Knowledge

Neutrino astronomy

Source 📝

492:(PMTs) to detect individual photons. From the timing of the photons, it is possible to determine the time and place of the neutrino interaction. If the neutrino creates a muon during its interaction, then the muon will travel in a line, creating a "track" of Cherenkov photons. The data from this track can be used to reconstruct the directionality of the muon. For high-energy interactions, the neutrino and muon directions are the same, so it's possible to tell where the neutrino came from. This is pointing direction is important in extra-solar system neutrino astronomy. Along with time, position, and possibly direction, it's possible to infer the energy of the neutrino from the interactions. The number of photons emitted is related to the neutrino energy, and neutrino energy is important for measuring the fluxes from solar and geo-neutrinos. 554:). In a core collapse supernova, ninety-nine percent of the energy released will be in neutrinos. While photons can be trapped in the dense supernova for hours, neutrinos are able to escape on the order of seconds. Since neutrinos travel at roughly the speed of light, they can reach Earth before photons do. If two or more of SNEWS detectors observe a coincidence of an increased flux of neutrinos, an alert is sent to professional and amateur astronomers to be on the lookout for supernova light. By using the distance between detectors and the time difference between detections, the alert can also include directionality as to the supernova's location in the sky. 229:. Holes 60 cm in diameter were drilled with pressurized hot water in which strings with optical modules were deployed before the water refroze. The depth proved to be insufficient to be able to reconstruct the trajectory due to the scattering of light on air bubbles. A second group of 4 strings were added in 1995/96 to a depth of about 2000 m that was sufficient for track reconstruction. The AMANDA array was subsequently upgraded until January 2000 when it consisted of 19 strings with a total of 667 optical modules at a depth range between 1500 m and 2000 m. AMANDA would eventually be the predecessor to 271:(NEutrino Mediterranean Observatory) was pursued by Italian groups to investigate the feasibility of a cubic-kilometer scale deep-sea detector. A suitable site at a depth of 3.5 km about 100 km off Capo Passero at the South-Eastern coast of Sicily has been identified. From 2007 to 2011 the first prototyping phase tested a "mini-tower" with 4 bars deployed for several weeks near Catania at a depth of 2 km. The second phase as well as plans to deploy the full-size prototype tower will be pursued in the KM3NeT framework. 383: 842: 391:
producing two 511keV photons. The neutron will attach to another nucleus and give off a gamma with an energy of a few MeV. In general, neutrinos can interact through neutral-current and charged-current interactions. In neutral-current interactions, the neutrino interacts with a nucleus or electron and the neutrino retains its original flavor. In charged-current interactions, the neutrino is absorbed by the nucleus and produces a lepton corresponding to the neutrino's flavor (
692:, which emits an anti-neutrino. The energies of these anti-neutrinos are dependent on the parent nucleus. Therefore, by detecting the anti-neutrino flux as a function of energy, we can obtain the relative compositions of these elements and set a limit on the total power output of Earth's geo-reactor. Most of our current data about the core and mantle of Earth comes from seismic data, which does not provide any information as to the nuclear composition of these layers. 3232: 20: 496:
able to penetrate to the depths of our detectors. Detectors must include ways of dealing with data from muons so as to not confuse them with neutrinos. Along with more complicated measures, if a muon track is first detected outside of the desired "fiducial" volume, the event is treated as a muon and not considered. Ignoring events outside the fiducial volume also decreases the signal from radiation outside the detector.
563: 3244: 2471: 517:, are studied using light, only the surface of the object can be directly observed. Any light produced in the core of a star will interact with gas particles in the outer layers of the star, taking hundreds of thousands of years to make it to the surface, making it impossible to observe the core directly. Since neutrinos are also created in the cores of stars (as a result of 838:
is directly related to density. If the initial flux is known (as it is in the case of atmospheric neutrinos), then detecting the final flux provides information about the interactions that occurred. The density can then be extrapolated from knowledge of these interactions. This can provide an independent check on the information obtained from seismic data.
74:"ghost particles". That's why neutrino detectors are placed many hundreds of meter underground, usually at the bottom of mines. There a neutrino detection liquid such as a Chlorine-rich solution is placed; the neutrinos react with a Chlorine isotope and can create radioactive Argon. Gallium to Germanium conversion has also been used. The 871:
To perform astronomy of distant objects, a strong angular resolution is required. Neutrinos are electrically neutral and interact weakly, so they travel mostly unperturbed in straight lines. If the neutrino interacts within a detector and produces a muon, the muon will produce an observable track.
854:
data. The values determined for the total mass of Earth, the mass of the core, and the moment of inertia all agree with the data obtained from seismic and gravitational data. With the current data, the uncertainties on these values are still large, but future data from IceCube and KM3NeT will place
495:
Due to the rareness of neutrino interactions, it is important to maintain a low background signal. For this reason, most neutrino detectors are constructed under a rock or water overburden. This overburden shields against most cosmic rays in the atmosphere; only some of the highest-energy muons are
867:
and kaons in the atmosphere. As these hadrons decay, they produce neutrinos (called atmospheric neutrinos). At low energies, the flux of atmospheric neutrinos is many times greater than astrophysical neutrinos. At high energies, the pions and kaons have a longer lifetime (due to relativistic time
837:
Neutrino tomography also provides insight into the interior of Earth. For neutrinos with energies of a few TeV, the interaction probability becomes non-negligible when passing through Earth. The interaction probability will depend on the number of nucleons the neutrino passed along its path, which
578:
Each step in the process has an allowed spectra of energy for the neutrino (or a discrete energy for electron capture processes). The relative rates of the Sun's nuclear processes can be determined by observations in its flux at different energies. This would shed insight into the Sun's properties,
278:
was installed in 2004 to a depth of 4 km and operated for one month until a failure of the cable to shore forced it to be terminated. The data taken still successfully demonstrated the detector's functionality and provided a measurement of the atmospheric muon flux. The proof of concept will be
251:
in Ukraine at a depth of more than 100 m. It was created in the Department of High Energy Leptons and Neutrino Astrophysics of the Institute of Nuclear Research of the USSR Academy of Sciences in 1969 to study antineutrino fluxes from collapsing stars in the Galaxy, as well as the spectrum and
98:
Since neutrinos interact weakly, neutrino detectors must have large target masses (often thousands of tons). The detectors also must use shielding and effective software to remove background signal. Since neutrinos are very difficult to detect, the only bodies that have been studied in this way are
875:
These high-energy neutrinos are either the primary or secondary cosmic rays produced by energetic astrophysical processes. Observing neutrinos could provide insights into these processes beyond what is observable with electromagnetic radiation. In the case of the neutrino detected from a distant
768:
each with an energy of 511keV (the rest mass of an electron). The neutron will later be captured by another nucleus, which will lead to a 2.22MeV gamma-ray as the nucleus de-excites. This process on average takes on the order of 256 microseconds. By searching for time and spatial coincidence of
73:
Neutrinos are very hard to detect due to their non-interactive nature. In order to detect neutrinos, scientists have to shield the detectors from cosmic rays, which can penetrate hundreds of meters of rock. Neutrinos, on the other hand, can go through the entire planet without being absorbed, like
78:
built in 2010 in the south pole is the biggest neutrino detector, consisting of thousands of optical sensors buried 500 meters underneath a cubic kilometer of deep, ultra-transparent ice, detects light emitted by charged particles that are produced when a single neutrino collides with a proton or
65:
hit atoms in the atmosphere. Neutrinos rarely interact with matter (only via the weak nuclear force), travel at nearly the speed of light in straight lines, pass through large amounts of matter without any notable absorption or without being deflected by magnetic fields. Unlike photons, neutrinos
849:
In 2018, one year worth of IceCube data was evaluated to perform neutrino tomography. The analysis studied upward going muons, which provide both the energy and directionality of the neutrinos after passing through the Earth. A model of Earth with five layers of constant density was fit to the
574:
There are two main processes for stellar nuclear fusion. The first is the Proton-Proton (PP) chain, in which protons are fused together into helium, sometimes temporarily creating the heavier elements of lithium, beryllium, and boron along the way. The second is the CNO cycle, in which carbon,
570:
The Sun, like other stars, is powered by nuclear fusion in its core. The core is incredibly large, meaning that photons produced in the core will take a long time to diffuse outward. Therefore, neutrinos are the only way that we can obtain real-time data about the nuclear processes in the Sun.
