Knowledge

Nuclear fuel

Source 📝

1479:) layer surrounds the fuel kernel of ordinary TRISO particles to better manage the excess of reactivity. If the core is equipped both with TRISO and QUADRISO fuels, at beginning of life neutrons do not reach the fuel of the QUADRISO particles because they are stopped by the burnable poison. During reactor operation, neutron irradiation of the poison causes it to "burn up" or progressively transmute to non-poison isotopes, depleting this poison effect and leaving progressively more neutrons available for sustaining the chain-reaction. This mechanism compensates for the accumulation of undesirable neutron poisons which are an unavoidable part of the fission products, as well as normal fissile fuel "burn up" or depletion. In the generalized QUADRISO fuel concept the poison can eventually be mixed with the fuel kernel or the outer pyrocarbon. The QUADRISO concept was conceived at 35: 27: 1033:) powder is compacted to cylindrical pellets and sintered at high temperatures to produce ceramic nuclear fuel pellets with a high density and well defined physical properties and chemical composition. A grinding process is used to achieve a uniform cylindrical geometry with narrow tolerances. Such fuel pellets are then stacked and filled into the metallic tubes. The metal used for the tubes depends on the design of the reactor. Stainless steel was used in the past, but most reactors now use a 1259: 1086: 2055: 1113: 1528: 50: 1487: 6414: 4551: 1124: 2385: 1101: 4575: 1510:-type reactors. This is a low-enriched uranium oxide fuel. The fuel elements in an RBMK are 3 m long each, and two of these sit back-to-back on each fuel channel, pressure tube. Reprocessed uranium from Russian VVER reactor spent fuel is used to fabricate RBMK fuel. Following the Chernobyl accident, the enrichment of fuel was changed from 2.0% to 2.4%, to compensate for control rod modifications and the introduction of additional absorbers. 2371: 177: 6402: 4587: 2357: 1207:) pellets in zirconium alloy tubes, welded to zirconium alloy end plates. Each bundle weighs roughly 20 kilograms (44 lb), and a typical core loading is on the order of 4500–6500 bundles, depending on the design. Modern types typically have 37 identical fuel pins radially arranged about the long axis of the bundle, but in the past several different configurations and numbers of pins have been used. The 6426: 4563: 1454: 3148:"The effect of fuel swelling on strains in the cladding of cylindrical fuel pins is analyzed. Simplifying assumptions are made to permit solutions for strain rates in terms of dimensionless parameters. The results of the analysis are presented in the form of equations and graphs which illustrate the volumetric swelling of the fuel and the strain rate of the fuel pin clad." 1696:
In addition information is gained which enables the users of fuel to assure themselves of its quality and it also assists in the development of new fuels. After major accidents the core (or what is left of it) is normally subject to PIE to find out what happened. One site where PIE is done is the ITU which is the EU centre for the study of highly radioactive materials.
2165: 1072:. Cladding prevents radioactive fission fragments from escaping the fuel into the coolant and contaminating it. Besides the prevention of radioactive leaks this also serves to keep the coolant as non-corrosive as feasible and to prevent reactions between chemically aggressive fission products and the coolant. For example, the highly reactive 2248:, as is done in the Sun and other stars, has also not been considered practical on Earth. Although the energy density of fusion fuel is even higher than fission fuel, and fusion reactions sustained for a few minutes have been achieved, utilizing fusion fuel as a net energy source remains only a theoretical possibility. 2293:
walls of a fusion chamber, making them radioactive. They cannot be confined by magnetic fields, because they are not electrically charged. This group consists of deuterium and helium-3. The products are all charged particles, but there may be significant side reactions leading to the production of neutrons.
1667:. The radiation hazard from spent nuclear fuel declines as its radioactive components decay, but remains high for many years. For example 10 years after removal from a reactor, the surface dose rate for a typical spent fuel assembly still exceeds 10,000 rem/hour, resulting in a fatal dose in just minutes. 1391:
stresses from processes (such as differential thermal expansion or fission gas pressure) at temperatures up to 1600 Â°C, and therefore can contain the fuel in the worst of accident scenarios in a properly designed reactor. Two such reactor designs are the prismatic-block gas-cooled reactor (such as the
2344:
Under reasonable assumptions, side reactions will result in about 0.1% of the fusion power being carried by neutrons. With 123 keV, the optimum temperature for this reaction is nearly ten times higher than that for the pure hydrogen reactions, the energy confinement must be 500 times better than that
2292:
Second-generation fuels require either higher confinement temperatures or longer confinement time than those required of first-generation fusion fuels, but generate fewer neutrons. Neutrons are an unwanted byproduct of fusion reactions in an energy generation context, because they are absorbed by the
1858:
where a small disc of fuel is placed in a furnace. After being heated to the required temperature one side of the disc is illuminated with a laser pulse, the time required for the heat wave to flow through the disc, the density of the disc, and the thickness of the disk can then be used to calculate
1695:
Post-Irradiation Examination (PIE) is the study of used nuclear materials such as nuclear fuel. It has several purposes. It is known that by examination of used fuel that the failure modes which occur during normal use (and the manner in which the fuel will behave during an accident) can be studied.
