Knowledge

Radiometric dating

Source 📝

408: 299:
measurement. The in-growth method is one way of measuring the decay constant of a system, which involves accumulating daughter nuclides. Unfortunately for nuclides with high decay constants (which are useful for dating very old samples), long periods of time (decades) are required to accumulate enough decay products in a single sample to accurately measure them. A faster method involves using particle counters to determine alpha, beta or gamma activity, and then dividing that by the number of radioactive nuclides. However, it is challenging and expensive to accurately determine the number of radioactive nuclides. Alternatively, decay constants can be determined by comparing isotope data for rocks of known age. This method requires at least one of the isotope systems to be very precisely calibrated, such as the
1755: 1727: 382:, resetting the isotopic "clock" to zero. As the mineral cools, the crystal structure begins to form and diffusion of isotopes is less easy. At a certain temperature, the crystal structure has formed sufficiently to prevent diffusion of isotopes. Thus an igneous or metamorphic rock or melt, which is slowly cooling, does not begin to exhibit measurable radioactive decay until it cools below the closure temperature. The age that can be calculated by radiometric dating is thus the time at which the rock or mineral cooled to closure temperature. This temperature varies for every mineral and isotopic system, so a system can be 134: 312: 3055: 902:, and animals acquire it from consumption of plants and other animals. When an organism dies, it ceases to take in new carbon-14, and the existing isotope decays with a characteristic half-life (5730 years). The proportion of carbon-14 left when the remains of the organism are examined provides an indication of the time elapsed since its death. This makes carbon-14 an ideal dating method to date the age of bones or the remains of an organism. The carbon-14 dating limit lies around 58,000 to 62,000 years. 1741: 240:, eventually ending with the formation of a stable (nonradioactive) daughter nuclide; each step in such a chain is characterized by a distinct half-life. In these cases, usually the half-life of interest in radiometric dating is the longest one in the chain, which is the rate-limiting factor in the ultimate transformation of the radioactive nuclide into its stable daughter. Isotopic systems that have been exploited for radiometric dating have half-lives ranging from only about 10 years (e.g., 629: 853: 944: 1045:. The radiation causes charge to remain within the grains in structurally unstable "electron traps". Exposure to sunlight or heat releases these charges, effectively "bleaching" the sample and resetting the clock to zero. The trapped charge accumulates over time at a rate determined by the amount of background radiation at the location where the sample was buried. Stimulating these mineral grains using either light ( 792:. Closure temperatures are so high that they are not a concern. Rubidium-strontium dating is not as precise as the uranium–lead method, with errors of 30 to 50 million years for a 3-billion-year-old sample. Application of in situ analysis (Laser-Ablation ICP-MS) within single mineral grains in faults have shown that the Rb-Sr method can be used to decipher episodes of fault movement. 327:. Precision is enhanced if measurements are taken on multiple samples from different locations of the rock body. Alternatively, if several different minerals can be dated from the same sample and are assumed to be formed by the same event and were in equilibrium with the reservoir when they formed, they should form an 280:, whose decay rate may be affected by local electron density. For all other nuclides, the proportion of the original nuclide to its decay products changes in a predictable way as the original nuclide decays over time. This predictability allows the relative abundances of related nuclides to be used as a 1145:
At the beginning of the solar system, there were several relatively short-lived radionuclides like Al, Fe, Mn, and I present within the solar nebula. These radionuclides—possibly produced by the explosion of a supernova—are extinct today, but their decay products can be detected in very old material,
377:
The closure temperature or blocking temperature represents the temperature below which the mineral is a closed system for the studied isotopes. If a material that selectively rejects the daughter nuclide is heated above this temperature, any daughter nuclides that have been accumulated over time will
1141:
Absolute radiometric dating requires a measurable fraction of parent nucleus to remain in the sample rock. For rocks dating back to the beginning of the solar system, this requires extremely long-lived parent isotopes, making measurement of such rocks' exact ages imprecise. To be able to distinguish
354:
Accurate radiometric dating generally requires that the parent has a long enough half-life that it will be present in significant amounts at the time of measurement (except as described below under "Dating with short-lived extinct radionuclides"), the half-life of the parent is accurately known, and
1014:
between 1952 and 1958. The residence time of Cl in the atmosphere is about 1 week. Thus, as an event marker of 1950s water in soil and ground water, Cl is also useful for dating waters less than 50 years before the present. Cl has seen use in other areas of the geological sciences, including dating
362:
The precision of a dating method depends in part on the half-life of the radioactive isotope involved. For instance, carbon-14 has a half-life of 5,730 years. After an organism has been dead for 60,000 years, so little carbon-14 is left that accurate dating cannot be established. On the other hand,
1154:
and using isochronplots, it is possible to determine relative ages of different events in the early history of the solar system. Dating methods based on extinct radionuclides can also be calibrated with the U–Pb method to give absolute ages. Thus both the approximate age and a high time resolution
251:
For most radioactive nuclides, the half-life depends solely on nuclear properties and is essentially constant. This is known because decay constants measured by different techniques give consistent values within analytical errors and the ages of the same materials are consistent from one method to
322:
The basic equation of radiometric dating requires that neither the parent nuclide nor the daughter product can enter or leave the material after its formation. The possible confounding effects of contamination of parent and daughter isotopes have to be considered, as do the effects of any loss or
701:
One of its great advantages is that any sample provides two clocks, one based on uranium-235's decay to lead-207 with a half-life of about 700 million years, and one based on uranium-238's decay to lead-206 with a half-life of about 4.5 billion years, providing a built-in crosscheck that allows
298:
The radioactive decay constant, the probability that an atom will decay per year, is the solid foundation of the common measurement of radioactivity. The accuracy and precision of the determination of an age (and a nuclide's half-life) depends on the accuracy and precision of the decay constant
390:
for another. Dating of different minerals and/or isotope systems (with differing closure temperatures) within the same rock can therefore enable the tracking of the thermal history of the rock in question with time, and thus the history of metamorphic events may become known in detail. These
651:
involves using uranium-235 or uranium-238 to date a substance's absolute age. This scheme has been refined to the point that the error margin in dates of rocks can be as low as less than two million years in two-and-a-half billion years. An error margin of 2–5% has been achieved on younger
1056:
These methods can be used to date the age of a sediment layer, as layers deposited on top would prevent the grains from being "bleached" and reset by sunlight. Pottery shards can be dated to the last time they experienced significant heat, generally when they were fired in a kiln.
355:
enough of the daughter product is produced to be accurately measured and distinguished from the initial amount of the daughter present in the material. The procedures used to isolate and analyze the parent and daughter nuclides must be precise and accurate. This normally involves
874:
is also simply called carbon-14 dating. Carbon-14 is a radioactive isotope of carbon, with a half-life of 5,730 years (which is very short compared with the above isotopes), and decays into nitrogen. In other radiometric dating methods, the heavy parent isotopes were produced by
806:
A relatively short-range dating technique is based on the decay of uranium-234 into thorium-230, a substance with a half-life of about 80,000 years. It is accompanied by a sister process, in which uranium-235 decays into protactinium-231, which has a half-life of 32,760 years.
2501:
Manyeruke, Tawanda D.; Thomas G. Blenkinsop; Peter Buchholz; David Love; Thomas OberthĂŒr; Ulrich K. Vetter; Donald W. Davis (2004). "The age and petrology of the Chimbadzi Hill Intrusion, NW Zimbabwe: first evidence for early Paleoproterozoic magmatism in Zimbabwe".
997:
which have a variable amount of uranium content. Because the fission tracks are healed by temperatures over about 200 Â°C the technique has limitations as well as benefits. The technique has potential applications for detailing the thermal history of a deposit.
686:, but strongly reject lead. Zircon has a very high closure temperature, is resistant to mechanical weathering and is very chemically inert. Zircon also forms multiple crystal layers during metamorphic events, which each may record an isotopic age of the event. 2917:
Jacobs, J.; R. J. Thomas (August 2001). "A titanite fission track profile across the southeastern ArchĂŠan Kaapvaal Craton and the Mesoproterozoic Natal Metamorphic Province, South Africa: evidence for differential cryptic Meso- to Neoproterozoic tectonism".
702:
accurate determination of the age of the sample even if some of the lead has been lost. This can be seen in the concordia diagram, where the samples plot along an errorchron (straight line) which intersects the concordia curve at the age of the sample.
962:. This causes induced fission of U, as opposed to the spontaneous fission of U. The fission tracks produced by this process are recorded in the plastic film. The uranium content of the material can then be calculated from the number of tracks and the 2465:
OberthĂŒr, Thomas; Davis, Donald W.; Blenkinsop, Thomas G.; Höhndorf, Axel (2002). "Precise U–Pb mineral ages, Rb–Sr and Sm–Nd systematics for the Great Dyke, Zimbabwe—constraints on late Archean events in the Zimbabwe craton and Limpopo belt".
578:. This is well established for most isotopic systems. However, construction of an isochron does not require information on the original compositions, using merely the present ratios of the parent and daughter isotopes to a standard isotope. An 614:," depending on their mass and level of ionization. On impact in the cups, the ions set up a very weak current that can be measured to determine the rate of impacts and the relative concentrations of different atoms in the beams. 1053:) causes a luminescence signal to be emitted as the stored unstable electron energy is released, the intensity of which varies depending on the amount of radiation absorbed during burial and specific properties of the mineral. 2537:
Li, Xian-hua; Liang, Xi-rong; Sun, Min; Guan, Hong; Malpas, J. G. (2001). "Precise Pb/U age determination on zircons by laser ablation microprobe-inductively coupled plasma-mass spectrometry using continuous linear ablation".