586:
Borexino is one of the detectors studying solar neutrinos. In 2018, they found 5σ significance for the existence of neutrinos from the fusing of two protons with an electron (pep neutrinos). In 2020, they found for the first time evidence of CNO neutrinos in the Sun. Improvements on the CNO
390:
The method of neutrino detection depends on the energy and type of the neutrino. A famous example is that anti-electron neutrinos can interact with a nucleus in the detector by inverse beta decay and produce a positron and a neutron. The positron immediately will annihilate with an electron,
525:
released by supernovae- have been detected. Several neutrino experiments have formed the Supernova Early Warning System (SNEWS), where they search for an increase of neutrino flux that could signal a supernova event. There are currently goals to detect neutrinos from other sources, such as
378:
Neutrinos interact incredibly rarely with matter, so the vast majority of neutrinos will pass through a detector without interacting. If a neutrino does interact, it will only do so once. Therefore, to perform neutrino astronomy, large detectors must be used to obtain enough statistics.
70:, such as reactions in the Sun's core. Neutrinos that are created in the Sun’s core are barely absorbed, so a large quantity of them escape from the Sun and reach the Earth. Neutrinos can also offer a very strong pointing direction compared to charged particle cosmic rays. 499:
Despite shielding efforts, it is inevitable that some background will make it into the detector, many times in the form of radioactive impurities within the detector itself. At this point, if it is impossible to differentiate between the background and true signal, the a
868:
dilation). The hadrons are now more likely to interact before they decay. Because of this, the astrophysical neutrino flux will dominate at high energies (~100TeV). To perform neutrino astronomy of high-energy objects, experiments rely on the highest energy neutrinos.
264:
was anchored to the sea floor in the region off Toulon at the French Mediterranean coast. It consists of 12 strings, each carrying 25 "storeys" equipped with three optical modules, an electronic container, and calibration devices down to a maximum depth of 2475 m.
114:, origins of ultra-high-energy neutrinos, neutrino properties (such as neutrino mass hierarchy), dark matter properties, etc. It will become an integral part of multi-messenger astronomy, complementing gravitational astronomy and traditional telescopic astronomy. 876:
blazar, multi-wavelength astronomy was used to show spatial coincidence, confirming the blazar as the source. In the future, neutrinos could be used to supplement electromagnetic and gravitational observations, leading to multi-messenger astronomy.
575:
nitrogen, and oxygen are fused with protons, and then undergo alpha decay (helium nucleus emission) to begin the cycle again. The PP chain is the primary process in the Sun, while the CNO cycle is more dominant in stars more massive than the Sun.
214:
in Russia. The detector is located at a depth of 1.1 km and began surveys in 1980. In 1993, it was the first to deploy three strings to reconstruct the muon trajectories as well as the first to record atmospheric neutrinos underwater.
242: 286:, located at the South Pole and incorporating its predecessor AMANDA, was completed in December 2010. It currently consists of 5160 digital optical modules installed on 86 strings at depths of 1450 to 2550 m in the Antarctic ice. The 252:
interactions of muons of cosmic rays with energies up to 10 ^ 13 eV. A feature of the detector is a 100-ton scintillation tank with dimensions on the order of the length of an electromagnetic shower with an initial energy of 100 GeV.
202:
project. DUMAND stands for Deep Underwater Muon and Neutrino Detector. The project began in 1976 and although it was eventually cancelled in 1995, it acted as a precursor to many of the following telescopes in the following decades.
294:
are in their preparatory/prototyping phase. IceCube instruments 1 km of ice. GVD is also planned to cover 1 km but at a much higher energy threshold. KM3NeT is planned to cover several km and have two components; ARCA
340:
In November 2022, the IceCube collaboration made another significant progress towards identifying the origin of cosmic rays, reporting the observation of 79 neutrinos with an energy over 1 TeV originated from the nearby galaxy
1527:
IceCube Collaboration; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Alameddine, J. M.; Alispach, C.; Alves, A. A.; Amin, N. M.; Andeen, K.; Anderson, T.; Anton, G.; Argüelles, C. (2022-11-04).
66:
rarely scatter along their trajectory. But like photons, neutrinos are some of the most common particles in the universe. Because of this, neutrinos offer a unique opportunity to observe processes that are inaccessible to
160:
mine at an equivalent water depth of 7.5 km. Although the KGF group detected neutrino candidates two months later than Reines CWI, they were given formal priority due to publishing their findings two weeks earlier.
504:
must be used to model the background. While it may be unknown if an individual event is background or signal, it is possible to detect an excess about the background, signifying existence of the desired signal.
762: 99:
the sun and the supernova SN1987A, which exploded in 1987. Scientist predicted that supernova explosions would produce bursts of neutrinos, and a similar burst was actually detected from Supernova 1987A.
1322:
Ashikhmin, V. V.; Enikeev, R. I.; Pokropivny, A. V.; Ryazhskaya, O. G.; Ryasny, V. G. (2013). "Search for neutrino radiation from collapsing stars with the artyomovsk scintillation detector".
479: 386:
The IceCube Neutrino Detector at the South Pole. The PMTs are under more than a kilometer of ice, and will detect the photons from neutrino interactions within a cubic kilometer of ice
180:
were jointly awarded half of the 2002 Nobel Prize in Physics "for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos (the other half went to
434: 1714:
Borexino Collaboration; Agostini, M.; Altenmüller, K.; Appel, S.; Atroshchenko, V.; Bagdasarian, Z.; Basilico, D.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G. (2020-01-21).
832: 686: 2402:
IceCube Collaboration; Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Arguelles, C.; Arlen, T. C. (2014-09-02).
801: 655: 863:
Neutrinos can either be primary cosmic rays (astrophysical neutrinos), or be produced from cosmic ray interactions. In the latter case, the primary cosmic ray will produce
624: 1503: 303:). Both KM3NeT and GVD have completed at least part of their construction and it is expected that these two along with IceCube will form a global neutrino observatory. 944: 1424:"It Came From a Black Hole, and Landed in Antarctica - For the first time, astronomers followed cosmic neutrinos into the fire-spitting heart of a supermassive blazar" 1603:"Neutrinos Build a Ghostly Map of the Milky Way - Astronomers for the first time detected neutrinos that originated within our local galaxy using a new technique" 834:
is the same as chondritic meteorites. The power output from uranium and thorium in Earth's mantle was found to be 14.2-35.7 TW with a 68% confidence interval.
772:
Using over 3,200 days of data, Borexino used geoneutrinos to place constraints on the composition and power output of the mantle. They found that the ratio of
872:
At high energies, the neutrino direction and muon direction are closely correlated, so it is possible to trace back the direction of the incoming neutrino.
