Knowledge

Aerobraking

Source đź“ť

334: 641: 291: 657: 40: 676: 27: 626:, helping to slow the plane. The raised elevators also cause air to push down on the rear of the craft, forcing the rear wheels harder against the ground, which aids the wheel brakes by helping to prevent skidding. The pilot will usually continue to hold back on the stick even after the elevators lose their authority, and the nose wheel drops, to keep added pressure on the rear wheels. 401:. The entire gravity field was mapped from the circular orbit during a 243-day cycle of the extended mission. During the termination phase of the mission, a "windmill experiment" was performed: Atmospheric molecular pressure exerts a torque via the windmill-sail-like oriented solar cell wings, the necessary counter-torque to keep the probe from spinning is measured. 253:
is a related but more extreme method in which no initial orbit-injection burn is performed. Instead, the spacecraft plunges deeply into the atmosphere without an initial insertion burn, and emerges from this single pass in the atmosphere with an apoapsis near that of the desired orbit. Several small
629:
Aerodynamic braking is a common braking technique during landing, which can also help to protect the wheel brakes and tires from excess wear, or from locking up and sending the craft sliding out of control. It is often used by private pilots, commercial planes, fighter aircraft, and was used by the
621:
Aerodynamic braking is a method used in landing aircraft to assist the wheel brakes in stopping the plane. It is often used for short runway landings or when conditions are wet, icy or slippery. Aerodynamic braking is performed immediately after the rear wheels (main mounts) touch down, but before
363:
Although the theory of aerobraking is well developed, using the technique is difficult because a very detailed knowledge of the character of the target planet's atmosphere is needed in order to plan the maneuver correctly. Currently, the deceleration is monitored during each maneuver and plans are
135:
dictates that a large fraction of the spacecraft mass must consist of fuel. This reduces the science payload and/or requires a large and expensive rocket. Provided the target body has an atmosphere, aerobraking can be used to reduce fuel requirements. The use of a relatively small burn allows the
597:
spaceship carrying the first hundred humans to arrive on Mars uses aerobraking to enter into orbit around the planet. Later in the books, as an effort to thicken the atmosphere, scientists bring an asteroid into aerobraking in order to vaporize it and release its contents into the atmosphere.
368:. This is particularly true near the end of the process, when the drag passes are relatively close together (only about 2 hours apart for Mars). NASA has used aerobraking four times to modify a spacecraft's orbit to one with lower energy, reduced apoapsis altitude, and smaller orbit. 241:
Many spacecraft use solar panels to power their operations. The panels can be used to refine aerobraking to reduce the number of required orbits. The panels rotate according to an AI-powered algorithm to increase/reduce drag and can reduce arrival times from months to weeks.
383:(ISAS) of Japan. Hiten flew by the Earth at an altitude of 125.5 km over the Pacific at 11.0 km/s. Atmospheric drag lowered the velocity by 1.712 m/s and the apogee altitude by 8665 km. Another aerobraking maneuver was conducted on 30 March. 174:, meaning that spacecraft must dissipate this heat. The spacecraft must have sufficient surface area and structural strength to produce and survive the required drag, The temperatures and pressures associated with aerobraking are not as severe as those of 140:. Aerobraking then shortens the orbit into a circle. If the atmosphere is thick enough, a single pass can be sufficient to adjust the orbit. However, aerobraking typically requires multiple orbits higher in the atmosphere. This reduces the effects of 426:
of its orbit over the course of many months. Unfortunately, a structural failure shortly after launch severely damaged one of the MGS's solar panels and necessitated a higher aerobraking altitude (and hence one third the force) than
233:
to determine the orbit of an anthropogenic space object about another planet. This method, which could be used to automate aerobraking navigation, is called Inertial Measurements for Aeroassisted Navigation (IMAN) and Jah won a
622:
the nose wheel drops. The pilot begins to pull back on the stick, applying elevator pressure to hold the nose high. The nose-high attitude exposes more of the craft's surface-area to the flow of air, which produces greater
955: 206:
during aerobraking is comparable to the aerodynamic resistance of moving at 0.6 m/s (2.16 km/h) at sea level on Earth, approximately the amount experienced when walking slowly.
