Knowledge

Celestial mechanics

Source 📝

3009: 839: 1938: 911: 852: 36: 3045: 3069: 3021: 3057: 3033: 1898:). The slight changes that result from the terms in the equations – which themselves may have been simplified yet again – are used as corrections to the original solution. Because simplifications are made at every step, the corrections are never perfect, but even one cycle of corrections often provides a remarkably better approximate solution to the real problem. 1901:
There is no requirement to stop at only one cycle of corrections. A partially corrected solution can be re-used as the new starting point for yet another cycle of perturbations and corrections. In principle, for most problems the recycling and refining of prior solutions to obtain a new generation of
1920:
This general procedure – starting with a simplified problem and gradually adding corrections that make the starting point of the corrected problem closer to the real situation – is a widely used mathematical tool in advanced sciences and engineering. It is the natural extension of the "guess, check,
1980:
of the two larger celestial bodies. Other reference frames for n-body simulations include those that place the origin to follow the center of mass of a body, such as the heliocentric and the geocentric reference frames. The choice of reference frame gives rise to many phenomena, including the
2007: 2581:
Undergraduate level course by Richard Fitzpatrick. This includes Lagrangian and Hamiltonian Dynamics and applications to celestial mechanics, gravitational potential theory, the 3-body problem and Lunar motion (an example of the 3-body problem with the Sun, Moon, and the
2224:
is an object that orbits another object (known as its primary). The term is often used to describe an artificial satellite (as opposed to natural satellites, or moons). The common noun ‘moon’ (not capitalized) is used to mean any
2384:
Guerra, André G C; Carvalho, Paulo Simeão (1 August 2016). "Orbital motions of astronomical bodies and their centre of mass from different reference frames: a conceptual step between the geocentric and heliocentric models".
1905:
The common difficulty with the method is that the corrections usually progressively make the new solutions very much more complicated, so each cycle is much more difficult to manage than the previous cycle of corrections.
1587:, France, in May 1886, the international consensus was that all ephemerides should be based on Newcomb's calculations. A further conference as late as 1950 confirmed Newcomb's constants as the international standard. 1583:, he recalculated all the major astronomical constants. After 1884 he conceived, with A.M.W. Downing, a plan to resolve much international confusion on the subject. By the time he attended a standardisation conference in 2211:
is orbital motion in a system, such as a planet and its satellites, that is contrary to the direction of rotation of the central body, or more generally contrary in direction to the net angular momentum of the entire
193: 2235:
is the combination of out-of-balance forces and accelerations of (mostly) solid bodies that raises tides in bodies of liquid (oceans), atmospheres, and strains planets' and satellites' crusts.
2101:
is a more exact theory than Newton's laws for calculating orbits, and it is sometimes necessary to use it for greater accuracy or in high-gravity situations (e.g. orbits near the Sun).
217: 1545:
to use a single polar coordinate equation to describe any orbit, even those that are parabolic and hyperbolic. This is useful for calculating the behaviour of planets and
1668:
4-body problem: spaceflight to Mars (for parts of the flight the influence of one or two bodies is very small, so that there we have a 2- or 3-body problem; see also the
1748: 1833:
comprises mathematical methods that are used to find an approximate solution to a problem which cannot be solved exactly. (It is closely related to methods used in
2242:
are versions one mathematical theory for the orbits and positions of the major planets, which seeks to provide accurate positions over an extended period of time.
1718: 2508: 2132: 2128: 1871:
start with a simplified form of the original problem, which is carefully chosen to be exactly solvable. In celestial mechanics, this is usually a
2897: 2156:
is a compilation of positions of naturally occurring astronomical objects as well as artificial satellites in the sky at a given time or times.
1374: 2667: 1384:
is more recent than that. Newton wrote that the field should be called "rational mechanics". The term "dynamics" came in a little later with
883: 1512: 2173:
is a branch of mathematics, pioneered by celestial mechanicians, for calculating approximate numerical answers (such as the position of a
1599: 2986: 472: 1922: 1838: 591: 2193:
is the path that an object makes, around another object, whilst under the influence of a source of centripetal force, such as gravity.
1471:(25 December 1642 – 31 March 1727) is credited with introducing the idea that the motion of objects in the heavens, such as 2595: 2046: 1500: 1457: 564: 2114:
is a part of astronomy that deals with measuring the positions of stars and other celestial bodies, their distances and movements.
100: 1813:
A spacecraft orbiting Earth, a moon, or a planet (in the latter cases the approximation only applies after arrival at that orbit)
1306: 2205:
is the temporary Keplerian orbit about a central body that an object would continue on, if other perturbations were not present.
1883:), or a circular orbit, which is only correct in special cases of two-body motion, but is often close enough for practical use. 72: 2865: 149: 1894:
closer to the values from the real problem, such as including the gravitational attraction of a third, more distant body (the
3099: 2522: 2368: 2218:
is the periodic, apparently backwards motion of planetary bodies when viewed from the Earth (an accelerated reference frame).
1872: 1854: 1441: 1413: 1078: 79: 53: 2125:
is a position fixing technique that was the first system devised to help sailors locate themselves on a featureless ocean.
2553: 1147: 546: 17: 2184:
was the original goal of celestial mechanics, and has only been imperfectly achieved. It continues to motivate research.
