Knowledge

Exhumation (geology)

Source πŸ“

243:
to flow to higher crustal levels along lithostatic pressure gradients that can be caused by melt-induced buoyancy or differences in topography and lateral density contrasts. both of which are affected by erosion. Characteristics of this mode of exhumation include simultaneous normal shearing and reverse shearing along the roof and the base of the channel respectively, high-temperature retrograde metamorphic assemblages, cooing ages should be younger to the front of the channel and P-T-t paths suggesting prolonged burial and synchronous exhumation throughout the channel.
256:. Alternatively, or in conjunction with the extension of the center of the orogen, propagation of the rock-mass towards the margin may lead to exhumation along a series of brittle or ductile thrusts and normal faults and ultimately the formation of fold and thrust type belts along the margins of the collapsed orogen. Characteristics of gravitational collapse include outward verging, normal sense shear zones along the margins of the core complexes and exhumation-only type P-T-t paths. 226:
mid-crustal rocks to the hanging wall of the wedge. Characteristics of this mode of exhumation include, evidence for strong non coaxial reverse-shearing, pro-grade metamorphism, cooling ages are progressively younger towards deeper structural levels and that exhumation at higher structural levels is coeval to burial of the structural levels. Tectonics of this kind result in
242:
Channel flow typically occurs in long-hot orogens when the orogen is sufficiently thick to promote partial melting in the middle-lower part of the orogen to a point where the rocks reach a critically low viscosity enabling them to flow. Subsequently these rocks can decoupled from their base and begin
146:
Exhumation by tectonic processes refers to any geological mechanism that brings rocks from deeper crustal levels to shallower crustal levels. While erosion or denudation is fundamental in eventually exposing these deeper rocks at the Earth's surface, the geological phenomenon that drive the rocks to
121:
Exhumation through denudation could be considered as the process of exposing rock packages solely through the removal of their overlying unconsolidated sediments or solid rock layers. Denudation is here considered as a process that removes parts of the Earth's upper crust by physical processes that
251:
Post-convergent gravitational collapse (extension) occurs once the convergence forces can no longer support the gravitational force of the orogen that was built up during collision. During collapse, high-grade rocks from the core of the orogen are exhumed through upward flow towards now thinned
225:
by the interaction of thickening through basal accretion or foreland propagation (frontal accretion) and thinning through normal faulting and erosion at the upper part of the wedge. Erosion of the wedge significantly impacts the dynamics within the wedge, which promotes exhumation by thrusting
211:
or during post-collision extension and is thus, is broadly grouped into the three mechanisms which are used to describe the burial and exhumation of the cycle namely, syn-convergent orogenic wedges, channel flow (also known as ductile extrusion) and post-convergence gravitational collapse.
151:
typically occurring within the shallow crust (less than ca. 10 km deep) which results in exhumation in the order of centimeters to meters scales, to larger-scale features originating at deeper crustal levels along which, exhumation is in the order of hundreds of meters to kilometers.
220:
During the subduction to the collisional phases of the orogenic cycle, a tectonic wedge forms on the prowedge (side of the subducting plate) and commonly the retrowedge (continental side) of the orogen. During the continued convergence, the wedge maintains its shape by maintaining its
199:.  While the exact mechanism behind the formation of ophiolites is still up for debate, those rocks still show an example of rocks being exhumed and exposed at the surface by the tectonic process of obduction and then exposed. 34:
It differs from the related ideas of rock uplift and surface uplift in that it is explicitly measured relative to the surface of the Earth, rather than with reference to some absolute reference frame, such as the Earth's
58:. In the latter case, rocks (or rock packages) from deeper crustal levels (meter to kilometer depths below the Earth's surface) are brought towards the Earth's surface (i.e.shallower crustal levels) by 801:
Gervais, FΓ©lix; Ranalli, Giorgio (2017). "The effects of lateral density gradients, slopes and buoyancy on channel flow: 1D analytical solutions and applications to the SE Canadian Cordillera".
561:
Beaumont, C.; Jamieson, R. A.; Nguyen, M. H.; Lee, B. (2001). "Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation".
73:
Notably, there are overlapping characteristics between the different modes of burial and exhumation and distinction and between them relies on a series of parameters such as:
191:
During the subduction of an oceanic plate underneath the continental crust, some fragments of the oceanic crust can be trapped above the continental crust through
884: 832:
Godin, L.; Grujic, D.; Law, R. D.; Searle, M. P. (2006). "Channel flow, ductile extrusion and exhumation in continental collision zones: an introduction".
70:
and are subsequently exposed by erosion. Often exhumation involves a complex interaction between crustal thickening, extensional tectonics and erosion.
