Knowledge

Debris flow

Source đź“ť

238: 31: 650: 47: 181:, the availability of abundant loose sediment, soil, or weathered rock, and sufficient water to bring this loose material to a state of almost complete saturation (with all the pore space filled). Debris flows can be more frequent following forest and brush fires, as experience in southern California demonstrates. They pose a significant hazard in many steep, mountainous areas, and have received particular attention in Japan, China, Taiwan, USA, Canada, New Zealand, the Philippines, the European Alps, Russia, and Kazakhstan. In Japan a large debris flow or 206: 113:, they can flow almost as fluidly as water. Debris flows descending steep channels commonly attain speeds that surpass 10 m/s (36 km/h), although some large flows can reach speeds that are much greater. Debris flows with volumes ranging up to about 100,000 cubic meters occur frequently in mountainous regions worldwide. The largest prehistoric flows have had volumes exceeding 1 billion cubic meters (i.e., 1 cubic kilometer). As a result of their high sediment concentrations and mobility, debris flows can be very destructive. 624: 258:). Lateral levees can confine the paths of ensuing debris flows, and the presence of older levees provides some idea of the magnitudes of previous debris flows in a particular area. Through dating of trees growing on such deposits, the approximate frequency of destructive debris flows can be estimated. This is important information for land development in areas where debris flows are common. Ancient debris-flow deposits that are exposed only in 71: 49: 54: 52: 48: 53: 581:) and moves very economically, promoting long travel distances. Compared to buoyant flow, the neutrally buoyant flow shows completely different behaviour. For the latter case, the solid and fluid phases move together, the debris bulk mass is fluidized, the front moves substantially farther, the tail lags behind, and the overall flow height is also reduced. When 51: 638:
To prevent debris flows reaching property and people, a debris basin may be constructed. Debris basins are designed to protect soil and water resources or to prevent downstream damage. Such constructions are considered to be a last resort because they are expensive to construct and require commitment
176:
Debris flows can be triggered by intense rainfall or snowmelt, by dam-break or glacial outburst floods, or by landsliding that may or may not be associated with intense rain or earthquakes. In all cases the chief conditions required for debris flow initiation include the presence of slopes steeper
233:
and clay. These fine sediments help retain high pore-fluid pressures that enhance debris-flow mobility. In some cases the flow body is followed by a more watery tail that transitions into a hyperconcentrated stream flow. Debris flows tend to move in a series of pulses, or discrete surges, wherein
308:
material, or the outburst of a lake that was previously dammed by pyroclastic or glacial sediments. The word lahar is of Indonesian origin, but is now routinely used by geologists worldwide to describe volcanogenic debris flows. Nearly all of Earth's largest, most destructive debris flows are
642:
Before a storm that can potentially nucleate debris flows, forecasting frameworks can often quantify the likelihood that a debris flow might occur in a watershed; however, it remains challenging to predict the amount of sediment mobilized and therefore, the total size of debris flows that may
331:
is a glacial outburst flood. Jökulhlaup is an Icelandic word, and in Iceland many glacial outburst floods are triggered by sub-glacial volcanic eruptions. (Iceland sits atop the Mid-Atlantic Ridge, which is formed by a chain of mostly submarine volcanoes). Elsewhere, a more common cause of
254:. These natural levees form when relatively mobile, liquefied, fine-grained debris in the body of debris flows shoulders aside coarse, high-friction debris that collects in debris-flow heads as a consequence of grain-size segregation (a familiar phenomenon in 336:-dammed lakes. Such breaching events are often caused by the sudden calving of glacier ice into a lake, which then causes a displacement wave to breach a moraine or ice dam. Downvalley of the breach point, a jökulhlaup may increase greatly in size through 649: 1285:
Staley, D.M., Negri, J.A., Kean, J.W., Laber, J.L., Tillery, A.C. and Youberg, A.M., 2017. Prediction of spatially explicit rainfall intensity–duration thresholds for post-fire debris-flow generation in the western United States. Geomorphology, 278,
50: 249:
along steep mountain fronts. Fully exposed deposits commonly have lobate forms with boulder-rich snouts, and the lateral margins of debris-flow deposits and paths are commonly marked by the presence of boulder-rich lateral
140:
concentrations exceeding about 40 to 50%, and the remainder of a flow's volume consists of water. By definition, “debris” includes sediment grains with diverse shapes and sizes, commonly ranging from microscopic
643:
nucleate for a given storm, and whether or not debris basins will have the capacity to protect downstream communities. These challenges make debris flows particularly dangerous to mountain front communities.
300:, either directly as a result of an eruption, or indirectly by the collapse of loose material on the flanks of a volcano. A variety of phenomena may trigger a lahar, including melting of glacial ice, 760: 611:
flow. In this case the force due to the pressure gradient is altered, the drag is high and the effect of the virtual mass disappears in the solid momentum. All this leads to slowing down the
442:
on the solid component. Buoyancy is an important aspect of two-phase debris flow, because it enhances flow mobility (longer travel distances) by reducing the frictional resistance in the
169:
such as logs and tree stumps. Sediment-rich water floods with solid concentrations ranging from about 10 to 40% behave somewhat differently from debris flows and are known as
340:
of loose sediment from the valley through which it travels. Ample entrainment can enable the flood to transform to a debris flow. Travel distances may exceed 100 km.
1302:"Inundation, flow dynamics, and damage in the 9 January 2018 Montecito debris-flow event, California, USA: Opportunities and challenges for post-wildfire risk assessment" 605: 547: 474: 518: 494: 74:
Scars formed by debris flow in Ventura, greater Los Angeles during the winter of 1983. The photograph was taken within several months of the debris flows occurring.
656: 1042:
Baselt, Ivo; Oliveira, Gustavo Q. de; Fischer, Jan-Thomas & Pudasaini, Shiva P. (2022). "Deposition morphology in large-scale laboratory stony debris flows".
1901: 971: 999:
Baselt, Ivo; Oliveira, Gustavo Q. de; Fischer, Jan-Thomas & Pudasaini, Shiva P. (2021). "Evolution of stony debris flows in laboratory experiments".