2089:
Begemann, F.; Ludwig, K.R.; Lugmair, G.W.; Min, K.; Nyquist, L.E.; Patchett, P.J.; Renne, P.R.; Shih, C.-Y.; Villa, I.M.; Walker, R.J. (January 2001). "Call for an improved set of decay constants for geochronological use".
1711:, the authors proposed that the terms "parent isotope" and "daughter isotope" be avoided in favor of the more descriptive "precursor isotope" and "product isotope", analogous to "precursor ion" and "product ion" in 1142:
the relative ages of rocks from such old material, and to get a better time resolution than that available from long-lived isotopes, short-lived isotopes that are no longer present in the rock can be used.
2882: 232:, usually given in units of years when discussing dating techniques. After one half-life has elapsed, one half of the atoms of the nuclide in question will have decayed into a "daughter" nuclide or 343:
is used which also decreases the problem of nuclide loss. Finally, correlation between different isotopic dating methods may be required to confirm the age of a sample. For example, the age of the
958:
of uranium-238 impurities. The uranium content of the sample has to be known, but that can be determined by placing a plastic film over the polished slice of the material, and bombarding it with
905:
The rate of creation of carbon-14 appears to be roughly constant, as cross-checks of carbon-14 dating with other dating methods show it gives consistent results. However, local eruptions of
2125:
Stewart, Kathy; Turner, Simon; Kelley, Simon; Hawkesworth, Chris; Kirstein, Linda; Mantovani, Marta (1996). "3-D, Ar-Ar geochronology in the ParanĂĄ continental flood basalt province".
644:. All the samples show loss of lead isotopes, but the intercept of the errorchron (straight line through the sample points) and the concordia (curve) shows the correct age of the rock. 323:
gain of such isotopes since the sample was created. It is therefore essential to have as much information as possible about the material being dated and to check for possible signs of
879:
in supernovas, meaning that any parent isotope with a short half-life should be extinct by now. Carbon-14, though, is continuously created through collisions of neutrons generated by
2428:
Vinyu, M. L.; R. E. Hanson; M. W. Martin; S. A. Bowring; H. A. Jelsma; P. H. G. M. Dirks (2001). "U–Pb zircon ages from a craton-margin archaean orogenic belt in northern Zimbabwe".
3054:
Application of the authigenic 10 Be/ 9 Be dating method to Late Miocene–Pliocene sequences in the northern Danube Basin;Michal Ơujan – Global and Planetary Change 137 (2016) 35–53;
414:
isochrons plotted of meteorite samples. The age is calculated from the slope of the isochron (line) and the original composition from the intercept of the isochron with the y-axis.
909:
or other events that give off large amounts of carbon dioxide can reduce local concentrations of carbon-14 and give inaccurate dates. The releases of carbon dioxide into the
746:
decay of potassium-40 to argon-40. Potassium-40 has a half-life of 1.3 billion years, so this method is applicable to the oldest rocks. Radioactive potassium-40 is common in
1081: 1123: 2643:
Mukasa, S. B.; A. H. Wilson; R. W. Carlson (December 1998). "A multielement geochronologic study of the Great Dyke, Zimbabwe: significance of the robust and reset ages".
1933:
Pommé, S.; Stroh, H.; Altzitzoglou, T.; Paepen, J.; Van Ammel, R.; Kossert, K.; NÀhle, O.; Keightley, J. D.; Ferreira, K. M.; Verheyen, L.; Bruggeman, M. (1 April 2018).
4273: 1029:
Luminescence dating methods are not radiometric dating methods in that they do not rely on abundances of isotopes to calculate age. Instead, they are a consequence of
2743: 1697:
chronometer gives an estimate of the time period for formation of primitive meteorites of only a few million years (1.4 million years for Chondrule formation).
1212:. The iodine-xenon chronometer is an isochron technique. Samples are exposed to neutrons in a nuclear reactor. This converts the only stable isotope of iodine ( 407: 1306:
ratio is observed across several consecutive temperature steps, it can be interpreted as corresponding to a time at which the sample stopped losing xenon.
602:. In the century since then the techniques have been greatly improved and expanded. Dating can now be performed on samples as small as a nanogram using a 351:(billion years ago) using uranium–lead dating and 3.56 ± 0.10 Ga (billion years ago) using lead–lead dating, results that are consistent with each other. 574:
The above equation makes use of information on the composition of parent and daughter isotopes at the time the material being tested cooled below its
1812: 363:
the concentration of carbon-14 falls off so steeply that the age of relatively young remains can be determined precisely to within a few decades.
606:. The mass spectrometer was invented in the 1940s and began to be used in radiometric dating in the 1950s. It operates by generating a beam of 637: 3976: 3652: 120:
Different methods of radiometric dating vary in the timescale over which they are accurate and the materials to which they can be applied.
610:
from the sample under test. The ions then travel through a magnetic field, which diverts them into different sampling sensors, known as "
193:
and spontaneously transform into a different nuclide. This transformation may be accomplished in a number of different ways, including
2883:"Cosmic background reduction in the radiocarbon measurement by scintillation spectrometry at the underground laboratory of Gran Sasso" 224:
While the moment in time at which a particular nucleus decays is unpredictable, a collection of atoms of a radioactive nuclide decays
917:
have also depressed the proportion of carbon-14 by a few percent; in contrast, the amount of carbon-14 was increased by above-ground
1793: 2573:
Wingate, M.T.D. (2001). "SHRIMP baddeleyite and zircon ages for an Umkondo dolerite sill, Nyanga Mountains, Eastern Zimbabwe".
3392: 3373: 3335: 2974: 2326: 2280: 1917: 1309:
Samples of a meteorite called Shallowater are usually included in the irradiation to monitor the conversion efficiency from
105:. By allowing the establishment of geological timescales, it provides a significant source of information about the ages of 3423: 1417:
when they each stopped losing xenon. This in turn corresponds to a difference in age of closure in the early solar system.
724:
of 1.06 x 10 years. Accuracy levels of within twenty million years in ages of two-and-a-half billion years are achievable.
315: 954:
This involves inspection of a polished slice of a material to determine the density of "track" markings left in it by the
758:, though the closure temperature is fairly low in these materials, about 350 Â°C (mica) to 500 Â°C (hornblende). 648: 3192:
Alexander N. Krot(2002) Dating the Earliest Solids in our Solar System, Hawai'i Institute of Geophysics and Planetology
2747: 3770: 3354: 2393:
Stacey, J. S.; J. D. Kramers (June 1975). "Approximation of terrestrial lead isotope evolution by a two-stage model".
826:, from which their ratios are measured. The scheme has a range of several hundred thousand years. A related method is 3971: 3567: 3214: 3075: 2430: 2351: 2194: 2169: 1046: 54:
products, which form at a known constant rate of decay. The use of radiometric dating was first published in 1907 by
1844:"The Ultimate Disintegration Products of the Radio-active Elements. Part II. The disintegration products of uranium" 3607: 1988: 591: 1908:
Bernard-Griffiths, J.; Groan, G. (1989). "The samarium–neodymium method". In Roth, Etienne; Poty, Bernard (eds.).
1754: 2379: 695: 356: 2955:"The Application of Fission-Track Dating to the Depositional and Thermal History of Rocks in Sedimentary Basins" 582:
is used to solve the age equation graphically and calculate the age of the sample and the original composition.
189:. Some nuclides are inherently unstable. That is, at some point in time, an atom of such a nuclide will undergo 46:
were selectively incorporated when they were formed. The method compares the abundance of a naturally occurring
2678:
Tillberg, Mikael; Drake, Henrik; Zack, Thomas; Kooijman, Ellen; Whitehouse, Martin J.; Åström, Mats E. (2020).
3279: 1155:
can be obtained. Generally a shorter half-life leads to a higher time resolution at the expense of timescale.
887:
and thus remains at a near-constant level on Earth. The carbon-14 ends up as a trace component in atmospheric
4017: 3765: 2809: 1941:. ICRM 2017 Proceedings of the 21st International Conference on Radionuclide Metrology and its Applications. 767: 711: 411: 2077: 977:(glass fragments from volcanic eruptions), and meteorites are best used. Older materials can be dated using 153:. The final decay product, lead-208 (Pb), is stable and can no longer undergo spontaneous radioactive decay. 141:
from lead-212 (Pb) to lead-208 (Pb) . Each parent nuclide spontaneously decays into a daughter nuclide (the
3760: 2268: 387: 4268: 3950: 3820: 1099: 1093: 682:). Zircon and baddeleyite incorporate uranium atoms into their crystalline structure as substitutes for 4160: 4140: 1117: 801: 733: 98: 4150: 4122: 3955: 3734: 1111: 1050: 969:
This scheme has application over a wide range of geologic dates. For dates up to a few million years
827: 284:
to measure the time from the incorporation of the original nuclides into a material to the present.
4217: 3416: 1129: 4155: 4105: 3892: 3739: 2954: 1778: 1075: 633: 623: 336: 102: 133: 4055: 3856: 3602: 3501: 1069: 679: 75: 1010:(half-life ~300ky) were produced by irradiation of seawater during atmospheric detonations of 3657: 3294: 1732: 293: 3138: 2656: 2406: 2138: 1164: 4090: 4031: 4007: 4002: 3315: 3239: 3175: 3134: 3003: 2927: 2828: 2691: 2652: 2582: 2547: 2511: 2475: 2439: 2402: 2222: 2134: 2099: 2038: 1997: 1946: 1855: 1773: 1707: 1087: 1030: 938: 344: 300: 31: 3364:
McSween, Harry Y; Richardson, Steven Mcafee; Uhle, Maria E; Uhle, Professor Maria (2003).