147:
shallower crust are still considered exhumation processes. Geological exhumation occurs on a range of scales, from smaller-scale
330:"Testing modes of exhumation in collisional orogens: Synconvergent channel flow in the southeastern Canadian Cordillera" 908: 297: 534: 95: 985: 276:
England, Philip; Molnar, Peter (1990-12-01). "Surface uplift, uplift of rocks, and exhumation of rocks".
669:
Willett, Sean D. (1999). "Rheological dependence of extension in wedge models of convergent orogens".
513:
Platt, J. P. (1986). "Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks".
253: 42:
Exhumation of buried rocks should be considered as two different categories namely, exhumation by
230:
or if they are built up over long periods, can form thick-stacked long-hot-orogens, such as the
931: 467:
Dahlen, F A (1995). "Critical Taper Model of Fold-And-Thrust Belts and Accretionary Wedges".
208: 67: 943: 896: 841: 806: 767: 713: 678: 633: 570: 522: 428: 378: 341: 285: 227: 78: 8: 168: 160: 947: 900: 845: 810: 771: 717: 682: 637: 574: 526: 480: 432: 390: 382: 345: 289: 865: 737: 602: 492: 172: 155:
The geological mechanisms that drive deep crustal exhumation can occur in a variety of
106: 102: 88: 59: 690: 961: 912: 857: 783: 741: 729: 651: 594: 586: 538: 496: 484: 446: 394: 369:
Sibson, R H (1986-05-01). "Earthquakes and Rock Deformation in Crustal Fault Zones".
301: 869: 704:
Grujic, D. (2006). "Channel flow and continental collision tectonics: an overview".
990: 951: 904: 849: 814: 775: 721: 686: 641: 606: 578: 530: 476: 436: 386: 349: 293: 853: 725: 622:"Orogeny and orography: The effects of erosion on the structure of mountain belts" 113:
and metamorphic geological disciplines are key to understanding these processes.
63: 818: 222: 207:
Exhumation of deep crustal rocks during an orogenic cycle occurs mainly during
28: 883:
Brun, Jean-Pierre; Sokoutis, Dimitrios; Driessche, Jean Van Den (1994-04-01).
979: 965: 916: 861: 787: 733: 655: 590: 542: 488: 450: 398: 305: 110: 598: 956: 646: 202: 758:
Jamieson, R. A.; Beaumont, C. (2013-11-01). "On the origin of orogens".
441: 416: 415:
Robinson, Paul T.; Malpas, John; Dilek, Yildirim; Zhou, Mei-fu (2008).
164: 43: 779: 231: 196: 192: 176: 156: 127: 51: 582: 932:"Dynamics and structural development of metamorphic core complexes" 195:. The resulting rocks obducted on the continental crust are called 135: 131: 130:). Through this form of exhumation, something previously buried in 885:"Analogue modeling of detachment fault systems and core complexes" 621: 354: 329: 180: 123: 55: 47: 20: 148: 36: 909:
10.1130/0091-7613(1994)022<0319:AMODFS>2.3.CO;2
298:
10.1130/0091-7613(1990)018<1173:SUUORA>2.3.CO;2
535:
10.1130/0016-7606(1986)97<1037:DOOWAT>2.0.CO;2
417:"The significance of sheeted dike complexes in ophiolites" 87:
The spatial distribution of cooling ages (see for example
930:
Tirel, CΓ©line; Brun, Jean-Pierre; Burov, Evgueni (2008).
560: 246: 414: 203:
Exhumation of the deep crust during an orogenic cycle.