2660: 2498: 2474: 2443: 2142: 1363: 876: 119: 86: 1401: 1782:
A further simplification is based on the "standard assumptions in astrodynamics", which include that one body, the
1396:. Prior to Kepler there was little connection between exact, quantitative prediction of planetary positions, using 3008: 1426:(1571–1630) was the first to closely integrate the predictive geometrical astronomy, which had been dominant from 838: 2181: 212: 68: 2813: 1982: 968: 467: 207: 57: 1986: 3094: 3089: 2653: 1452:. Kepler's elliptical model greatly improved the accuracy of predictions of planetary motion, years before 869: 856: 617: 540: 462: 305: 1949: 2950: 1669: 1299: 1232: 536: 337: 315: 2999: 2781: 2754: 2535: 2215: 2042: 1526: 756: 645: 571: 431: 364: 2089: 510: 2887: 2611: 1646:, is governed by the reciprocal gravitational acceleration between masses. A generalization is the 1397: 1227: 1142: 786: 630: 2360: 2092:
changes, and interplanetary transfers, and is used by mission planners to predict the results of
1619: 1098: 736: 500: 93: 46: 2331: 776: 2971: 2833: 2056:
Celestial mechanics treats more broadly the orbital dynamics of systems under the influence of
1292: 1015: 781: 598: 2976: 2945: 2808: 2729: 2309:
Combot, Thierry (2015-09-01). "Integrability and non integrability of some n body problems".
2135:(JPL DE) is a widely used model of the solar system, which combines celestial mechanics with 2093: 1968:
Problems in celestial mechanics are often posed in simplifying reference frames, such as the
1891: 1200: 1035: 943: 791: 766: 452: 270: 1727: 2935: 2759: 2719: 2404: 2273: 2148: 2122: 1576: 1542: 1389: 1073: 1030: 1020: 948: 811: 771: 679: 675: 667: 657: 447: 440: 196: 2145:
concerns pre-Newtonian explanations of the causes of the motions of the stars and planets.
1657:
of masses are mutually interacting via the gravitational force. Although analytically not
806: 8: 3104: 3073: 2910: 2769: 2749: 2724: 2701: 2677: 2061: 1868: 1842: 1830: 1825: 1697: 1623: 1607: 1580: 1538: 1339: 953: 586: 527: 505: 250: 245: 140: 2592: 2578: 2416: 2408: 2277: 1902:
better solutions could continue indefinitely, to any desired finite degree of accuracy.
1845:
was to deal with the otherwise unsolvable mathematical problems of celestial mechanics:
1575:(12 March 1835 – 11 July 1909) was a Canadian-American astronomer who revised 1404:
techniques, and contemporary discussions of the physical causes of the planets' motion.
3061: 3049: 2966: 2843: 2838: 2791: 2394: 2310: 2170: 2136: 2098: 1973: 1834: 1615: 1530: 1188: 1063: 716: 457: 332: 300: 260: 2981: 2930: 2875: 2855: 2741: 2518: 2494: 2470: 2439: 2364: 2291: 2226: 2208: 2073: 2050: 2022: 1999: 1534: 1385: 1103: 1040: 919: 726: 683: 640: 635: 576: 352: 342: 235: 3025: 2920: 2860: 2786: 2412: 2281: 2202: 2196: 2085: 1721: 1684: 1554: 1508: 1504: 1331: 1327: 1273: 1222: 987: 931: 821: 801: 746: 741: 687: 662: 517: 375: 320: 295: 2612:
Celestial Mechanics is a Planetarium Artwork created by D. S. Hessels and G. Dunne
2357:
Great Physicists: The life and times of leading physicists from Galileo to Hawking
1533:, analyzed the stability of planetary orbits, and discovered the existence of the 2940: 2850: 2796: 2696: 2599: 2464: 1769: 1750:. In this case, the system is fully integrable and exact solutions can be found. 1678: 1595: 1435: 1423: 1278: 1183: 1093: 1068: 816: 761: 711: 706: 625: 2635: 2623: 3013: 2870: 2825: 2803: 2691: 2239: 1762: 1647: 1417: 1250: 1166: 1160: 1083: 1008: 1002: 997: 843: 751: 652: 369: 2593:
Marshall Hampton's research page: Central configurations in the n-body problem
2559: 2286: 2261: 2177:
in the sky) which are too difficult to solve down to a general, exact formula.
2011: 3083: 2880: 2295: 1783: 1611: 1572: 1550: 1412:
For detailed treatments of how his laws of planetary motion can be used, see
1255: 1088: 1045: 731: 558: 2645: 3037: 2905: 2572: 2538: 2164: 2117: 2029:
and celestial mechanics to the practical problems concerning the motion of
2015: 1907: 1846: 1798: 1787: 1661:
in the general case, the integration can be well approximated numerically.
1488: 1468: 1453: 1370: 973: 963: 958: 796: 721: 410: 290: 2463:
Doggett, LeRoy E. (1997), "Celestial Mechanics", in Lankford, John (ed.),
2232: 2199:
are the parameters needed to specify a Newtonian two-body orbit uniquely.
