; Masciarelli, James; Starr, Brett; Edquist, Karl (2003). "Aerocapture Simulation and Performance for the Titan Explorer Mission".
1863: 587: 156:
robotic missions, the human limits are typically more stringent, especially in light of the effects of prolonged microgravity on acceleration tolerances.
37:
Aerocapture uses a planet's or moon's atmosphere to accomplish a quick, near-propellantless orbit insertion maneuver to place a spacecraft in its science
1404: 734: 689: 635: 604: 411:" technologies being developed by NASA for science missions to any planetary body with an appreciable atmosphere. These destinations could include 173:
Entering within the corridor allows the vehicle guidance scheme to achieve the desired exit conditions for a capture orbit around the planet.
34:
in which a spacecraft uses aerodynamic drag force from a single pass through a planetary atmosphere to decelerate and achieve orbit insertion.
41:. The aerocapture maneuver starts as the spacecraft enters the atmosphere of the target body from an interplanetary approach trajectory. The 408: 193:
NASA has used blunt aeroshell systems in the past for atmospheric entry missions. The most recent example is the Mars Exploration Rovers,
315:
often employ aerocapture, particularly when exploring the satellites of Jool (a gas giant that serves as the game's Jupiter analogue).
1841: 1431: 1262: 1421: 1356: 1323: 1100: 1067: 23:
Schematic showing the various phases of the aerocapture maneuver. Atmospheric height is greatly exaggerated for clarity.
1441: 1165:
Physiologically constrained aerocapture for manned Mars missions, JE Lyne, NASA STI/Recon Technical Report N 93, 12720
1461: 1131:
Hall, Jeffery L.; Noca, Muriel A.; Bailey, Robert W. (2005). "Cost-Benefit Analysis of the Aerocapture Mission Set".
1017:
Papadopoulos (1997). "Aerothermal heating simulations with surface catalysis for the Mars 2001 aerocapture mission".
394: 376: 1289: 329:, asteroid miners use a purpose-built aerocapture ship in a desperate attempt to return to Earth from the asteroid 201:, which launched in June and July 2003, and landed on the Martian surface in January 2004. Another example is the 1616: 122:
Histogram showing the number of publications addressing aerocapture since the 1960s, classified by target planet.
2182: 1991: 1853: 1436: 372: 46:
required to correct apoapsis and inclination targeting errors before the initial science orbit is established.
19: 626:
Girija, AP; et al. (2020). "Feasibility and Mass-Benefit Analysis of Aerocapture for Missions to Venus".
1557: 1175:
Lyne, J. E. (1994). "Physiological constraints on deceleration during the aerocapture of manned vehicles".
368: 1969: 1805: 1552: 1399: 815:
Deshmukh, R.G.; et al. (2020). "Investigation of direct force control for aerocapture at Neptune".
2041: 1810: 1483: 1964: 1846: 1584: 1349: 66: 2079: 1579: 1567: 1539: 357: 271:
orbiter, but later changed to aerobraking for reasons of cost and commonality with other missions.
776:"Feasibility and Performance Analysis of Neptune Aerocapture Using Heritage Blunt-Body Aeroshells" 603:. Conference on Advanced Technology for Future Space Systems, Hampton, Va. Vol. 1. New York: 2083: 2019: 1798: 1700: 1611: 1515: 1488: 1389: 1000: 361: 73:, or a drag-modulation system which can change the vehicle's drag-producing area during flight. 858:
Lu, Ye; et al. (2020). "Titan aerogravity-assist maneuvers for Saturn/Enceladus missions".
2131: 2093: 1527: 1446: 1384: 1981: 1788: 1426: 202: 1222:"Quantitative Assessment of Aerocapture and Applications to Future Solar System Exploration" 1083:
Austin, Alex (2019). "SmallSat Aerocapture to Enable a New Paradigm of Planetary Missions".