147:
Aerobraking done this way allows sufficient time after each pass to measure the velocity change and make corrections for the next pass. Achieving the final orbit may take over six
640: 720: 213:
was the first to demonstrate the ability to process Inertial Measurement Unit (IMU) data collected on board the spacecraft, during aerobraking, using an unscented
1174: 607:, astronaut pilot Cooper uses aerobraking to save fuel and slow the spacecraft Ranger upon exiting the wormhole to arrive in orbit above the first planet. 1162: 1290:. AIAA and AAS, Astrodynamics Conference. Seattle, Washington: American Institute of Aeronautics and Astronautics. pp. 25 p.. Retrieved 2007-07-31. 656: 410:(MGS) orbiter was the first spacecraft to use aerobraking as the main planned technique of orbit adjustment. The MGS used the data gathered from the 364:
modified accordingly. Since no spacecraft can yet aerobrake safely on its own, this requires constant attention from both human controllers and the
952: 131:(as is required for many scientific studies), the required velocity changes can be on the order of kilometers per second. Using propulsion, the 155:, and may require hundreds of passes through the atmosphere. After the last pass, if the spacecraft shall stay in orbit, it must be given more 107:. Aerobraking is used when a spacecraft requires a low orbit after arriving at a body with an atmosphere, as it requires less fuel than using 975: 380: 217:
to statistically infer the spacecraft's trajectory independent of ground-based measurement data. Jah did this using actual IMU data from
1280: 196:
per square meter with a spacecraft cross section of about 37 m, equate to a maximum drag force of about 7.4 N, and a maximum expected
274:
instead of drag at the point of closest approach. If correctly oriented, this can increase the deflection angle above that of a pure
459:
performed aerobraking at Mars to reduce the apocentre of the orbit, being the first operational aerobraking for a European mission.
1453: 565:
suffers an almost complete loss of power and must use aerobraking to change course. The 2009 episode ends in a cliffhanger with
1207: 1235: 536: 446:
In 2014, an aerobraking experiment was successfully performed on a test basis near the end of the mission of the ESA probe
1104: 791:& George H. Born (2008). "Mars Aerobraking Spacecraft State Estimation By Processing Inertial Measurement Unit Data". 727: 908:
McRonald, Angus D.; Randolph, James E. (Jan 8–11, 1990). "Hypersonic maneuvering to provide planetary gravity assist".
827: 849: 397:. It was used to circularize the orbit of the spacecraft in order to increase the precision of the measurement of the 1509: 1152: 431:, significantly extending the time required to attain the desired orbit. More recently, aerobraking was used by the 1315: 924: 877: 583: 39: 333: 1563: 1491: 1075: 1497: 1396: 548: 200:
as 170 Â°C. The force density (i.e. pressure), roughly 0.2 N per square meter, that was exerted on the
495:
for an unplanned extended mission and landing on Venus, during a transit from the Asteroid Belt to Earth.
1011: 439: 225: 184: 132: 51: 32: 290: 1573: 1360: 1348: 1354: 163:
above the atmosphere. If the craft shall land, it must lose kinetic energy, also via rocket engines.
1442: 982:, Proceedings of the 47th Annual Meeting of the Institute of Navigation June 10–12, 1991, pp.17–27. 971:
J. Kawaguchi, T. Icbikawa, T. Nishimura, K. Uesugi, L. Efron, J. Ellis, P. R. Menon and B. Tucker,
1459: 972: 616: 17: 1133: 1533: 1469: 1338: 462: 721:"NASA LANGLEY TRAJECTORY SIMULATION AND ANALYSIS CAPABILITIES FOR MARS RECONNAISSANCE ORBITER" 1503: 1112: 1083: 541: 108: 1568: 1464: 1308: 1023: 973:"Navigation for Muses-A (HITEN) Aerobraking in the Earth's Atmosphere – Preliminary Report" 800: 590: 574: 406: 8: 1343: 1275: 603: 428: 391: 175: 1027: 804: 751: 1380: 1375: 786: 681: 558: 482: 376: 372: 365: 267: 1203: 1157: 1039: 1035: 769: 553: 540:
the crew of the international spacecraft Pegasus perform an aerobraking manoeuvre in
508: 456: 254:
correction burns are then used to raise the periapsis and perform final adjustments.