2159: 2065: 1758: 1449: 1137: 1937: 1875:, which is correct when there are only two gravitating bodies (say, the 2925: 2915: 2111: 2081: 2038: 2026: 1977: 1773: 1658: 1635: 1561: 1558: 1431: 1217: 1173: 1132: 910: 581: 255: 2776: 2221: 2153: 2034: 1802: 1351: 1323: 603: 35: 2399: 2315: 1618:
for their explanation, but whose evolution proves the existence of
1529:(25 January 1736 – 10 April 1813) attempted to solve the 522: 405: 380: 2509:
Annals of the New York Academy of Sciences, Vol. 1065, pp. 346-374
1598:(14 March 1879 – 18 April 1955) explained the anomalous 2057: 2006: 1427: 1335: 495: 348: 265: 1487:
balls and falling apples, could be described by the same set of
2174: 2069: 2030: 1643: 1639: 1614:– the first in 1974 – whose orbits not only require the use of 1484: 1472: 1445: 1347: 554: 400: 310: 1507:
for elliptical orbits by deriving them from the gravitational
2189: 2077: 1876: 1858: 1584: 1546: 938: 390: 385: 327: 2624:
Professor Tatum's course notes at the University of Victoria
2332:"Two-Body Problem -- from Eric Weisstein's World of Physics" 1911: 1880: 1850: 1480: 1444:, which he developed using his physical principles and the 1343: 395: 358: 3032: 2575:, high-school level educational web site by David P. Stern 1362:
For early theories of the causes of planetary motion, see
1334:. Historically, celestial mechanics applies principles of 2636:
Italian Celestial Mechanics and Astrodynamics Association
2041:. The motion of these objects is usually calculated from 1895: 1862: 1557:). More recently, it has also become useful to calculate 1476: 188:{\displaystyle {\textbf {F}}={\frac {d\mathbf {p} }{dt}}} 1910:
is reported to have said, regarding the problem of the
1892:
time-rate-of-change equations for the object's position
1541:, emphasizing energy more than force, and developing a 1610:
did not provide the highest accuracy. Observations of
1437:
New Astronomy, Based upon Causes, or Celestial Physics
2997: 1730: 1700: 152: 2469:, New York: Taylor & Francis, pp. 131–140, 1634:
Celestial motion, without additional forces such as
1853:, which moves noticeably differently from a simple 60:. Unsourced material may be challenged and removed. 1742: 1712: 1604:The Foundation of the General Theory of Relativity 1579:'s table of lunar positions. In 1877, assisted by 187: 2133:Jet Propulsion Laboratory Developmental Ephemeris 1369:Modern analytic celestial mechanics started with 3081: 2167:attempts to account for the motions of the Moon. 2049:. Orbital mechanics is a core discipline within 1483:, and the motion of objects on the ground, like 1537:. Lagrange also reformulated the principles of 2383: 1549:and such (parabolic and hyperbolic orbits are 2675: 2661: 2517:Springer-Praxis 2010, XVI, 264 p., Hardcover 2491:Celestial Mechanics: The Waltz of the Planets 1724:) the configuration is much simpler than for 1300: 877: 1857:because of the competing gravitation of the 2515:Stability and Chaos in Celestial Mechanics. 1886:The solved, but simplified problem is then 2668: 2654: 2080:. Orbital mechanics focuses on spacecraft 1790:. This is also often approximately valid. 1307: 1293: 884: 870: 2398: 2314: 2285: 2260:Trenti, Michele; Hut, Piet (2008-05-20). 2259: 1606:. This led astronomers to recognize that 120:Learn how and when to remove this message 2573:Astronomy of the Earth's Motion in Space 2060:, including both spacecraft and natural 2005: 1989:while on a geocentric reference frame. 1520: 2551: 2462: 2354: 2025:or astrodynamics is the application of 1629: 1622:, was a discovery that led to the 1993 1511:, which Newton included in his epochal 14: 3082: 2866:Atomic, molecular, and optical physics 2558:, University of Denver, archived from 2308: 1976:, where the origin coincides with the 1819: 1786:, is much smaller than the other, the 1434:, with physical concepts to produce a 2649: 2489:Alessandra Celletti, Ettore Perozzi, 2466:History of Astronomy: An Encyclopedia 2329: 2139:and astronomical and spacecraft data. 566:Newton's law of universal gravitation 2262:"N-body simulations (gravitational)" 1992: 1932: 58:adding citations to reliable sources 29: 2506:Gauge Freedom in Orbital Mechanics. 