2150: 2051: 2034: 1671: 1606: 1599: 1456: 1342: 1233: 1184: 1140: 972: 937: 867: 824: 787: 738: 693: 639: 608: 311: 8: 2046: 2024: 1959: 1678: 1522: 556: 302:
in which only a Russian spacecraft undergoes aerocapture (in the film incorrectly called
198: 1237: 1188: 1144: 1040:
Munk, Michelle M; Moon, Steven A (2008). "Aerocapture Technology Development Overview".
976: 941: 871: 828: 791: 742: 697: 643: 612: 213: 2161: 1944: 1870: 1725: 1621: 1473: 963:
Repic, E.M.; Boobar, M.G. (1968). "Aerobraking as a potential planetary capture mode".
928:
Finch, Thomas W. (1965). "Aerodynamic braking trajectories for mars orbit attainment".
901:
London, Howard S (1962). "Change of satellite orbit plane by aerodynamic maneuvering".
883: 840: 756: 655: 546: 533: 103: 2157: 2116: 1756: 1651: 1626: 1572: 1562: 1379: 1319: 1096: 1063: 887: 844: 760: 659: 319: 292: 148:
A study showed that using aerocapture over the next best method (propellant burn and
118: 1117: 879: 836: 2029: 1858: 1815: 1781: 1746: 1683: 1636: 1478: 1311: 1241: 1200: 1192: 1148: 1088: 1053: 1045: 1022: 980: 945: 910: 875: 832: 795: 746: 701: 647: 551: 287: 217:
Schematic of drag modulation aerocapture using a deployable or inflatable aeroshell
42: 31: 1266: 2074: 1974: 1927: 1825: 1766: 1751: 1705: 1688: 1594: 1589: 326: 50: 1290:"Assessing the Relative Risk of Aerocapture Using Probabilistic Risk Assessment" 2121: 2108: 2001: 1932: 1922: 1907: 1885: 1875: 1771: 1761: 1710: 1631: 194: 164: 59: 1092: 1049: 2176: 2069: 1986: 1917: 1880: 1720: 1641: 1505: 1500: 723:"Aerocapture Assessment for NASA Ice Giants Pre-Decadal Survey Mission Study" 599:
Cruz, MI (May 8–10, 1979). "The aerocapture vehicle mission design concept".
424: 1205: 1058: 2126: 2061: 1730: 1715: 1416: 1411: 678:"Qualitative Assessment of Aerocapture and Applications to Future Missions" 561: 420: 330: 275: 268: 252: 107: 89: 1954: 1820: 1510: 1493: 1365: 541: 430: 303: 299: 149: 128: 1315: 274:
Aerocapture has been proposed and analyzed for arrival at Saturn's moon
2088: 1996: 1939: 1899: 1693: 1394: 1263:"SCIENCE TEAM AND INSTRUMENTS SELECTED FOR MARS SURVEYOR 2001 MISSIONS" 1026: 54: 230:
One of the primary inflatable deceleration technologies is a trailing
2098: 1949: 1666: 1547: 1468: 1451: 1246: 1221: 800: 775: 751: 722: 706: 677: 651: 239: 186: 70: 1232:(4). American Institute of Aeronautics and Astronautics: 1074–1095. 1196: 984: 949: 786:(6). American Institute of Aeronautics and Astronautics: 1186–1203. 346: 1152: 914: 251:
Aerocapture has not yet been tried on a planetary mission, but the
1287: 582: 580: 578: 576: 231: 94: 168:
Schematic illustration of the aerocapture vehicle entry corridor
1912: 1776: 1308:
39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
1116:
Hofstadter, Mark D; Simon, Amy; Reh, Kim; Elliot, John (2017).