144:
heating, unpredictable turbulence effects, atmospheric composition, and temperature.
1057: 770:"Spaceflight Now | Destination Mars | Spacecraft enters orbit around Mars" 422:" to control its passage through the tenuous upper atmosphere of Mars and lower the 1485: 1365: 1166: 1031: 808: 524: 503: 84: 80: 1239: 992: 894: 586:", because the high drag sometimes causes large crafts to split in several parts. 1301: 1287: 1197: 979: 959: 953:"Deep Space Chronicle: A Chronology of Deep Space and Planetary Probes 1958–2000" 1288:
A comparison of aerobraking and aerocapture vehicles for interplanetary missions
878:"Assessing the Relative Risk of Aerocapture Using Probabilistic Risk Assessment" 1370: 788: 623: 275: 156: 137: 124: 100: 119:
When an interplanetary vehicle arrives at its destination, it must reduce its
1557: 1516: 1447: 1043: 647: 631: 579: 448: 398: 230: 214: 202: 193: 1170: 414:
mission to Venus to plan its aerobraking technique. The spacecraft used its
1010:
Lyons, Daniel T.; Saunders, R. Stephen; Griffith, Douglas G. (1 May 1995).
699: 433: 375:
spacecraft. This was the first aerobraking maneuver by a deep space probe.
271: 259: 219: 922: 1406: 694: 689: 513: 487: 415: 250: 197: 179: 77: 1421: 1401: 895:"SCIENCE TEAM AND INSTRUMENTS SELECTED FOR MARS SURVEYOR 2001 MISSIONS" 210: 167: 104: 92: 925:"Autonomous Aerobraking: A Design, Development, and Feasibility Study" 270:, in which the spacecraft flies through the upper atmosphere and uses 528: 160: 96: 907: 812: 1426: 1416: 1411: 470: 423: 141: 120: 88: 1225:
By the Federal Aviation Administration – Skyhorse Publishing 2007
875: 799:(6). AIAA Journal of Guidance, Control, and Dynamics: 1802–1812. 517: 279: 128: 962:
by Asif A. Siddiqi, NASA Monographs in Aerospace History No. 24.
718: 491:, aerobraking is used to save fuel while slowing the spacecraft 26: 1479: 1474: 1324: 263:
orbiter, but the significant design impacts proved too costly.
828:"Inertial Measurements for Aero-Assisted Navigation NPO-43677" 387: 189: 148: 1012:"The Magellan Venus mapping mission: Aerobraking operations" 466: 419: 326: 302: 235: 171: 152: 66: 1293: 1262:
By S. Biswas – Kluwer Academic Publishing 2000 Page 28
1153:"India eyes a return to Mars and a first run at Venus" 1134:"ESA - Robotic Exploration of Mars - Surfing complete" 386:
In May 1993, aerobraking was used during the extended
371:
On 19 March 1991, aerobraking was demonstrated by the
1009: 469:, which is proposed to use aerobraking to reduce its 1144: 923:
Prince, Jill L. H.; Powell, Richard W.; Murri, Dan.