2484:Fundamentals of Celestial Mechanics 2448:John E. Prussing, Bruce A. Conway, 2436:Introduction to Celestial Mechanics 2182:numerical model of the solar system 1388:, and over a century after Newton, 1342:) to astronomical objects, such as 547:Mechanics of planar particle motion 155: 24: 2529: 1928: 1600:precession of Mercury's perihelion 1590: 1407: 25: 3116: 2545: 2143:Dynamics of the celestial spheres 2010:A satellite orbiting Earth has a 1849:'s solution for the orbit of the 1414:Kepler's laws of planetary motion 1364:Dynamics of the celestial spheres 1079:Kepler's laws of planetary motion 3067: 3055: 3043: 3031: 3019: 3007: 2552:Calvert, James B. (2003-03-28), 2536:Encyclopedia:Celestial mechanics 1998:This section is an excerpt from 1936: 1567: 909: 851: 850: 837: 170: 34: 2987:Timeline of physics discoveries 1463: 1442:modern laws of planetary orbits 45:needs additional citations for 2377: 2348: 2323: 2302: 2253: 1841:.) The earliest use of modern 1683:Spaceflight to, and stay at a 13: 1: 2427: 2417:10.1088/0031-9120/51/5/055012 1916:"It causeth my head to ache." 1440:in 1609. His work led to the 473:Koopman–von Neumann mechanics 3100:Astronomical sub-disciplines 2355:Cropper, William H. (2004), 2047:law of universal gravitation 541:Non-inertial reference frame 7: 2951:Quantum information science 2105: 1923:used anciently with numbers 1801:orbiting the center of the 1670:patched conic approximation 1491:. In this sense he unified 1430:in the 2nd century to 1233:Tsiolkovsky rocket equation 468:Appell's equation of motion 338:Inertial frame of reference 10: 3121: 2782:Classical electromagnetism 2452:, 1993, Oxford Univ. Press 2216:Apparent retrograde motion 1997: 1823: 1411: 1361: 1357: 1202:Engineering and efficiency 1021:Bi-elliptic transfer orbit 2959: 2896: 2824: 2740: 2712: 2684: 2504:Michael Efroimsky. 2005. 2493:, 2007, Springer-Praxis, 2287:10.4249/scholarpedia.3930 1807:A planet orbiting the Sun 2888:Condensed matter physics 2336:scienceworld.wolfram.com 2246: 1810:A moon orbiting a planet 1228:Propellant mass fraction 1127:Gravitational influences 631:Rotating reference frame 463:Hamilton–Jacobi equation 2361:Oxford University Press 2129:Developmental Ephemeris 2043:Newton's laws of motion 1970:synodic reference frame 1776:(approx. the same mass) 1765:(approx. the same mass) 1620:gravitational radiation 1553:extensions of Kepler's 1099:Specific orbital energy 572:Newton's laws of motion 432:Newton's laws of motion 2972:Nobel Prize in Physics 2834:Relativistic mechanics 2238:Two solutions, called 2019: 1744: 1743:{\displaystyle n>2} 1714: 1332:objects in outer space 1016:Hohmann transfer orbit 599:Simple harmonic motion 512:Euler's laws of motion 306:D'Alembert's principle 189: 2977:Philosophy of physics 2513:Alessandra Celletti, 2486:, 1992, Willmann-Bell 2229:of the other planets. 2009: 1745: 1715: 1521:Joseph-Louis Lagrange 1448:observations made by 1212:Preflight engineering 944:Argument of periapsis 453:Hamiltonian mechanics 271:Statistical mechanics 190: 69:"Celestial mechanics" 2936:Mathematical physics 2149:Dynamical time scale 2123:Celestial navigation 2094:propulsive maneuvers 2053:design and control. 1869:Perturbation methods 1728: 1698: 1630:Examples of problems 1577:Peter Andreas Hansen 1392:introduced the term 1390:Pierre-Simon Laplace 1326:that deals with the 1268:Propulsive maneuvers 676:Angular acceleration 668:Rotational frequency 448:Lagrangian mechanics 441:Analytical mechanics 197:Second law of motion 150: 54:improve this article 3095:Classical mechanics 3090:Celestial mechanics 2911:Atmospheric physics 2750:Classical mechanics 2678:branches of physics 2555:Celestial Mechanics 2459:, 1961, John Wiley. 2457:Celestial Mechanics 2434:Forest R. Moulton, 2409:2016PhyEd..51e5012G 2330:Weisstein, Eric W. 2278:2008SchpJ...3.3930T 2062:astronomical bodies 2012:tangential velocity 1843:perturbation theory 1831:Perturbation theory 1826:Perturbation theory 1820:Perturbation theory 1713:{\displaystyle n=2} 1624:Nobel Physics Prize 1608:Newtonian mechanics 1581:George William Hill 1539:classical mechanics 1503:, Newton confirmed 1394:celestial mechanics 1382:celestial mechanics 1340:classical mechanics 1320:Celestial mechanics 1245:Efficiency measures 1148:Sphere of influence 1117:Celestial mechanics 899:Part of a series on 528:Harmonic oscillator 506:Equations of motion 141:Classical mechanics 135:Part of a series on 27:Branch of astronomy 18:Dynamical astronomy 2967:History of physics 2598:2002-10-01 at the 2579:Newtonian Dynamics 2455:William M. Smart, 2171:Numerical analysis 2137:numerical analysis 2099:General relativity 2020: 1974:three-body problem 1948:. You can help by 