260: 256: 235: 98: 1334: 573: 512: 435: 416: 81: 77: 38: 208: 412: 85: 1793: 1305: 1115: 238:, or donut-shaped, decelerator, made of a lightweight, 180: 523: 1288:Percy, T.K.; Bright, E. & Torres, A.O. (2005). 735:American Institute of Aeronautics and Astronautics 690:American Institute of Aeronautics and Astronautics 636:American Institute of Aeronautics and Astronautics 605:American Institute of Aeronautics and Astronautics 159: 2174: 814: 113: 1130: 1350: 1299: 720: 76:Aerocapture has been shown to be feasible at 1219: 1016: 773: 675: 1281: 1118:"Ice Giants Pre-Decadal Study Final Report" 1019:35th Aerospace Sciences Meeting and Exhibit 962: 375:. Unsourced material may be challenged and 267:Aerocapture was originally planned for the 1357: 1343: 442:Comparison of aerocapture and aerobraking 438:of a spacecraft that is already in orbit. 286:Aerocapture within fiction can be read in 225: 139: 1245: 1204: 1057: 998: 799: 750: 705: 671: 669: 395:Learn how and when to remove this message 209:Deployable or Inflatable aeroshell design 1039: 857: 676:Spilker, Thomas R.; Adler, Mark (2019). 625: 598: 513:Aerocapture Mission Analysis Tool (AMAT) 212: 163: 117: 18: 1842:Effect of spaceflight on the human body 1213: 808: 2175: 1864:Psychological and sociological effects 1082: 900: 767: 666: 110:to insert a spacecraft around Saturn. 1338: 927: 714: 586:NASAfacts, "Aerocapture Technology." 234:configuration. The design features a 1174: 1087:. Big Sky, MT: IEEE. pp. 1–20. 407:Aerocapture is part of a family of " 373:adding citations to reliable sources 340: 49:Compared to conventional propulsive 1044:. Big Sky, MT: IEEE. pp. 1–7. 721:Saikia, S. J.; et al. (2021). 13: 1573:Weather and environment monitoring 1220:Girija, A.P.; et al. (2022). 851: 774:Girija, A.P.; et al. (2020). 601:Technical Papers.(A79-34701 14–12) 336: 181:Blunt body, rigid aeroshell design 14: 2194: 1265:. 6 November 1997. Archived from 1226:Journal of Spacecraft and Rockets 1177:Journal of Spacecraft and Rockets 1133:Journal of Spacecraft and Rockets 965:Journal of Spacecraft and Rockets 930:Journal of Spacecraft and Rockets 903:Journal of the Aerospace Sciences 780:Journal of Spacecraft and Rockets 727:Journal of Spacecraft and Rockets 682:Journal of Spacecraft and Rockets 628:Journal of Spacecraft and Rockets 468:Atmospheric passes over duration 2156: 2146: 2145: 526: 482:Relatively dense mid-atmosphere 345: 1617:Space launch market competition 1364: 1255: 1168: 1159: 1124: 1109: 1076: 1033: 1010: 1006:. Texas Space Grant Consortium. 