767: 1379: 221:. The front, or 'head' of a debris-flow surge often contains an abundance of coarse material such as boulders and logs that impart a great deal of 446:. Buoyancy is present as long as there is fluid in the mixture. It reduces the solid normal stress, solid lateral normal stresses, and the basal 1367: 1260: 1476: 262:
are more difficult to recognize, but are commonly typified by juxtaposition of grains with greatly differing shapes and sizes. This poor
699:, read by Norma Fire, in a dance titled "Debris Flow", a "harrowing taped narrative of a family's ordeal in a massive L.A. mudslide..." 396:
Calibrating and validating such sophisticated models require well-documented data from field surveys or minute laboratory experiments.
241:
A debris flow in Ladakh, triggered by storms in 2010. It has poor sorting and levees. Steep source catchment is visible in background.
1894: 989:
Coleman, P. F., 1993. A new explanation for debris flow surge phenomena (abstract), Eos Trans. AGU, 74(16), Spring Meet. Suppl., 154.
639:
to annual maintenance. Also, debris basins may only retain debris flows from a fraction of streams that drain mountainous terrain.
157:. On Earth's land surface, mudflows are far less common than debris flows. However, underwater mudflows are prevalent on submarine 2132: 607:, the flow does not experience any buoyancy effect. Then the effective frictional shear stress for the solid phase is that of pure 225:. Trailing behind the high-friction flow head is a lower-friction, mostly liquefied flow body that contains a higher percentage of 408:, originally proposed by Iverson and later adopted and modified by others, treats debris flows as two-phase solid-fluid mixtures. 2500: 1489: 850:
Hunt,B. (1982). "Asymptotic Solution for Dam-Break Problems." Jl of Hyd. Div., Proceedings, ASCE, Vol. 108, No. HY1, pp. 115–126.
804:
Trujillo-Vela, Mario Germán; Ramos-Cañón, Alfonso Mariano; Escobar-Vargas, Jorge Alberto; Galindo-Torres, Sergio Andrés (2022).
360:
Rheologically based models that apply to mud flows treat debris flows as single-phase homogeneous materials (Examples include:
976: 1439: 245:
Debris-flow deposits are readily recognizable in the field. They make up significant percentages of many alluvial fans and
1887: 1141: 549:, (see, e.g., Bagnold, 1954) the debris mass is fluidized and moves longer travel distances. This can happen in highly 1416: 1244: 3126: 1296:
Kean, J.W.; Staley, D.M.; Lancaster, J.T.; Rengers, F.K.; Swanson, B.J.; Coe, J.A.; Hernandez, J.L.; Sigman, A.J.;
337: 895: 791: 42:, NW Indian Himalaya. Coarse bouldery levees form the channel sides. Poorly sorted rocks lie on the channel floor. 2657: 1469: 1347: 3121: 213:
Debris flows are accelerated downhill by gravity and tend to follow steep mountain channels that debouche onto
93:
channels, entrain objects in their paths, and form thick, muddy deposits on valley floors. They generally have
2682: 1376: 1139:(1954). "Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear". 2823: 2773: 2667: 1838: 682: 17: 880: 805: 3147: 3101: 1573: 562: 1041: 998: 3162: 2327: 1462: 237: 3111: 3063: 2946: 1444: 278:
flows that can be described as debris flows are typically given more specific names. These include:
3157: 3096: 2813: 2778: 2620: 102: 30: 3106: 2798: 2563: 373: 59: 1264: 630:, Kazakhstan, after the catastrophic debris flow of 1921. A number of facilities, including the 3152: 3048: 2906: 2457: 2342: 584: 526: 453: 170: 2886: 2733: 2695: 2144: 2083: 1407: 1185: 695: 503: 479: 972:
Hungr,O. 2000. Analysis of debris flow surges using the theory of uniformly progressive flow
3116: 2838: 2662: 2422: 2279: 2229: 2023: 1544: 1313: 1232: 1197: 1150: 1094: 1051: 1008: 907: 817: 353: 500:
between the fluid and the solid phases. The effect is substantial when the density ratio (
8: 3012: 3007: 2808: 2652: 2274: 2127: 2048: 1955: 1454: 1371: 761:"Iverson, R.M., 1997, The physics of debris flows, Reviews of Geophysics, 35(3): 245–296" 1317: 1236: 1201: 1154: 1098: 1055: 1012: 919: 911: 821: 3038: 2951: 2916: 2768: 2284: 2189: 2093: 1985: 1918: 1339: 1166: 1118: 1067: 1024: 954: 833: 369: 309:
lahars that originate on volcanoes. An example is the lahar that inundated the city of
263: 192: 166: 158: 153:
to describe debris flows, but true mudflows are composed mostly of grains smaller than
2758: 859: 792:
Distinguishing between debris flows and floods from field evidence in small watersheds
266:
of sediment grains distinguishes debris-flow deposits from most water-laid sediments.
205: 3017: 2856: 2848: 2788: 2748: 2637: 2452: 2214: 2204: 1990: 1853: 1563: 1497: 1412: 1343: 1331: 1240: 1110: 1071: 1028: 958: 837: 744: 435: 419: 297: 255: 162: 1440:
Mass Movements. Section of the information platform "Natural hazards in Switzerland"
1170: 1122: 829: 803: 659:
The debris basin on the Kahoma Stream Flood Control Project, protecting the town of
2931: 2833: 2738: 2487: 2337: 2332: 2309: 2249: 2078: 1950: 1785: 1779: 1581: 1485: 1321: 1205: 1158: 1102: 1063: 1059: 1020: 1016: 946: 915: 876: 825: 612: 558: 554: 423: 305: 623: 186: 2936: 2896: 2891: 2495: 2382: 2377: 2161: 2098: 2068: 2033: 2028: 1995: 1960: 1931: 1684: 1383: 1226: 1085:
E. B., Pitman; L. Le (2005). "A two-fluid model for avalanche and debris flows".
660: 411:
In real two-phase (debris) mass flows there exists a strong coupling between the
301: 116:
Notable debris-flow disasters of the twentieth century involved more than 20,000
35: 1353: 864: 2997: 2881: 2861: 2743: 2728: 2615: 2600: 2595: 2555: 2535: 2447: 2289: 2269: 2234: 2166: 2151: 2058: 1980: 1940: 1637: 1553: 860: 439: 405: 310: 178: 121: 117: 98: 86: 1879: 561:
is zero, and the basal slope effect on the solid phase also vanishes. In this
348:
Numerous different approaches have been used to model debris-flow properties,
3141: 3078: 3073: 3058: 3043: 2992: 2987: 2753: 2718: 2672: 2632: 2627: 2387: 2259: 2219: 1965: 1945: 1848: 1646: 1435:
Video documentation of experiments at the USGS debris-flow flume, Oregon, USA
1386: 1335: 1297: 1186:"Field observations of basal forces and fluid pore pressure in a debris flow" 1136: 634:, have been built since to prevent flows of this kind from reaching the city. 570: 361: 110: 328: 322: 173:
floods. Normal stream flows contain even lower concentrations of sediment.