2608:
Ireland, Trevor (December 1999). "Isotope Geochemistry: New Tools for Isotopic Analysis".
2265:
Principles and applications of geochemistry: a comprehensive textbook for geology students
268:. The only exceptions are nuclides that decay by the process of electron capture, such as 8: 4117: 4012: 3930: 3920: 3695: 3612: 3592: 3582: 3409: 2856: 1896: 1024: 955: 929:
above the current value would depress the amount of carbon-14 created in the atmosphere.
575: 372: 218: 90: 3319: 3243: 3179: 3163: 3007: 2931: 2832: 2695: 2586: 2551: 2515: 2479: 2443: 2226: 2103: 2042: 2010: 2001: 1983: 1950: 1859: 898:
A carbon-based life form acquires carbon during its lifetime. Plants acquire it through
4242: 4222: 4100: 4070: 3992: 3791: 3755: 3557: 3298: 3257: 3147: 3122: 3088: 3037: 3024: 2991: 2790: 2725: 2712: 2679: 2625: 2358: 2056: 1890:
Radiometric Dating and the Geological Time Scale: Circular Reasoning or Reliable Tools?
1871: 1267: 1042: 1034: 871: 847: 311: 94: 3193: 2939: 2664: 2559: 2487: 2451: 2111: 4050: 3846: 3841: 3685: 3521: 3388: 3369: 3350: 3331: 3302: 3261: 3210: 3071: 3029: 2970: 2794: 2729: 2717: 2629: 2523: 2500: 2414: 2375: 2332: 2322: 2286: 2276: 2190: 2165: 2146: 1964: 1913: 1875: 1746: 1712: 1508: 1151: 914: 867:
were dated at 56 CE using the carbon-14 method on organic material found at the site.
603: 595: 340: 225: 190: 51: 3252: 3227: 2880: 2770: 1822: 1507:
of 720 000 years. The dating is simply a question of finding the deviation from the
563:
is known to high precision, and one has accurate and precise measurements of D* and
4247: 4196: 4112: 4060: 3836: 3814: 3680: 3577: 3323: 3290: 3247: 3142: 3103: 3041: 3019: 3011: 2962: 2935: 2897: 2836: 2782: 2707: 2699: 2660: 2617: 2590: 2555: 2519: 2483: 2447: 2410: 2240: 2230: 2142: 2107: 2060: 2046: 2005: 1959: 1954: 1934: 1863: 1826: 1817: 959: 884: 785: 739: 599: 396: 214: 162: 55: 3120: 2621: 1136: 475:
is number of atoms of the daughter isotope in the original or initial composition,
4180: 4145: 4132: 4095: 4042: 3900: 3795: 3729: 3690: 3527: 2966: 1381:
ratios of the sample and Shallowater then corresponds to the different ratios of
1105: 876: 856: 579: 328: 59: 1037:
is absorbed by mineral grains in sediments and archaeological materials such as
4080: 3878: 3866: 3810: 3805: 3799: 3724: 3647: 3572: 3107: 2992:"Ancient biomolecules from deep ice cores reveal a forested southern Greenland" 2703: 1760: 1011: 926: 899: 888: 835: 519: 418:
The mathematical expression that relates radioactive decay to geologic time is
265: 261: 198: 174: 35: 2902: 2841: 2810:"The ~2400-year cycle in atmospheric radiocarbon concentration: Bispectrum of 2786: 2235: 2210: 1892: 1740: 530:
The equation is most conveniently expressed in terms of the measured quantity
392: 4262: 3997: 3915: 3910: 3861: 3851: 3491: 2881:
Plastino, Wolfango; Lauri Kaihola; Paolo Bartolomei; Francesco Bella (2001).
2272: 1867: 1821:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 1783: 1768: 549: 383: 332: 233: 166: 142: 86: 3327: 3015: 2336: 2290: 1830: 1266:). After irradiation, samples are heated in a series of steps and the xenon 236:. In many cases, the daughter nuclide itself is radioactive, resulting in a 4075: 3873: 3587: 3562: 3547: 3513: 3473: 3033: 2721: 2680:"In situ Rb-Sr dating of slickenfibres in deep crystalline basement faults" 1968: 1427: 963: 918: 819: 781: 777: 324: 277: 273: 245: 82: 71: 67: 47: 3168:
Press Abstracts from the Nineteenth Lunar and Planetary Science Conference
2427: 3775: 3672: 3634: 3617: 3552: 3533: 3466: 3446: 1007: 921:
tests that were conducted into the early 1960s. Also, an increase in the
880: 773: 717: 671: 611: 269: 253: 237: 194: 185:
in the nucleus. A particular isotope of a particular element is called a
146: 138: 114: 3121:
Gilmour, J. D.; O. V Pravdivtseva; A. Busfield; C. M. Hohenberg (2006).
780:, with a half-life of 50 billion years. This scheme is used to date old 628: 3542: 3537: 3432: 922: 755: 202: 150: 2746:. The Swedish National Heritage Board. 11 October 2006. Archived from 2245: 4232: 4212: 3945: 3905: 3642: 3451: 2594: 2051: 2026: 1788: 1504: 1464: 1147: 910: 789: 721: 683: 523: 379: 348: 229: 110: 1843: 464:
is number of atoms of the radiogenic daughter isotope in the sample,
4227: 4065: 3709: 3622: 3087:
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021).
2211:"INTCAL04 Terrestrial Radiocarbon Age Calibration, 0–26 Cal Kyr BP" 986: 852: 823: 822:
are not, and so they are selectively precipitated into ocean-floor
751: 743: 675: 653: 641: 552:(neither parent nor daughter isotopes have been lost from system), 257: 210: 206: 43: 3162:
Hutcheon, I. D.; Hutchison, R.; Wasserburg, G. J. (1 March 1988).
2189:(2nd ed.). Cambridge: Cambridge Univ. Press. pp. 15–49. 1425:
Another example of short-lived extinct radionuclide dating is the
1150:. By measuring the decay products of extinct radionuclides with a 4237: 3461: 3456: 2318: 990: 982: 974: 947: 943: 906: 815: 811: 660: 241: 186: 182: 178: 74:
itself, and can also be used to date a wide range of natural and
63: 2311:
Using geochemical data: evaluation, presentation, interpretation
1463:
chronometer, which can be used to estimate the relative ages of
2642: 2464: 2314: 2027:"Direct test of the constancy of fundamental nuclear constants" 1270:
of the gas evolved in each step is analysed. When a consistent
1137:
Dating with decay products of short-lived extinct radionuclides
1038: 994: 978: 864: 831: 691: 663: 590:
Radiometric dating has been carried out since 1905 when it was
522:
of the parent isotope, equal to the inverse of the radioactive
488:
is number of atoms of the parent isotope in the sample at time
170: 158: 106: 39: 2124: 3662: 3401: 3310:
Magill, Joseph; Galy, Jean (2005). "Archaeology and Dating".
860: 281: 181:, with each isotope of an element differing in the number of 3164:"Evidence of In-situ Decay of 26Al in a Semarkona Chondrule" 1932: 3596: 3478: 3161: 1547:
decay) in comparison with the ratio of the stable isotopes
970: 747: 559:
either must be negligible or can be accurately estimated,
3496: 3363: 2677: 607: 395:
using a high-temperature furnace. This field is known as
391:
temperatures are experimentally determined in the lab by
58:
and is now the principal source of information about the
2953:
Naeser, Nancy; Naeser, Charles; McCulloh, Thane (1989).
2088: 252:
another. It is not affected by external factors such as
16:
Technique used to date materials such as rocks or carbon
2807: 548:
To calculate the age, it is assumed that the system is
526:
of the parent isotope times the natural logarithm of 2.
1907: 1049:
or infrared stimulated luminescence dating) or heat (
670:), though it can be used on other materials, such as 3383:
Harry y. Mcsween, Jr; Huss, Gary R (29 April 2010).