992: 956: 921: 880:10.1016/j.actaastro.2020.06.001 837:10.1016/j.actaastro.2020.05.047 1854:Health threat from cosmic rays 1085:2019 IEEE Aerospace Conference 1042:2008 IEEE Aerospace Conference 894: 619: 592: 246: 160:Aerocapture spacecraft designs 1: 1001:"Aeroasist Flight Experiment" 567: 474:100–400 over weeks to months 281: 114:Brief History of Aerocapture 7: 1970:Self-replicating spacecraft 1806:International Space Station 999:Carpenter, Russell (1992). 519: 506: 479:Depth of atmospheric entry 10: 2199: 1484:Space Liability Convention 309:Players of the video game 2140: 2107: 2060: 2012: 1898: 1847:Space adaptation syndrome 1834: 1739: 1659: 1650: 1538: 1372: 1093:10.1109/AERO.2019.8742220 1050:10.1109/AERO.2008.4526545 1021:. Reno, NV. p. 473. 318:In the television serial 67:thermal protection system 32:orbital transfer maneuver 16:Orbital transfer maneuver 1580:Communications satellite 485:Sparse outer atmosphere 2084:reusable launch systems 1701:Extravehicular activity 1612:Commercial use of space 1516:Militarisation of space 1489:Registration Convention 1405:Accidents and incidents 226:Trailing ballute design 140:Benefits of aerocapture 2132:Mission control center 2094:Non-rocket spacelaunch 1528:Billionaire space race 490:Hardware requirements 218: 185:The blunt body, rigid 169: 123: 24: 2183:Spacecraft propulsion 1982:Spacecraft propulsion 1432:European Space Agency 866:. Elsevier: 262–275. 823:. Elsevier: 375–386. 471:1 over hours to days 216: 203:Apollo Command Module 167: 121: 22: 1607:Satellite navigation 607:. pp. 195–201. 457:Starting trajectory 369:improve this section 325:In the sci-fi novel 312:Kerbal Space Program 1992:Electric propulsion 1679:Life-support system 1563:Imagery and mapping 1523:Private spaceflight 1316:10.2514/6.2003-4951 1238:2022JSpRo..59.1074G 1189:1994JSpRo..31..443L 1145:2005JSpRo..42..309H 977:1968JSpRo...5..921B 942:1965JSpRo...2..497F 872:2020AcAau.176..262L 829:2020AcAau.175..375D 792:2020JSpRo..57.1186G 743:2021JSpRo..58..505S 698:2019JSpRo..56..536S 644:2020JSpRo..57...58G 613:1979atfs.conf..195C 589:. 12 September 2007 557:Atmospheric reentry 443: 1945:Robotic spacecraft 1871:Space and survival 1726:Space colonization 1622:Space architecture 1474:Outer Space Treaty 1269:on 8 February 2017 1027:10.2514/6.1997-473 547:Aerogravity assist 534:Spaceflight portal 493:Heavy heat shield 441: 419:and Saturn's moon 219: 170: 124: 104:aerogravity assist 25: 2170: 2169: 2117:Flight controller 1894: 1893: 1652:Human spaceflight 1627:Space exploration 1553:Earth observation 1325:978-1-62410-098-7 1102:978-1-5386-6854-2 1069:978-1-4244-1487-1 860:Acta Astronautica 817:Acta Astronautica 500: 499: 423:, along with the 405: 404: 397: 320:Stargate Universe 293:2010: Odyssey Two 2190: 2160: 2149: 2148: 1859:Space psychology 1684:Animals in space 1657: 1656: 1637:Space technology 1479:Rescue Agreement 1359: 1352: 1345: 1336: 1335: 1330: 1329: 1303: 1297: 1296: 1294: 1285: 1279: 1278: 1276: 1274: 1259: 1253: 1251: 