3068: 2818: 2803: 2793: 2642: 2573: 2442: 2407: 2322: 2264: 2139: 2038: 2000: 1975: 1843: 1765: 1760: 1593: 1558: 1506: 1162: 1114: 1106: 686: 447: 365: 214: 106: 105:(roughly 2000 kilograms per cubic meter), but owing to widespread sediment 94: 2977: 2901: 2605: 2568: 2515: 2239: 2199: 2073: 1858: 1744: 1677: 1656: 1651: 1402: 1210: 690: 578: 569:, and thus the force associated with buoyancy. Under these conditions of 377: 246: 1429: 3083: 2763: 2647: 2587: 2545: 2417: 2254: 2122: 2063: 2053: 1970: 1539: 1326: 1301: 950: 934: 349: 218: 1434: 1183: 142: 3053: 3002: 2972: 2941: 2871: 2783: 2540: 2427: 2412: 2352: 2299: 2294: 2194: 2117: 2107: 2005: 1868: 1863: 1811: 1726: 1721: 1716: 1519: 1514: 1445:
Washington State information about Debris flows, and related material
708: 631: 550: 182: 125: 745:"Preliminary Soil-Slip Susceptibility Maps, Southwestern California" 70: 2723: 2690: 2367: 2209: 2176: 1818: 1806: 1711: 1611: 719: 608: 574: 431: 427: 222: 165:. Debris flows in forested regions can contain large quantities of 137: 3033: 2982: 2510: 2505: 2467: 2372: 2244: 2181: 1801: 1775: 1736: 1672: 1603: 1524: 713: 566: 443: 333: 275: 259: 198: 150: 146: 2828: 2700: 2525: 2520: 2472: 2462: 2432: 2357: 2112: 2043: 2015: 1914: 1449: 716:, below which lies Illgraben a popular debris flow tourist spot 627: 251: 209:
Ancient debris flow deposit at Resting Springs Pass, California
90: 63: 39: 557:
disappears, the lateral solid pressure gradient vanishes, the
2926: 2911: 2866: 2610: 2583: 2530: 2397: 2392: 2362: 2347: 2156: 1926: 1910: 1632: 1586: 1430:
Dongchuan Debris Flow Observation and Research Station, China
1411:. New York: Noonday Press (Farrar, Straus & Giroux, 1989 497: 416: 412: 293: 287: 794:. US Department of the Interior, US Geological Survey, 2005. 234:
each pulse or surge has a distinctive head, body and tail.
2956: 2921: 2477: 2437: 2402: 1769: 230: 226: 154: 82: 1484: 1295: 2876: 2317: 81:
are geological phenomena in which water-laden masses of
1184:
B. W., McArdell & P. Bartelt, J. Kowalski (2007).
343: 587: 577:
by the fluid, the debris mass is fully fluidized (or
529: 506: 482: 456: 806:"An overview of debris-flow mathematical modelling" 553:natural debris flows. For neutrally buoyant flows, 1263:. U.S. Fish & Wildlife Service. Archived from 1084: 599: 541: 512: 488: 468: 1087:Philosophical Transactions of the Royal Society A 863:, Sebastien Jarny & Philippe Coussot (2006). 3139: 935:"Large debris flows: A macro-viscous phenomenon" 663:, (right) from runoff from the mountains (left). 1909: 520:) is large (e.g., in the natural debris flow). 743:D.M. Morton, R.M. Alvarez, and R.H. Campbell. 332:jökulhlaups is the breaching of ice-dammed or 1895: 1470: 1375:(November 20, 1989), p.116; Jowitt, Deborah. 1135: 755: 753: 34:Debris flow channel with deposits left after 565:, the only remaining solid force is due to 450:(thus, frictional resistance) by a factor ( 1902: 1888: 1477: 1463: 1224: 750: 673:In 1989, as part of his large-scale piece 1325: 1228:Debris-flow hazards and related phenomena 1209: 893: 383:Dam break wave, e.g. Hunt, Chanson et al. 1225:Jakob, Matthias; Hungr, Oldrich (2005). 784: 622: 523:If the flow is neutrally buoyant, i.e., 296:is a debris flow related in some way to 236: 204: 131: 69: 45: 29: 2501:International scale of river difficulty 1218: 881:10.1061/(ASCE)0733-9429(2006)132:3(280) 14: 3140: 932: 853: 1883: 1458: 977:Earth Surface Processes and Landforms 865:"Dam Break Wave of Thixotropic Fluid" 747:(Open-File Report OF 03-17 USGS 2003) 668: 89:flow down mountainsides, funnel into 618: 1253: 920:10.1146/annurev.fl.13.010181.000421 344:Theories and models of debris flows 149:. Media reports often use the term 120:, in 1985 and tens of thousands in 24: 1396: 1142:Proceedings of the Royal Society A 386:Roll wave, e.g., Takahashi, Davies 25: 3174: 1423: 677:, and later, in 1999, as part of 900:Annual Review of Fluid Mechanics 869:Journal of Hydraulic Engineering 648: 2658:Flooded grasslands and savannas 1360: 1289: 1279: 1177: 1129: 1078: 1035: 992: 983: 830:10.1016/j.earscirev.2022.104135 430:, which in turn diminishes the 1300:; Lindsay, D.N. (2019-08-01). 