3382: 3086: 2952: 1901: 1722: 3977:
Global Boundary Stratotype Section and Point (GSSP)
3194:
http://www.psrd.hawaii.edu/Sept02/isotopicAges.html
2946: 2392: 761: 705: 3226:Pourret, Olivier; Johannesson, Karen (July 2022). 3225: 2916: 859:at KĂ„seberga, around ten kilometres south east of 4274:Conservation and restoration of cultural heritage 3123:"The I-Xe Chronometer and the Early Solar System" 3089:"The NUBASE2020 evaluation of nuclear properties" 2024: 1841: 950:crystals are widely used in fission track dating. 306: 4260: 3314:. Springer Berlin Heidelberg. pp. 105–115. 1893:Radiometric Dating and the Geological Time Scale 795: 727: 228:at a rate described by a parameter known as the 177:. Additionally, elements may exist in different 113:change. Radiometric dating is also used to date 1658:ratio to that of other Solar System materials. 1248:via neutron capture followed by beta decay (of 1158: 287: 3209:, page 322. Cambridge University Press, 2001. 3070:, page 321. Cambridge University Press, 2001. 2536: 1420: 1018: 932: 690:micro-beam analysis can be achieved via laser 659:Uranium–lead dating is often performed on the 3417: 617: 598:as a method by which one might determine the 2957:. In Naeser, Nancy; McCulloh, Thane (eds.). 2352:"Basics of Radioactive Isotope Geochemistry" 2304: 2302: 2300: 1001: 841: 50:within the material to the abundance of its 3280:"Radioactivity: A Tool to Explore the Past" 2771:"A calibration curve for radiocarbon dates" 3424: 3410: 3309: 3228:"Radiogenic isotope: Not just about words" 3080: 2989: 2164:. Stanford, Calif.: Stanford Univ. Press. 1981: 3368:(2 ed.). Columbia University Press. 3251: 3146: 3023: 2901: 2840: 2808:Vasiliev, S. S.; V. A. Dergachev (2002). 2711: 2458: 2308: 2297: 2244: 2234: 2159: 2050: 2009: 1958: 538:) rather than the constant initial value 260:, chemical environment, or presence of a 85:, radiometric dating methods are used in 3972:Global Standard Stratigraphic Age (GSSA) 3295:10.1524/ract.1995.7071.special-issue.305 2258: 2256: 1912:. Springer Netherlands. pp. 53–72. 1794:Sensitive high-resolution ion microprobe 942: 851: 627: 585: 406: 310: 132: 117:materials, including ancient artifacts. 3344: 2961:. Springer New York. pp. 157–180. 2607: 2572: 2376:"Geologic Time: Radiometric Time Scale" 2370: 2368: 2343: 345:Amitsoq gneisses from western Greenland 4261: 3277: 2184: 1700: 1345:. The difference between the measured 1165:Iodine-129 § Meteorite age dating 393:artificially resetting sample minerals 366: 93:. Among the best-known techniques are 3405: 3345:AllĂšgre, Claude J (4 December 2008). 3312:Radioactivity Radionuclides Radiation 2959:Thermal History of Sedimentary Basins 2768: 2349: 2262: 2253: 1984:"Perturbation of Nuclear Decay Rates" 3366:Geochemistry: Pathways and Processes 3205:Imke de Pater and Jack J. Lissauer: 3066:Imke de Pater and Jack J. Lissauer: 2365: 1705:In a July 2022 paper in the journal 316:Thermal ionization mass spectrometer 128: 3114: 2645:Earth and Planetary Science Letters 2395:Earth and Planetary Science Letters 2127:Earth and Planetary Science Letters 2011:10.1146/annurev.ns.22.120172.001121 772:This is based on the beta decay of 402: 244:) to over 100 billion years (e.g., 13: 3771:Adoption of the Gregorian calendar 3271: 3148:10.1111/j.1945-5100.2006.tb00190.x 1818:Compendium of Chemical Terminology 14: 4285: 3127:Meteoritics and Planetary Science 2920:Journal of African Earth Sciences 2504:Journal of African Earth Sciences 2431:Journal of African Earth Sciences 2075:How to Change Nuclear Decay Rates 1047:optically stimulated luminescence 788:, and has also been used to date 347:was determined to be 3.60 ± 0.05 331:. This can reduce the problem of 2575:South African Journal of Geology 2524:10.1016/j.jafrearsci.2004.12.003 1989:Annual Review of Nuclear Science 1753: 1739: 1725: 1060: 1033:on certain minerals. Over time, 1006:Large amounts of otherwise rare 834:(thorium-230) to thorium-232 in 762:Rubidium–strontium dating method 706:Samarium–neodymium dating method 30:is a technique which is used to 3653:English and British regnal year 3253:10.1016/j.apgeochem.2022.105348 3219: 3199: 3186: 3155: 3060: 3048: 2983: 2910: 2874: 2849: 2801: 2762: 2736: 2671: 2636: 2601: 2566: 2530: 2494: 2421: 2386: 2380:United States Geological Survey 2203: 2178: 2153: 2118: 2092:Geochimica et Cosmochimica Acta 1146:such as that which constitutes 649:Uranium–lead radiometric dating 632:A concordia diagram as used in 357:isotope-ratio mass spectrometry 123: 3431: 3387:. Cambridge University Press. 3349:. Cambridge University Press. 2814:data over the last 8000 years" 2082: 2067: 2018: 1975: 1960:10.1016/j.apradiso.2017.09.002 1939:Applied Radiation and Isotopes 1926: 1882: 1835: 1806: 830:, which measures the ratio of 307:Accuracy of radiometric dating 161:is made up of combinations of 1: 3766:Old Style and New Style dates 2940:10.1016/S0899-5362(01)80066-X 2665:10.1016/S0012-821X(98)00228-3 2622:10.1126/science.286.5448.2289 2560:10.1016/S0009-2541(00)00394-6 2488:10.1016/S0301-9268(01)00215-7 2452:10.1016/S0899-5362(01)90021-1 2112:10.1016/s0016-7037(00)00512-3 1800: 1622:*) is found by comparing the 796:Uranium–thorium dating method 728:Potassium–argon dating method 42:, in which trace radioactive 3718:Pre-Julian / Julian 3278:Gunten, Hans R. von (1995). 2967:10.1007/978-1-4612-3492-0_10 2415:10.1016/0012-821X(75)90088-6 2269:Englewood Cliffs, New Jersey 2160:Dalrymple, G. Brent (1994). 2147:10.1016/0012-821X(96)00132-X 288:Decay constant determination 7: 3951:Geological history of Earth 3821:Astronomical year numbering 2309:Rollinson, Hugh R. (1993). 1848:American Journal of Science 1718: 1019:Luminescence dating methods 933:Fission track dating method 318:used in radiometric dating. 221:into two or more nuclides. 169:, indicating the number of 10: 4290: 2704:10.1038/s41598-019-57262-5 2187:Radiogenic isotope geology 2025:Shlyakhter, A. I. (1976). 1842:Boltwood, Bertram (1907). 1162: 1022: 936: 845: 799: 765: 731: 709: 621: 618:Uranium–lead dating method 370: 291: 217:). Another possibility is 4205: 4189: 4173: 4131: 4123:Thermoluminescence dating 4041: 4030: 4018:Samarium–neodymium dating 3985: 3964: 3938: 3929: 3891: 3829: 3784: 3748: 3717: 3708: 3671: 3633: 3512: 3487: 3439: 2903:10.1017/S0033822200037954 2842:10.5194/angeo-20-115-2002 2787:10.1017/S0003598X00070277 2236:10.1017/S0033822200032999 1910:Nuclear Methods of Dating 1051:thermoluminescence dating 1002:Chlorine-36 dating method 842:Radiocarbon dating method 768:Rubidium–strontium dating 712:Samarium–neodymium dating 137:Example of a radioactive 109:and the deduced rates of 3837:Chinese sexagenary cycle 3108:10.1088/1674-1137/abddae 2185:Dickin, Alan P. (2008). 