1249: 1247:10.2514/1.A35214 1217: 1211: 1210: 1208: 1206:2060/19950010336 1172: 1166: 1163: 1157: 1156: 1128: 1122: 1121: 1113: 1107: 1106: 1080: 1074: 1073: 1061: 1059:2060/20080014861 1037: 1031: 1030: 1014: 1008: 1007: 1005: 996: 990: 988: 960: 954: 953: 925: 919: 918: 898: 892: 891: 855: 849: 848: 812: 806: 805: 803: 801:10.2514/1.A34719 771: 765: 764: 754: 752:10.2514/1.A34703 718: 712: 711: 709: 707:10.2514/1.A34056 673: 664: 663: 652:10.2514/1.A34529 623: 617: 616: 596: 590: 584: 552:Asteroid capture 536: 531: 530: 529: 444: 440: 400: 393: 389: 386: 380: 349: 341: 288:Arthur C. Clarke 43:aerodynamic drag 2198: 2197: 2193: 2192: 2191: 2189: 2188: 2187: 2173: 2172: 2171: 2166: 2136: 2103: 2075:Escape velocity 2056: 2008: 1975:Space telescope 1928:Reentry capsule 1890: 1830: 1735: 1706:Overview effect 1689:Bioastronautics 1646: 1534: 1368: 1363: 1333: 1326: 1304: 1300: 1292: 1286: 1282: 1272: 1270: 1261: 1260: 1256: 1218: 1214: 1197:10.2514/3.26458 1173: 1169: 1164: 1160: 1129: 1125: 1114: 1110: 1103: 1081: 1077: 1070: 1038: 1034: 1015: 1011: 1003: 997: 993: 985:10.2514/3.29389 961: 957: 950:10.2514/3.28218 926: 922: 899: 895: 856: 852: 813: 809: 772: 768: 719: 715: 674: 667: 624: 620: 597: 593: 585: 574: 570: 532: 527: 525: 522: 509: 496:No heat shield 460:Interplanetary 401: 390: 384: 381: 366: 350: 339: 337:Related methods 284: 249: 228: 211: 183: 162: 142: 116: 51:orbit insertion 17: 12: 11: 5: 2196: 2186: 2185: 2168: 2167: 2165: 2164: 2153: 2141: 2138: 2137: 2135: 2134: 2129: 2124: 2122:Ground station 2119: 2113: 2111: 2109:Ground segment 2105: 2104: 2102: 2101: 2096: 2091: 2086: 2077: 2072: 2066: 2064: 2058: 2057: 2055: 2054: 2049: 2044: 2042:Interplanetary 2039: 2038: 2037: 2035:Geosynchronous 2032: 2022: 2016: 2014: 2010: 2009: 2007: 2006: 2005: 2004: 2002:Gravity assist 1999: 1994: 1989: 1979: 1978: 1977: 1972: 1967: 1962: 1957: 1952: 1942: 1937: 1936: 1935: 1933:Service module 1930: 1925: 1923:Orbital module 1915: 1910: 1908:Launch vehicle 1904: 1902: 1896: 1895: 1892: 1891: 1889: 1888: 1886:Space sexology 1883: 1878: 1876:Space medicine 1873: 1868: 1867: 1866: 1856: 1851: 1850: 1849: 1838: 1836: 1832: 1831: 1829: 1828: 1823: 1818: 1813: 1808: 1803: 1802: 1801: 1791: 1786: 1785: 1784: 1779: 1769: 1764: 1759: 1754: 1749: 1743: 1741: 1737: 1736: 1734: 1733: 1728: 1723: 1718: 1713: 1711:Weightlessness 1708: 1703: 1698: 1697: 1696: 1691: 1686: 1676: 1675: 1674: 1663: 1661: 1654: 1648: 1647: 1645: 1644: 1639: 1634: 1632:Space research 1629: 1624: 1619: 1614: 1609: 1604: 1603: 1602: 1597: 1592: 1587: 1577: 1576: 1575: 1570: 1568:Reconnaissance 1565: 1560: 1550: 1544: 1542: 1536: 1535: 1533: 1532: 1531: 1530: 1520: 1519: 1518: 1513: 1508: 1498: 1497: 1496: 1491: 1486: 1481: 1476: 1466: 1465: 1464: 1459: 1454: 1449: 1444: 1439: 1437:European Union 1434: 1429: 1424: 1414: 1409: 1408: 1407: 1402: 1397: 1392: 1382: 1376: 1374: 1370: 1369: 1362: 1361: 1354: 1347: 1339: 1332: 1331: 1324: 1298: 1280: 1254: 1212: 1183:(3): 443–446. 