2316:
Third-generation fusion fuels produce only charged particles in the primary reactions, and side reactions are relatively unimportant. Since a very small amount of neutrons is produced, there would be little induced radioactivity in the walls of the fusion chamber. This is often seen as the end goal
1183:
from affecting neutronics and thermal hydraulics of the reactor core. In modern BWR fuel bundles, there are either 91, 92, or 96 fuel rods per assembly depending on the manufacturer. A range between 368 assemblies for the smallest and 800 assemblies for the largest BWR in the U.S. form the reactor
1699:
Materials in a high-radiation environment (such as a reactor) can undergo unique behaviors such as swelling and non-thermal creep. If there are nuclear reactions within the material (such as what happens in the fuel), the stoichiometry will also change slowly over time. These behaviors can lead to
1571:
Sodium-bonded fuel consists of fuel that has liquid sodium in the gap between the fuel slug (or pellet) and the cladding. This fuel type is often used for sodium-cooled liquid metal fast reactors. It has been used in EBR-I, EBR-II, and the FFTF. The fuel slug may be metallic or ceramic. The sodium
849:
Liquid fuels contain dissolved nuclear fuel and have been shown to offer numerous operational advantages compared to traditional solid fuel approaches. Liquid-fuel reactors offer significant safety advantages due to their inherently stable "self-adjusting" reactor dynamics. This provides two major
1550:
Plate-type fuel has fallen out of favor over the years. Plate-type fuel is commonly composed of enriched uranium sandwiched between metal cladding. Plate-type fuel is used in several research reactors where a high neutron flux is desired, for uses such as material irradiation studies or isotope
1211:
bundle has 43 fuel elements, with two element sizes. It is also about 10 cm (4 inches) in diameter, 0.5 m (20 in) long and weighs about 20 kg (44 lb) and replaces the 37-pin standard bundle. It has been designed specifically to increase fuel performance by utilizing two
1157:
from the fuel to the cladding. There are about 179–264 fuel rods per fuel bundle and about 121 to 193 fuel bundles are loaded into a reactor core. Generally, the fuel bundles consist of fuel rods bundled 14×14 to 17×17. PWR fuel bundles are about 4 m (13 ft) long. In PWR fuel bundles,
2046:. The thermal atomic batteries on the other hand, convert the heat from the radioactive decay to electricity. These designs include thermionic converter, thermophotovoltaic cells, alkali-metal thermal to electric converter, and the most common design, the radioisotope thermoelectric generator. 1390:
to retain fission products at elevated temperatures and to give the TRISO particle more structural integrity, followed by a dense outer layer of PyC. TRISO particles are then encapsulated into cylindrical or spherical graphite pellets. TRISO fuel particles are designed not to crack due to the
1518:
CerMet fuel consists of ceramic fuel particles (usually uranium oxide) embedded in a metal matrix. It is hypothesized that this type of fuel is what is used in United States Navy reactors. This fuel has high heat transport characteristics and can withstand a large amount of expansion.
1149:(PWR) fuel consists of cylindrical rods put into bundles. A uranium oxide ceramic is formed into pellets and inserted into Zircaloy tubes that are bundled together. The Zircaloy tubes are about 1 centimetre (0.4 in) in diameter, and the fuel cladding gap is filled with 2244:(He). Many other elements can be fused together, but the larger electrical charge of their nuclei means that much higher temperatures are required. Only the fusion of the lightest elements is seriously considered as a future energy source. Fusion of the lightest atom, H 2256:
Deuterium and tritium are both considered first-generation fusion fuels; they are the easiest to fuse, because the electrical charge on their nuclei is the lowest of all elements. The three most commonly cited nuclear reactions that could be used to generate energy are:
522:
in 1946 to many test and research reactors. Metal fuels have the potential for the highest fissile atom density. Metal fuels are normally alloyed, but some metal fuels have been made with pure uranium metal. Uranium alloys that have been used include uranium aluminum,
1356: 1162:
are inserted through the top directly into the fuel bundle. The fuel bundles usually are enriched several percent in U. The uranium oxide is dried before inserting into the tubes to try to eliminate moisture in the ceramic fuel that can lead to corrosion and
1743:
and radiation damage of the lattice. The low thermal conductivity can lead to overheating of the center part of the pellets during use. The porosity results in a decrease in both the thermal conductivity of the fuel and the swelling which occurs during use.
954:
Molten salt fuels are mixtures of actinide salts (e.g. thorium/uranium fluoride/chloride) with other salts, used in liquid form above their typical melting points of several hundred degrees C. In some molten salt-fueled reactor designs, such as the
966:
Molten salt fuels were used in the LFTR known as the Molten Salt Reactor Experiment, as well as other liquid core reactor experiments. The liquid fuel for the molten salt reactor was a mixture of lithium, beryllium, thorium and uranium fluorides:
2161:. This fuel provides phenomenally huge energy density, (a single gram of polonium-210 generates 140 watts thermal) but has limited use because of its very short half-life and gamma production, and has been phased out of use for this application. 1254:
Various other nuclear fuel forms find use in specific applications, but lack the widespread use of those found in BWRs, PWRs, and CANDU power plants. Many of these fuel forms are only found in research reactors, or have military applications.
757:
The high thermal conductivity and high melting point makes uranium carbide an attractive fuel. In addition, because of the absence of oxygen in this fuel (during the course of irradiation, excess gas pressure can build from the formation of
963:, the fuel salt is contained in fuel pins and the coolant is a separate, non-radioactive salt. There is a further category of molten salt-cooled reactors in which the fuel is not in molten salt form, but a molten salt is used for cooling. 850:
benefits: virtually eliminating the possibility of a runaway reactor meltdown, and providing an automatic load-following capability which is well suited to electricity generation and high-temperature industrial heat applications.
502:, the more plutonium is present in the spent fuel, but the available fissile plutonium is lower. Typically about one percent of the used fuel discharged from a reactor is plutonium, and some two thirds of this is fissile (c. 50% 753:
during their intense study in the 1960s and 1970s. Recently there has been a revived interest in uranium carbide in the form of plate fuel and most notably, micro fuel particles (such as tristructural-isotropic particles).
1652:. Also the fuel may well have cracked, swollen, and been heated close to its melting point. Despite the fact that the used fuel can be cracked, it is very insoluble in water, and is able to retain the vast majority of the 853:
In some liquid core designs, the fuel can be drained rapidly into a passively safe dump-tank. This advantage was conclusively demonstrated repeatedly as part of a weekly shutdown procedure during the highly successful
699:) to recover the initially used nitrogen. If the fuel could be processed in such a way as to ensure low contamination with non-radioactive carbon (not a common fission product and absent in nuclear reactors that don't 481:
reprocessed in a way that renders the plutonium in it usable for nuclear fuel but not for nuclear weapons. Reprocessing of spent commercial-reactor nuclear fuel has not been permitted in the United States due to
578:
launched its Reduced Enrichment for Research Test Reactors program, which promoted reactor conversion to low-enriched uranium fuel. There are 35 TRIGA reactors in the US and an additional 35 in other countries.