671: 876:Percy, T.K.; Bright, E. & Torres, A.O. (2005). 229:. Moreover, this was the first use of an unscented 1195: 123:to achieve orbit or to land. To reach a low, near- 850:"New AI improves orbit entry for Mars satellites" 582:. It is sometimes humorously referred to as "aero 1555: 578:, this is a common method of reducing a craft's 544:to slow them down enough to enter Jovian orbit. 30:An artist's conception of aerobraking with the 910:AIAA-1990-539, 28th Aerospace Sciences Meeting 726:. NASA Langley Research Center. Archived from 662:Aerodynamic braking in Space Shuttle landings. 1309: 871: 869: 825: 719:Jill L. Hanna Prince & Scott A. Striepe. 1202:. Tom Doherty Associates. pp. 157–158. 443:spacecraft, in both cases without incident. 381:Institute of Space and Astronautical Science 257:This method was originally planned for the 1316: 1302: 866: 793:Journal of Guidance, Control, and Dynamics 520:'s atmosphere to establish itself at the L 847: 476: 159:via rocket engines in order to raise the 516:uses aerobraking in the upper layers of 332: 289: 38: 25: 1281:An Explanation of How Aerobraking Works 305:from 24 October 2001 to 24 October 2002 1556: 610: 337:Animation of ExoMars Trace Gas Orbiter 285: 1297: 1150: 1058:"Magellan Begins Windmill Experiment" 1003: 572:In the space simulation sandbox game 379:(a.k.a. MUSES-A) was launched by the 266:Another related technique is that of 1260:Cosmic Perspectives in Space Physics 1177:from the original on 13 October 2023 916: 650:, demonstrating aerodynamic braking. 537:Space Odyssey: Voyage to the Planets 91:) by flying the vehicle through the 1454:California–Nevada Interstate Maglev 1151:Bagla, Pallava (17 February 2017). 13: 1286:Hoffman, S. (August 20–22, 1984). 1269: 245: 83:that reduces the high point of an 14: 1585: 358:  ExoMars Trace Gas Orbiter 209:Regarding spacecraft navigation, 136:spacecraft to enter an elongated 848:Strickler, Jordan (2022-01-20). 826:Moriba K. Jah (September 2007). 674: 655: 639: 1253: 1228: 1216: 1189: 1126: 1097: 1068: 1050: 985: 965: 946: 934:. NASA Technical Reports Server 787:Moriba K. Jah; Michael Lisano; 569:headed directly toward a star. 238:Space Act Award for this work. 170:by aerobraking is converted to 127:around a body with substantial 95:at the low point of the orbit ( 1276:JPL aerobraking report for MGS 901: 887: 841: 819: 780: 762: 744: 712: 455:In 2017–2018, the ESA ExoMars 1: 1510:Shanghai–Hangzhou Maglev Line 1076:"Surfing an alien atmosphere" 705: 1498:Qingyuan Maglev Tourist Line 1397:High Speed Surface Transport 1036:10.1016/0094-5765(95)00032-U 932:NASA Langley Research Center 7: 1196:Robert A. Heinlein (2007). 1105:"Venus Express rises again" 667: 440:Mars Reconnaissance Orbiter 226:Mars Reconnaissance Orbiter 185:Mars Reconnaissance Orbiter 52:Mars Reconnaissance Orbiter 33:Mars Reconnaissance Orbiter 10: 1590: 1349:Electromagnetic suspension 1323: 978:December 26, 2010, at the 646:An F-22 Raptor landing at 614: 542:Jupiter's upper atmosphere 15: 1542: 1526: 1435: 1389: 1355:Electrodynamic suspension 1331: 114: 43:An example of Aerobraking 1223:Airplane Flying Handbook 278:, resulting in a larger 16:Not to be confused with 1460:Changsha Maglev Express 