1167: 1158: 1153:10.2514/1.4118 1139:(2): 309–320. 1123: 1108: 1101: 1075: 1068: 1032: 1009: 991: 971:(8): 921–926. 955: 936:(4): 497–500. 920: 915:10.2514/8.9416 909:(3): 323–332. 893: 850: 807: 766: 713: 665: 618: 591: 571: 569: 566: 565: 564: 559: 554: 549: 544: 538: 537: 521: 518: 517: 516: 508: 505: 498: 497: 494: 491: 487: 486: 483: 480: 476: 475: 472: 469: 465: 464: 461: 458: 454: 453: 450: 447: 403: 402: 353: 351: 344: 338: 335: 283: 280: 248: 245: 227: 224: 210: 207: 182: 179: 161: 158: 141: 138: 115: 112: 60:launch vehicle 15: 9: 6: 4: 3: 2: 2195: 2184: 2181: 2180: 2178: 2163: 2159: 2154: 2152: 2143: 2142: 2139: 2133: 2130: 2128: 2125: 2123: 2120: 2118: 2115: 2114: 2112: 2110: 2106: 2100: 2097: 2095: 2092: 2090: 2087: 2085: 2081: 2078: 2076: 2073: 2071: 2070:Direct ascent 2068: 2067: 2065: 2063: 2059: 2053: 2052:Intergalactic 2050: 2048: 2045: 2043: 2040: 2036: 2033: 2031: 2028: 2027: 2026: 2023: 2021: 2018: 2017: 2015: 2011: 2003: 2000: 1998: 1995: 1993: 1990: 1988: 1987:Rocket engine 1985: 1984: 1983: 1980: 1976: 1973: 1971: 1968: 1966: 1963: 1961: 1958: 1956: 1953: 1951: 1948: 1947: 1946: 1943: 1941: 1938: 1934: 1931: 1929: 1926: 1924: 1921: 1920: 1919: 1918:Space capsule 1916: 1914: 1911: 1909: 1906: 1905: 1903: 1901: 1897: 1887: 1884: 1882: 1881:Space nursing 1879: 1877: 1874: 1872: 1869: 1865: 1862: 1861: 1860: 1857: 1855: 1852: 1848: 1845: 1844: 1843: 1840: 1839: 1837: 1835:Health issues 1833: 1827: 1824: 1822: 1819: 1817: 1814: 1812: 1809: 1807: 1804: 1800: 1797: 1796: 1795: 1792: 1790: 1789:Space Shuttle 1787: 1783: 1780: 1778: 1775: 1774: 1773: 1770: 1768: 1765: 1763: 1760: 1758: 1755: 1753: 1750: 1748: 1745: 1744: 1742: 1738: 1732: 1729: 1727: 1724: 1722: 1721:Space tourism 1719: 1717: 1714: 1712: 1709: 1707: 1704: 1702: 1699: 1695: 1692: 1690: 1687: 1685: 1682: 1681: 1680: 1677: 1673: 1670: 1669: 1668: 1665: 1664: 1662: 1658: 1655: 1653: 1649: 1643: 1642:Space weather 1640: 1638: 1635: 1633: 1630: 1628: 1625: 1623: 1620: 1618: 1615: 1613: 1610: 1608: 1605: 1601: 1598: 1596: 1593: 1591: 1588: 1586: 1583: 1582: 1581: 1578: 1574: 1571: 1569: 1566: 1564: 1561: 1559: 1556: 1555: 1554: 1551: 1549: 1546: 1545: 1543: 1541: 1537: 1529: 1526: 1525: 1524: 1521: 1517: 1514: 1512: 1509: 1507: 1506:Space command 1504: 1503: 1502: 1501:Space warfare 1499: 1495: 1492: 1490: 1487: 1485: 1482: 1480: 1477: 1475: 1472: 1471: 1470: 1467: 1463: 1462:United States 1460: 1458: 1455: 1453: 1450: 1448: 1445: 1443: 1440: 1438: 1435: 1433: 1430: 1428: 1425: 1423: 1420: 1419: 1418: 1415: 1413: 1410: 1406: 