899:) and causes structural occlusions in solid fuel elements (leading to the early replacement of solid fuel rods with over 98% of the nuclear fuel unburned, including many long-lived actinides). In contrast, 762:
or other gases) as well as the ability to complement a ceramic coating (a ceramic-ceramic interface has structural and chemical advantages), uranium carbide could be the ideal fuel candidate for certain
435:
which behaves similarly (though not identically) to the enriched uranium feed for which most nuclear reactors were designed. MOX fuel is an alternative to low enriched uranium (LEU) fuel used in the
3421:
Alrwashdeh, Mohammad; Alameri, Saeed A.; Alkaabi, Ahmed K. (2020). "Preliminary Study of a Prismatic-Core Advanced High-Temperature Reactor Fuel Using Homogenization Double-Heterogeneous Method".
137:. Alternatively, if the nucleus absorbs the neutron without splitting, it creates a heavier nucleus with one additional neutron. Not all types of nuclear fuels create power from nuclear fission; 1339:
Magnox fuel incorporated cooling fins to provide maximum heat transfer despite low operating temperatures, making it expensive to produce. While the use of uranium metal rather than oxide made
1418:
project. The inclusion of the SiC as diffusion barrier was first suggested by D. T. Livey. The first nuclear reactor to use TRISO fuels was the Dragon reactor and the first powerplant was the
3045:
Alrwashdeh, Mohammad, and Saeed A. Alameri. "Preliminary neutronic analysis of alternative cladding materials for APR-1400 fuel assembly." Nuclear Engineering and Design 384 (2021): 111486.
518:
Metal fuels have the advantage of a much higher heat conductivity than oxide fuels but cannot survive equally high temperatures. Metal fuels have a long history of use, stretching from the
3400:
Alameri, Saeed A.; Alrwashdeh, Mohammad (2021). "Preliminary three-dimensional neutronic analysis of IFBA coated TRISO fuel particles in prismatic-core advanced high temperature reactor".
1188: 5177: 1983:
that produce low energy beta particles or sometimes alpha particles of varying energies. Low energy beta particles are needed to prevent the production of high energy penetrating
591:, the minor actinides produced by neutron capture of uranium and plutonium can be used as fuel. Metal actinide fuel is typically an alloy of zirconium, uranium, plutonium, and 5763: 1343:
more straightforward and therefore cheaper, the need to reprocess fuel a short time after removal from the reactor meant that the fission product hazard was severe. Expensive
2317:
of fusion research. He has the highest Maxwellian reactivity of any 3rd generation fusion fuel. However, there are no significant natural sources of this substance on Earth.
1179:(BWR), the fuel is similar to PWR fuel except that the bundles are "canned". That is, there is a thin tube surrounding each bundle. This is primarily done to prevent local 5957: 826:
will make up only a small isotopic impurity in the overall carbon content and thus make the entirety of the carbon content unsuitable for non-nuclear uses but the
2117:. It has a half-life of 87.7 years, reasonable energy density, and exceptionally low gamma and neutron radiation levels. Some Russian terrestrial RTGs have used 2022:
There are two main categories of atomic batteries: thermal and non-thermal. The non-thermal atomic batteries, which have many different designs, exploit charged
1560: 684:
is a method of reprocessing that does not rely on nitric acid, but it has only been demonstrated in relatively small scale installations whereas the established
983:
of 705 Â°C in the experiment, but could have operated at much higher temperatures since the boiling point of the molten salt was in excess of 1400 Â°C.
570:
to occur. Most cores that use this fuel are "high leakage" cores where the excess leaked neutrons can be utilized for research. That is, they can be used as a
470: 3551: 5365: 1037:
which, in addition to being highly corrosion-resistant, has low neutron absorption. The tubes containing the fuel pellets are sealed: these tubes are called
1580:
Accident tolerant fuels (ATF) are a series of new nuclear fuel concepts, researched in order to improve fuel performance under accident conditions, such as
3022: 2614:"New Experimental Data on Partial Pressures of Gas Phase Components over Uranium-Zirconium Carbonitrides at High Temperatures and Its Comparative Analysis" 2413: 4892: 1847: 83:
of all practical fuel sources. The processes involved in mining, refining, purifying, using, and disposing of nuclear fuel are collectively known as the
2705: 5187: 3492: 1676: 1167:. The Zircaloy tubes are pressurized with helium to try to minimize pellet-cladding interaction which can lead to fuel rod failure over long periods. 1085: 1851: 1382:(FCVD). The four layers are a porous buffer layer made of carbon that absorbs fission product recoils, followed by a dense inner layer of protective 446:
Some concern has been expressed that used MOX cores will introduce new disposal challenges, though MOX is a means to dispose of surplus plutonium by
1606:
during an accident. This research is focused on reconsidering the design of fuel pellets and cladding, as well as the interactions between the two.
6068: 2408: 3307: 6213: 1843: 2660: 1979:(also called a nuclear battery or radioisotope battery) is a device which uses the radioactive decay to generate electricity. These systems use 3158:
Nuclear Engineering Division, Argonne National Laboratory, US Department of Energy (15 January 2008) International Nuclear Safety Center (INSC)
2562: 4872: 907:
dramatically and incinerates the vast majority of its own waste as part of the normal operational characteristics. A downside to letting the
328:
is mixed with an organic binder and pressed into pellets. The pellets are then fired at a much higher temperature (in hydrogen or argon) to
5194: 4625: 3325: 688:
process is used commercially for about a third of all spent nuclear fuel (the rest being largely subject to a "once through fuel cycle").