1171:10.1126/science.aal0781 617:Air brake (aeronautics) 500:Cosmonaut Alexei Leonov 465:is a future mission by 18:Air brake (aeronautics) 1534:Lathen train collision 1470:Incheon Airport Maglev 1339:Linear induction motor 534:In the 2004 TV series 477:Aerobraking in fiction 463:Mars Orbiter Mission 2 360: 341:trajectory around Mars 330: 70: 36: 1564:Spacecraft propulsion 1504:Shanghai Maglev Train 1113:European Space Agency 1084:European Space Agency 593:'s Mars trilogy, the 336: 293: 182:. Simulations of the 42: 29: 1545:Proposals in italics 591:Kim Stanley Robinson 575:Kerbal Space Program 514:1984 film adaptation 407:Mars Global Surveyor 23:Spaceflight maneuver 1527:Transport Accidents 1344:Magnetic levitation 1138:exploration.esa.int 1028:1995AcAau..35..669L 997:Gunter's Space Page 805:2008JGCD...31.1802J 611:Aerodynamic braking 286:Spacecraft missions 176:atmospheric reentry 166:The kinetic energy 1381:Lift-to-drag ratio 1376:Eddy current brake 958:2008-09-25 at the 897:. 6 November 1997. 774:spaceflightnow.com 756:www.spacedaily.com 682:Spaceflight portal 483:Robert A. Heinlein 429:originally planned 366:Deep Space Network 361: 331: 301:trajectory around 268:aerogravity assist 188:aerobraking use a 71: 37: 1574:Atmospheric entry 1551: 1550: 1546: 1448:Birmingham Maglev 1209:978-1-4299-1253-2 1062:www2.jpl.nasa.gov 1016:Acta Astronautica 993:"Muses A (Hiten)" 634:during landings. 601:In the 2014 film 554:Stargate Universe 527:of the Jupiter – 509:2010: Odyssey Two 457:Trace Gas Orbiter 313:2001 Mars Odyssey 296:2001 Mars Odyssey 99:). The resulting 1581: 1544: 1486:Northeast Maglev 1366:Magnetic bearing 1318: 1311: 1304: 1295: 1294: 1263: 1257: 1251: 1250: 1248: 1247: 1238:. Archived from 1232: 1226: 1220: 1214: 1213: 1193: 1187: 1186: 1184: 1182: 1148: 1142: 1141: 1130: 1124: 1123: 1121: 1119: 1101: 1095: 1094: 1092: 1090: 1072: 1066: 1065: 1054: 1048: 1047: 1007: 1001: 1000: 989: 983: 969: 963: 950: 944: 943: 941: 939: 929: 920: 914: 913: 905: 899: 898: 891: 885: 884: 882: 873: 864: 863: 861: 860: 845: 839: 838: 836: 835: 823: 817: 816: 784: 778: 777: 766: 760: 759: 748: 742: 741: 739: 738: 732: 725: 716: 684: 679: 678: 677: 659: 643: 525:Lagrangian point 504:Arthur C. Clarke 359: 357: 348: 346: 340: 329: 324: 315: 310: 300: 272:aerodynamic lift 85:elliptical orbit 69: 64: 55: 48: 1589: 1588: 1584: 1583: 1582: 1580: 1579: 1578: 1554: 1553: 1552: 1547: 1538: 1522: 1465:ChĹ«ĹŤ Shinkansen 1443:Beijing line S1 1431: 1385: 1327: 1322: 1272: 1270:Further reading 1267: 1266: 1258: 1254: 1245: 1243: 1234: 1233: 1229: 1221: 1217: 1210: 1194: 1190: 1180: 1178: 1149: 1145: 1132: 1131: 1127: 1117: 1115: 1103: 1102: 1098: 1088: 1086: 1074: 1073: 1069: 1056: 1055: 1051: 1008: 1004: 991: 990: 986: 980:Wayback Machine 970: 966: 960:Wayback Machine 951: 947: 937: 935: 927: 921: 917: 906: 902: 893: 892: 888: 880: 874: 867: 858: 856: 846: 842: 833: 831: 824: 820: 813:10.2514/1.24304 785: 781: 768: 767: 763: 750: 749: 745: 736: 734: 730: 723: 717: 713: 708: 680: 675: 673: 670: 663: 660: 651: 644: 619: 613: 523: 498:The spacecraft 479: 390:mission of the 355: 354: 344: 343: 342: 338: 322: 321: 308: 307: 306: 298: 288: 248: 246:Related methods 133:rocket equation 