1324: 1450: 845:
The interior of the Earth as we know it. Currently, our information comes only from seismic data. Neutrinos would be an independent check on this data
3162: 23:
An optical module from a neutrino telescope. Neutrino telescopes consist of hundreds to thousands of optical modules distributed over a large volume.
30:
is the branch of astronomy that gathers information about astronomical objects by observing and studying neutrinos emitted by them with the help of
3169: 1612: 79:
neutron inside an atom. The resulting nuclear reaction produces secondary particles traveling at high speeds that give off a blue light called
702: 282:
The second generation of deep-sea neutrino telescope projects reach or even exceed the size originally conceived by the DUMAND pioneers.
156:
in South Africa at an 8.8 km water depth equivalent. The other was a Bombay-Osaka-Durham collaboration that operated in the Indian
2503: 218: 969:
Cowan, C. L. Jr.; Reines, F.; Harrison, F. B.; Kruse, H. W.; McGuire, A. D. (1956). "Detection of the free neutrino: A Confirmation".
919: 1394: 260:
After the decline of DUMAND the participating groups split into three branches to explore deep sea options in the Mediterranean Sea.
145: 2881: 3274: 566:
The proton-proton fusion chain that occurs within the Sun. This process is responsible for the majority of the Sun's energy.
191:
in 1960 "...to install detectors deep in a lake or a sea and to determine the location of charged particles with the help of
2023:
Davis, Jonathan H. (2016-11-15). "Projections for Measuring the Size of the Solar Core with Neutrino-Electron Scattering".
1876:
The IceCube Collaboration; Fermi-LAT; MAGIC; AGILE; ASAS-SN; HAWC; H.E.S.S.; INTEGRAL; Kanata; Kiso; Kapteyn (2018-07-13).
1683: 1239:
Markov, M. A. (1960). "On high-energy neutrino physics". In Sudarshan, E. C. G.; Tinlot, J. H.; Melissinos, A. C. (eds.).
2475: 268: 237: 3000: 439: 134: 2818: 2496: 551: 3104: 394: 1215: 1014: 102:
In the future neutrino astronomy promises to discover other aspects of the universe, including coincidental
2770: 885: 307: 283: 75: 1602: 1075:
Achar, C. V.; et al. (1965). "Detection of muons produced by cosmic ray neutrinos deep underground".
3269: 2089: 1423: 1125: 3247: 3155: 2937: 2729: 352:
In June 2023, astronomers reported using a new technique to detect, for the first time, the release of
111: 1878:"Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A" 314:
that hit their Antarctica-based research station in September 2017 back to its point of origin in the
184:
for corresponding pioneering contributions which have led to the discovery of cosmic X-ray sources)."
3176: 2993: 2958: 2951: 2798: 2489: 806: 660: 207: 775: 629: 3199: 2965: 598: 3060: 2846: 2705: 2684: 2643: 2607: 2575: 1244: 1180: 1040: 527: 346: 291: 138: 137:
employing a nearby nuclear reactor as a neutrino source. Their discovery was acknowledged with a
1269:
Katz, U. F.; Spiering, C. (2011). "High-Energy Neutrino Astrophysics: Status and Perspectives".
3113: 2986: 2979: 2902: 2696: 226: 3083: 2777: 2715: 2568: 2538: 1038:
Reines, F.; et al. (1965). "Evidence for high-energy cosmic-ray neutrino interactions".
326: 35: 1178:
Davis, R. Jr.; Harmer, D. S.; Hoffman, K. C. (1968). "A search for neutrinos from the Sun".
152:
who operated a liquid scintillator - the Case-Witwatersrand-Irvine or CWI detector - in the
3075: 3007: 2825: 2763: 2554: 2531: 2524: 2425: 2306: 2220: 2144: 2042: 1973: 1899: 1839: 1774: 1737: 1659: 1551: 1476: 1333: 1288: 1189: 1144: 1086: 1049: 980: 489: 173: 2403: 521:), the core can be observed using neutrino astronomy. Other sources of neutrinos- such as 8: 3206: 3148: 2944: 2895: 2791: 2738: 2561: 2157: 2132: 2094: 522: 482: 261: 192: 153: 88: 80: 42: 2429: 2310: 2224: 2148: 2046: 1977: 1903: 1843: 1778: 1741: 1663: 1555: 1337: 1292: 1193: 1148: 1090: 1053: 984: 187:
The first generation of undersea neutrino telescope projects began with the proposal by
3235: 3134: 2839: 2809: 2691: 2639: 2614: 2449: 2415: 2381: 2355: 2296: 2262: 2066: 2032: 2005: 1963: 1889: 1855: 1829: 1798: 1727: 1649: 1607: 1583: 1541: 1428: 1349: 1304: 1278: 1160: 1134: 764:. The resulting positron will immediately annihilate with an electron and produce two 501: 221:(Antarctic Muon And Neutrino Detector Array) used the 3 km thick ice layer at the 165: 103: 2103: 1817: 1635: 1529: 3141: 3127: 2926: 2911: 2888: 2832: 2600: 2453: 2441: 2385: 2373: 2324: 2254: 2246: 2162: 2107: 2085: 2058: 2009: 1997: 1989: 1925: 1917: 1790: 1675: 1640: 1587: 1575: 1567: 1353: 1164: 1098: 996: 971: 373: 330: 248: 181: 177: 46: 31: 2343: 2266: 2070: 1859: 1802: 1308: 38:
providing insights into the high-energy and non-thermal processes in the universe.
3046: 3025: 2860: 2853: 2437: 2433: 2404:"Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data" 2365: 2319: 2314: 2284: 2236: 2228: 2208: 2152: 2099: 2054: 2050: 1981: 1951: 1907: 1847: 1782: 1745: 1667: 1559: 1504:"IceCube neutrinos give us first glimpse into the inner depths of an active galaxy" 1341: 1296: 1219: 1197: 1152: 1094: 1057: 1018: 988: 535: 382: 157: 149: 130: 84: 50: 3192: 2867: 2784: 2722: 2677: 2621: 1156: 1077: 992: 531: 169: 107: 58: 1952:"Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun" 1750: 1715: 1201: 3039: 2972: 2874: 1851: 1419: 1300: 1061: 518: 357: 275: 2369: 2232: 1985: 1713: 1345: 1241:
Proceedings of the 1960 Annual International Conference on High-Energy Physics
3263: 3097: 2377: 2328: 2250: 2166: 1993: 1921: 1794: 1571: 841: 587:
measurement will be especially helpful in determining the Sun's metallicity.
318: 188: 1912: 1877: 1875: 1671: 1563: 481:, etc.). If the charged resultants are moving fast enough, they can create 3053: 3032: 2650: 2445: 2258: 2111: 2062: 2001: 1929: 1679: 1579: 1000: 550:, Daya Bay, and HALO) work together as the Supernova Early Warning System ( 2401: 349:
of this galaxy, as well as serving as a baseline for future observations.
3120: 2180: 1834: 1526: 1451:"Neutrino that struck Antarctica traced to galaxy 3.7bn light years away" 696: 580: 334: 211: 126: 2241: 3090: 3067: 2547: 2342:
Donini, Andrea; Palomares-Ruiz, Sergio; Salvado, Jordi (January 2019).
1786: 1530:"Evidence for neutrino emission from the nearby active galaxy NGC 1068" 851: 769:
these gamma rays, the experimenters can be certain there was an event.