1868:10.2475/ajs.s4-23.134.78 492:(the present), given by 83:stratigraphic principles 4051:Amino acid racemisation 3328:10.1007/3-540-26881-2_6 3289:. 70–71 (s1): 305–413. 3139:2006M&PS...41...19G 3016:10.1126/science.1141758 2990:Willerslev, E. (2007). 2657:1998E&PSL.164..353M 2407:1975E&PSL..26..207S 2139:1996E&PSL.143...95S 1831:10.1351/goldbook.R05082 1779:Paleopedological record 1421:The Al – Mg chronometer 1210:0.12 million years 1100:Hafnium–tungsten dating 1065:Other methods include: 66:, including the age of 4056:Archaeomagnetic dating 3568:Era of Caesar (Iberia) 2263:Faure, Gunter (1998). 2221:(3): 1029–1058. 2004. 1159:The I – Xe chronometer 951: 868: 802:Uranium–thorium dating 734:Potassium–argon dating 680:monazite geochronology 645: 415: 399:or thermochronometry. 319: 154: 99:potassium–argon dating 3956:Geological time units 2769:Clark, R. M. (1975). 2350:White, W. M. (2003). 1733:Earth sciences portal 946: 883:with nitrogen in the 855: 828:ionium–thorium dating 636:, with data from the 631: 586:Modern dating methods 455:is age of the sample, 410: 314: 294:Radioactive decay law 136: 68:fossilized life forms 4008:Law of superposition 4003:Isotope geochemistry 3232:Applied Geochemistry 2468:Precambrian Research 2162:The age of the earth 2073:Johnson, B. (1993). 1935:"Is decay constant?" 1774:Isotope geochemistry 1708:Applied Geochemistry 1204:with a half-life of 1031:background radiation 939:fission track dating 913:as a consequence of 386:for one mineral but 165:, each with its own 4141:Fluorine absorption 4118:Luminescence dating 4013:Luminescence dating 3921:Milankovitch cycles 3761:Proleptic Gregorian 3593:Hindu units of time 3320:2005rrr..book.....M 3244:2022ApGC..14205348P 3180:1988LPICo.650...14H 3008:2007Sci...317..111W 2932:2001JAfES..33..323J 2833:2002AnGeo..20..115V 2821:Annales Geophysicae 2696:2020NatSR..10..562T 2616:(5448): 2289–2290. 2587:2001SAJG..104...13W 2552:2001ChGeo.175..209L 2516:2004JAfES..40..281M 2480:2002PreR..113..293O 2444:2001JAfES..32..103V 2227:2004Radcb..46.1029. 2104:2001GeCoA..65..111B 2043:1976Natur.264..340S 2002:1972ARNPS..22..165E 1982:Emery, G T (1972). 1951:2018AppRI.134....6P 1897:TalkOrigins Archive 1860:1907AmJS...23...78B 1701:A terminology issue 1025:Luminescence dating 1015:ice and sediments. 956:spontaneous fission 720:of Sm to Nd with a 634:uranium–lead dating 624:Uranium–lead dating 576:closure temperature 373:Closure temperature 367:Closure temperature 337:uranium–lead dating 219:spontaneous fission 103:uranium–lead dating 91:geologic time scale 64:geological features 62:of rocks and other 48:radioactive isotope 28:radioisotope dating 4269:Radiometric dating 4243:Terminus post quem 4223:Synchronoptic view 4190:Linguistic methods 4151:Obsidian hydration 4086:Radiometric dating 4071:Incremental dating 3993:Chronostratigraphy 3207:Planetary Sciences 3068:Planetary Sciences 2857:"Carbon-14 Dating" 2684:Scientific Reports 2359:Cornell University 2078:Usenet Physics FAQ 1823:radioactive dating 1604:(often designated 1268:isotopic signature 1043:potassium feldspar 1035:ionizing radiation 952: 872:Radiocarbon dating 869: 848:Radiocarbon dating 814:is water-soluble, 716:This involves the 646: 416: 320: 155: 95:radiocarbon dating 76:man-made materials 34:materials such as 24:radioactive dating 20:Radiometric dating 4256: 4255: 4169: 4168: 4026: 4025: 3887: 3886: 3842:Geologic Calendar 3704: 3703: 3394:978-0-521-87862-3 3375:978-0-231-12440-9 3337:978-3-540-26881-9 3287:Radiochimica Acta 3096:Chinese Physics C 3002:(5834): 111–114. 2976:978-1-4612-8124-5 2861:www.chem.uwec.edu 2328:978-0-582-06701-1 2282:978-0-02-336450-1 1919:978-0-7923-0188-2 1747:Geophysics portal 1713:mass spectrometry 1509:natural abundance 1152:mass spectrometer 1106:Potassium–calcium 915:industrialization 786:metamorphic rocks 604:mass spectrometer 596:Ernest Rutherford 341:concordia diagram 191:radioactive decay 163:chemical elements 129:Radioactive decay 89:to establish the 4281: 4248:ASPRO chronology 4197:Glottochronology 4113:Tephrochronology 4061:Dendrochronology 4039: 4038: 3936: 3935: 3735:Proleptic Julian 3725:Pre-Julian Roman 3715: 3714: 3510: 3509: 3426: 3419: 3412: 3403: 3402: 3398: 3379: 3360: 3341: 3306: 3284: 3266: 3265: 3255: 3223: 3217: 3203: 3197: 3190: 3184: 3183: 3159: 3153: 3152: 3150: 3118: 3112: 3111: 3093: 3084: 3078: 3064: 3058: 3052: 3046: 3045: 3027: 2987: 2981: 2980: 2950: 2944: 2943: 2914: 2908: 2907: 2905: 2887: 2878: 2872: 2871: 2869: 2867: 2853: 2847: 2846: 2844: 2818: 2805: 2799: 2798: 2781:(196): 251–266. 2766: 2760: 2759: 2757: 2755: 2750:on 31 March 2009 2740: 2734: 2733: 2715: 2675: 2669: 2668: 2651:(1–2): 353–369. 2640: 2634: 2633: 2605: 2599: 2598: 2595:10.2113/104.1.13 2570: 2564: 2563: 2546:(3–4): 209–219. 2540:Chemical Geology 2534: 2528: 2527: 2498: 2492: 2491: 2474:(3–4): 293–306. 2462: 2456: 2455: 2425: 2419: 2418: 2390: 2384: 2383: 2372: 2363: 2362: 2356: 2347: 2341: 2340: 2306: 2295: 2294: 2267:(2nd ed.). 2260: 2251: 2250: 2248: 2238: 2207: 2201: 2200: 2182: 2176: 2175: 2157: 2151: 2150: 2122: 2116: 2115: 2086: 2080: 2071: 2065: 2064: 2054: 2052:10.1038/264340a0 2022: 2016: 2015: 2013: 1979: 1973: 1972: 1962: 1930: 1924: 1923: 1905: 1899: 1888:McRae, A. 1998. 1886: 1880: 1879: 1839: 1833: 1810: 1763: 1758: 1757: 1749: 1744: 1743: 1735: 1730: 1729: 1728: 1696: 1695: 1694: 1687: 1686: 1678: 1677: 1676: 1669: 1668: 1657: 1656: 1655: 1648: 1647: 1639: 1638: 1637: 1630: 1629: 1621: 1620: 1619: 1612: 1611: 1603: 1602: 1601: 1594: 1593: 1582: 1581: 1580: 1573: 1572: 1564: 1563: 1562: 1555: 1554: 1546: 1545: 1544: 1537: 1536: 1529:(the product of 1528: 1527: 1526: 1519: 1518: 1502: 1501: 1500: 1493: 1492: 1484: 1483: 1482: 1475: 1474: 1462: 1461: 1460: 1453: 1452: 1444: 1442: 1441: 1434: 1433: 1416: 1415: 1414: 1407: 1406: 1398: 1397: 1396: 1389: 1388: 1380: 1379: 1378: 1371: 1370: 1362: 1361: 1360: 1353: 1352: 1344: 1343: 1342: 1335: 1334: 1326: 1325: 1324: 1317: 1316: 1305: 1304: 1303: 1296: 1295: 1287: 1286: 1285: 1278: 1277: 1265: 1264: 1263: 1256: 1255: 1247: 1246: 1245: 1238: 1237: 1229: 1228: 1227: 1220: 1219: 1211: 1209: 1203: 1202: 1201: 1194: 1193: 1185: 1184: 1183: 1176: 1175: 1094:Lutetium–hafnium 1082:Lanthanum–barium 885:upper atmosphere 740:electron capture 600:age of the Earth 517: 511: 487: 474: 463: 454: 445: 403:The age equation 397:thermochronology 378:be lost through 215:electron capture 56:Bertram Boltwood 4289: 4288: 4284: 4283: 4282: 4280: 4279: 4278: 4259: 4258: 4257: 4252: 4201: 4185: 4181:Molecular clock 4174:Genetic methods 4165: 4146:Nitrogen dating 4133:Relative dating 4127: 4096:Potassium–argon 4043:Absolute dating 4033: 4022: 3981: 3960: 3925: 3901:Cosmic Calendar 3893:Astronomic time 3883: 3825: 3780: 3744: 3730:Original Julian 3700: 3667: 3629: 3528:Ab urbe condita 3506: 3483: 3435: 3430: 3395: 3376: 3357: 3347:Isotope Geology 3338: 3282: 3274: 3272:Further reading 3269: 3224: 3220: 3204: 3200: 3191: 3187: 3160: 3156: 3119: 3115: 3091: 3085: 3081: 3065: 3061: 3053: 3049: 2988: 2984: 2977: 2951: 2947: 2915: 2911: 2896:(2A): 157–161. 