117: 62: 61: 46: 45: 44: 24: 21: 12: 11: 5: 1587: 1577: 1576: 1571: 1566: 1549: 1548: 1543: 1540: 1539: 1537: 1536: 1530: 1528: 1524: 1523: 1521: 1520: 1513: 1506: 1501: 1494: 1489: 1482: 1477: 1472: 1467: 1462: 1457: 1450: 1445: 1439: 1437: 1433: 1432: 1430: 1429: 1424: 1419: 1414: 1409: 1404: 1399: 1393: 1391: 1387: 1386: 1384: 1383: 1378: 1373: 1371:Servomechanism 1368: 1363: 1358: 1352: 1346: 1341: 1335: 1333: 1329: 1328: 1321: 1320: 1313: 1306: 1298: 1292: 1291: 1284: 1278: 1271: 1268: 1265: 1264: 1252: 1236:"Publications" 1227: 1215: 1208: 1188: 1143: 1125: 1096: 1067: 1049: 1022:(9): 669–676. 1002: 984: 964: 945: 915: 900: 886: 865: 840: 818: 789:Penina Axelrad 779: 761: 752:"Aerobreaking" 743: 710: 709: 707: 704: 703: 702: 697: 692: 686: 685: 669: 666: 665: 664: 661: 654: 652: 645: 638: 632:Space Shuttles 612: 609: 549:fourth episode 521: 506:'s 1982 novel 485:'s 1948 novel 478: 475: 287: 284: 276:gravity assist 247: 244: 192:limit of 0.35 157:kinetic energy 138:elliptic orbit 125:circular orbit 116: 113: 111:to slow down. 22: 9: 6: 4: 3: 2: 1586: 1575: 1572: 1570: 1567: 1565: 1562: 1561: 1559: 1541: 1535: 1532: 1531: 1529: 1525: 1519: 1518: 1517:UK Ultraspeed 1514: 1512: 1511: 1507: 1505: 1502: 1500: 1499: 1495: 1493: 1490: 1488: 1487: 1483: 1481: 1478: 1476: 1473: 1471: 1468: 1466: 1463: 1461: 1458: 1456: 1455: 1451: 1449: 1446: 1444: 1441: 1440: 1438: 1434: 1428: 1425: 1423: 1420: 1418: 1415: 1413: 1410: 1408: 1405: 1403: 1400: 1398: 1395: 1394: 1392: 1388: 1382: 1379: 1377: 1374: 1372: 1369: 1367: 1364: 1362: 1359: 1356: 1353: 1350: 1347: 1345: 1342: 1340: 1337: 1336: 1334: 1330: 1326: 1319: 1314: 1312: 1307: 1305: 1300: 1299: 1296: 1289: 1285: 1282: 1279: 1277: 1274: 1273: 1261: 1256: 1242:on 2016-06-10 1241: 1237: 1231: 1224: 1219: 1211: 1205: 1201: 1200: 1192: 1176: 1172: 1168: 1164: 1160: 1159: 1154: 1147: 1139: 1135: 1129: 1114: 1110: 1106: 1100: 1085: 1081: 1077: 1071: 1063: 1059: 1053: 1045: 1041: 1037: 1033: 1029: 1025: 1021: 1017: 1013: 1006: 998: 994: 988: 981: 977: 974: 968: 961: 957: 954: 949: 933: 926: 919: 911: 904: 896: 890: 879: 872: 870: 855: 851: 844: 830:. Tech Briefs 829: 822: 814: 810: 806: 802: 798: 794: 790: 783: 775: 771: 765: 757: 753: 747: 733:on 2009-03-20 729: 722: 715: 711: 701: 698: 696: 693: 691: 688: 687: 683: 672: 658: 653: 649: 648:Elmendorf AFB 642: 637: 636: 635: 633: 627: 625: 618: 608: 606: 605: 599: 596: 592: 587: 585: 581: 580:orbital speed 577: 576: 570: 568: 564: 560: 556: 555: 550: 545: 543: 539: 538: 532: 530: 526: 519: 515: 511: 510: 505: 501: 496: 494: 490: 489: 484: 474: 472: 468: 464: 460: 458: 453: 451: 450: 449:Venus Express 444: 442: 441: 436: 435: 430: 425: 421: 417: 413: 409: 408: 404:In 1997, the 402: 400: 399:gravity field 396: 394: 389: 384: 382: 378: 374: 369: 367: 352: 335: 328: 319: 314: 304: 297: 294:Animation of 292: 283: 281: 277: 273: 269: 264: 262: 261: 255: 252: 243: 239: 237: 232: 231:Kalman Filter 228: 227: 222: 221: 216: 215:Kalman Filter 212: 207: 205: 204: 203:Mars Observer 199: 195: 191: 187: 186: 181: 177: 173: 169: 164: 162: 158: 154: 150: 145: 143: 139: 134: 130: 126: 122: 112: 110: 106: 102: 98: 94: 90: 86: 82: 79: 75: 68: 59: 54: 53: 41: 35: 34: 28: 19: 1515: 1508: 