689: 345:. These findings in a well-known object are expected to help study the 342: 322: 222: 62: 3185: 2512: 765: 67: 41:
Neutrinos are nearly massless and electrically neutral or chargeless
19: 2090:"Through Neutrino Eyes: Ghostly Particles Become Astronomical Tools" 1321: 757:{\displaystyle {\ce {{\bar {\nu }}+p^{+}\longrightarrow e^{+}{+n}}}} 2360: 2037: 1968: 1894: 1732: 1654: 1546: 547: 353: 311: 122: 2420: 2301: 1816:
Reddy, Sanjay; Prakash, Madappa; Lattimer, James M. (1998-05-28).
1283: 1139: 95:
in the Mediterranean are some other important neutrino detectors.
1074: 230: 333:
has been used to locate an object in space and that a source of
3215: 2470: 2130: 1123:
Spiering, C. (2012). "Towards High-Energy Neutrino Astronomy".
562: 361: 315: 287: 199: 92: 2282: 1636:"Observation of high-energy neutrinos from the Galactic plane" 538:. Neutrino astronomy may also indirectly detect dark matter. 2481: 595:
The interior of Earth contains radioactive elements such as
546:
Seven neutrino experiments (Super-K, LVD, IceCube, KamLAND,
148:
in 1965 by two groups almost simultaneously. One was led by
2341: 864: 34:
in special Earth observatories. It is an emerging field in
2206: 1949: 1370: 2657: 514: 454: 409: 310:
announced that they have traced an extremely-high-energy
54: 1765:
Arns, Robert G. (2001-09-01). "Detecting the Neutrino".
1037: 968: 2209:"Comprehensive measurement of pp-chain solar neutrinos" 172:
successfully detected the first solar neutrinos in the
1633: 1395:"Russia deploys giant space telescope in Lake Baikal" 809: 778: 705: 663: 632: 601: 590: 442: 397: 198:
The first underwater neutrino telescope began as the
2083: 1815: 1325:
Bulletin of the Russian Academy of Sciences: Physics
2131:Vigorito, C; the SNEWS Working Group (2011-08-10). 858: 45:. They are created as a result of certain types of 1716:"Comprehensive geoneutrino analysis with Borexino" 1177: 826: 795: 756: 680: 649: 618: 473: 428: 3261: 583:, which is the composition of heavier elements. 488:To observe neutrino interactions, detectors use 297:Astroparticle Research with Cosmics in the Abyss 236:An example of an early neutrino detector is the 225:and was located several hundred meters from the 1818:"Neutrino interactions in hot and dense matter" 301:Oscillations Research with Cosmics in the Abyss 474:{\displaystyle {\ce {\nu_{\mu}-> \mu^{-}}}} 2497: 2098:. Vol. 302, no. 5. pp. 38–45. 2133:"SNEWS - The Supernova Early Warning System" 1627: 1594: 1477:"Source of cosmic 'ghost' particle revealed" 1412: 1268: 850:data, and the resulting density agreed with 2207:The Borexino Collaboration (October 2018). 903: 325:away in the direction of the constellation 57:or high energy astrophysical phenomena, in 2504: 2490: 1264: 1262: 1260: 1258: 1256: 1254: 2419: 2359: 2318: 2300: 2240: 2156: 2036: 1967: 1950:The Borexino Collaboration (2020-11-26). 1911: 1893: 1833: 1749: 1731: 1653: 1545: 1282: 1138: 1271:Progress in Particle and Nuclear Physics 1122: 840: 561: 429:{\displaystyle {\ce {\nu_{e}-> e^-}}} 381: 18: 2283:Bellini, G.; et al. (2010-04-19). 1418: 1251: 1118: 1116: 1114: 1112: 1110: 1108: 176:. Davis, along with Japanese physicist 3262: 1945: 1943: 1941: 1939: 1709: 1707: 1705: 1703: 1701: 1634:IceCube Collaboration (29 June 2023). 1238: 937: 908:, Oxford University Press, p. 326 513:When astronomical bodies, such as the 2485: 2397: 2395: 2278: 2276: 2202: 2200: 2137:Journal of Physics: Conference Series 2077: 2022: 1871: 1869: 1600: 1501: 1365: 1363: 279:implemented in the KM3Net framework. 210:is installed in the southern part of 53:such as those that take place in the 3243: 1764: 1105: 557: 541: 367: 146:first atmospheric neutrino detection 16:Observing low-mass stellar particles 1936: 1698: 912: 855:tighter restrictions on this data. 13: 2392: 2273: 2197: 1866: 1360: 924:American Museum of Natural History 591:Composition and structure of Earth 14: 3286: 2463: 2104:10.1038/scientificamerican0510-38 1686:from the original on 30 June 2023 1615:from the original on 29 June 2023 1216:"The Nobel Prize in Physics 2002" 1015:"The Nobel Prize in Physics 1995" 290:in the Mediterranean Sea and the 238:Artyomovsk Scintillation Detector 3242: 3231: 3230: 3001:Southern African Large Telescope 2469: 859:High-energy astrophysical events 827:{\displaystyle {\ce {^{232}Th}}} 681:{\displaystyle {\ce {^{232}Th}}} 329:. This is the first time that a 2335: 2173: 2124: 2088:; Weiler, T. J. (18 May 2010). 2016: 1809: 1758: 1601:Chang, Kenneth (29 June 2023). 