2885: 2879: 2875: 2865: 2863: 2855: 2854: 2850: 2816: 2806: 2802: 2767: 2763: 2753: 2751: 2742: 2741: 2737: 2676: 2672: 2641: 2637: 2606: 2602: 2571: 2567: 2535: 2531: 2499: 2495: 2463: 2459: 2426: 2422: 2391: 2387: 2382:. 16 June 2001. 2374: 2373: 2366: 2354: 2348: 2344: 2329: 2307: 2298: 2283: 2261: 2254: 2209: 2208: 2204: 2197: 2183: 2179: 2172: 2158: 2154: 2133:(1–4): 95–109. 2123: 2119: 2087: 2083: 2072: 2068: 2023: 2019: 1980: 1976: 1931: 1927: 1920: 1906: 1902: 1887: 1883: 1840: 1836: 1811: 1807: 1803: 1759: 1752: 1745: 1738: 1731: 1726: 1724: 1721: 1703: 1693: 1691: 1690: 1689: 1685: 1683: 1682: 1681: 1680: 1675: 1673: 1672: 1671: 1667: 1665: 1664: 1663: 1662: 1654: 1652: 1651: 1650: 1646: 1644: 1643: 1642: 1641: 1636: 1634: 1633: 1632: 1628: 1626: 1625: 1624: 1623: 1618: 1616: 1615: 1614: 1610: 1608: 1607: 1606: 1605: 1600: 1598: 1597: 1596: 1592: 1590: 1589: 1588: 1587: 1579: 1577: 1576: 1575: 1571: 1569: 1568: 1567: 1566: 1561: 1559: 1558: 1557: 1553: 1551: 1550: 1549: 1548: 1543: 1541: 1540: 1539: 1535: 1533: 1532: 1531: 1530: 1525: 1523: 1522: 1521: 1517: 1515: 1514: 1513: 1512: 1499: 1497: 1496: 1495: 1491: 1489: 1488: 1487: 1486: 1481: 1479: 1478: 1477: 1473: 1471: 1470: 1469: 1468: 1459: 1457: 1456: 1455: 1451: 1449: 1448: 1447: 1446: 1440: 1438: 1437: 1436: 1432: 1430: 1429: 1428: 1426: 1423: 1413: 1411: 1410: 1409: 1405: 1403: 1402: 1401: 1400: 1395: 1393: 1392: 1391: 1387: 1385: 1384: 1383: 1382: 1377: 1375: 1374: 1373: 1369: 1367: 1366: 1365: 1364: 1359: 1357: 1356: 1355: 1351: 1349: 1348: 1347: 1346: 1341: 1339: 1338: 1337: 1333: 1331: 1330: 1329: 1328: 1323: 1321: 1320: 1319: 1315: 1313: 1312: 1311: 1310: 1302: 1300: 1299: 1298: 1294: 1292: 1291: 1290: 1289: 1284: 1282: 1281: 1280: 1276: 1274: 1273: 1272: 1271: 1262: 1260: 1259: 1258: 1254: 1252: 1251: 1250: 1249: 1244: 1242: 1241: 1240: 1236: 1234: 1233: 1232: 1231: 1226: 1224: 1223: 1222: 1218: 1216: 1215: 1214: 1213: 1207: 1205: 1200: 1198: 1197: 1196: 1192: 1190: 1189: 1188: 1187: 1186:beta-decays to 1182: 1180: 1179: 1178: 1174: 1172: 1171: 1170: 1169: 1167: 1161: 1139: 1124:Krypton–krypton 1118:Uranium–uranium 1063: 1027: 1021: 1012:nuclear weapons 1004: 941: 935: 925:or the Earth's 894: 877:nucleosynthesis 850: 844: 804: 798: 770: 764: 736: 730: 714: 708: 669: 626: 620: 588: 558: 543: 515: 507: 493: 491: 478: 473: 467: 458: 452: 446: 431: 421: 405: 375: 369: 309: 296: 290: 199:alpha particles 131: 126: 17: 12: 11: 5: 4287: 4277: 4276: 4271: 4254: 4253: 4251: 4250: 4245: 4240: 4235: 4230: 4225: 4220: 4218:New Chronology 4215: 4209: 4207: 4206:Related topics 4203: 4202: 4200: 4199: 4193: 4191: 4187: 4186: 4184: 4183: 4177: 4175: 4171: 4170: 4167: 4166: 4164: 4163: 4158: 4153: 4148: 4143: 4137: 4135: 4129: 4128: 4126: 4125: 4120: 4115: 4110: 4109: 4108: 4103: 4098: 4093: 4083: 4081:Paleomagnetism 4078: 4073: 4068: 4063: 4058: 4053: 4047: 4045: 4036: 4028: 4027: 4024: 4023: 4021: 4020: 4015: 4010: 4005: 4000: 3995: 3989: 3987: 3983: 3982: 3980: 3979: 3974: 3968: 3966: 3962: 3961: 3959: 3958: 3953: 3948: 3942: 3940: 3933: 3927: 3926: 3924: 3923: 3918: 3913: 3908: 3903: 3897: 3895: 3889: 3888: 3885: 3884: 3882: 3881: 3879:New Earth Time 3876: 3871: 3870: 3869: 3864: 3854: 3849: 3844: 3839: 3833: 3831: 3827: 3826: 3824: 3823: 3818: 3808: 3803: 3788: 3786: 3782: 3781: 3779: 3778: 3773: 3768: 3763: 3758: 3752: 3750: 3746: 3745: 3743: 3742: 3740:Revised Julian 3737: 3732: 3727: 3721: 3719: 3712: 3706: 3705: 3702: 3701: 3699: 3698: 3693: 3688: 3683: 3677: 3675: 3669: 3668: 3666: 3665: 3660: 3658:Lists of kings 3655: 3650: 3648:Canon of Kings 3645: 3639: 3637: 3631: 3630: 3628: 3627: 3626: 3625: 3620: 3615: 3610: 3600: 3590: 3585: 3580: 3575: 3573:Before present 3570: 3565: 3560: 3555: 3550: 3545: 3540: 3531: 3524: 3518: 3516: 3507: 3505: 3504: 3499: 3494: 3488: 3485: 3484: 3482: 3481: 3476: 3471: 3470: 3469: 3459: 3454: 3449: 3443: 3441: 3437: 3436: 3429: 3428: 3421: 3414: 3406: 3400: 3399: 3393: 3385:Cosmochemistry 3380: 3374: 3361: 3356:978-0521862288 3355: 3342: 3336: 3307: 3273: 3270: 3268: 3267: 3218: 3198: 3185: 3154: 3113: 3079: 3059: 3047: 2982: 2975: 2945: 2926:(2): 323–333. 2909: 2873: 2848: 2827:(1): 115–120. 2800: 2761: 2735: 2670: 2635: 2600: 2565: 2529: 2510:(5): 281–292. 2493: 2457: 2438:(1): 103–114. 2420: 2401:(2): 207–221. 2385: 2364: 2342: 2327: 2296: 2281: 2252: 2202: 2195: 2177: 2170: 2152: 2117: 2098:(1): 111–121. 2081: 2066: 2017: 1996:(1): 165–202. 1974: 1925: 1918: 1900: 1881: 1854:(134): 77–88. 1834: 1804: 1802: 1799: 1798: 1797: 1791: 1786: 1781: 1776: 1771: 1765: 1764: 1761:Physics portal 1750: 1736: 1720: 1717: 1702: 1699: 1692: 1684: 1674: 1666: 1653: 1645: 1635: 1627: 1617: 1609: 1599: 1591: 1586:The excess of 1578: 1570: 1560: 1552: 1542: 1534: 1524: 1516: 1498: 1490: 1480: 1472: 1458: 1450: 1439: 1431: 1422: 1419: 1412: 1404: 1394: 1386: 1376: 1368: 1358: 1350: 1340: 1332: 1322: 1314: 1301: 1293: 1283: 1275: 1261: 1253: 1243: 1235: 1225: 1217: 1199: 1191: 1181: 1173: 1160: 1157: 1138: 1135: 1134: 1133: 1127: 1121: 1115: 1112:Rhenium–osmium 1109: 1103: 1097: 1091: 1085: 1079: 1073: 1062: 1059: 1023:Main article: 1020: 1017: 1003: 1000: 937:Main article: 934: 931: 927:magnetic field 900:photosynthesis 892: 889:carbon dioxide 846:Main article: 843: 840: 836:ocean sediment 800:Main article: 797: 794: 766:Main article: 763: 760: 738:This involves 732:Main article: 729: 726: 710:Main article: 707: 704: 667: 622:Main article: 619: 616: 587: 584: 556: 541: 528: 527: 520:decay constant 513: 505: 489: 476: 471: 465: 456: 429: 420: 404: 401: 371:Main article: 368: 365: 308: 305: 289: 286: 266:electric field 175:atomic nucleus 130: 127: 125: 122: 115:archaeological 81:Together with 15: 9: 6: 4: 3: 2: 4286: 4275: 4272: 4270: 4267: 4266: 4264: 4249: 4246: 4244: 4241: 4239: 4236: 4234: 4231: 4229: 4226: 4224: 4221: 4219: 4216: 4214: 4211: 4210: 4208: 4204: 4198: 4195: 4194: 4192: 4188: 4182: 4179: 4178: 4176: 4172: 4162: 4159: 4157: 4154: 4152: 4149: 4147: 4144: 4142: 4139: 4138: 4136: 4134: 4130: 4124: 4121: 4119: 4116: 4114: 4111: 4107: 4104: 4102: 4099: 4097: 4094: 4092: 4089: 4088: 4087: 4084: 4082: 4079: 4077: 4074: 4072: 4069: 4067: 4064: 4062: 4059: 4057: 4054: 4052: 4049: 4048: 4046: 4044: 4040: 4037: 4035: 4032:Chronological 4029: 4019: 4016: 4014: 4011: 4009: 4006: 4004: 4001: 3999: 3998:Geochronology 3996: 3994: 3991: 3990: 3988: 3984: 3978: 3975: 3973: 