3521: 2987:"A Neutronics Study of the Initial Fuel Cycle Extension in APR-1400 Reactors: Examining Homogeneous and Heterogeneous Enrichment Design" 2588: 1300:
as fuel cladding. Working pressure varies from 6.9 to 19.35 bars (100.1 to 280.6 psi) for the steel pressure vessels, and the two
4960: 3470: 2684: 563: 3545: 5463: 3582: 1595:
Neutronics analyses were performed for the application of the new fuel-cladding material systems for various types of ATF materials.
1427: 1130:(also known as a fuel bundle) This fuel assembly is from a pressurized water reactor of the nuclear-powered passenger and cargo ship 5702: 1203:(CANDU) fuel bundles are about 0.5 metres (20 in) long and 10 centimetres (4 in) in diameter. They consist of sintered (UO 3238: 3633: 5913: 5753: 5692: 3664: 5833: 2901:
Zinkle, S.J.; Terrani, K.A.; Gehin, J.C.; Ott, L.J.; Snead, L.L. (May 2014). "Accident tolerant fuels for LWRs: A perspective".
5658: 4284: 3342: 2137:; this isotope has a shorter half-life and a much lower energy density, but is cheaper. Early RTGs, first built in 1958 by the 4887: 4328: 4003: 2076: 2070: 146: 3479: 3358: 1223:
compared to light water), however, some newer concepts call for low enrichment to help reduce the size of the reactors. The
5709: 2043: 1112: 336: 3188: 6430: 5626: 5172: 5137: 4470: 1748: 1100: 1681:
Two main modes of release exist, the fission products can be vaporised or small particles of the fuel can be dispersed.
6324: 5908: 3169: 1585: 575: 622:
fuels other than oxides have the advantage of high heat conductivities and melting points, but they are more prone to
4988: 4867: 3587: 2403: 1212:
different pin diameters. Current CANDU designs do not need enriched uranium to achieve criticality (due to the lower
999:
or other uranium salt in water. Historically, AHRs have all been small research reactors, not large power reactors.
3592: 2821:
Alberto Talamo (July 2010) A novel concept of QUADRISO particles. Part II: Utilization for excess reactivity control
1927:
is defined as the time required for the non illuminated surface to experience half its final temperature rise then.
6218: 6083: 4618: 4411: 3558: 3457: 3145: 1839: 343:
metal, and it goes down as the temperature goes up. Corrosion of uranium dioxide in water is controlled by similar
3281: 1751:
the thermal conductivity of uranium dioxide can be predicted under different conditions by a series of equations.
1359:
0.845 mm TRISO fuel particle which has been cracked, showing multiple layers that are coating the spherical kernel
6161: 5995: 5597: 5475: 5132: 4993: 1044:
Cladding is the outer layer of the fuel rods, standing between the coolant and the nuclear fuel. It is made of a
1041:. The finished fuel rods are grouped into fuel assemblies that are used to build up the core of a power reactor. 956: 566:, meaning that as the temperature of the core increases, the reactivity decreases—so it is highly unlikely for a 544: 531:(UZrH), and uranium zirconium carbonitride. Any of the aforementioned fuels can be made with plutonium and other 463: 1184:
core. Each BWR fuel rod is backfilled with helium to a pressure of about 3 standard atmospheres (300 kPa).
6151: 6000: 5458: 4421: 1316:
metal fuel with a non-oxidising covering to contain fission products. This material has the advantage of a low
855: 608: 6457: 5925: 5758: 5182: 5110: 2698: 2138: 1404: 1400: 1091: 918:
escape instead of allowing it to capture neutrons converting it to the basically stable and chemically inert
3489: 3257: 6268: 6005: 5714: 5468: 4965: 4591: 3951: 3605: 3121: 2039: 1690: 1079:
which reacts strongly with water, producing hydrogen, and which is among the more common fission products.
519: 474: 2031: 1363:
Tristructural-isotropic (TRISO) fuel is a type of micro-particle fuel. A particle consists of a kernel of
669: 490:
fuels except for Japan. Normally, with the fuel being changed every three years or so, about half of the
6462: 6418: 6331: 6303: 6260: 6225: 6063: 5890: 5828: 5653: 5557: 5443: 4911: 4611: 4510: 3769: 3657: 1551:
production, without the high temperatures seen in ceramic, cylindrical fuel. It is currently used in the
1480: 992: 750: 459: 3484: 3463:
Non-Destructive Examination of SiC Nuclear Fuel Shell using X-Ray Fluorescence Microtomography Technique
3177:(2001) 413–422. A Laser Flash Apparatus for Thermal Diffusivity and Specific Heat Capacity Measurements 595:. It can be made inherently safe as thermal expansion of the metal alloy will increase neutron leakage. 6467: 6252: 6111: 5790: 5308: 5265: 5117: 3311: 3225: 2756: 2210:
contains 82 of these units (in addition to its 3 main RTGs for power generation). The Huygens probe to
1224: 700: 173:
is much higher than that of the metal and because it cannot burn, being already in the oxidized state.
3157: 3057:"Neutronic Analysis of SiC/SiC Sandwich Cladding Design in APR-1400 under Normal Operation Conditions" 6406: 6088: 5697: 5480: 4416: 4274: 3936: 3881: 3861: 3856: 2653: 2362: 2198:
Their function is to provide highly localised heating of sensitive equipment (such as electronics in
1556: 1539: 1379: 1146: 528: 524: 1636:. In fuel which has been used at high temperature in power reactors it is common for the fuel to be 1602:
for a considerably longer period than the existing fuel designs and prevent or delay the release of
6336: 6178: 6078: 5990: 5199: 5085: 5045: 4857: 4345: 3689: 2184: 2178: 1581: 1049: 623: 3583:
https://pubs.aip.org/aip/adv/article/9/7/075112/22584/Reactor-Monte-Carlo-RMC-model-validation-and
2537:(half life around two years) that are present in "fresh" spent nuclear fuel in non-trivial amounts 1231:
was originally designed for non-enriched fuel but since switched to slightly enriched fuel with a
6241: 6208: 6183: 5797: 5574: 5380: 5303: 5260: 5243: 5204: 5127: 4567: 4505: 4490: 3886: 3866: 2730: 2390: 768: 692: 125:. In that case, the neutrons released go on to split more nuclei. This creates a self-sustaining 6166: 3508: 2820: 6452: 6073: 5360: 4904: 4018: 3914: 3841: 3831: 3712: 3650: 2936:
Alhattawi, Nouf T.; Alrwashdeh, Mohammad; Alameri, Saeed A.; Alaleeli, Maitha M. (2023-08-15).