183:cycle (i.e. mountain building and collapse cycle). 882: 831: 141: 977: 834:Geological Society, London, Special Publications 757: 706:Geological Society, London, Special Publications 215: 929: 800: 469:Annual Review of Earth and Planetary Sciences 371:Annual Review of Earth and Planetary Sciences 275: 77:The spatial and temporal distribution of the 936:Journal of Geophysical Research: Solid Earth 626:Journal of Geophysical Research: Solid Earth 327: 27:is the process by which a parcel of buried 328:Gervais, FΓ©lix; Brown, Richard L. (2011). 159:settings but are ultimately driven by the 955: 645: 440: 353: 171:, exhumation occurs by thrusting in the 94:The spatial distribution of metamorphic 668: 619: 96:pressure-temperature-time (P-T-t) paths 978: 760:Geological Society of America Bulletin 703: 515:Geological Society of America Bulletin 466: 368: 247:Post-convergent gravitational collapse 753: 751: 512: 556: 554: 552: 508: 506: 462: 460: 410: 408: 323: 321: 319: 317: 315: 271: 269: 481:10.1146/annurev.ea.18.050190.000415 391:10.1146/annurev.ea.14.050186.001053 252:crustal areas forming domal shaped 138:, is uncovered and can be exposed. 13: 748: 14: 1002: 549: 503: 457: 405: 312: 266: 142:Exhumation by tectonic processes 16:Geological rock movement process 923: 876: 825: 794: 697: 237: 179:and/or as a process during the 662: 613: 362: 84:The metamorphic field gradient 1: 854:10.1144/gsl.sp.2006.268.01.01 726:10.1144/GSL.SP.2006.268.01.02 691:10.1016/S0040-1951(99)00034-7 259: 216:Syn-convergent orogenic wedge 116: 186: 31:approaches Earth's surface. 7: 819:10.1016/j.tecto.2017.06.023 167:. Depending on the type of 163:of tectonic plates through 10: 1007: 254:metamorphic core complexes 620:Willett, Sean D. (1999). 101:Detailed and integrated 223:critical angle of taper 122:occur naturally (e.g. 54:processes followed by 228:fold and thrust belts 209:continental collision 68:extensional tectonics 986:Geological processes 957:10.1029/2005JB003694 805:. 712–713: 578–588. 766:(11–12): 1671–1702. 647:10.1029/1999JB900248 632:(B12): 28957–28981. 948:2008JGRB..113.4403T 901:1994Geo....22..319B 846:2006GSLSP.268....1G 811:2017Tectp.712..578G 772:2013GSAB..125.1671J 718:2006GSLSP.268...25G 683:1999Tectp.305..419W 638:1999JGR...10428957W 575:2001Natur.414..738B 527:1986GSAB...97.1037P 433:2008GSAT...18k...4R 383:1986AREPS..14..149S 346:2011Lsphe...3...55G 290:1990Geo....18.1173E 169:convergent boundary 62:(see compared also 442:10.1130/GSATG22A.1 173:accretionary wedge 107:structural geology 103:geologic modelling 89:radiometric dating 60:crustal thickening 569:(6865): 738–742. 284:(12): 1173–1177. 50:or exhumation by 998: 970: 969: 959: 927: 921: 920: 880: 874: 873: 829: 823: 822: 798: 792: 791: 780:10.1130/B30855.1 755: 746: 745: 701: 695: 694: 666: 660: 659: 649: 617: 611: 610: 558: 547: 546: 510: 501: 500: 464: 455: 454: 444: 412: 403: 402: 366: 360: 359: 357: 325: 310: 309: 273: 134:, for example a 1006: 1005: 1001: 1000: 999: 997: 996: 995: 976: 975: 974: 973: 928: 924: 881: 877: 830: 826: 799: 795: 756: 749: 702: 698: 667: 663: 618: 614: 583:10.1038/414738a 559: 550: 511: 504: 465: 458: 413: 406: 367: 363: 326: 313: 274: 267: 262: 249: 240: 218: 205: 189: 144: 126:, wind, water, 119: 64:tectonic uplift 17: 12: 11: 5: 1004: 994: 993: 988: 972: 971: 942:(B4): B04403. 922: 895:(4): 319–322. 875: 824: 803:Tectonophysics 793: 747: 696: 677:(4): 419–435. 671:Tectonophysics 661: 612: 548: 502: 456: 404: 377:(1): 149–175. 