1520: 1495: 1469: 1443: 1387: 1315: 1232: 1208: 796:{\displaystyle {\ce {^{238}U}}} 650:{\displaystyle {\ce {^{238}U}}} 508: 255: 125:were first recorded in 1956 by 2438:10.1103/PhysRevLett.113.101101 2344:"Neutrino tomography of Earth" 2320:10.1016/j.physletb.2010.03.051 2285:"Observation of geo-neutrinos" 2158:10.1088/1742-6596/309/1/012026 2055:10.1103/PhysRevLett.117.211101 1171: 1068: 1031: 1007: 962: 897: 732: 713: 619:{\displaystyle {\ce {^{40}K}}} 457: 412: 1: 2511: 891: 3275:Astronomical sub-disciplines 1099:10.1016/0031-9163(65)90712-2 993:10.1126/science.124.3212.103 949:IceCube Neutrino Observatory 945:"Frequently Asked Questions" 886:List of neutrino experiments 695:Borexino has detected these 688:. These elements decay via 308:IceCube Neutrino Observatory 76:IceCube Neutrino Observatory 7: 1751:10.1103/PhysRevD.101.012009 1202:10.1103/PhysRevLett.20.1205 1126:European Physical Journal H 879: 10: 3291: 1852:10.1103/PhysRevD.58.013009 1301:10.1016/j.ppnp.2011.12.001 1157:10.1140/epjh/e2012-30014-2 1062:10.1103/PhysRevLett.15.429 371: 117: 112:cosmic neutrino background 3225: 3017: 2994:Large Binocular Telescope 2959:Extremely Large Telescope 2952:Extremely large telescope 2925: 2808: 2748: 2669: 2631: 2592: 2585: 2519: 2370:10.1038/s41567-018-0319-1 2233:10.1038/s41586-018-0624-y 1986:10.1038/s41586-020-2934-0 1502:Staff (3 November 2022). 1346:10.3103/S1062873813110051 906:A Dictionary of Astronomy 904:Ian Ridpath, ed. (2012), 822: 791: 676: 645: 614: 208:Baikal Neutrino Telescope 144:This was followed by the 2966:Gran Telescopio Canarias 920:"Neutrino Observatories" 817: 811: 786: 780: 671: 665: 640: 634: 626:and the decay chains of 609: 603: 3061:Astrology and astronomy 2771:Gravitational radiation 2408:Physical Review Letters 2025:Physical Review Letters 1913:10.1126/science.aat1378 1672:10.1126/science.adc9818 1564:10.1126/science.abg3395 1245:University of Rochester 1181:Physical Review Letters 1041:Physical Review Letters 139:Nobel Prize for physics 2980:Hubble Space Telescope 1767:Physics in Perspective 846: 828: 797: 758: 682: 651: 620: 567: 528:active galactic nuclei 502:Monte Carlo simulation 475: 430: 387: 247:(ASD), located in the 227:Amundsen-Scott station 24: 3084:Astroparticle physics 2819:Australian Aboriginal 844: 829: 798: 759: 683: 652: 621: 565: 490:photomultiplier tubes 476: 431: 385: 337:has been identified. 36:astroparticle physics 22: 3076:Astronomers Monument 3008:Very Large Telescope 2555:Astronomical symbols 2478:at Wikimedia Commons 807: 776: 703: 699:through the process 661: 630: 599: 440: 395: 321:located 3.7 billion 174:Homestake experiment 43:elementary particles 3149:List of astronomers 2562:Astronomical object 2430:2014PhRvL.113j1101A 2311:2010PhLB..687..299B 2225:2018Natur.562..505B 2149:2011JPhCS.309a2026V 2095:Scientific American 2047:2016PhRvL.117u1101D 1978:2020Natur.587..577B 1904:2018Sci...361.1378I 1844:1998PhRvD..58a3009R 1779:2001PhP.....3..314A 1742:2020PhRvD.101a2009A 1664:2023Sci...380.1338I 1648:(6652): 1338–1343. 1556:2022Sci...378..538I 1338:2013BRASP..77.1333A 1293:2012PrPNP..67..651K 1194:1968PhRvL..20.1205D 1149:2012EPJH...37..515S 1091:1965PhL....18..196A 1054:1965PhRvL..15..429R 985:1956Sci...124..103C 456: 411: 193:Cherenkov radiation 154:East Rand gold mine 104:gravitational waves 81:Cherenkov radiation 3270:Neutrino astronomy 3135:Physical cosmology 2476:Neutrino astronomy 1888:(6398): eaat1378. 1787:10.1007/PL00000535 1608:The New York Times 1429:The New York Times 847: 824: 793: 754: 678: 647: 616: 568: 536:starburst galaxies 530:(AGN), as well as 471: 444: 426: 399: 388: 306:In July 2018, the 166:Raymond Davis, Jr. 68:optical telescopes 32:neutrino detectors 28:Neutrino astronomy 25: 3257: 3256: 3142:Quantum cosmology 3128:Planetary geology 2921: 2920: 2632:Celestial subject 2474:Media related to 2289:Physics Letters B 2219:(7728): 505–510. 1962:(7835): 577–582. 1822:Physical Review D 1720:Physical Review D 1540:(6619): 538–543. 1332:(11): 1333–1335. 1188:(21): 1205–1209. 979:(3124): 103–104. 818: 816: 815: 814: 787: 785: 784: 783: 751: 738: 725: 716: 672: 670: 669: 668: 641: 639: 638: 637: 610: 608: 607: 606: 558:Stellar processes 542:Supernova warning 418: 406: 374:Neutrino detector 368:Detection methods 360:of the Milky Way 331:neutrino detector 249:Soledar Salt Mine 182:Riccardo Giacconi 178:Masatoshi Koshiba 51:nuclear reactions 47:radioactive decay 3282: 3250: 3246: 3245: 3238: 3234: 3233: 3218: 3209: 3202: 3195: 3188: 3179: 3172: 3165: 3163:Medieval Islamic 3158: 3151: 3144: 3137: 3130: 3123: 3116: 3107: 3100: 3093: 3086: 3079: 3070: 3063: 3056: 3049: 3047:Astroinformatics 3042: 3035: 3028: 3026:Archaeoastronomy 3010: 3003: 2996: 2989: 2987:Keck Observatory 2982: 2975: 2968: 2961: 2954: 2947: 2940: 2914: 2905: 2898: 2891: 2884: 2882:Medieval Islamic 2877: 2870: 2863: 2856: 2849: 2842: 2835: 2828: 2821: 2801: 2794: 2787: 2780: 2773: 2766: 2759: 2741: 2732: 2725: 2718: 2711: 2709: 2701: 2699: 2687: 2680: 2660: 2653: 2646: 2624: 2617: 2610: 2603: 2590: 2589: 2578: 2571: 2564: 2557: 2550: 2541: 2534: 2527: 2506: 2499: 2492: 2483: 2482: 2473: 2458: 2457: 2423: 2399: 2390: 2389: 2363: 2339: 2333: 2332: 2322: 2304: 2295:(4–5): 299–304. 2280: 2271: 2270: 2244: 2204: 2195: 2194: 2192: 2191: 2181:"What is SNEWS?" 2177: 2171: 2170: 2160: 2128: 2122: 2121: 2119: 2118: 2084:Gelmini, G. B.; 2081: 2075: 2074: 2040: 2020: 2014: 2013: 1971: 1947: 1934: 1933: 1915: 1897: 1873: 1864: 1863: 1837: 1835:astro-ph/9710115 1813: 1807: 1806: 1762: 1756: 1755: 1753: 1735: 1711: 1696: 1695: 1693: 1691: 1657: 1631: 1625: 1624: 1622: 1620: 1598: 1592: 1591: 1549: 1524: 1518: 1517: 1515: 1514: 1499: 1493: 1492: 1490: 1488: 1473: 1467: 1466: 1464: 1462: 1447: 1441: 1440: 1438: 1436: 1422:(12 July 2018). 