1064:10.1016/j.geomorph.2021.107992 1021:10.1016/j.geomorph.2020.107431 965: 926: 887: 844: 797: 737: 685:brought together the music of 392:A type of translating rock dam 118:fatalities in Armero, Colombia 13: 1: 725: 316: 136:Debris flows have volumetric 2824:Universal Soil Loss Equation 2774:Hydrological transport model 2668:Storm Water Management Model 1839:Potentially hazardous object 1231:. Springer. pp. 38–39. 675:David Gordon's United States 399: 304:, intense rainfall on loose 7: 702: 422:, where the solid's normal 10: 3179: 2328:Antecedent drainage stream 1377:"Rush Forward. Look Back." 320: 285: 3092: 3064:River valley civilization 3026: 2965: 2947:Riparian-zone restoration 2847: 2709: 2681: 2582: 2554: 2486: 2308: 2175: 2092: 2014: 1925: 1831: 1794: 1753: 1735: 1704: 1697: 1665: 1631: 1624: 1602: 1572: 1538: 1505: 1496: 1368:"Dance: Burning the Flag" 933:Davies, T. R. H. (1986). 600:{\displaystyle \gamma =0} 542:{\displaystyle \gamma =1} 469:{\displaystyle 1-\gamma } 434:resistance, enhances the 356:. Some are listed here. 3127:Countries without rivers 3102:Rivers by discharge rate 2814:Runoff model (reservoir) 2779:Infiltration (hydrology) 730: 281: 269: 2799:River Continuum Concept 2564:Agricultural wastewater 1450:Debris Flow Association 679:Autobiography of a Liar 513:{\displaystyle \gamma } 489:{\displaystyle \gamma } 161:, where they may spawn 97:comparable to those of 60:Saint-Julien-Mont-Denis 3122:River name etymologies 3049:Hydraulic civilization 2907:Floodplain restoration 2683:Point source pollution 2458:Sedimentary structures 1163:10.1098/rspa.1954.0186 1107:10.1098/rsta.2005.1596 894:Takahashi, T. (1981). 635: 601: 543: 514: 490: 470: 242: 210: 75: 67: 43: 2734:Discharge (hydrology) 2696:Industrial wastewater 2177:Sedimentary processes 1408:The Control of Nature 810:Earth-Science Reviews 696:The Control of Nature 626: 602: 544: 515: 491: 471: 240: 208: 132:Features and behavior 73: 57: 33: 27:Geological phenomenon 2839:Volumetric flow rate 2423:Riffle-pool sequence 1211:10.1029/2006GL029183 585: 527: 504: 480: 454: 111:pore-fluid pressures 3013:Whitewater kayaking 3008:Whitewater canoeing 2809:Runoff curve number 2653:Flood pulse concept 1389:(December 21, 1999) 1318:2019Geosp..15.1140K 1237:2005dfhr.book.....J 1202:2007GeoRL..34.7406M 1155:1954RSPSA.225...49B 1099:2005RSPTA.363.1573P 1093:(1832): 1573–1602. 1056:2022Geomo.39607992B 1013:2021Geomo.37207431B 912:1981AnRFM..13...57T 822:2022ESRv..23204135T 790:Pierson, Thomas C. 159:continental margins 145:particles to great 101:and other types of 3148:Geological hazards 3039:Aquatic toxicology 2952:Stream restoration 2917:Infiltration basin 2769:Hydrological model 2285:Sediment transport 2108:Estavelle/Inversac 1986:Subterranean river 1490:list by death toll 1382:2014-12-13 at the 1327:10.1130/GES02048.1 1190:Geophys. Res. Lett 951:10.1007/BF01182546 669:In popular culture 636: 597: 539: 510: 486: 466: 438:, and reduces the 256:granular mechanics 243: 211: 163:turbidity currents 76: 68: 44: 3163:Natural disasters 3135: 3134: 3112:Whitewater rivers 3018:Whitewater slalom 2849:River engineering 2749:Groundwater model 2710:River measurement 2638:Flood forecasting 2453:Sedimentary basin 2310:Fluvial landforms 2215:Bed material load 1991:River bifurcation 1877: 1876: 1854:Geomagnetic storm 1827: 1826: 1693: 1692: 1620: 1619: 1564:Soil liquefaction 1486:Natural disasters 689:and the words of 619:Damage prevention 436:pressure gradient 420:momentum transfer 298:volcanic activity 171:hyperconcentrated 55: 16:(Redirected from 3170: 3097:Rivers by length 2932:River morphology 2834:Wetted perimeter 2739:Drainage density 2250:Headward erosion 2079:Perennial stream 1951:Blackwater river 1904: 1897: 1890: 1881: 1880: 1786:Tropical cyclone 1780:Tornado outbreak 1702: 1701: 1629: 1628: 1582:Pyroclastic flow 1574:Volcano eruption 1503: 1502: 1479: 1472: 1465: 1456: 1455: 1390: 1364: 1358: 1357: 1352: 1329: 1312:(4): 1140–1163. 1293: 1287: 1283: 1277: 1276: 1274: 1272: 1257: 1251: 1250: 1222: 1216: 1215: 1213: 1181: 1175: 1174: 1133: 1127: 1126: 1082: 1076: 1075: 1039: 1033: 1032: 996: 990: 987: 981: 969: 963: 962: 945:(1–4): 161–178. 