1835:numerical analysis 1740: 1710: 1616:General Relativity 1602:in his 1916 paper 1531:three-body problem 1501:his law of gravity 1458:law of gravitation 1064:Dynamical friction 844:Physics portal 458:Routhian mechanics 333:Frame of reference 185: 2995: 2994: 2982:Physics education 2931:Materials science 2898:Interdisciplinary 2856:Quantum mechanics 2523:978-3-540-85145-5 2450:Orbital Mechanics 2387:Physics Education 2370:978-0-19-517324-6 2240:VSOP82 and VSOP87 2227:natural satellite 2209:Retrograde motion 2086:orbital maneuvers 2023:Orbital mechanics 2000:Orbital mechanics 1993:Orbital mechanics 1983:retrograde motion 1966: 1965: 1873:Keplerian ellipse 1855:Keplerian ellipse 1653:, where a number 1555:elliptical orbits 1535:Lagrangian points 1386:Gottfried Leibniz 1322:is the branch of 1317: 1316: 1167:Lagrangian points 1104:Vis-viva equation 1074:Kepler's equation 921:Orbital mechanics 894: 893: 641:Centrifugal force 636:Centripetal force 592:Euler's equations 577:Relative velocity 353:Moment of inertia 183: 157: 130: 129: 122: 104: 16:(Redirected from 3112: 3072: 3071: 3070: 3060: 3059: 3058: 3048: 3047: 3046: 3036: 3035: 3024: 3023: 3022: 3012: 3011: 3003: 2921:Chemical physics 2861:Particle physics 2787:Classical optics 2670: 2663: 2656: 2647: 2646: 2569: 2568: 2567: 2479: 2421: 2420: 2402: 2381: 2375: 2373: 2352: 2346: 2345: 2343: 2342: 2327: 2321: 2320: 2318: 2306: 2300: 2299: 2289: 2257: 2203:Osculating orbit 2197:Orbital elements 1987:superior planets 1961: 1958: 1940: 1933: 1921:and fix" method 1749: 1747: 1746: 1741: 1722:two-body problem 1719: 1717: 1716: 1711: 1685:Lagrangian point 1675:3-body problem: 1509:two-body problem 1499:dynamics. Using 1309: 1302: 1295: 1274:Orbital maneuver 1223:Payload fraction 1203: 1184:Lissajous orbits 1118: 1089:Orbital velocity 1036:Hyperbolic orbit 932:Orbital elements 922: 913: 896: 895: 886: 879: 872: 859: 854: 853: 846: 842: 841: 747:Johann Bernoulli 742:Daniel Bernoulli 663:Tangential speed 567: 543: 518:Fictitious force 513: 365:Mechanical power 355: 296:Angular momentum 194: 192: 191: 186: 184: 182: 174: 173: 164: 159: 158: 132: 131: 125: 118: 114: 111: 105: 103: 62: 38: 30: 21: 3120: 3119: 3115: 3114: 3113: 3111: 3110: 3109: 3080: 3079: 3078: 3068: 3066: 3056: 3054: 3044: 3042: 3030: 3020: 3018: 3006: 2998: 2996: 2991: 2955: 2941:Medical physics 2892: 2851:Nuclear physics 2820: 2814:Non-equilibrium 2736: 2708: 2680: 2674: 2600:Wayback Machine 2565: 2563: 2548: 2541:Expert articles 2532: 2530:Further reading 2527: 2477: 2438:, 1984, Dover, 2430: 2425: 2424: 2382: 2378: 2371: 2353: 2349: 2340: 2338: 2328: 2324: 2307: 2303: 2258: 2254: 2249: 2108: 2103: 2102: 2003: 1995: 1972:applied to the 1962: 1956: 1953: 1946:needs expansion 1931: 1929:Reference frame 1828: 1822: 1770:binary asteroid 1729: 1726: 1725: 1699: 1696: 1695: 1679:Quasi-satellite 1632: 1596:Albert Einstein 1593: 1591:Albert Einstein 1570: 1523: 1466: 1424:Johannes Kepler 1421: 1410: 1408:Johannes Kepler 1367: 1360: 1313: 1284: 1283: 1279:Orbit insertion 1269: 1261: 1260: 1246: 1238: 1237: 1213: 1205: 1201: 1194: 1193: 1189:Lyapunov orbits 1180: 1179: 1163: 1153: 1152: 1128: 1120: 1116: 1109: 1108: 1094:Surface gravity 1069:Escape velocity 1059: 1051: 1050: 1031:Parabolic orbit 1027: 1026: 993: 991: 988:two-body orbits 979: 978: 969:Semi-major axis 934: 924: 920: 890: 849: 836: 835: 828: 827: 826: 701: 693: 692: 672: 626:Circular motion 620: 610: 609: 608: 565: 535: 532: 511: 490: 482: 481: 478: 477: 435: 425: 417: 416: 415: 374: 370:Mechanical work 363: 347: 285: 277: 276: 275: 230: 222: 199: 175: 169: 165: 163: 154: 153: 151: 148: 147: 126: 115: 109: 106: 63: 61: 51: 39: 28: 23: 22: 15: 12: 11: 5: 3118: 3108: 3107: 3102: 3097: 3092: 3077: 3076: 3064: 3052: 3040: 3028: 3016: 2993: 2992: 2990: 2989: 2984: 2979: 2974: 2969: 2963: 2961: 2957: 2956: 2954: 2953: 2948: 2943: 2938: 2933: 2928: 2923: 2918: 2913: 2908: 2902: 2900: 2894: 2893: 2891: 2890: 2885: 2884: 2883: 2878: 2873: 2863: 2858: 2853: 2848: 2847: 2846: 2841: 2830: 2828: 2822: 2821: 2819: 2818: 2817: 2816: 2811: 2804:Thermodynamics 2801: 2800: 2799: 2794: 2784: 2779: 2774: 2773: 2772: 2767: 2762: 2757: 2746: 2744: 2738: 2737: 2735: 2734: 2733: 2732: 2722: 2716: 2714: 2710: 2709: 2707: 2706: 2705: 2704: 2694: 2688: 2686: 2682: 2681: 2673: 2672: 2665: 2658: 2650: 2639: 2638: 2627: 2626: 2615: 2614: 2603: 2602: 2584: 2583: 2576: 2570: 2547: 2546:External links 2544: 2543: 2542: 