1416: 1410: 1409: 1407: 1406: 1391: 1385: 1384: 1382: 1381: 1367: 1358: 1357: 1319: 1313: 1312: 1286: 1266: 1249: 1248: 1236: 1230: 1229: 1227: 1226: 1220:Nobel Foundation 1212: 1206: 1205: 1175: 1169: 1168: 1142: 1120: 1103: 1102: 1072: 1066: 1065: 1035: 1029: 1028: 1026: 1025: 1019:Nobel Foundation 1011: 1005: 1004: 966: 960: 959: 957: 955: 941: 935: 934: 932: 930: 916: 910: 909: 901: 833: 831: 830: 825: 823: 812: 802: 800: 799: 794: 792: 781: 763: 761: 760: 755: 753: 752: 749: 744: 743: 736: 731: 730: 723: 718: 717: 709: 687: 685: 684: 679: 677: 666: 656: 654: 653: 648: 646: 635: 625: 623: 622: 617: 615: 604: 532:gamma-ray bursts 480: 478: 477: 472: 470: 469: 468: 455: 452: 435: 433: 432: 427: 425: 424: 423: 416: 410: 407: 404: 246: 158:Kolar Gold Field 150:Frederick Reines 131:Frederick Reines 108:gamma ray bursts 85:Super-Kamiokande 59:nuclear reactors 3290: 3289: 3285: 3284: 3283: 3281: 3280: 3279: 3260: 3259: 3258: 3253: 3241: 3229: 3221: 3214: 3205: 3198: 3193:X-ray telescope 3191: 3184: 3175: 3168: 3161: 3154: 3147: 3140: 3133: 3126: 3119: 3112: 3103: 3096: 3089: 3082: 3073: 3066: 3059: 3052: 3045: 3038: 3031: 3024: 3013: 3006: 2999: 2992: 2985: 2978: 2971: 2964: 2957: 2950: 2943: 2936: 2928: 2917: 2910: 2901: 2894: 2887: 2880: 2873: 2866: 2859: 2852: 2845: 2838: 2831: 2824: 2817: 2804: 2799:Multi-messenger 2797: 2790: 2783: 2776: 2769: 2762: 2755: 2744: 2737: 2728: 2721: 2714: 2707: 2704: 2695: 2690: 2683: 2676: 2665: 2656: 2649: 2638: 2627: 2622:Space telescope 2620: 2613: 2606: 2599: 2581: 2574: 2567: 2560: 2553: 2546: 2537: 2530: 2523: 2515: 2510: 2466: 2461: 2400: 2393: 2340: 2336: 2281: 2274: 2205: 2198: 2189: 2187: 2179: 2178: 2174: 2129: 2125: 2116: 2114: 2082: 2078: 2021: 2017: 1948: 1937: 1874: 1867: 1814: 1810: 1763: 1759: 1712: 1699: 1689: 1687: 1632: 1628: 1618: 1616: 1599: 1595: 1525: 1521: 1512: 1510: 1500: 1496: 1486: 1484: 1475: 1474: 1470: 1460: 1458: 1449: 1448: 1444: 1434: 1432: 1420:Overbye, Dennis 1417: 1413: 1404: 1402: 1393: 1392: 1388: 1379: 1377: 1369: 1368: 1361: 1320: 1316: 1267: 1252: 1237: 1233: 1224: 1222: 1214: 1213: 1209: 1176: 1172: 1121: 1106: 1078:Physics Letters 1073: 1069: 1036: 1032: 1023: 1021: 1013: 1012: 1008: 967: 963: 953: 951: 943: 942: 938: 928: 926: 918: 917: 913: 902: 898: 894: 882: 861: 810: 808: 805: 804: 779: 777: 774: 773: 745: 739: 735: 726: 722: 708: 707: 706: 704: 701: 700: 664: 662: 659: 658: 633: 631: 628: 627: 602: 600: 597: 596: 593: 560: 544: 511: 483:Cherenkov light 464: 460: 453: 448: 443: 441: 438: 437: 419: 415: 408: 403: 398: 396: 393: 392: 376: 370: 258: 240: 170:John N. Bahcall 120: 17: 12: 11: 5: 3288: 3278: 3277: 3272: 3255: 3254: 3252: 3251: 3239: 3226: 3223: 3222: 3220: 3219: 3212: 3211: 3210: 3203: 3196: 3182: 3181: 3180: 3173: 3166: 3159: 3145: 3138: 3131: 3124: 3117: 3110: 3109: 3108: 3094: 3087: 3080: 3071: 3064: 3057: 3050: 3043: 3040:Astrochemistry 3036: 3029: 3021: 3019: 3015: 3014: 3012: 3011: 3004: 2997: 2990: 2983: 2976: 2973:Hale Telescope 2969: 2962: 2955: 2948: 2941: 2933: 2931: 2923: 2922: 2919: 2918: 2916: 2915: 2908: 2907: 2906: 2892: 2885: 2878: 2871: 2864: 2857: 2850: 2843: 2836: 2829: 2822: 2814: 2812: 2806: 2805: 2803: 2802: 2795: 2788: 2781: 2774: 2767: 2760: 2752: 2750: 2746: 2745: 2743: 2742: 2735: 2734: 2733: 2719: 2712: 2706:Visible-light 2702: 2688: 2681: 2673: 2671: 2667: 2666: 2664: 2663: 2662: 2661: 2647: 2635: 2633: 2629: 2628: 2626: 2625: 2618: 2611: 2604: 2596: 2594: 2587: 2583: 2582: 2580: 2579: 2572: 2565: 2558: 2551: 2544: 2543: 2542: 2528: 2520: 2517: 2516: 2509: 2508: 2501: 2494: 2486: 2480: 2479: 2465: 2464:External links 2462: 2460: 2459: 2414:(10): 101101. 2391: 2348:Nature Physics 2334: 2272: 2196: 2172: 2123: 2076: 2031:(21): 211101. 2015: 1935: 1865: 1808: 1773:(3): 314–334. 1757: 1697: 1626: 1593: 1519: 1494: 1483:. 12 July 2018 1468: 1457:. 12 July 2018 1442: 1411: 1386: 1359: 1314: 1277:(3): 651–704. 1250: 1247:. p. 578. 1231: 1207: 1170: 1133:(3): 515–565. 1104: 1085:(2): 196–199. 1067: 1048:(9): 429–433. 1030: 1006: 961: 936: 911: 895: 893: 890: 889: 888: 881: 878: 860: 857: 821: 790: 748: 742: 734: 729: 721: 715: 712: 675: 644: 613: 592: 589: 559: 556: 543: 540: 519:stellar fusion 510: 507: 467: 463: 459: 451: 447: 422: 414: 402: 372:Main article: 369: 366: 358:galactic plane 347:active nucleus 276:NESTOR Project 257: 254: 119: 116: 15: 9: 6: 4: 3: 2: 3287: 3276: 3273: 3271: 3268: 3267: 3265: 3249: 3240: 3237: 3228: 3227: 3224: 3217: 3213: 3208: 3204: 3201: 3197: 3194: 3190: 3189: 3187: 3183: 3178: 3174: 3171: 3167: 3164: 3160: 3157: 3153: 3152: 3150: 3146: 3143: 3139: 3136: 3132: 3129: 3125: 3122: 3118: 3115: 3111: 3106: 3102: 3101: 3099: 3098:Constellation 3095: 3092: 3088: 3085: 3081: 3078: 3077: 3072: 3069: 3065: 3062: 3058: 3055: 3051: 3048: 3044: 3041: 3037: 3034: 3030: 3027: 3023: 3022: 3020: 3016: 3009: 3005: 3002: 2998: 2995: 2991: 2988: 2984: 2981: 2977: 2974: 2970: 2967: 2963: 2960: 2956: 2953: 2949: 2946: 2942: 2939: 2935: 2934: 2932: 2930: 2924: 2913: 2909: 2904: 2900: 2899: 2897: 2893: 2890: 2886: 2883: 2879: 2876: 2872: 2869: 2865: 2862: 2858: 2855: 2851: 2848: 2844: 2841: 2837: 2834: 2830: 2827: 2823: 2820: 2816: 2815: 2813: 2811: 2807: 2800: 2796: 2793: 2789: 2786: 2782: 2779: 2775: 2772: 2768: 2765: 2761: 2758: 2754: 2753: 