3970: 3969: 3967: 3963: 3957: 3954: 3952: 3949: 3947: 3944: 3943: 3941: 3937: 3934: 3932: 3931:Geologic time 3928: 3922: 3919: 3917: 3916:Metonic cycle 3914: 3912: 3911:Galactic year 3909: 3907: 3904: 3902: 3899: 3898: 3896: 3894: 3890: 3880: 3877: 3875: 3872: 3868: 3865: 3863: 3860: 3859: 3858: 3855: 3853: 3852:ISO week date 3850: 3848: 3845: 3843: 3840: 3838: 3835: 3834: 3832: 3828: 3822: 3819: 3816: 3812: 3809: 3807: 3804: 3801: 3797: 3793: 3790: 3789: 3787: 3783: 3777: 3774: 3772: 3769: 3767: 3764: 3762: 3759: 3757: 3754: 3753: 3751: 3747: 3741: 3738: 3736: 3733: 3731: 3728: 3726: 3723: 3722: 3720: 3716: 3713: 3711: 3707: 3697: 3694: 3692: 3689: 3687: 3684: 3682: 3679: 3678: 3676: 3674: 3670: 3664: 3661: 3659: 3656: 3654: 3651: 3649: 3646: 3644: 3641: 3640: 3638: 3636: 3632: 3624: 3621: 3619: 3616: 3614: 3611: 3609: 3606: 3605: 3604: 3601: 3598: 3594: 3591: 3589: 3586: 3584: 3581: 3579: 3576: 3574: 3571: 3569: 3566: 3564: 3561: 3559: 3558:Byzantine era 3556: 3554: 3551: 3549: 3546: 3544: 3541: 3539: 3535: 3532: 3530: 3529: 3525: 3523: 3520: 3519: 3517: 3515: 3514:Calendar eras 3511: 3508: 3503: 3500: 3498: 3495: 3493: 3490: 3489: 3486: 3480: 3477: 3475: 3472: 3468: 3465: 3464: 3463: 3460: 3458: 3455: 3453: 3450: 3448: 3445: 3444: 3442: 3438: 3434: 3427: 3422: 3420: 3415: 3413: 3408: 3407: 3404: 3396: 3390: 3386: 3381: 3377: 3371: 3367: 3362: 3358: 3352: 3348: 3343: 3339: 3333: 3329: 3325: 3321: 3317: 3313: 3308: 3304: 3300: 3296: 3292: 3288: 3281: 3276: 3275: 3263: 3259: 3254: 3249: 3245: 3241: 3237: 3233: 3229: 3222: 3216: 3215:0-521-48219-4 3212: 3208: 3202: 3195: 3189: 3181: 3177: 3173: 3169: 3165: 3158: 3149: 3144: 3140: 3136: 3132: 3128: 3124: 3117: 3109: 3105: 3102:(3): 030001. 3101: 3097: 3090: 3083: 3077: 3076:0-521-48219-4 3073: 3069: 3063: 3057: 3051: 3043: 3039: 3035: 3031: 3026: 3021: 3017: 3013: 3009: 3005: 3001: 2997: 2993: 2986: 2978: 2972: 2968: 2964: 2960: 2956: 2949: 2941: 2937: 2933: 2929: 2925: 2921: 2913: 2904: 2899: 2895: 2891: 2884: 2877: 2862: 2858: 2852: 2843: 2838: 2834: 2830: 2826: 2822: 2815: 2813: 2804: 2796: 2792: 2788: 2784: 2780: 2776: 2772: 2765: 2749: 2745: 2744:"Ales stenar" 2739: 2731: 2727: 2723: 2719: 2714: 2709: 2705: 2701: 2697: 2693: 2689: 2685: 2681: 2674: 2666: 2662: 2658: 2654: 2650: 2646: 2639: 2631: 2627: 2623: 2619: 2615: 2611: 2604: 2596: 2592: 2588: 2584: 2580: 2576: 2569: 2561: 2557: 2553: 2549: 2545: 2541: 2533: 2525: 2521: 2517: 2513: 2509: 2505: 2497: 2489: 2485: 2481: 2477: 2473: 2469: 2461: 2453: 2449: 2445: 2441: 2437: 2433: 2432: 2424: 2416: 2412: 2408: 2404: 2400: 2396: 2389: 2381: 2377: 2371: 2369: 2360: 2353: 2346: 2338: 2334: 2330: 2324: 2320: 2316: 2312: 2305: 2303: 2301: 2292: 2288: 2284: 2278: 2274: 2273:Prentice Hall 2270: 2266: 2259: 2257: 2247: 2242: 2237: 2232: 2228: 2224: 2220: 2216: 2212: 2206: 2198: 2196:9780521530170 2192: 2188: 2181: 2173: 2171:9780804723312 2167: 2163: 2156: 2148: 2144: 2140: 2136: 2132: 2128: 2121: 2113: 2109: 2105: 2101: 2097: 2093: 2085: 2079: 2076: 2070: 2062: 2058: 2053: 2048: 2044: 2040: 2037:(5584): 340. 2036: 2032: 2028: 2021: 2012: 2007: 2003: 1999: 1995: 1991: 1990: 1985: 1978: 1970: 1966: 1961: 1956: 1952: 1948: 1944: 1940: 1936: 1929: 1921: 1915: 1911: 1904: 1898: 1894: 1891: 1885: 1877: 1873: 1869: 1865: 1861: 1857: 1853: 1849: 1845: 1838: 1832: 1828: 1824: 1820: 1819: 1814: 1809: 1805: 1795: 1792: 1790: 1787: 1785: 1784:Radioactivity 1782: 1780: 1777: 1775: 1772: 1770: 1769:Hadean zircon 1767: 1766: 1762: 1756: 1751: 1748: 1742: 1737: 1734: 1723: 1716: 1714: 1710: 1709: 1698: 1659: 1584: 1510: 1506: 1466: 1443: 1418: 1307: 1269: 1166: 1156: 1153: 1149: 1143: 1131: 1128: 1125: 1122: 1119: 1116: 1113: 1110: 1107: 1104: 1101: 1098: 1095: 1092: 1089: 1086: 1083: 1080: 1077: 1074: 1071: 1068: 1067: 1066: 1061:Other methods 1058: 1054: 1052: 1048: 1044: 1040: 1036: 1032: 1026: 1016: 1013: 1009: 999: 996: 992: 988: 984: 980: 976: 972: 967: 965: 961: 960:slow neutrons 957: 949: 945: 940: 930: 928: 924: 920: 916: 912: 908: 903: 901: 896: 890: 886: 882: 878: 873: 866: 862: 858: 854: 849: 839: 837: 833: 829: 825: 821: 817: 813: 808: 803: 793: 791: 790:lunar samples 787: 783: 779: 775: 769: 759: 757: 753: 749: 745: 741: 735: 725: 723: 719: 713: 703: 699: 697: 693: 689: 685: 681: 677: 673: 665: 662: 657: 655: 650: 643: 639: 635: 630: 625: 615: 613: 609: 608:ionized atoms 605: 601: 597: 593: 583: 581: 580:isochron plot 577: 572: 570: 566: 562: 555: 551: 546: 544: 537: 533: 525: 521: 514: 510: 504: 500: 496: 485: 481: 477: 470: 466: 461: 457: 451: 450: 449: 443: 439: 435: 428: 424: 419: 413: 409: 400: 398: 394: 389: 385: 381: 374: 364: 360: 358: 352: 350: 346: 342: 338: 334: 333:contamination 330: 326: 317: 313: 304: 302: 295: 285: 283: 279: 275: 271: 267: 263: 259: 255: 249: 247: 243: 239: 235: 234:decay product 231: 227: 226:exponentially 222: 220: 216: 213:emission, or 212: 208: 204: 200: 197:(emission of 196: 192: 188: 184: 180: 176: 172: 168: 167:atomic number 164: 160: 157:All ordinary 152: 148: 144: 143:decay product 140: 135: 121: 118: 116: 112: 108: 104: 100: 96: 92: 88: 87:geochronology 84: 79: 77: 73: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 29: 25: 21: 4161:Stratigraphy 4106:Uranium–lead 4085: 4076:Lichenometry 3874:Winter count 3857:Mesoamerican 3785:Astronomical 3603:Mesoamerican 3588:Sothic cycle 3563:Seleucid era 3548:Bosporan era 3536: / 3526: 3474:Paleontology 3384: 3365: 3346: 3311: 3286: 3235: 3231: 3221: 3206: 3201: 3188: 3171: 3167: 3157: 3133:(1): 19–31. 3130: 3126: 3116: 3099: 3095: 3082: 3067: 3062: 3050: 2999: 2995: 2985: 2958: 2948: 2923: 2919: 2912: 2893: 2889: 2876: 2864:. Retrieved 2860: 2851: 2824: 2820: 2811: 2803: 2778: 2774: 2764: 2752:. Retrieved 2748:the original 2738: 2687: 2683: 2673: 2648: 2644: 2638: 2613: 2609: 2603: 2581:(1): 13–22. 2578: 2574: 2568: 2543: 2539: 2532: 2507: 2503: 2496: 2471: 2467: 2460: 2435: 2429: 2423: 2398: 2394: 2388: 2345: 2310: 2264: 2218: 2214: 2205: 2186: 2180: 2161: 2155: 2130: 2126: 2120: 2095: 2091: 2084: 2074: 2069: 2034: 2030: 2020: 1993: 1987: 1977: 1942: 1938: 1928: 1909: 1903: 1889: 1884: 1851: 1847: 1837: 1816: 1808: 1706: 1704: 1660: 1585: 1424: 1308: 1168: 1144: 1140: 1076:Iodine–xenon 1064: 1055: 1028: 1005: 968: 964:neutron flux 953: 919:nuclear bomb 904: 897: 870: 857:Ale's Stones 820:protactinium 809: 805: 778:strontium-87 771: 737: 715: 700: 698:techniques. 