2531: 2528: 2526: 2525: 2511: 2502: 2487: 2482:J.M.A. Danby, 2480: 2475: 2460: 2453: 2446: 2431: 2429: 2426: 2423: 2422: 2376: 2369: 2363:, p. 34, 2347: 2322: 2301: 2251: 2250: 2248: 2245: 2244: 2243: 2236: 2230: 2219: 2213: 2206: 2200: 2194: 2185: 2178: 2168: 2162: 2157: 2151: 2146: 2140: 2126: 2120: 2115: 2107: 2104: 2014:and an inward 2004: 1996: 1994: 1991: 1964: 1963: 1957:September 2023 1943: 1941: 1930: 1927: 1824:Main article: 1821: 1818: 1817: 1816: 1815: 1814: 1811: 1808: 1805: 1780: 1779: 1778: 1777: 1766: 1763:Alpha Centauri 1739: 1736: 1733: 1709: 1706: 1703: 1692: 1691: 1690: 1689: 1688: 1687: 1681: 1673: 1631: 1628: 1612:binary pulsars 1592: 1589: 1569: 1566: 1525:After Newton, 1522: 1519: 1465: 1462: 1456:developed his 1418:Kepler problem 1409: 1406: 1359: 1356: 1315: 1314: 1312: 1311: 1304: 1297: 1289: 1286: 1285: 1282: 1281: 1276: 1270: 1267: 1266: 1263: 1262: 1259: 1258: 1253: 1251:Gravity assist 1247: 1244: 1243: 1240: 1239: 1236: 1235: 1230: 1225: 1220: 1214: 1211: 1210: 1207: 1206: 1199: 1196: 1195: 1192: 1191: 1186: 1178: 1177: 1169: 1165: 1164: 1159: 1158: 1155: 1154: 1151: 1150: 1145: 1140: 1135: 1129: 1126: 1125: 1122: 1121: 1114: 1111: 1110: 1107: 1106: 1101: 1096: 1091: 1086: 1084:Orbital period 1081: 1076: 1071: 1066: 1060: 1057: 1056: 1053: 1052: 1049: 1048: 1046:Decaying orbit 1043: 1038: 1033: 1025: 1024: 1018: 1011: 1009:Transfer orbit 1007: 1006: 1005: 1003:Elliptic orbit 1000: 998:Circular orbit 994: 985: 984: 981: 980: 977: 976: 971: 966: 961: 956: 951: 946: 941: 935: 930: 929: 926: 925: 918: 915: 914: 906: 905: 901: 900: 892: 891: 889: 888: 881: 874: 866: 863: 862: 861: 860: 847: 830: 829: 825: 824: 819: 814: 809: 804: 799: 794: 789: 784: 779: 774: 769: 764: 759: 754: 749: 744: 739: 734: 729: 724: 719: 714: 709: 703: 702: 699: 698: 695: 694: 691: 690: 671: 670: 665: 660: 655: 653:Coriolis force 650: 649: 648: 638: 633: 628: 622: 621: 616: 615: 612: 611: 607: 606: 601: 596: 595: 594: 589: 579: 574: 569: 562: 551: 550: 549: 544: 531: 530: 525: 520: 515: 508: 503: 498: 492: 491: 488: 487: 484: 483: 480: 479: 476: 475: 470: 465: 460: 455: 450: 444: 438: 436: 429: 426: 423: 422: 419: 418: 414: 413: 408: 403: 398: 393: 388: 383: 378: 372: 367: 361: 356: 345: 340: 335: 330: 325: 324: 323: 318: 308: 303: 298: 293: 287: 286: 283: 282: 279: 278: 274: 273: 268: 263: 258: 253: 248: 243: 238: 232: 231: 228: 227: 224: 223: 221: 220: 215: 210: 204: 201: 200: 195: 181: 178: 172: 168: 162: 144: 143: 137: 136: 128: 127: 42: 40: 33: 26: 9: 6: 4: 3: 2: 3117: 3106: 3103: 3101: 3098: 3096: 3093: 3091: 3088: 3087: 3085: 3075: 3065: 3063: 3053: 3051: 3041: 3039: 3034: 3029: 3027: 3017: 3015: 3010: 3005: 3004: 3001: 2988: 2985: 2983: 2980: 2978: 2975: 2973: 2970: 2968: 2965: 2964: 2962: 2958: 2952: 2949: 2947: 2946:Ocean physics 2944: 2942: 2939: 2937: 2934: 2932: 2929: 2927: 2924: 2922: 2919: 2917: 2914: 2912: 2909: 2907: 2904: 2903: 2901: 2899: 2895: 2889: 2886: 2882: 2881:Modern optics 2879: 2877: 2874: 2872: 2869: 2868: 2867: 2864: 2862: 2859: 2857: 2854: 2852: 2849: 2845: 2842: 2840: 2837: 2836: 2835: 2832: 2831: 2829: 2827: 2823: 2815: 2812: 2810: 2807: 2806: 2805: 2802: 2798: 2795: 2793: 2790: 2789: 2788: 2785: 2783: 2780: 2778: 2775: 2771: 2768: 2766: 2763: 2761: 2758: 2756: 2753: 2752: 2751: 2748: 2747: 2745: 2743: 2739: 2731: 2730:Computational 2728: 2727: 2726: 2723: 2721: 2718: 2717: 2715: 2711: 2703: 2700: 2699: 2698: 2695: 2693: 2690: 2689: 2687: 2683: 2679: 2671: 2666: 2664: 2659: 2657: 2652: 2651: 2648: 2644: 2643: 2637: 2634: 2633: 2632: 2631: 2625: 2622: 2621: 2620: 2619: 2613: 2610: 2609: 2608: 2607: 2601: 2597: 2594: 2591: 2590: 2589: 2588: 2580: 2577: 2574: 2571: 2562:on 2006-09-07 2561: 2557: 2556: 2550: 2549: 2540: 2537: 2534: 2533: 2524: 2520: 2516: 2512: 2510: 2507: 2503: 2500: 2499:0-387-30777-X 2496: 2492: 2488: 2485: 2481: 2478: 2476:9780815303220 2472: 2468: 2467: 2461: 2458: 2454: 2451: 2447: 2445: 2444:0-486-64687-4 2441: 2437: 2433: 2432: 2418: 2414: 2410: 2406: 2401: 2396: 2392: 2388: 2380: 2372: 2366: 2362: 2358: 2351: 2337: 2333: 2326: 2317: 2312: 2305: 2297: 2293: 2288: 2283: 2279: 2275: 2271: 2267: 2263: 2256: 2252: 2241: 2237: 2234: 2231: 2228: 2223: 2220: 2217: 2214: 2210: 2207: 2204: 2201: 2198: 2195: 2192: 2191: 2186: 2183: 2179: 2176: 2172: 2169: 2166: 2163: 2161: 2158: 2155: 2152: 2150: 2147: 2144: 2141: 2138: 2134: 2130: 2127: 2124: 2121: 2119: 2116: 2113: 2110: 2109: 2100: 2097: 2095: 2091: 