1403: 1401: 1398: 1396: 1393: 1391: 1388: 1387: 1386: 1383: 1381: 1380:Astrodynamics 1378: 1377: 1375: 1371: 1367: 1360: 1355: 1353: 1348: 1346: 1341: 1340: 1337: 1327: 1321: 1317: 1313: 1309: 1302: 1291: 1284: 1268: 1264: 1258: 1248: 1243: 1239: 1235: 1231: 1227: 1223: 1216: 1207: 1202: 1198: 1194: 1190: 1186: 1182: 1178: 1171: 1162: 1154: 1150: 1146: 1142: 1138: 1134: 1127: 1119: 1112: 1104: 1098: 1094: 1090: 1086: 1079: 1071: 1065: 1060: 1055: 1051: 1047: 1043: 1036: 1028: 1024: 1020: 1013: 1002: 995: 986: 982: 978: 974: 970: 966: 959: 951: 947: 943: 939: 935: 931: 924: 916: 912: 908: 904: 897: 889: 885: 881: 877: 873: 869: 865: 861: 854: 846: 842: 838: 834: 830: 826: 822: 818: 811: 802: 797: 793: 789: 785: 781: 777: 770: 762: 758: 753: 748: 744: 740: 736: 732: 728: 724: 717: 708: 703: 699: 695: 691: 687: 683: 679: 672: 670: 661: 657: 653: 649: 645: 641: 637: 633: 629: 622: 614: 610: 606: 602: 595: 588: 583: 581: 579: 577: 572: 563: 560: 558: 555: 553: 550: 548: 545: 543: 540: 539: 535: 524: 514: 511: 510: 504: 495: 492: 489: 488: 484: 481: 478: 477: 473: 470: 467: 466: 462: 459: 456: 455: 451: 448: 446: 445: 439: 437: 432: 428: 426: 425:outer planets 422: 418: 414: 410: 399: 396: 388: 385:February 2019 378: 374: 370: 364: 363: 359: 354:This section 352: 348: 343: 342: 334: 332: 328: 323: 321: 316: 314: 313: 307: 305: 301: 300:movie version 296: 294: 289: 279: 277: 272: 270: 265: 262: 258: 254: 253:re-entry skip 244: 241: 237: 233: 223: 215: 206: 204: 200: 196: 191: 188: 178: 174: 166: 157: 153: 151: 146: 137: 133: 130: 120: 111: 109: 105: 100: 96: 91: 87: 83: 79: 74: 72: 68: 63: 61: 56: 52: 47: 44: 40: 35: 33: 29: 21: 2062:Space launch 2047:Interstellar 2013:Destinations 1782:Apollo–Soyuz 1731:Space diving 1716:Space toilet 1540:Applications 1457:Soviet Union 1417:Space policy 1412:Space launch 1307: 1301: 1283: 1271:. Retrieved 1267:the original 1257: 1229: 1225: 1215: 1180: 1176: 1170: 1161: 1136: 1132: 1126: 1111: 1084: 1078: 1041: 1035: 1018: 1012: 994: 968: 964: 958: 933: 929: 923: 906: 902: 896: 863: 859: 853: 820: 816: 810: 783: 779: 769: 730: 726: 716: 685: 681: 631: 627: 621: 600: 594: 562:Skip reentry 501: 452:Aerobraking 449:Aerocapture 429: 406: 391: 382: 367:Please help 355: 324: 317: 310: 308: 291: 285: 273: 269:Mars Odyssey 266: 250: 229: 220: 192: 184: 175: 171: 154: 147: 143: 134: 125: 75: 64: 48: 36: 27: 26: 2020:Sub-orbital 1955:Space probe 1821:New Shepard 1799:Shuttle–Mir 1558:Archaeology 1511:Space force 1494:Moon Treaty 1366:Spaceflight 737:: 505–515. 692:: 536–545. 