687: 658: 647: 612:Faraday cups 589: 573: 568: 564: 560: 553: 547: 539: 535: 531: 529: 508: 502: 498: 494: 483: 479: 468: 459: 447: 441: 437: 433: 426: 422: 417: 376: 361: 353: 321: 301:Pb–Pb system 297: 278:zirconium-89 274:strontium-85 250: 246:samarium-147 223: 156: 124:Fundamentals 119: 111:evolutionary 80: 72:age of Earth 60:absolute age 27: 23: 19: 18: 4101:Radiocarbon 3776:Dual dating 3635:Regnal year 3613:Short Count 3553:Bostran era 3534:Anno Domini 3467:Big History 3447:Archaeology 2890:Radiocarbon 2215:Radiocarbon 1070:Argon–argon 881:cosmic rays 774:rubidium-87 756:hornblendes 718:alpha decay 672:baddeleyite 638:Pfunze Belt 270:beryllium-7 254:temperature 238:decay chain 195:alpha decay 139:decay chain 4263:Categories 3696:Vietnamese 3608:Long Count 3543:Anno Mundi 3538:Common Era 3440:Key topics 3433:Chronology 3238:: 105348. 2690:(1): 562. 2246:10289/3690 1801:References 1485:decays to 1465:chondrules 1163:See also: 1148:meteorites 923:solar wind 325:alteration 292:See also: 209:emission, 203:beta decay 44:impurities 4233:Year zero 4213:Chronicle 4156:Seriation 4091:Lead–lead 3965:Standards 3946:Deep time 3906:Ephemeris 3792:Lunisolar 3756:Gregorian 3749:Gregorian 3710:Calendars 3673:Era names 3643:Anka year 3522:Human Era 3452:Astronomy 3303:100441969 3262:248907159 2795:161729853 2775:Antiquity 2730:210670668 2630:129408440 1876:131688682 1789:Radiohalo 1505:half-life 1130:Beryllium 1088:Lead–lead 911:biosphere 907:volcanoes 824:sediments 752:feldspars 722:half-life 684:zirconium 524:half-life 380:diffusion 230:half-life 145:) via an 4228:Timeline 4066:Ice core 3939:Concepts 3686:Japanese 3618:Tzolk'in 3583:Egyptian 3034:17615355 2722:31953465 2337:27937350 2291:37783103 1969:28947247 1945:: 6–12. 1796:(SHRIMP) 1719:See also 987:titanite 975:tektites 744:positron 676:monazite 654:Mesozoic 642:Zimbabwe 592:invented 329:isochron 262:magnetic 258:pressure 211:positron 207:electron 183:neutrons 179:isotopes 4238:Floruit 3986:Methods 3847:Iranian 3815:Islamic 3681:Chinese 3492:Periods 3462:History 3457:Geology 3316:Bibcode 3240:Bibcode 3176:Bibcode 3135:Bibcode 3042:7423309 3025:2694912 3004:Bibcode 2996:Science 2928:Bibcode 2866:6 April 2829:Bibcode 2754:9 March 2713:6969261 2692:Bibcode 2653:Bibcode 2610:Science 2583:Bibcode 2548:Bibcode 2512:Bibcode 2476:Bibcode 2440:Bibcode 2403:Bibcode 2319:Longman 2223:Bibcode 2135:Bibcode 2100:Bibcode 2061:4252035 2039:Bibcode 1998:Bibcode 1947:Bibcode 1856:Bibcode 1503:with a 1230:) into 1132:(Be–Be) 1126:(Kr–Kr) 1114:(Re–Os) 1096:(Lu–Hf) 1090:(Pb–Pb) 1084:(La–Ba) 1072:(Ar–Ar) 991:epidote 983:apatite 948:Apatite 816:thorium 812:uranium 782:igneous 688:In situ 661:mineral 656:rocks. 518:is the 242:tritium 187:nuclide 173:in the 171:protons 151:ÎČ decay 147:α decay 107:fossils 70:or the 4034:dating 3830:Others 3796:Hebrew 3691:Korean 3502:Epochs 3391:  3372:  3353:  3334:  3301:  3260:  3213:  3174:: 14. 3074:  3040:  3032:  3022:  2973:  2793:  2728:  2720:  2710:  2628:  2335:  2325:  2315:Harlow 2289:  2279:  2193:  2168:  2059:  2031:Nature 1967:  1916:  1874:  1108:(K–Ca) 1102:(Hf-W) 1078:(I–Xe) 1039:quartz 995:garnet 979:zircon 865:Sweden 832:ionium 810:While 754:, and 692:ICP-MS 678:(see: 666:(ZrSiO 664:zircon 550:closed 448:where 384:closed 339:, the 276:, and 201:) and 159:matter 40:carbon 3867:Aztec 3811:Lunar 3806:Solar 3800:Hindu 3663:Limmu 3623:Haab' 3578:Hijri 3299:S2CID 3283:(PDF) 3258:S2CID 3092:(PDF) 3038:S2CID 2886:(PDF) 2817:(PDF) 2791:S2CID 2726:S2CID 2626:S2CID 2355:(PDF) 2057:S2CID 1872:S2CID 1850:. 4. 1813:IUPAC 1206:16.14 1120:(U–U) 971:micas 861:Ystad 748:micas 512:, and 412:Lu-Hf 335:. In 282:clock 149:or a 52:decay 36:rocks 3862:Maya 3597:Yuga 3497:Eras 3479:Time 3389:ISBN 3370:ISBN 3351:ISBN 3332:ISBN 3211:ISBN 3072:ISBN 3030:PMID 2971:ISBN 2868:2016 2756:2009 2718:PMID 2333:OCLC 2323:ISBN 2287:OCLC 2277:ISBN 2191:ISBN 2166:ISBN 1965:PMID 1914:ISBN 1661:The 1041:and 993:and 818:and 784:and 696:SIMS 674:and 501:) = 444:− 1) 425:* = 388:open 101:and 32:date 3324:doi 3291:doi 3248:doi 3236:142 3172:650 3143:doi 3104:doi 3056:pdf 3020:PMC 3012:doi 3000:317 2963:doi 2936:doi 2898:doi 2837:doi 2783:doi 2708:PMC 2700:doi 2661:doi 2649:164 2618:doi 2614:286 2591:doi 2579:104 2556:doi 2544:175 2520:doi 2484:doi 2472:113 2448:doi 2411:doi 2241:hdl 2231:doi 2143:doi 2131:143 2108:doi 2047:doi 2035:264 2006:doi 1955:doi 1943:134 1864:doi 1827:doi 1825:". 1511:of 1327:to 895:). 891:(CO 776:to 742:or 694:or 594:by 571:). 440:) ( 264:or 248:). 38:or 26:or 4265:: 3798:, 3330:. 3322:. 3297:. 3285:. 3256:. 3246:. 3234:. 3230:. 3170:. 3166:. 3141:. 3131:41 3129:. 3125:. 3100:45 3098:. 3094:. 3036:. 3028:. 3018:. 3010:. 2998:. 2994:. 2969:. 2934:. 2924:33 2922:. 2894:43 2892:. 2888:. 2859:. 2835:. 2825:20 2823:. 2819:. 2789:. 2779:49 2777:. 2773:. 2724:. 2716:. 2706:. 2698:. 2688:10 2686:. 2682:. 2659:. 2647:. 2624:. 2612:. 2589:. 2577:. 2554:. 2542:. 2518:. 2508:40 2506:. 2482:. 2470:. 2446:. 2436:32 2434:. 2409:. 2399:26 2397:. 2378:. 2367:^ 2357:. 2331:. 2321:. 2317:: 2313:. 2299:^ 2285:. 2275:. 2271:: 2255:^ 2239:. 2229:. 2219:46 2217:. 2213:. 2141:. 2129:. 2106:. 2096:65 2094:. 2055:. 2045:. 2033:. 2029:. 2004:. 1994:22 1992:. 1986:. 1963:. 1953:. 1937:. 1895:, 1870:. 1862:. 1852:23 1846:. 1815:, 1715:. 1688:Mg 1679:– 1670:Al 1649:Mg 1631:Mg 1613:Mg 1595:Mg 1583:. 1574:Mg 1556:Al 1538:Al 1520:Mg 1494:Mg 1476:Al 1467:. 1454:Mg 1445:– 1435:Al 1372:Xe 1354:Xe 1336:Xe 1297:Xe 1279:Xe 1239:Xe 1195:Xe 1008:Cl 989:, 985:, 981:, 973:, 966:. 863:, 838:. 750:, 640:, 545:. 432:+ 359:. 349:Ga 303:. 272:, 256:, 97:, 78:. 22:, 3817:) 3813:( 3802:) 3794:( 3599:) 3595:( 3425:e 3418:t 3411:v 3397:. 3378:. 3359:. 3340:. 3326:: 3318:: 3305:. 3293:: 3264:. 3250:: 3242:: 3196:. 3182:. 3178:: 3151:. 3145:: 3137:: 3110:. 3106:: 3044:. 3014:: 3006:: 2979:. 2965:: 2942:. 2938:: 2930:: 2906:. 2900:: 2870:. 2845:. 2839:: 2831:: 2812:C 2797:. 2785:: 2758:. 2732:. 2702:: 2694:: 2667:. 2663:: 2655:: 2632:. 2620:: 2597:. 2593:: 2585:: 2562:. 2558:: 2550:: 2526:. 2522:: 2514:: 2490:. 2486:: 2478:: 2454:. 2450:: 2442:: 2417:. 2413:: 2405:: 2361:. 2339:. 2293:. 2249:. 2243:: 2233:: 2225:: 2199:. 2174:. 2149:. 2145:: 2137:: 2114:. 2110:: 2102:: 2063:. 2049:: 2041:: 2014:. 2008:: 2000:: 1971:. 1957:: 1949:: 1922:. 1878:. 1866:: 1858:: 1829:: 1640:/ 1565:/ 1408:I 1399:/ 1390:I 1363:/ 1318:I 1288:/ 1257:I 1221:I 1208:± 1177:I 893:2 668:4 569:t 567:( 565:N 561:λ 557:0 554:D 542:o 540:N 536:t 534:( 532:N 516:λ 509:e 506:0 503:N 499:t 497:( 495:N 490:t 486:) 484:t 482:( 480:N 472:0 469:D 462:* 460:D 453:t 442:e 438:t 436:( 434:N 430:0 427:D 423:D 205:(

Index

date
rocks
carbon
impurities
radioactive isotope
decay
Bertram Boltwood
absolute age
geological features
fossilized life forms
age of Earth
man-made materials
stratigraphic principles
geochronology
geologic time scale
radiocarbon dating
potassium–argon dating
uranium–lead dating
fossils
evolutionary
archaeological

decay chain
decay product
α decay
ÎČ decay
matter
chemical elements
atomic number
protons

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