2090:orbital plane 2087: 2083: 2079: 2075: 2071: 2067: 2063: 2059: 2054: 2052: 2051:space-mission 2048: 2044: 2040: 2036: 2032: 2028: 2024: 2017: 2013: 2008: 2001: 1990: 1988: 1984: 1979: 1975: 1971: 1960: 1951: 1947: 1944:This section 1942: 1939: 1935: 1934: 1926: 1924: 1918: 1917: 1913: 1909: 1903: 1899: 1897: 1893: 1889: 1884: 1882: 1878: 1874: 1870: 1866: 1864: 1860: 1856: 1852: 1848: 1844: 1840: 1836: 1832: 1827: 1812: 1809: 1806: 1804: 1800: 1796: 1795: 1793: 1792: 1791: 1789: 1785: 1784:orbiting body 1775: 1771: 1767: 1764: 1760: 1756: 1755: 1753: 1752: 1751: 1737: 1734: 1731: 1723: 1707: 1704: 1701: 1686: 1682: 1680: 1677: 1676: 1674: 1671: 1667: 1666: 1664: 1663: 1662: 1660: 1656: 1652: 1651:-body problem 1650: 1645: 1641: 1637: 1627: 1625: 1621: 1617: 1613: 1609: 1605: 1601: 1597: 1588: 1586: 1582: 1578: 1574: 1573:Simon Newcomb 1568:Simon Newcomb 1565: 1563: 1560: 1556: 1552: 1551:conic section 1548: 1544: 1540: 1536: 1532: 1528: 1518: 1516: 1515: 1510: 1506: 1505:Kepler's Laws 1502: 1498: 1494: 1490: 1489:physical laws 1486: 1482: 1478: 1474: 1470: 1461: 1459: 1455: 1451: 1447: 1443: 1439: 1438: 1433: 1429: 1425: 1419: 1415: 1405: 1403: 1399: 1395: 1391: 1387: 1383: 1379: 1377: 1372: 1365: 1355: 1353: 1350:, to produce 1349: 1345: 1341: 1337: 1333: 1329: 1325: 1321: 1310: 1305: 1303: 1298: 1296: 1291: 1290: 1288: 1287: 1280: 1277: 1275: 1272: 1271: 1265: 1264: 1257: 1256:Oberth effect 1254: 1252: 1249: 1248: 1242: 1241: 1234: 1231: 1229: 1226: 1224: 1221: 1219: 1216: 1215: 1209: 1208: 1204: 1198: 1197: 1190: 1187: 1185: 1182: 1181: 1175: 1171: 1170: 1168: 1162: 1161:N-body orbits 1157: 1156: 1149: 1146: 1144: 1143:Perturbations 1141: 1139: 1136: 1134: 1131: 1130: 1124: 1123: 1119: 1113: 1112: 1105: 1102: 1100: 1097: 1095: 1092: 1090: 1087: 1085: 1082: 1080: 1077: 1075: 1072: 1070: 1067: 1065: 1062: 1061: 1055: 1054: 1047: 1044: 1042: 1039: 1037: 1034: 1032: 1029: 1028: 1022: 1019: 1017: 1013: 1012: 1010: 1004: 1001: 999: 996: 995: 989: 983: 982: 975: 972: 970: 967: 965: 964:Orbital nodes 962: 960: 957: 955: 952: 950: 947: 945: 942: 940: 937: 936: 933: 928: 927: 923: 917: 916: 912: 908: 907: 904:Astrodynamics 903: 902: 898: 897: 887: 882: 880: 875: 873: 868: 867: 865: 864: 858: 848: 845: 840: 834: 833: 832: 831: 823: 820: 818: 815: 813: 810: 808: 805: 803: 800: 798: 795: 793: 790: 788: 785: 783: 780: 778: 775: 773: 770: 768: 765: 763: 760: 758: 755: 753: 750: 748: 745: 743: 740: 738: 735: 733: 730: 728: 725: 723: 720: 718: 715: 713: 710: 708: 705: 704: 697: 696: 689: 685: 681: 677: 674: 673: 669: 666: 664: 661: 659: 656: 654: 651: 647: 644: 643: 642: 639: 637: 634: 632: 629: 627: 624: 623: 619: 614: 613: 605: 602: 600: 597: 593: 590: 588: 585: 584: 583: 580: 578: 575: 573: 570: 568: 563: 560: 556: 553: 552: 548: 545: 542: 538: 534: 533: 529: 526: 524: 521: 519: 516: 514: 509: 507: 504: 502: 499: 497: 494: 493: 486: 485: 474: 471: 469: 466: 464: 461: 459: 456: 454: 451: 449: 446: 445: 443: 442: 437: 434: 433: 428: 427: 421: 420: 412: 409: 407: 404: 402: 399: 397: 394: 392: 389: 387: 384: 382: 379: 377: 373: 371: 368: 366: 362: 360: 357: 354: 350: 346: 344: 341: 339: 336: 334: 331: 329: 326: 322: 319: 317: 314: 313: 312: 309: 307: 304: 302: 299: 297: 294: 292: 289: 288: 281: 280: 272: 269: 267: 264: 262: 259: 257: 254: 252: 249: 247: 244: 242: 239: 237: 234: 233: 226: 225: 219: 216: 214: 211: 209: 206: 205: 203: 202: 198: 179: 176: 166: 160: 146: 145: 142: 139: 138: 134: 133: 124: 121: 113: 102: 99: 95: 92: 88: 85: 81: 78: 74: 71: –  70: 66: 65:Find sources: 59: 55: 49: 48: 43:This article 41: 37: 32: 31: 19: 3074:Solar System 2906:Astrophysics 2764: 2720:Experimental 2641: 2640: 2630:Associations 2629: 2628: 2618:Course notes 2617: 2616: 2605: 2604: 2586: 2585: 2564:, retrieved 2560:the original 2554: 2539:Scholarpedia 2514: 2505: 2490: 2483: 2465: 2456: 2449: 2435: 2390: 2386: 2379: 2356: 2350: 2339:. Retrieved 2335: 2325: 2304: 2269: 2266:Scholarpedia 2265: 2255: 2188: 2165:Lunar theory 2118:Astrophysics 2084:, including 2082:trajectories 2066:star systems 2055: 2037:, and other 2021: 2016:acceleration 1969: 1967: 1954: 1950:adding to it 1945: 1919: 1915: 1904: 1900: 1890:to make its 1887: 1885: 1867: 1829: 1799:Solar System 1788:central body 1781: 1693: 1654: 1648: 1633: 1603: 1594: 1571: 1562:trajectories 1524: 1513: 1496: 1492: 1469:Isaac Newton 1467: 1464:Isaac Newton 1454:Isaac Newton 1436: 1422: 1393: 1381: 1375: 1371:Isaac Newton 1368: 1319: 1318: 1115: 1041:Radial orbit 992:eccentricity 974:True anomaly 959:Mean anomaly 949:Eccentricity 686: / 682: / 680:displacement 678: / 539: / 501:Displacement 439: 430: 424:Formulations 411:Virtual work 351: / 291:Acceleration 284:Fundamentals 240: 116: 107: 97: 90: 83: 76: 64: 52:Please help 47:verification 44: 3062:Outer space 3050:Spaceflight 2809:Statistical 2725:Theoretical 2702:Engineering 2642:Simulations 2272:(5): 3930. 