930: 924: 923: 891: 885: 884: 857: 851: 848: 842: 841: 801: 795: 788: 782: 781: 779: 778: 772: 766:. Archived from 765: 757: 748: 741: 681:, choreographer 652: 606: 604: 603: 598: 559:drag coefficient 555:Coulomb friction 548: 546: 545: 540: 519: 517: 516: 511: 495: 493: 492: 487: 475: 473: 472: 467: 389:Progressive wave 56: 21: 3178: 3177: 3173: 3172: 3171: 3169: 3168: 3167: 3158:Landslide types 3138: 3137: 3136: 3131: 3107:Drainage basins 3088: 3022: 2961: 2937:Retention basin 2897:Erosion control 2892:Detention basin 2843: 2759:Hjulström curve 2711: 2705: 2677: 2621:Non-water flood 2578: 2550: 2496:Helicoidal flow 2482: 2383:Fluvial terrace 2378:Floating island 2304: 2179: 2171: 2162:Rhythmic spring 2096: 2088: 2069:Stream gradient 2010: 1996:River ecosystem 1961:Channel pattern 1929: 1921: 1908: 1878: 1873: 1823: 1790: 1754:Cyclonic storms 1749: 1731: 1689: 1685:Limnic eruption 1661: 1635: 1616: 1604:Natural erosion 1598: 1568: 1542: 1534: 1492: 1483: 1426: 1399: 1397:Further reading 1394: 1393: 1384:Wayback Machine 1365: 1361: 1350: 1294: 1290: 1284: 1280: 1270: 1268: 1261:"Debris Basins" 1259: 1258: 1254: 1247: 1223: 1219: 1182: 1178: 1149:(1160): 49–63. 1134: 1130: 1083: 1079: 1040: 1036: 997: 993: 988: 984: 970: 966: 931: 927: 892: 888: 858: 854: 849: 845: 802: 798: 789: 785: 776: 774: 770: 763: 759: 758: 751: 742: 738: 733: 728: 705: 671: 666: 665: 664: 661:Lahaina, Hawaii 658: 653: 621: 586: 583: 582: 573:support of the 528: 525: 524: 505: 502: 501: 496:is the density 481: 478: 477: 455: 452: 451: 402: 346: 325: 319: 302:sector collapse 290: 284: 272: 134: 109:caused by high 99:rock avalanches 85:and fragmented 58:Debris flow in 46: 28: 23: 22: 15: 12: 11: 5: 3176: 3166: 3165: 3160: 3155: 3150: 3133: 3132: 3130: 3129: 3124: 3119: 3114: 3109: 3104: 3099: 3093: 3090: 3089: 3087: 3086: 3081: 3076: 3071: 3066: 3061: 3056: 3051: 3046: 3041: 3036: 3030: 3028: 3024: 3023: 3021: 3020: 3015: 3010: 3005: 3000: 2998:Stone skipping 2995: 2990: 2985: 2980: 2975: 2969: 2967: 2963: 2962: 2960: 2959: 2954: 2949: 2944: 2939: 2934: 2929: 2924: 2919: 2914: 2909: 2904: 2899: 2894: 2889: 2884: 2882:Drop structure 2879: 2874: 2869: 2864: 2862:Balancing lake 2859: 2853: 2851: 2845: 2844: 2842: 2841: 2836: 2831: 2826: 2821: 2816: 2811: 2806: 2801: 2796: 2791: 2789:Playfair's law 2786: 2781: 2776: 2771: 2766: 2761: 2756: 2751: 2746: 2744:Exner equation 2741: 2736: 2731: 2729:Bradshaw model 2726: 2721: 2715: 2713: 2707: 2706: 2704: 2703: 2698: 2693: 2687: 2685: 2679: 2678: 2676: 2675: 2670: 2665: 2660: 2655: 2650: 2645: 2640: 2635: 2630: 2625: 2624: 2623: 2618: 2616:Urban flooding 2608: 2603: 2601:Crevasse splay 2598: 2596:100-year flood 2592: 2590: 2580: 2579: 2577: 2576: 2571: 2566: 2560: 2558: 2556:Surface runoff 2552: 2551: 2549: 2548: 2543: 2538: 2536:Stream capture 2533: 2528: 2523: 2518: 2513: 2508: 2503: 2498: 2492: 2490: 2484: 2483: 2481: 2480: 2475: 2470: 2465: 2460: 2455: 2450: 2448:Rock-cut basin 2445: 2440: 2435: 2430: 2425: 2420: 2415: 2410: 2405: 2400: 2395: 2390: 2385: 2380: 2375: 2370: 2365: 2360: 2355: 2350: 2345: 2340: 2335: 2330: 2325: 2320: 2314: 2312: 2306: 2305: 2303: 2302: 2297: 2292: 2290:Suspended load 2287: 2282: 2280:Secondary flow 2277: 2272: 2270:Retrogradation 2267: 2262: 2257: 2252: 2247: 2242: 2237: 2235:Dissolved load 2232: 2227: 2222: 2217: 2212: 2207: 2202: 2197: 2192: 2186: 2184: 2173: 2172: 2170: 2169: 2167:Spring horizon 2164: 2159: 2154: 2152:Mineral spring 2149: 2148: 2147: 2137: 2136: 2135: 2133:list in the US 2130: 2120: 2115: 2110: 2104: 2102: 2090: 2089: 2087: 2086: 2081: 2076: 2071: 2066: 2061: 2059:Stream channel 2056: 2051: 2046: 2041: 2036: 2031: 2026: 2020: 2018: 2012: 2011: 2009: 2008: 2003: 1998: 1993: 1988: 1983: 1981:Drainage basin 1978: 1973: 1968: 1963: 1958: 1953: 1948: 1943: 1941:Alluvial river 1937: 1935: 1923: 1922: 1907: 1906: 1899: 1892: 1884: 1875: 1874: 1872: 1871: 1866: 1861: 1856: 1851: 1846: 1841: 1835: 1833: 1829: 1828: 1825: 1824: 1822: 1821: 1816: 1815: 1814: 1804: 1798: 1796: 1792: 1791: 1789: 1788: 1783: 1773: 1763: 1757: 1755: 1751: 1750: 1748: 1747: 1741: 1739: 1733: 1732: 1730: 1729: 1724: 1719: 1714: 1708: 1706: 1699: 1698:Meteorological 1695: 1694: 1691: 1690: 1688: 1687: 1682: 1681: 1680: 1669: 1667: 1663: 1662: 1660: 1659: 1654: 1649: 1643: 1641: 1626: 1622: 1621: 1618: 1617: 1615: 1614: 1608: 1606: 1600: 1599: 1597: 1596: 1591: 1590: 1589: 1578: 1576: 1570: 1569: 1567: 1566: 1561: 1556: 1554:Seismic hazard 1550: 1548: 1536: 1535: 1533: 1532: 1527: 1522: 1517: 1511: 1509: 1500: 1494: 1493: 1482: 1481: 1474: 1467: 1459: 1453: 1452: 1447: 1442: 1437: 1432: 1425: 1424:External links 1422: 1421: 1420: 1398: 1395: 1392: 1391: 1366:Tobias, Tobi. 1359: 1298:Allstadt, K.E. 1288: 1278: 1267:on 27 May 2016 1252: 1245: 1217: 1176: 1128: 1077: 1034: 991: 982: 964: 939:Acta Mechanica 925: 886: 875:(3): 280–293. 