1304:
designs operated at 24.8 and 27 bars (24.5 and 26.6 atm). Magnox alloy consists mainly of
1164: 764: 58: 3462: 2511:). Besides those well-known middle to long-lived radioactive caesium isotopes there are other 903:
are capable of retaining the fuel mixture for significantly extended periods, which increases
771:. While the neutron cross section of carbon is low, during years of burnup, the predominantly 6367: 6103: 6058: 5520: 5448: 5375: 5370: 5335: 5122: 5090: 4877: 4804: 3958: 3749: 3552:"The Use of Molybdenum-Based Ceramic-Metal (CerMet) Fuel for the Actinide Management in LWRs" 3528: 2453: 1584:(LOCA) or reaction-initiated accidents (RIA). These concerns became more prominent after the 1552: 1542:
uses plate-type fuel in a clover leaf arrangement. The blue glow around the core is known as
1535: 1408: 1176: 980: 483: 455: 447: 3467: 2345:
required for the D-T reaction, and the power density will be 2500 times lower than for D-T.
1331:
It reacts with water, preventing long-term storage of spent fuel under water - such as in a
645:. Uranium nitride has a very high melting point. This fuel has the disadvantage that unless 180:
The thermal conductivity of zirconium metal and uranium dioxide as a function of temperature
6278: 6053: 6038: 5355: 5313: 5149: 5055: 4983: 4406: 4379: 4357: 4264: 4197: 3946: 3876: 3821: 3430: 2949: 2910: 2080: 1885: 1855: 1704: 1422:. Currently, TRISO fuel compacts are being used in some experimental reactors, such as the 1340: 715: 696: 603:
Molten plutonium, alloyed with other metals to lower its melting point and encapsulated in
588: 494:
is 'burned' in the reactor, providing about one third of the total energy. It behaves like
451: 266: 98: 1430:
in Japan. In the United States, spherical fuel elements utilizing a TRISO particle with a
929:, is that it will quickly decay to the highly chemically reactive, long lived radioactive 672:
to enable recovery of the N. It is likely that if the fuel was processed and dissolved in
8: 6377: 6188: 5973: 5567: 5435: 5413: 5238: 5095: 4862: 4824: 4657: 4485: 4428: 4350: 4323: 4008: 3871: 3846: 2512: 2428: 2203: 2059: 1914: 1589: 1543: 1301: 960: 900: 691:
All nitrogen-fluoride compounds are volatile or gaseous at room temperature and could be
681: 677: 641:
produces. One advantage is that uranium nitride has a better thermal conductivity than UO
574:. TRIGA fuel was originally designed to use highly enriched uranium, however in 1978 the 536: 436: 118: 68: 34: 3434: 2953: 2914: 6472: 6357: 6093: 5930: 5857: 5668: 5318: 5288: 5272: 5255: 4899: 4789: 4737: 4687: 4634: 4465: 4443: 4433: 4269: 3630: 3446: 3242: 2423: 1615: 1396: 1344: 1325: 1213: 1024: 1008: 478: 348: 274: 84: 668:
needed for such a fuel would be so expensive it is likely that the fuel would require
5425: 5218: 5105: 5080: 5018: 4975: 4819: 4814: 4809: 4652: 4574: 4367: 4192: 4053: 4013: 3983: 3968: 3941: 3851: 3754: 3694: 3684: 3450: 3347: 3275: 3004: 2967: 2678: 2635: 2570: 2418: 2311: 2114: 1720: 1598:
The aim of the research is to develop nuclear fuels that can tolerate loss of active
1289: 1220: 486:. All other reprocessing nations have long had nuclear weapons from military-focused 142: 2783: 1414:
TRISO fuel particles were originally developed in the United Kingdom as part of the
6273: 5328: 5293: 5050: 5040: 4928: 4916: 4757: 4752: 4742: 4732: 4727: 4526: 4500: 4495: 4475: 4460: 4301: 4291: 4071: 3998: 3734: 3438: 3409: 3101: 3068: 2994: 2957: 2918: 2881: 2845: 2779: 2625: 2558: 2398: 1716: 1657: 1621: 1383: 1285: 1243: 1180: 841:
discharged from reactors where it was used as a moderator presents the same issue.
838: 658: 634: 567: 487: 432: 263: 91: 54: 3546:
Thoria-based Cermet Nuclear Fuel: Sintered Microsphere Fabrication by Spray Drying
3442: 3413: 3353:
The Evolution of CANDU Fuel Cycles and their Potential Contribution to World Peace
3330: 2962: 2937: 2922: 26: 6171: 6131: 5585: 5399: 5323: 5298: 5144: 4937: 4839: 4829: 4794: 4672: 4662: 4555: 4536: 4450: 4217: 4132: 3988: 3978: 3963: 3921: 3826: 3776: 3727: 3637: 3496: 3474: 3365: 2770:
Price, M. S. T. (2012). "The Dragon Project origins, achievements and legacies".
2223: 1773: 1708: 1664: 1661: 1464: 1438: 1431: 1387: 1371: 1364: 1332: 1293: 1228: 1154: 1053: 904: 896: 746: 734: 730: 592: 559: 540: 428: 344: 189: 130: 76: 5663: 3382: 3090:"Chromium-Coated Zirconium Cladding Neutronics Impact for APR-1400 Reactor Core" 2870:"SiC and FeCrAl as Potential Cladding Materials for APR-1400 Neutronic Analysis" 611:
in the 1960s. LAMPRE experienced three separate fuel failures during operation.