2751: 2749:Other methods 2747: 2740: 2736: 2731: 2727: 2726: 2724: 2720: 2717: 2713: 2710: 2703: 2698: 2693: 2689: 2686: 2685:Submillimetre 2682: 2679: 2675: 2674: 2672: 2668: 2659: 2655: 2654: 2652: 2648: 2645: 2644:Extragalactic 2641: 2637: 2636: 2634: 2630: 2623: 2619: 2616: 2612: 2609: 2608:Observational 2605: 2602: 2598: 2597: 2595: 2591: 2588: 2584: 2577: 2573: 2570: 2566: 2563: 2559: 2556: 2552: 2549: 2545: 2540: 2536: 2535: 2533: 2529: 2526: 2522: 2521: 2518: 2514: 2507: 2502: 2500: 2495: 2493: 2488: 2487: 2484: 2477: 2472: 2468: 2467: 2455: 2451: 2447: 2443: 2439: 2435: 2431: 2427: 2422: 2417: 2413: 2409: 2405: 2398: 2396: 2387: 2383: 2379: 2375: 2371: 2367: 2362: 2357: 2353: 2349: 2345: 2338: 2330: 2326: 2321: 2316: 2312: 2308: 2303: 2298: 2294: 2290: 2286: 2279: 2277: 2268: 2264: 2260: 2256: 2252: 2248: 2243: 2238: 2234: 2230: 2226: 2222: 2218: 2214: 2210: 2203: 2201: 2186: 2185:snews.bnl.gov 2182: 2176: 2168: 2164: 2159: 2154: 2150: 2146: 2143:(1): 012026. 2142: 2138: 2134: 2127: 2113: 2109: 2105: 2101: 2097: 2096: 2091: 2087: 2080: 2072: 2068: 2064: 2060: 2056: 2052: 2048: 2044: 2039: 2034: 2030: 2026: 2019: 2011: 2007: 2003: 1999: 1995: 1991: 1987: 1983: 1979: 1975: 1970: 1965: 1961: 1957: 1953: 1946: 1944: 1942: 1940: 1931: 1927: 1923: 1919: 1914: 1909: 1905: 1901: 1896: 1891: 1887: 1883: 1879: 1872: 1870: 1861: 1857: 1853: 1849: 1845: 1841: 1836: 1831: 1828:(1): 013009. 1827: 1823: 1819: 1812: 1804: 1800: 1796: 1792: 1788: 1784: 1780: 1776: 1772: 1768: 1761: 1752: 1747: 1743: 1739: 1734: 1729: 1726:(1): 012009. 1725: 1721: 1717: 1710: 1708: 1706: 1704: 1702: 1685: 1681: 1677: 1673: 1669: 1665: 1661: 1656: 1651: 1647: 1643: 1642: 1637: 1630: 1614: 1610: 1609: 1604: 1597: 1589: 1585: 1581: 1577: 1573: 1569: 1565: 1561: 1557: 1553: 1548: 1543: 1539: 1535: 1531: 1523: 1509: 1505: 1498: 1482: 1478: 1472: 1456: 1452: 1446: 1431: 1430: 1425: 1421: 1415: 1400: 1396: 1390: 1376: 1372: 1366: 1364: 1355: 1351: 1347: 1343: 1339: 1335: 1331: 1327: 1326: 1318: 1310: 1306: 1302: 1298: 1294: 1290: 1285: 1280: 1276: 1272: 1265: 1263: 1261: 1259: 1257: 1255: 1246: 1242: 1235: 1221: 1217: 1211: 1203: 1199: 1195: 1191: 1187: 1183: 1182: 1174: 1166: 1162: 1158: 1154: 1150: 1146: 1141: 1136: 1132: 1128: 1127: 1119: 1117: 1115: 1113: 1111: 1109: 1100: 1096: 1092: 1088: 1084: 1080: 1079: 1071: 1063: 1059: 1055: 1051: 1047: 1043: 1042: 1034: 1020: 1016: 1010: 1002: 998: 994: 990: 986: 982: 978: 974: 973: 965: 950: 946: 940: 925: 921: 915: 907: 900: 896: 887: 884: 883: 877: 873: 869: 866: 856: 853: 843: 839: 835: 819: 788: 770: 767: 746: 740: 727: 719: 710: 698: 697:geo-neutrinos 693: 691: 673: 642: 611: 588: 584: 582: 576: 572: 564: 555: 553: 549: 539: 537: 533: 529: 524: 520: 516: 506: 503: 497: 493: 491: 486: 484: 465: 461: 449: 445: 420: 400: 384: 380: 375: 365: 363: 359: 355: 350: 348: 344: 338: 336: 332: 328: 324: 320: 317: 313: 309: 304: 302: 298: 293: 289: 285: 280: 277: 272: 270: 266: 263: 253: 250: 244: 239: 234: 232: 228: 224: 220: 216: 213: 209: 204: 201: 196: 194: 190: 189:Moisey Markov 185: 183: 179: 175: 171: 167: 162: 159: 155: 151: 147: 142: 140: 136: 135:an experiment 132: 128: 124: 115: 113: 109: 105: 100: 96: 94: 90: 87:in Japan and 86: 82: 77: 71: 69: 64: 60: 56: 52: 48: 44: 39: 37: 33: 29: 21: 3074: 3054:Astrophysics 3033:Astrobiology 2756: 2697:Far-infrared 2651:Local system 2586:Astronomy by 2576:... in space 2411: 2407: 2354:(1): 37–40. 2351: 2347: 2337: 2292: 2288: 2242:11567/930098 2216: 2212: 2188:. Retrieved 2184: 2175: 2140: 2136: 2126: 2115:. Retrieved 2093: 2079: 2028: 2024: 2018: 1959: 1955: 1885: 1881: 1825: 1821: 1811: 1770: 1766: 1760: 1723: 1719: 1688:. Retrieved 1645: 1639: 1629: 1617:. Retrieved 1606: 1596: 1537: 1533: 1522: 1511:. Retrieved 1507: 1497: 1485:. Retrieved 1480: 1471: 1459:. Retrieved 1455:The Guardian 1454: 1445: 1433:. Retrieved 1427: 1414: 1403:. Retrieved 1401:. 2021-03-13 1398: 1389: 1378:. Retrieved 1374: 1329: 1323: 1317: 1274: 1270: 1240: 1234: 1223:. Retrieved 1210: 1185: 1179: 1173: 1130: 1124: 1082: 1076: 1070: 1045: 1039: 1033: 1022:. Retrieved 1009: 976: 970: 964: 952:. Retrieved 948: 939: 927:. Retrieved 923: 914: 905: 899: 874: 870: 862: 848: 836: 771: 694: 594: 585: 577: 573: 569: 545: 512: 509:Applications 498: 494: 487: 389: 377: 351: 339: 319:TXS 0506+056 305: 300: 299:) and ORCA ( 296: 281: 273: 267: 259: 256:21st century 235: 217: 205: 197: 186: 163: 143: 121: 101: 97: 72: 40: 27: 26: 3121:Planetarium 2778:High-energy 2764:Cosmic rays 2716:Ultraviolet 2086:Kusenko, A. 581:metallicity 335:cosmic rays 323:light-years 241: [ 212:Lake Baikal 127:Clyde Cowan 63:cosmic rays 3264:Categories 3114:Photometry 3091:Binoculars 3068:Astrometry 2929:telescopes 2826:Babylonian 2670:EM methods 2548:Astronomer 2361:1803.05901 2190:2021-03-18 2117:2013-11-28 2038:1606.02558 1969:2006.15115 1895:1807.08816 1733:1909.02257 1655:2307.04427 1547:2211.09972 1513:2022-11-03 1405:2021-04-30 1380:2021-04-30 1371:"KM3NeT -" 1225:2013-01-24 1024:2013-01-24 892:References 766:gamma-rays 690:Beta decay 356:from the 223:South Pole 61:, or when 3186:Telescope 2792:Spherical 2739:Gamma-ray 2708:(optical) 2513:Astronomy 2454:220469354 2421:1405.5303 2386:119440531 2378:1745-2481 2329:0370-2693 2302:1003.0284 2251:0028-0836 2167:1742-6596 2010:227174644 1994:0028-0836 1922:0036-8075 1795:1422-6944 1588:253320297 1572:0036-8075 1399:France 24 1354:121385763 1284:1111.0507 1165:115134648 1140:1207.4952 733:⟶ 714:¯ 711:ν 523:neutrinos 466:− 462:μ 458:⟶ 450:μ 446:ν 421:− 413:⟶ 401:ν 354:neutrinos 233:in 2005. 