861:Hubert Chanson 852: 843: 796: 783: 749: 735: 734: 732: 729: 727: 724: 723: 722: 717: 711: 704: 701: 670: 667: 655: 654: 647: 646: 645: 620: 617: 596: 593: 590: 538: 535: 532: 509: 485: 465: 462: 459: 426:is reduced by 406:mixture theory 401: 398: 394: 393: 390: 387: 384: 381: 374:dilatant fluid 345: 342: 321:Main article: 318: 315: 286:Main article: 283: 280: 271: 268: 177:than about 25 133: 130: 95:bulk densities 26: 9: 6: 4: 3: 2: 3175: 3164: 3161: 3159: 3156: 3154: 3153:Geomorphology 3151: 3149: 3146: 3145: 3143: 3128: 3125: 3123: 3120: 3118: 3115: 3113: 3110: 3108: 3105: 3103: 3100: 3098: 3095: 3094: 3091: 3085: 3082: 3080: 3079:Surface water 3077: 3075: 3074:Sacred waters 3072: 3070: 3067: 3065: 3062: 3060: 3059:Riparian zone 3057: 3055: 3052: 3050: 3047: 3045: 3044:Body of water 3042: 3040: 3037: 3035: 3032: 3031: 3029: 3025: 3019: 3016: 3014: 3011: 3009: 3006: 3004: 3001: 2999: 2996: 2994: 2993:Riverboarding 2991: 2989: 2988:River surfing 2986: 2984: 2981: 2979: 2976: 2974: 2971: 2970: 2968: 2964: 2958: 2955: 2953: 2950: 2948: 2945: 2943: 2940: 2938: 2935: 2933: 2930: 2928: 2925: 2923: 2920: 2918: 2915: 2913: 2910: 2908: 2905: 2903: 2900: 2898: 2895: 2893: 2890: 2888: 2885: 2883: 2880: 2878: 2875: 2873: 2870: 2868: 2865: 2863: 2860: 2858: 2855: 2854: 2852: 2850: 2846: 2840: 2837: 2835: 2832: 2830: 2827: 2825: 2822: 2820: 2817: 2815: 2812: 2810: 2807: 2805: 2802: 2800: 2797: 2795: 2792: 2790: 2787: 2785: 2782: 2780: 2777: 2775: 2772: 2770: 2767: 2765: 2762: 2760: 2757: 2755: 2752: 2750: 2747: 2745: 2742: 2740: 2737: 2735: 2732: 2730: 2727: 2725: 2722: 2720: 2717: 2716: 2714: 2712:and modelling 2708: 2702: 2699: 2697: 2694: 2692: 2689: 2688: 2686: 2684: 2680: 2674: 2673:Return period 2671: 2669: 2666: 2664: 2661: 2659: 2656: 2654: 2651: 2649: 2646: 2644: 2641: 2639: 2636: 2634: 2633:Flood control 2631: 2629: 2628:Flood barrier 2626: 2622: 2619: 2617: 2614: 2613: 2612: 2609: 2607: 2604: 2602: 2599: 2597: 2594: 2593: 2591: 2589: 2585: 2581: 2575: 2572: 2570: 2567: 2565: 2562: 2561: 2559: 2557: 2553: 2547: 2544: 2542: 2539: 2537: 2534: 2532: 2529: 2527: 2524: 2522: 2519: 2517: 2514: 2512: 2509: 2507: 2504: 2502: 2499: 2497: 2494: 2493: 2491: 2489: 2485: 2479: 2476: 2474: 2471: 2469: 2466: 2464: 2461: 2459: 2456: 2454: 2451: 2449: 2446: 2444: 2441: 2439: 2436: 2434: 2431: 2429: 2426: 2424: 2421: 2419: 2416: 2414: 2411: 2409: 2406: 2404: 2401: 2399: 2396: 2394: 2391: 2389: 2386: 2384: 2381: 2379: 2376: 2374: 2371: 2369: 2366: 2364: 2361: 2359: 2356: 2354: 2351: 2349: 2346: 2344: 2341: 2339: 2336: 2334: 2331: 2329: 2326: 2324: 2321: 2319: 2316: 2315: 2313: 2311: 2307: 2301: 2298: 2296: 2293: 2291: 2288: 2286: 2283: 2281: 2278: 2276: 2273: 2271: 2268: 2266: 2263: 2261: 2260:Palaeochannel 2258: 2256: 2253: 2251: 2248: 2246: 2243: 2241: 2238: 2236: 2233: 2231: 2228: 2226: 2223: 2221: 2220:Granular flow 2218: 2216: 2213: 2211: 2208: 2206: 2203: 2201: 2198: 2196: 2193: 2191: 2188: 2187: 2185: 2183: 2178: 2174: 2168: 2165: 2163: 2160: 2158: 2155: 2153: 2150: 2146: 2143: 2142: 2141: 2138: 2134: 2131: 2129: 2126: 2125: 2124: 2121: 2119: 2116: 2114: 2111: 2109: 2106: 2105: 2103: 2100: 2095: 2091: 2085: 2082: 2080: 2077: 2075: 2072: 2070: 2067: 2065: 2062: 2060: 2057: 2055: 2052: 2050: 2047: 2045: 2042: 2040: 2037: 2035: 2032: 2030: 2027: 2025: 2022: 2021: 2019: 2017: 2013: 2007: 2004: 2002: 1999: 1997: 1994: 1992: 1989: 1987: 1984: 1982: 1979: 1977: 1974: 1972: 1969: 1967: 1966:Channel types 1964: 1962: 1959: 1957: 1954: 1952: 1949: 1947: 1946:Braided river 1944: 1942: 1939: 1938: 1936: 1933: 1928: 1924: 1920: 1916: 1912: 1905: 1900: 1898: 1893: 1891: 1886: 1885: 1882: 1870: 1867: 1865: 1862: 1860: 1857: 1855: 1852: 1850: 1849:Meteor shower 1847: 1845: 1842: 1840: 1837: 1836: 1834: 1830: 1820: 