6126: 6121: 6116: 5866: 5773: 5742: 5724: 5248: 5154: 5100: 5065: 4998: 4945: 4799: 4692: 4677: 4667: 4531: 4480: 4455: 4259: 4224: 4157: 4147: 4063: 4043: 4038: 4023: 3993: 3973: 3931: 3909: 3891: 3791: 3781: 3717: 3387: 3192: 2999: 2986: 2834:"Development Status of Accident-tolerant Fuel for Light WaterReactors in Korea" 2433: 2023: 1984: 1976: 1970: 1645: 1633: 1468: 1415: 1297: 1281: 996: 879: 837:
concentration will be too low for use in nuclear batteries without enrichment.
571: 197: 150: 134: 126: 80: 43: 39: 6146: 3216: 2938:"Sensitivity neutronic analysis of accident tolerant fuel concepts in APR1400" 2850: 2833: 2757:"Dual Fluid Reactor – Variant with Liquid Metal Fissionable Material (DFR/ M)" 141:
and some other isotopes are used to produce small amounts of nuclear power by
6446: 6311: 5602: 5008: 4849: 4579: 4438: 4398: 4362: 4318: 4244: 4207: 4125: 4048: 3816: 3811: 3764: 3744: 3008: 2971: 2639: 2376: 2095: 2027: 2016: 1988: 1906: 1732: 1445:, and Kairos Power is developing a 140 MWE nuclear reactor that uses TRISO. 1375: 1258: 1200: 440: 193: 170: 138: 114: 3146:
Armin F. Lietzke (Jan 1970) Simplified Analysis of Nuclear Fuel Pin Swelling
2054: 121:, they frequently split, creating two daughter nuclei and two or three more 5877: 5013: 4955: 4882: 4834: 4335: 4279: 4229: 4033: 3806: 3739: 2229: 2211: 2195:
of plutonium-238. This heat is given off continuously for several decades.
2143: 2119: 2088: 2035: 1980: 1641: 1603: 1503: 1472: 1073: 943: 358:
during normal operation in the core environment, a small percentage of the
355: 102: 959:(LFTR), this fuel salt is also the coolant; in other designs, such as the 562:) reactors. The TRIGA reactor uses UZrH fuel, which has a prompt negative 169:; the oxides are used rather than the metals themselves because the oxide 6288: 5935: 5525: 5032: 5003: 4340: 4306: 4180: 4170: 4113: 4096: 4081: 4028: 3926: 3352: 2699:"LAHDRA: Los Alamos Historical Document Retrieval and Assessment Project" 2199: 2084: 1724: 1217: 1159: 1131: 931: 673: 650: 646: 297: 110: 106: 3151: 3023:"State-of-the-Art Report on Light Water Reactor Accident-Tolerant Fuels" 1527: 1486: 49: 5641: 4374: 4296: 4234: 4202: 4142: 3836: 3285: 3106: 3089: 3073: 3056: 2886: 2869: 2630: 2613: 2574: 2012: 1123: 884: 2797: 607:, was tested in two experimental reactors, LAMPRE I and LAMPRE II, at 535:
as part of a closed nuclear fuel cycle. Metal fuels have been used in
450:. Reprocessing of commercial nuclear fuel to make MOX was done in the 320:
which is then converted by heating with hydrogen or ammonia to form UO
6283: 5646: 5636: 4764: 4717: 4682: 4603: 4384: 4311: 4185: 4165: 4137: 4076: 2233: 2000: 1728: 1653: 1649: 1629: 1309: 1305: 1187: 1068:
with small amount of aluminium and other metals for the now-obsolete
1065: 1045: 867: 654: 424: 340: 329: 6141: 3522:"A Review of Fifty Years of Space Nuclear Fuel Development Programs" 2384: 1987:
radiation that would require heavy shielding. Radioisotopes such as
498:
and its fission releases a similar amount of energy. The higher the
6372: 6015: 6010: 5950: 5619: 5547: 5530: 5515: 5490: 5233: 4722: 4120: 4101: 4086: 3786: 2245: 2241: 1712: 1442: 1419: 1057: 1034: 1012: 665: 604: 532: 411: 255: 94: 2935: 2832:
Kim, Hyun-Gil; Yang, Jae-Ho; Kim, Weon-Ju; Koo, Yang-Hyun (2016).
1411:
that is attempting to reach even higher HTGR outlet temperatures.
6341: 6293: 6156: 6136: 5535: 5510: 4950: 4781: 4769: 4747: 4712: 4254: 3796: 3261: 2370: 2271: 2262: 2237: 2004: 1893: 1755: 1740: 1684: 1625: 1599: 1476: 1317: 1313: 1208: 1076: 619: 332:
the solid. The aim is to form a dense solid which has few pores.
270: 176: 162: 122: 72: 20: 3609: 3055:
Alaleeli, Maithah; Alameri, Saeed; Alrwashdeh, Mohammad (2022).
1227:
in Argentina, a similar design to the CANDU but built by German
5945: 5940: 5920: 5900: 5885: 5768: 5505: 5485: 5453: 3801: 3722: 3673: 2337: 2322: 2298: 2280: 2207: 2008: 1996: 1992: 1493:
1 – distancing armature; 2 – fuel rods shell; 3 – fuel tablets.
1423: 1392: 1277: 1272: 1150: 1069: 499: 2113:
has become the most widely used fuel for RTGs, in the form of
6362: 6319: 5982: 5838: 5631: 5495: 2330: 1736: 1191:
CANDU fuel bundles, each about 50 cm long, 10 cm in diameter.
1061: 862: 685: 555: 166: 3485:
LANL webpage showing various stages of TRISO fuel production
2557: 2164: 1700:
new material properties, cracking, and fission gas release.