2233:Tidal force 2180:Creating a 2160:Gravitation 1888:"perturbed" 1839:are ancient 1759:binary star 1636:drag forces 1497:terrestrial 1450:Tycho Brahe 1398:geometrical 1380:. The name 1174:Halo orbits 1138:Hill sphere 954:Inclination 822:von Neumann 489:Core topics 3105:Astrometry 3084:Categories 2926:Geophysics 2916:Biophysics 2760:Analytical 2713:Approaches 2566:2006-08-21 2428:References 2400:1605.01339 2341:2020-08-28 2316:1509.08233 2112:Astrometry 2039:spacecraft 2035:satellites 2027:ballistics 1978:barycenter 1794:Examples: 1774:90 Antiope 1754:Examples: 1665:Examples: 1659:integrable 1559:spacecraft 1479:, and the 1432:Copernicus 1218:Mass ratio 1133:Barycenter 757:d'Alembert 737:Maupertuis 700:Scientists 582:Rigid body 256:Kinematics 80:newspapers 3026:Astronomy 2876:Molecular 2777:Acoustics 2770:Continuum 2765:Celestial 2755:Newtonian 2742:Classical 2685:Divisions 2296:1941-6016 2222:Satellite 2154:Ephemeris 1914:'s orbit 1803:Milky Way 1514:Principia 1493:celestial 1460:in 1686. 1446:planetary 1402:numerical 1376:Principia 1352:ephemeris 1324:astronomy 1058:Equations 986:Types of 802:Liouville 684:frequency 604:Vibration 321:potential 246:Continuum 241:Celestial 218:Textbooks 110:June 2013 2596:Archived 2587:Research 2106:See also 2064:such as 2045:and the 1879:and the 1861:and the 1837:, which 1772:, e.g., 1761:, e.g., 1527:Lagrange 857:Category 782:Hamilton 767:Lagrange 762:Clairaut 727:Horrocks 688:velocity 658:Pendulum 646:reactive 618:Rotation 587:dynamics 537:Inertial 523:Friction 406:Velocity 381:Momentum 261:Kinetics 251:Dynamics 229:Branches 213:Timeline 3014:Physics 3000:Portals 2960:Related 2844:General 2839:Special 2697:Applied 2606:Artwork 2582:Earth). 2405:Bibcode 2274:Bibcode 2212:system. 2131:or the 2070:planets 2058:gravity 2031:rockets 1694:In the 1638:or the 1473:planets 1428:Ptolemy 1358:History 1348:planets 1336:physics 1328:motions 817:Koopman 777:Poisson 772:Laplace 717:Huygens 712:Galileo 557: ( 496:Damping 349:Inertia 343:Impulse 316:kinetic 266:Statics 236:Applied 208:History 94:scholar 2871:Atomic 2826:Modern 2676:Major 2521:  2497:  2473:  2442:  2367:  2294:  2175:planet 2078:comets 2076:, and 1908:Newton 1847:Newton 1720:case ( 1644:rocket 1640:thrust 1547:comets 1543:method 1485:cannon 1475:, the 1378:(1687) 1354:data. 855:  807:Appell 792:Cauchy 787:Jacobi 732:Halley 722:Newton 707:Kepler 559:linear 555:Motion 401:Torque 376:Moment 311:Energy 301:Couple 96:  89:  82:  75:  67:  3038:Stars 2395:arXiv 2393:(5). 2311:arXiv 2247:Notes 2190:orbit 2074:moons 1877:Earth 1859:Earth 1642:of a 1585:Paris 1344:stars 939:Apsis 812:Gibbs 797:Routh 752:Euler 391:Speed 386:Space 328:Force 101:JSTOR 87:books 2797:Wave 2692:Pure 2519:ISBN 2495:ISBN 2471:ISBN 2440:ISBN 2365:ISBN 2292:ISSN 1912:Moon 1881:Moon 1851:Moon 1797:The 1735:> 1495:and 1481:Moon 1416:and 1346:and 396:Time 359:Mass 73:news 2792:Ray 2413:doi 2282:doi 2187:An 1985:of 1952:. 1896:Sun 1863:Sun 1477:Sun 1400:or 1373:'s 1330:of 990:by 56:by 3086:: 2411:. 2403:. 2391:51 2389:. 2359:, 2334:. 2290:. 2280:. 2268:. 2264:. 2096:. 2088:, 2072:, 2068:, 2033:, 1925:. 1865:. 1768:A 1757:A 1626:. 1564:. 1517:. 3002:: 2669:e 2662:t 2655:v 2501:. 2419:. 2415:: 2407:: 2397:: 2374:. 2344:. 2319:. 2313:: 2298:. 2284:: 2276:: 2270:3 2018:. 2002:. 1959:) 1955:( 1738:2 1732:n 1708:2 1705:= 1702:n 1672:) 1655:n 1649:n 1420:. 1366:. 1338:( 1308:e 1301:t 1294:v 1176:) 1172:( 1023:) 1014:( 885:e 878:t 871:v 561:) 180:t 177:d 171:p 167:d 161:= 156:F 123:) 117:( 112:) 108:( 98:· 91:· 84:· 77:· 50:. 20:)

Index

Dynamical astronomy

verification
improve this article
adding citations to reliable sources
"Celestial mechanics"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
Classical mechanics
Second law of motion
History
Timeline
Textbooks
Applied
Celestial
Continuum
Dynamics
Kinematics
Kinetics
Statics
Statistical mechanics
Acceleration
Angular momentum
Couple
D'Alembert's principle
Energy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.