1817: 1813: 1810: 1809: 1808: 1805: 1803: 1800: 1799: 1797: 1793: 1787: 1784: 1781: 1777: 1774: 1771: 1767: 1764: 1762: 1759: 1758: 1756: 1752: 1746: 1743: 1742: 1740: 1738: 1734: 1728: 1725: 1723: 1720: 1718: 1715: 1713: 1710: 1709: 1707: 1703: 1700: 1696: 1686: 1683: 1679: 1676: 1675: 1674: 1671: 1670: 1668: 1664: 1658: 1655: 1653: 1650: 1648: 1647:Coastal flood 1645: 1644: 1642: 1639: 1634: 1630: 1627: 1623: 1613: 1610: 1609: 1607: 1605: 1601: 1595: 1592: 1588: 1585: 1584: 1583: 1580: 1579: 1577: 1575: 1571: 1565: 1562: 1560: 1557: 1555: 1552: 1551: 1549: 1546: 1541: 1537: 1531: 1528: 1526: 1523: 1521: 1518: 1516: 1513: 1512: 1510: 1508: 1504: 1501: 1499: 1495: 1491: 1487: 1480: 1475: 1473: 1468: 1466: 1461: 1460: 1457: 1451: 1448: 1446: 1443: 1441: 1438: 1436: 1433: 1431: 1428: 1427: 1418: 1417:0-374-12890-1 1414: 1410: 1409: 1404: 1401: 1400: 1388: 1387:Village Voice 1385: 1381: 1378: 1374: 1373: 1369: 1363: 1355: 1349: 1345: 1341: 1337: 1333: 1328: 1323: 1319: 1315: 1311: 1307: 1303: 1299: 1292: 1282: 1266: 1262: 1256: 1248: 1246:3-540-20726-0 1242: 1238: 1234: 1230: 1229: 1221: 1212: 1207: 1203: 1199: 1196:(7): L07406. 1195: 1191: 1187: 1180: 1172: 1168: 1164: 1160: 1156: 1152: 1148: 1144: 1143: 1138: 1137:R. A. Bagnold 1132: 1124: 1120: 1116: 1112: 1108: 1104: 1100: 1096: 1092: 1088: 1081: 1073: 1069: 1065: 1061: 1057: 1053: 1049: 1045: 1044:Geomorphology 1038: 1030: 1026: 1022: 1018: 1014: 1010: 1006: 1002: 1001:Geomorphology 995: 986: 980:, 25, 483–495 979: 978: 973: 968: 960: 956: 952: 948: 944: 940: 936: 929: 921: 917: 913: 909: 905: 901: 897: 896:"Debris Flow" 890: 882: 878: 874: 870: 866: 862: 856: 847: 839: 835: 831: 827: 823: 819: 815: 811: 807: 800: 793: 787: 773:on 2013-06-03 769: 762: 756: 754: 746: 740: 736: 721: 718: 715: 712: 710: 707: 706: 700: 698: 697: 692: 688: 684: 680: 676: 662: 657: 651: 644: 640: 633: 629: 625: 616: 614: 610: 594: 591: 588: 580: 576: 572: 568: 564: 563:limiting case 560: 556: 552: 536: 533: 530: 521: 507: 499: 483: 463: 460: 457: 449: 445: 441: 437: 433: 429: 425: 421: 418: 414: 409: 407: 397: 391: 388: 385: 382: 379: 375: 371: 367: 363: 359: 358: 357: 355: 351: 341: 339: 335: 330: 324: 314: 312: 307: 303: 299: 295: 289: 279: 277: 267: 265: 261: 257: 253: 248: 239: 235: 232: 228: 224: 220: 216: 215:alluvial fans 207: 203: 201: 200: 195:), literally 194: 190: 189: 184: 180: 174: 172: 168: 164: 160: 156: 152: 148: 144: 139: 129: 127: 123: 119: 114: 112: 108: 104: 100: 96: 92: 88: 84: 80: 72: 65: 61: 41: 37: 32: 19: 3117:Flash floods 3069:River cruise 2966:River sports 2819:Stream gauge 2804:Rouse number 2794:Relief ratio 2643:Flood-meadow 2574:Urban runoff 2488:Fluvial flow 2473:River valley 2443:River island 2408:Meander scar 2323:Alluvial fan 2265:Progradation 2224: 2140:Karst spring 2084:Winterbourne 2039:Chalk stream 2001:River source 1976:Distributary 1844:Impact event 1832:Astronomical 1766:Thunderstorm 1761:Bomb cyclone 1625:Hydrological 1594:Volcanic ash 1559:Seismic risk 1529: 1507:Mass wasting 1406: 1403:McPhee, John 1370: 1362: 1309: 1305: 1291: 1281: 1269:. Retrieved 1265:the original 1255: 1227: 1220: 1193: 1189: 1179: 1146: 1140: 1131: 1090: 1086: 1080: 1047: 1043: 1037: 1004: 1000: 994: 985: 975: 967: 942: 938: 928: 903: 899: 889: 872: 868: 855: 846: 813: 809: 799: 786: 775:. Retrieved 768:the original 739: 694: 687:Harry Partch 683:David Gordon 678: 674: 672: 641: 637: 571:hydrodynamic 522: 448:shear stress 410: 403: 395: 366:viscoplastic 347: 326: 313:, Colombia. 291: 273: 247:debris cones 244: 212: 196: 187: 175: 167:woody debris 135: 122:Vargas State 115: 107:liquefaction 79:Debris flows 78: 77: 18:Debris flows 2978:Fly fishing 2902:Fish ladder 2887:Daylighting 2606:Flash flood 2569:First flush 2516:Plunge pool 2240:Downcutting 2225:Debris flow 2200:Aggradation 2074:Stream pool 1859:Solar flare 1745:Megadrought 1705:Temperature 1678:Megatsunami 1657:Storm surge 1652:Flash flood 1530:Debris flow 1286:pp.149-162. 691:John McPhee 378:thixotropic 338:entrainment 306:pyroclastic 219:floodplains 188:yamatsunami 128:, in 1999. 66:, July 2013 36:2010 storms 3142:Categories 3084:Wild river 2764:Hydrograph 2754:Hack's law 2719:Baer's law 2663:Inundation 2648:Floodplain 2588:stormwater 2546:Whitewater 2418:Oxbow lake 2255:Knickpoint 2230:Deposition 2123:Hot spring 2064:Streamflow 2054:Stream bed 1971:Confluence 1540:Earthquake 1498:Geological 1271:30 January 1050:: 107992. 