5843: 5732: 5542: 5500: 4175: 4108: 4091: 3759: 3191:. World Nuclear Association. September 2009. Archived from 2329:
Another potential aneutronic fusion reaction is the proton-
2192: 2188: 1507: 1453: 638: 362:
in the fuel absorbs excess neutrons and is transmuted into
1407:(VHTRs), one of the six classes of reactor designs in the 5816: 5680: 3642: 3490:
Method to calculate the temperature profile in TRISO fuel
3054: 1374:
or UCO), which has been coated with four layers of three
1137:. Designed and built by the Babcock & Wilcox Company. 729:
is proposed for use in particularly long lived low power
703:) then fluoride volatility could be used to separate the 454:(England). As of 2015, MOX fuel is made in France at the 3420: 2049: 1758:
of the fuel can be related to the thermal conductivity.
1355: 1320:
capture cross-section, but has two major disadvantages:
882:
and is produced both directly and as a decay product of
2612:
Bulatov, G. S.; German, Konstantin E. (December 2022).
1788:) is related to the conductivity of the perfect phase ( 1670: 1572:
bonding is used to reduce the temperature of the fuel.
1561:
University of Massachusetts Lowell Radiation Laboratory
402:
at the end of the 18 to 24 month fuel exposure period.
117:. When the unstable nuclei of these atoms are hit by a 3128:. U.S. Nuclear Regulatory Commission (NRC). 2021-06-23 2985:
Alrwashdeh, Mohammad; Alameri, Saeed A. (2023-05-08).
946:
and can be taken up by organisms in their metabolism.
394:
at initiation of the fuel use to a ratio of about 70%
2900: 1403:(HTGRs). These are also the basic reactor designs of 695:
from the other gaseous products (including recovered
637:
is often the fuel of choice for reactor designs that
558:
fuel is used in TRIGA (Training, Research, Isotopes,
339:
of uranium dioxide is very low compared with that of
3331:
Links to BWR photos from the nuclear tourist webpage
2414:
Lists of nuclear disasters and radioactive incidents
2352: 1797:, no porosity) by the following equation. Note that 1280:(magnesium non-oxidising) reactors are pressurised, 986: 1779:
Then the thermal conductivity of the porous phase (
1592:(LWR) fuels performance under accident conditions. 1312:and other metals—used in cladding unenriched 1118:
NRC photo of fresh fuel assemblies being inspected.
1106:
NRC photo of fresh fuel pellets ready for assembly.
161:For fission reactors, the fuel (typically based on 19:"Fuel rod" redirects here. Not to be confused with 5366:Blue Ribbon Commission on America's Nuclear Future 3383:CANDU Fuel and Reactor Specifics (Nuclear Tourist) 1677:Behavior of nuclear fuel during a reactor accident 657:would be generated from the nitrogen by the (n,p) 3399: 3087: 2984: 2867: 2172: 1727:), the precipitation of fission products such as 1324:It limits the maximum temperature, and hence the 1141: 1094:(NRC) photo of unirradiated (fresh) fuel pellets. 626:than oxide fuels and are not understood as well. 6444: 3088:Alrwashdeh, Mohammad; Alameri, Saeed A. (2022). 2868:Alrwashdeh, Mohammad; Alameri, Saeed A. (2022). 2409:Integrated Nuclear Fuel Cycle Information System 2287: 1956:For details see K. Shinzato and T. Baba (2001). 1347:facilities were required to address this issue. 1195: 865:gas, which normally acts as a neutron absorber ( 390:accumulates the chain reaction shifts from pure 3588:List of reactors at INL and picture of ATR core 2305: 2251: 1350: 782:will undergo neutron capture to produce stable 3139: 2489:split will result in roughly 35 grams each of 2228:Fusion fuels are fuels to use in hypothetical 2191:of heat each, derived from the decay of a few 1685:Fuel behavior and post-irradiation examination 1620:Used nuclear fuel is a complex mixture of the 75:. Heat is created when nuclear fuel undergoes 6069:Small sealed transportable autonomous (SSTAR) 4619: 3658: 2831: 2611: 1801:is a term for the shape factor of the holes. 1170: 749:is in the form of pin-type fuel elements for 1441:solid solution kernel are being used in the 477:to form an international partnership to see 97:elements that are capable of undergoing and 3171:Journal of Thermal Analysis and Calorimetry 2991:Arabian Journal for Science and Engineering 1959: 1011:(DFR) has a variant DFR/m which works with 680:with N would be diluted with the common N. 4626: 4612: 3665: 3651: 2478:are roughly 6%, meaning every kilogram of 1575: 1559:, and the nuclear research reactor at the 1002: 614: 564:fuel temperature coefficient of reactivity 458:, and to a lesser extent in Russia at the 3105: 3072: 2998: 2961: 2885: 2849: 2629: 1428:high-temperature engineering test reactor 1399:(PBR). Both of these reactor designs are 1249: 53:Close-up of a replica of the core of the 5981: 3276:Picture showing handling of a PWR bundle 2589:"Uranium Fuel Cycle | nuclear-power.com" 2163: 2053: 1859:and determine the thermal conductivity. 1526: 1485: 1452: 1354: 1257: 1186: 1122: 1018: 1015:liquid metal alloys, e.g. U-Cr or U-Fe. 979:(72-16-12-0.4 mol%). It had a peak 466:fast breeder reactors and reprocessing. 