164:In 1968, 141:in 1995. 123:Neutrinos 3236:Category 2945:Category 2840:Egyptian 2757:Neutrino 2692:Infrared 2640:Galactic 2615:Sidewalk 2569:Glossary 2539:Timeline 2446:25238345 2267:53026905 2259:30356186 2112:20443376 2071:22640563 2063:27911522 2002:33239797 1930:30002226 1860:18400234 1803:53488480 1684:Archived 1680:37384687 1613:Archived 1580:36378962 1309:53005415 1001:17796274 954:21 April 929:21 April 880:See also 579:such as 548:Borexino 312:neutrino 3248:Commons 3200:history 3170:Russian 3018:Related 2927:Optical 2912:Tibetan 2896:Serbian 2889:Persian 2833:Chinese 2810:Culture 2730:History 2601:Amateur 2532:History 2525:Outline 2426:Bibcode 2307:Bibcode 2221:Bibcode 2145:Bibcode 2043:Bibcode 1974:Bibcode 1900:Bibcode 1882:Science 1840:Bibcode 1775:Bibcode 1738:Bibcode 1690:30 June 1660:Bibcode 1641:Science 1619:30 June 1552:Bibcode 1534:Science 1508:IceCube 1487:12 July 1461:12 July 1435:13 July 1334:Bibcode 1289:Bibcode 1190:Bibcode 1145:Bibcode 1087:Bibcode 1050:Bibcode 981:Bibcode 972:Science 852:seismic 284:IceCube 262:ANTARES 231:IceCube 118:History 89:ANTARES 3216:Zodiac 3156:French 2861:Indian 2854:Hebrew 2593:Manner 2452:  2444:  2384:  2376:  2327:  2265:  2257:  2249:  2213:Nature 2165:  2110:  2069:  2061:  2008:  2000:  1992:  1956:Nature 1928:  1920:  1858:  1801:  1793:  1678:  1586:  1578:  1570:  1375:KM3NeT 1352:  1307:  1163:  999:  362:galaxy 316:blazar 288:KM3NeT 219:AMANDA 200:DUMAND 110:, the 93:KM3NeT 3207:lists 3177:Women 2868:Inuit 2847:Greek 2785:Radar 2723:X-ray 2678:Radio 2658:Solar 2450:S2CID 2416:arXiv 2382:S2CID 2356:arXiv 2297:arXiv 2263:S2CID 2067:S2CID 2033:arXiv 2006:S2CID 1964:arXiv 1890:arXiv 1856:S2CID 1830:arXiv 1799:S2CID 1728:arXiv 1650:arXiv 1584:S2CID 1542:arXiv 1350:S2CID 1305:S2CID 1279:arXiv 1161:S2CID 1135:arXiv 865:pions 552:SNEWS 327:Orion 245:] 2938:List 2903:folk 2875:Maya 2442:PMID 2374:ISSN 2325:ISSN 2255:PMID 2247:ISSN 2163:ISSN 2108:PMID 2059:PMID 1998:PMID 1990:ISSN 1926:PMID 1918:ISSN 1791:ISSN 1692:2023 1676:PMID 1621:2023 1576:PMID 1568:ISSN 1489:2018 1463:2018 1437:2018 997:PMID 956:2024 931:2024 657:and 534:and 274:The 269:NEMO 206:The 168:and 129:and 91:and 3105:IAU 2434:doi 2412:113 2366:doi 2315:doi 2293:687 2237:hdl 2229:doi 2217:562 2153:doi 2141:309 2100:doi 2051:doi 2029:117 1982:doi 1960:587 1908:doi 1886:361 1848:doi 1783:doi 1746:doi 1724:101 1668:doi 1646:380 1560:doi 1538:378 1481:BBC 1342:doi 1297:doi 1198:doi 1153:doi 1095:doi 1058:doi 989:doi 977:124 820:232 803:to 789:238 674:232 643:238 515:Sun 343:M77 292:GVD 195:." 133:in 55:Sun 3266:: 2642:/ 2448:. 2440:. 2432:. 2424:. 2410:. 2406:. 2394:^ 2380:. 2372:. 2364:. 2352:15 2350:. 2346:. 2323:. 2313:. 2305:. 2291:. 2287:. 2275:^ 2261:. 2253:. 2245:. 2235:. 2227:. 2215:. 2211:. 2199:^ 2183:. 2161:. 2151:. 2139:. 2135:. 2106:. 2092:. 2065:. 2057:. 2049:. 2041:. 2027:. 2004:. 1996:. 1988:. 1980:. 1972:. 1958:. 1954:. 1938:^ 1924:. 1916:. 1906:. 1898:. 1884:. 1880:. 1868:^ 1854:. 1846:. 1838:. 1826:58 1824:. 1820:. 1797:. 1789:. 1781:. 1769:. 1744:. 1736:. 1722:. 1718:. 1700:^ 1682:. 1674:. 1666:. 1658:. 1644:. 1638:. 1611:. 1605:. 1582:. 1574:. 1566:. 1558:. 1550:. 1536:. 1532:. 1506:. 1479:. 1453:. 1426:. 1397:. 1373:. 1362:^ 1348:. 1340:. 1330:77 1328:. 1303:. 1295:. 1287:. 1275:67 1273:. 1253:^ 1243:. 1218:. 1196:. 1186:20 1184:. 1159:. 1151:. 1143:. 1131:37 1129:. 1107:^ 1093:. 1083:18 1081:. 1056:. 1046:15 1044:. 1017:. 995:. 987:. 975:. 947:. 922:. 813:Th 667:Th 612:40 485:. 364:. 243:ru 106:, 83:. 49:, 2700:) 2694:( 2505:e 2498:t 2491:v 2456:. 2436:: 2428:: 2418:: 2388:. 2368:: 2358:: 2331:. 2317:: 2309:: 2299:: 2269:. 2239:: 2231:: 2223:: 2193:. 2169:. 2155:: 2147:: 2120:. 2102:: 2073:. 2053:: 2045:: 2035:: 2012:. 1984:: 1976:: 1966:: 1932:. 1910:: 1902:: 1892:: 1862:. 1850:: 1842:: 1832:: 1805:. 1785:: 1777:: 1771:3 1754:. 1748:: 1740:: 1730:: 1694:. 1670:: 1662:: 1652:: 1623:. 1590:. 1562:: 1554:: 1544:: 1516:. 1491:. 1465:. 1439:. 1408:. 1383:. 1356:. 1344:: 1336:: 1311:. 1299:: 1291:: 1281:: 1228:. 1204:. 1200:: 1192:: 1167:. 1155:: 1147:: 1137:: 1101:. 1097:: 1089:: 1064:. 1060:: 1052:: 1027:. 1003:. 991:: 983:: 958:. 933:. 782:U 750:n 747:+ 741:+ 737:e 728:+ 724:p 720:+ 636:U 605:K 436:, 417:e 405:e 295:(

Index


neutrino detectors
astroparticle physics
elementary particles
radioactive decay
nuclear reactions
Sun
nuclear reactors
cosmic rays
optical telescopes
IceCube Neutrino Observatory
Cherenkov radiation
Super-Kamiokande
ANTARES
KM3NeT
gravitational waves
gamma ray bursts
cosmic neutrino background
Neutrinos
Clyde Cowan
Frederick Reines
an experiment
Nobel Prize for physics
first atmospheric neutrino detection
Frederick Reines
East Rand gold mine
Kolar Gold Field
Raymond Davis, Jr.
John N. Bahcall
Homestake experiment

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.