1007:: 107431. 816:: 104135. 777:2013-10-18 726:References 579:lubricated 432:frictional 350:kinematics 329:jökulhlaup 323:Jökulhlaup 317:Jökulhlaup 276:geological 185:is called 103:landslides 3054:Limnology 3003:Triathlon 2973:Canyoning 2942:Revetment 2872:Check dam 2784:Main stem 2541:Waterfall 2428:Point bar 2413:Mouth bar 2353:Billabong 2300:Water gap 2295:Wash load 2275:Saltation 2195:Anabranch 2118:Holy well 2006:Tributary 1869:Hypernova 1864:Supernova 1812:Firestorm 1727:Heat wave 1722:Ice storm 1717:Cold wave 1520:Avalanche 1515:Landslide 1344:197584816 1336:1553-040X 1306:Geosphere 1072:239137775 1029:225111202 959:122217532 906:: 57–77. 838:251268686 709:Colluvium 632:Medeu Dam 589:γ 575:particles 531:γ 508:γ 484:γ 476:), where 464:γ 461:− 400:Two-phase 197:mountain 183:landslide 126:Venezuela 2857:Aqueduct 2724:Baseflow 2691:Effluent 2368:Cut bank 2333:Avulsion 2210:Bed load 2190:Abrasion 1819:ARkStorm 1807:Wildfire 1712:Blizzard 1612:Sinkhole 1380:Archived 1372:New York 1354:70203874 1171:98030586 1123:17779815 1115:16011934 720:Rheology 703:See also 609:granular 428:buoyancy 415:and the 354:dynamics 260:outcrops 223:friction 147:boulders 138:sediment 3034:Aquifer 3027:Related 2983:Rafting 2511:Meander 2506:Log jam 2468:Thalweg 2373:Estuary 2245:Erosion 2182:erosion 2094:Springs 2049:Current 2016:Streams 1956:Channel 1919:springs 1915:streams 1802:Derecho 1776:Tornado 1737:Drought 1673:Tsunami 1525:Mudflow 1314:Bibcode 1233:Bibcode 1198:Bibcode 1151:Bibcode 1095:Bibcode 1052:Bibcode 1009:Bibcode 908:Bibcode 818:Bibcode 714:Illhorn 567:gravity 551:viscous 444:mixture 380:, etc.) 370:Bagnold 362:Bingham 334:moraine 264:sorting 199:tsunami 179:degrees 151:mudflow 2829:WAFLEX 2701:Sewage 2584:Floods 2526:Riffle 2521:Rapids 2463:Strath 2433:Ravine 2358:Canyon 2113:Geyser 2044:Coulee 2029:Bourne 2024:Arroyo 1927:Rivers 1911:Rivers 1415:  1351:  1342:  1334:  1243:  1169:  1121:  1113:  1070:  1027:  957:  836:  628:Almaty 613:motion 424:stress 372:-type 352:, and 311:Armero 274:Other 252:levees 91:stream 64:France 40:Ladakh 2927:Levee 2912:Flume 2867:Canal 2611:Flood 2531:Shoal 2398:Gully 2393:Gulch 2363:Chine 2348:Bayou 2205:Armor 2157:Ponor 1932:lists 1795:Other 1666:Other 1633:Flood 1587:Lahar 1340:S2CID 1167:S2CID 1119:S2CID 1068:S2CID 1025:S2CID 955:S2CID 834:S2CID 771:(PDF) 764:(PDF) 731:Notes 693:from 498:ratio 417:fluid 413:solid 294:lahar 288:Lahar 282:Lahar 270:Types 2957:Weir 2922:Leat 2586:and 2478:Wadi 2438:Rill 2403:Glen 2388:Gill 2338:Bank 2180:and 2145:list 2128:list 2099:list 2034:Burn 1917:and 1770:Hail 1638:List 1545:List 1413:ISBN 1348:USGS 1332:ISSN 1273:2013 1241:ISBN 1111:PMID 440:drag 404:The 231:silt 227:sand 155:sand 143:clay 87:rock 83:soil 2877:Dam 2343:Bar 2318:Ait 1322:doi 1206:doi 1159:doi 1147:225 1103:doi 1091:363 1060:doi 1048:396 1017:doi 1005:372 947:doi 916:doi 877:doi 873:132 826:doi 814:232 217:or 193:山津波 38:in 3144:: 1913:, 1488:– 1405:. 1346:. 1338:. 1330:. 1320:. 1310:15 1308:. 1304:. 1239:. 1204:. 1194:34 1192:. 1188:. 1165:. 1157:. 1145:. 1117:. 1109:. 1101:. 1089:. 1066:. 1058:. 1046:. 1023:. 1015:. 1003:. 974:. 953:. 943:63 941:. 937:. 914:. 904:13 902:. 898:. 871:. 867:. 832:. 824:. 812:. 808:. 752:^ 615:. 376:, 368:, 364:, 327:A 292:A 229:, 202:. 124:, 62:, 2101:) 2097:( 1934:) 1930:( 1903:e 1896:t 1889:v 1782:) 1778:( 1772:) 1768:( 1640:) 1636:( 1547:) 1543:( 1478:e 1471:t 1464:v 1419:) 1356:. 1324:: 1316:: 1275:. 1249:. 1235:: 1214:. 1208:: 1200:: 1173:. 1161:: 1153:: 1125:. 1105:: 1097:: 1074:. 1062:: 1054:: 1031:. 1019:: 1011:: 961:. 949:: 922:. 918:: 910:: 883:. 879:: 840:. 828:: 820:: 780:. 595:0 592:= 537:1 534:= 458:1 191:( 20:)

Index

Debris flows

2010 storms
Ladakh
Saint-Julien-Mont-Denis
France

soil
rock
stream
bulk densities
rock avalanches
landslides
liquefaction
pore-fluid pressures
fatalities in Armero, Colombia
Vargas State
Venezuela
sediment
clay
boulders
mudflow
sand
continental margins
turbidity currents
woody debris
hyperconcentrated
degrees
landslide
yamatsunami

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