361: 311: 264: 263: 261: 258: 248: 245: 239: 236: 217: 214: 204: 201: 188: 185: 143: 140: 118: 115: 99: 98: 92: 91:of hornblende) 85: 82: 15: 9: 6: 4: 3: 2: 1003: 992: 989: 987: 984: 983: 981: 967: 963: 958: 953: 949: 945: 941: 937: 933: 926: 918: 914: 910: 906: 902: 898: 894: 890: 886: 879: 871: 867: 863: 859: 855: 851: 847: 843: 839: 835: 828: 820: 816: 812: 808: 804: 797: 789: 785: 781: 777: 773: 769: 765: 761: 754: 752: 743: 739: 735: 731: 727: 723: 719: 715: 711: 707: 700: 692: 688: 684: 680: 676: 672: 665: 657: 653: 648: 643: 639: 635: 631: 627: 623: 616: 608: 604: 600: 596: 592: 588: 584: 580: 576: 572: 568: 564: 557: 555: 553: 544: 540: 536: 532: 528: 524: 520: 516: 509: 507: 498: 494: 490: 486: 482: 478: 474: 470: 463: 461: 452: 448: 443: 438: 434: 430: 426: 422: 418: 411: 409: 400: 396: 392: 388: 384: 380: 376: 372: 365: 356: 355:10.1130/L98.1 351: 347: 343: 339: 335: 331: 324: 322: 320: 318: 316: 307: 303: 299: 295: 291: 287: 283: 279: 272: 270: 265: 257: 255: 244: 235: 233: 229: 224: 213: 210: 200: 198: 194: 184: 182: 178: 174: 170: 166: 162: 158: 153: 150: 139: 137: 133: 129: 125: 114: 112: 111:geochronology 108: 104: 97: 93: 90: 86: 83: 80: 79:finite strain 76: 75: 74: 71: 69: 65: 61: 57: 53: 49: 45: 40: 38: 32: 30: 26: 22: 939: 935: 925: 892: 888: 878: 837: 833: 827: 802: 796: 763: 759: 712:(1): 25–37. 709: 705: 699: 674: 670: 664: 629: 625: 615: 566: 562: 518: 514: 475:(1): 55–99. 472: 468: 424: 420: 374: 370: 364: 340:(1): 55–75. 337: 333: 281: 277: 250: 241: 238:Channel-flow 219: 206: 190: 154: 145: 120: 100: 72: 41: 33: 24: 18: 840:(1): 1–23. 521:(9): 1037. 334:Lithosphere 161:convergence 980:Categories 260:References 197:ophiolites 165:subduction 128:landslides 117:Denudation 44:denudation 25:exhumation 966:2156-2202 917:0091-7613 862:0305-8719 788:0016-7606 742:129012310 734:0305-8719 656:2156-2202 591:0028-0836 543:0016-7606 497:128774151 489:0084-6597 451:1052-5173 427:(11): 4. 421:GSA Today 399:0084-6597 306:0091-7613 232:Himalayas 193:obduction 187:Obduction 177:obduction 132:sediments 66:) and/or 870:56520730 599:11742396 181:orogenic 157:tectonic 136:landform 124:glaciers 52:tectonic 991:Erosion 944:Bibcode 897:Bibcode 889:Geology 842:Bibcode 807:Bibcode 768:Bibcode 714:Bibcode 679:Bibcode 634:Bibcode 607:4382486 571:Bibcode 523:Bibcode 429:Bibcode 379:Bibcode 342:Bibcode 286:Bibcode 278:Geology 149:thrusts 81:pattern 56:erosion 48:erosion 21:geology 964:  915:  868:  860:  786:  740:  732:  654:  605:  597:  589:  563:Nature 541:  495:  487:  449:  397:  304:  866:S2CID 738:S2CID 603:S2CID 493:S2CID 175:, by 37:geoid 962:ISSN 913:ISSN 858:ISSN 784:ISSN 730:ISSN 652:ISSN 595:PMID 587:ISSN 539:ISSN 485:ISSN 447:ISSN 395:ISSN 302:ISSN 29:rock 952:doi 940:113 905:doi 850:doi 838:268 815:doi 776:doi 764:125 722:doi 710:268 687:doi 675:305 642:doi 630:104 579:doi 567:414 531:doi 477:doi 437:doi 387:doi 350:doi 294:doi 234:. 19:In 982:: 960:. 950:. 938:. 934:. 911:. 903:. 893:22 891:. 887:. 864:. 856:. 848:. 836:. 813:. 782:. 774:. 762:. 750:^ 736:. 728:. 720:. 708:. 685:. 673:. 650:. 640:. 628:. 624:. 601:. 593:. 585:. 577:. 565:. 551:^ 537:. 529:. 519:97 517:. 505:^ 491:. 483:. 473:18 471:. 459:^ 445:. 435:. 425:18 423:. 419:. 407:^ 393:. 385:. 375:14 373:. 348:. 336:. 332:. 314:^ 300:. 292:. 282:18 280:. 268:^ 109:, 105:, 39:. 23:, 968:. 954:: 946:: 919:. 907:: 899:: 872:. 852:: 844:: 821:. 817:: 809:: 790:. 778:: 770:: 744:. 724:: 716:: 693:. 689:: 681:: 658:. 644:: 636:: 609:. 581:: 573:: 545:. 533:: 525:: 499:. 479:: 453:. 439:: 431:: 401:. 389:: 381:: 358:. 352:: 344:: 338:3 308:. 296:: 288:: 46:/

Index

geology
rock
geoid
denudation
erosion
tectonic
erosion
crustal thickening
tectonic uplift
extensional tectonics
finite strain
radiometric dating
pressure-temperature-time (P-T-t) paths
geologic modelling
structural geology
geochronology
glaciers
landslides
sediments
landform
thrusts
tectonic
convergence
subduction
convergent boundary
accretionary wedge
obduction
orogenic
obduction
ophiolites

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