1496: 1484: 1452: 1332:Technologies 1259: 1255: 1244:. Retrieved 1240:the original 1230: 1222: 1218: 1198: 1191: 1179:. Retrieved 1156: 1146: 1137: 1128: 1116:. Retrieved 1108: 1099: 1087:. Retrieved 1079: 1070: 1061: 1052: 1019: 1015: 1005: 996: 987: 967: 948: 938:15 September 936:. Retrieved 931: 918: 909: 903: 889: 857:. Retrieved 853: 843: 832:. Retrieved 821: 796: 792: 782: 773: 764: 755: 746: 735:. Retrieved 728:the original 714: 700:Lithobraking 628: 620: 604:Interstellar 602: 600: 594: 588: 573: 571: 566: 562: 552: 546: 535: 533: 507: 499: 497: 492: 486: 480: 461: 454: 447: 445: 438: 434:Mars Odyssey 432: 416:solar panels 411: 405: 403: 392: 385: 370: 362: 350: 317: 312: 295: 265: 260:Mars Odyssey 258: 256: 249: 240: 224: 220:Mars Odyssey 218: 208: 201: 183: 165: 146: 118: 73: 72: 57: 50: 31: 1569:Spaceflight 1407:Launch loop 1199:Space Cadet 912:. Reno, NV. 854:ZME Science 695:Boost-glide 690:Aerocapture 493:Aes Triplex 488:Space Cadet 347:  Mars 251:Aerocapture 198:temperature 180:aerocapture 78:spaceflight 74:Aerobraking 1558:Categories 1492:ODU maglev 1422:Transrapid 1402:Inductrack 1246:2012-07-31 859:2022-02-04 834:2020-08-02 737:2008-06-09 706:References 615:See also: 395:spacecraft 211:Moriba Jah 168:dissipated 142:frictional 109:propulsion 105:spacecraft 103:slows the 93:atmosphere 1044:0094-5765 161:periapsis 97:periapsis 1427:SCMaglev 1417:StarTram 1412:Vactrain 1361:Guideway 1175:Archived 976:Archived 956:Archived 668:See also 584:breaking 531:system. 512:and its 471:apoapsis 424:apoapsis 412:Magellan 393:Magellan 388:Venusian 121:velocity 89:apoapsis 81:maneuver 1390:Systems 1158:Science 1118:11 June 1109:ESA.int 1089:11 June 1080:ESA.int 1024:Bibcode 801:Bibcode 567:Destiny 563:Destiny 559:Ancient 547:In the 518:Jupiter 311:  280:delta-v 129:gravity 49:  1480:M-Bahn 1475:Linimo 1325:Maglev 1206:  1042:  557:, the 356:  351:· 349:  345:  339:'s 325:  323:  318:· 316:  309:  299:'s 149:months 115:Method 65:  63:  58:· 56:  47:  1436:Lines 1357:(EDS) 1351:(EMS) 1283:(PDF) 1181:1 May 928:(PDF) 881:(PDF) 731:(PDF) 724:(PDF) 561:ship 420:wings 377:Hiten 373:Hiten 353: 320: 190:force 76:is a 60: 1204:ISBN 1183:2017 1163:AAAS 1120:2015 1091:2015 1040:ISSN 940:2011 624:drag 595:Ares 467:ISRO 437:and 418:as " 327:Mars 303:Mars 236:NASA 223:and 172:heat 153:Mars 151:for 101:drag 67:Mars 1167:doi 1032:doi 809:doi 589:In 551:of 502:in 481:In 178:or 1560:: 1173:. 1165:. 1161:. 1155:. 1136:. 1111:. 1107:. 1082:. 1078:. 1060:. 1038:. 1030:. 1020:35 1018:. 1014:. 995:. 930:. 868:^ 852:. 807:. 797:31 795:. 772:. 754:. 529:Io 473:. 452:. 282:. 1317:e 1310:t 1303:v 1249:. 1212:. 1185:. 1169:: 1140:. 1122:. 1093:. 1064:. 1046:. 1034:: 1026:: 999:. 942:. 883:. 862:. 837:. 815:. 811:: 803:: 776:. 758:. 740:. 522:1 194:N 87:( 20:.

Index

Air brake (aeronautics)

Mars Reconnaissance Orbiter

Mars Reconnaissance Orbiter
Mars
spaceflight
maneuver
elliptical orbit
apoapsis
atmosphere
periapsis
drag
spacecraft
propulsion
velocity
circular orbit
gravity
rocket equation
elliptic orbit
frictional
months
Mars
kinetic energy
periapsis
dissipated
heat
atmospheric reentry
aerocapture
Mars Reconnaissance Orbiter

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