542:Aerobraking 463:High orbit 431:Aerobraking 304:aerobraking 247:In practice 199:Opportunity 150:aerobraking 129:aerobraking 28:Aerocapture 2089:Launch pad 2080:Expendable 2030:Geocentric 1997:Solar sail 1940:Spaceplane 1900:Spacecraft 1694:Space suit 1672:commercial 1600:Television 1395:Space Race 1273:3 November 568:References 409:aeroassist 282:In fiction 55:propellant 2099:Spaceport 1950:Satellite 1667:Astronaut 1595:Telephone 1548:Astronomy 1469:Space law 1422:Australia 888:219911419 845:224848526 761:233976308 660:213497903 638:: 58–73. 356:does not 290:'s novel 240:thin-film 187:aeroshell 71:aeroshell 2177:Category 2151:Category 1816:Tiangong 1811:Shenzhou 1740:Programs 1585:Internet 1390:Timeline 520:See also 507:Software 436:apoapsis 236:toroidal 2025:Orbital 1826:Artemis 1757:Voskhod 1752:Mercury 1660:General 1400:Records 1385:History 1373:General 1234:Bibcode 1185:Bibcode 1141:Bibcode 1120:. NASA. 973:Bibcode 938:Bibcode 868:Bibcode 825:Bibcode 788:Bibcode 739:Bibcode 694:Bibcode 640:Bibcode 609:Bibcode 377:removed 362:sources 327:Delta-v 232:ballute 95:Jupiter 2162:Portal 2155:  2144:  1960:Lander 1913:Rocket 1777:Skylab 1772:Apollo 1762:Gemini 1747:Vostok 1452:Russia 1322:  1099:  1066:  886:  843:  759:  658:  261:Zond 7 257:Zond 6 195:Spirit 99:Saturn 88:, and 30:is an 1965:Rover 1767:Soyuz 1590:Radio 1447:Japan 1442:India 1427:China 1293:(PDF) 1004:(PDF) 884:S2CID 841:S2CID 757:S2CID 733:(2). 688:(2). 656:S2CID 634:(1). 421:Titan 417:Venus 331:Ryugu 276:Titan 108:Titan 90:Titan 82:Earth 78:Venus 39:orbit 2127:Pass 2082:and 1320:ISBN 1275:2011 1097:ISBN 1064:ISBN 413:Mars 360:any 358:cite 259:and 197:and 97:and 86:Mars 1794:Mir 1312:doi 1242:doi 1201:hdl 1193:doi 1149:doi 1089:doi 1054:hdl 1046:doi 1023:doi 981:doi 946:doi 911:doi 876:doi 864:176 833:doi 821:175 796:doi 747:doi 702:doi 648:doi 371:by 306:). 255:by 106:at 62:. 2179:: 1318:. 1310:. 1240:. 1230:59 1228:. 1224:. 1199:. 1191:. 1181:31 1179:. 1147:. 1137:42 1135:. 1095:. 1062:. 1052:. 979:. 967:. 944:. 932:. 907:29 905:. 882:. 874:. 862:. 839:. 831:. 819:. 794:. 784:57 782:. 778:. 755:. 745:. 731:58 729:. 725:. 700:. 686:56 684:. 680:. 668:^ 654:. 646:. 632:57 630:. 575:^ 427:. 415:, 333:. 278:. 84:, 80:, 1358:e 1351:t 1344:v 1328:. 1314:: 1295:. 1277:. 1252:. 1250:. 1244:: 1236:: 1209:. 1203:: 1195:: 1187:: 1155:. 1151:: 1143:: 1105:. 1091:: 1072:. 1056:: 1048:: 1029:. 1025:: 989:} 987:. 983:: 975:: 969:5 952:. 948:: 940:: 934:2 917:. 913:: 890:. 878:: 870:: 847:. 835:: 827:: 804:. 798:: 790:: 763:. 749:: 741:: 710:. 704:: 696:: 662:. 650:: 642:: 615:. 611:: 398:) 392:( 387:) 383:( 379:. 365:. 295:,

Index


orbital transfer maneuver
orbit
aerodynamic drag
orbit insertion
propellant
launch vehicle
thermal protection system
aeroshell
Venus
Earth
Mars
Titan
Jupiter
Saturn
aerogravity assist
Titan

aerobraking
aerobraking

aeroshell
Spirit
Opportunity
Apollo Command Module

ballute
toroidal
thin-film
re-entry skip

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.