382:has a higher neutron cross section than 175: 48: 33: 25: 3480:Description of TRISO fuel for "pebbles" 1964: 815:produced by using uranium nitrate, the 527:, uranium silicon, uranium molybdenum, 254:This is then converted by heating with 6445: 5996:Liquid-fluoride thorium reactor (LFTR) 4633: 4285:Integrated gasification combined cycle 2683:: CS1 maint: archived copy as title ( 2087:from a radioisotope using an array of 1842:using the traditional methods such as 1386:(PyC), followed by a ceramic layer of 1378:materials deposited through fluidized 649:was used (in place of the more common 147:radioisotope thermoelectric generators 6238: 6001:Molten-Salt Reactor Experiment (MSRE) 5410: 5397: 4607: 4329:Radioisotope thermoelectric generator 4004:Quantum chromodynamics binding energy 3646: 2863: 2861: 2769: 2728: 2077:radioisotope thermoelectric generator 2071:Radioisotope thermoelectric generator 2050:Radioisotope thermoelectric generator 1609: 1566: 6425: 5398: 4562: 3606:"General Atomics TRIGA fuel website" 3308:"Picture of a "canned" BWR assembly" 3162: 2044:radioisotope piezoelectric generator 1765:is the bulk density of the fuel and 1715:and burn-up. The burn-up results in 1671:Oxide fuel under accident conditions 6006:Integral Molten Salt Reactor (IMSR) 4586: 4471:World energy supply and consumption 3122:"Backgrounder on Radioactive Waste" 1749:International Nuclear Safety Center 598: 13: 5815: 4966:Positron-emission tomography (PET) 3631:Advanced fusion fuels presentation 3576: 3509:Conceptual Design of QUADRISO Fuel 3502: 3015: 2858: 2838:Nuclear Engineering and Technology 2825: 2569:(4th ed.). pp. 338–341. 1840:measuring the thermal conductivity 1772:is the theoretical density of the 1588:in Japan, in particular regarding 1586:Fukushima Daiichi nuclear disaster 1522: 740: 629: 374:which in turn rapidly decays into 184: 16:Material fuelling nuclear reactors 14: 6484: 4989:Neutron capture therapy of cancer 4888:Radioisotope thermoelectric (RTG) 3210: 2404:Global Nuclear Energy Partnership 2187:(RHU) typically provides about 1 987:Aqueous solutions of uranyl salts 942:, which behaves similar to other 861:A liquid core is able to release 471:Global Nuclear Energy Partnership 196:solid. It can be made by heating 90:Most nuclear fuels contain heavy 6424: 6413: 6412: 6400: 6089:Fast Breeder Test Reactor (FBTR) 4585: 4573: 4561: 4550: 4549: 3514: 3326:Physical description of LWR fuel 3258:"Picture of a PWR fuel assembly" 2383: 2369: 2355: 1735:due to fission products such as 1448: 1246:higher than in natural uranium. 1111: 1099: 1084: 582: 165:) is usually based on the metal 5178:Historical stockpiles and tests 3598: 3423:Nuclear Science and Engineering 3181: 3168:K. Shinzato and T. Baba (2001) 3114: 3081: 3048: 3039: 2978: 2929: 2894: 2814: 2790: 2784:10.1016/j.nucengdes.2011.12.024 2711:from the original on 2016-04-15 2666:from the original on 2016-10-21 2217: 1731:, the formation of fission gas 957:liquid fluoride thorium reactor 949: 844: 545:Experimental Breeder Reactor II 484:nonproliferation considerations 79:. Nuclear fuel has the highest 6079:Energy Multiplier Module (EM2) 4961:Single-photon emission (SPECT) 3624: 3359:"CANDU Fuel-Management Course" 3221:by Argonne National Laboratory 2763: 2749: 2731:"Liquid Fuel Nuclear Reactors" 2722: 2691: 2646: 2618:Journal of Nuclear Engineering 2605: 2581: 2551: 2446: 2173:Radioisotope heater unit (RHU) 1640:; often the fuel will contain 1513: 1502:RBMK reactor fuel was used in 1405:very-high-temperature reactors 1296:(i.e. unenriched) as fuel and 1266: 1142:Pressurized water reactor fuel 856:Molten-Salt Reactor Experiment 609:Los Alamos National Laboratory 1: 6407:Nuclear technology portal 3443:10.1080/00295639.2019.1672511 3414:10.1016/j.anucene.2021.108551 3393: 3336: 2963:10.1016/j.jnucmat.2023.154487 2923:10.1016/j.jnucmat.2013.12.005 2544: 2288:Second-generation fusion fuel 2139:U.S. Atomic Energy Commission 1401:high temperature gas reactors 1201:Canada deuterium uranium fuel 1196:Canada deuterium uranium fuel 1092:Nuclear Regulatory Commission 1048:-resistant material with low 550: 513: 475:George W. Bush administration 156: 6269:Field-reversed configuration 5879:Uranium Naturel Graphite Gaz 3282:"Mitsubishi nuclear fuel Co" 2942:Journal of Nuclear Materials 2903:Journal of Nuclear Materials 2735:Forum on Physics and Society 2306:Third-generation fusion fuel 2252:First-generation fusion fuel 2040:optoelectric nuclear battery 2030:. These designs include the 1952:is the thickness of the disc 1691:Post Irradiation Examination 1497: 1491:RBMK reactor fuel rod holder 1351:Tristructural-isotropic fuel 1064:in modern constructions, or 993:aqueous homogeneous reactors 745:Much of what is known about 7: 6226:Aircraft Reactor Experiment 5411: 5173:States with nuclear weapons 3468:GT-MHR fuel compact process 3388:Candu Fuel Rods and Bundles 3343:CANDU Fuel pictures and FAQ 3300: 3231: 2567:Chemical Process Industries 2348: 2301:(14.68 MeV) + He (3.67 MeV) 2265:(14.07 MeV) + He (3.52 MeV) 2168:Photo of a disassembled RHU 1481:Argonne National Laboratory 473:was a U.S. proposal in the 460:Mining and Chemical Combine 10: 6489: 6239: 6064:Liquid-metal-cooled (LMFR) 5188:Tests in the United States 3672: 3219:Plutonium Fuel Fabrication 3000:10.1007/s13369-023-07905-7 2309: 2274:(2.45 MeV) + He (0.82 MeV) 2221: 2176: 2068: 2032:direct charging generators 1968: 1711:is low; it is affected by 1688: 1674: 1613: 1270: 1225:Atucha nuclear power plant 1171:Boiling water reactor fuel 1022: 751:liquid metal fast reactors 409: 378:. The small percentage of 101:. The three most relevant 99:sustaining nuclear fission 18: 6394: 6350: 6302: 6259: 6249: 6201: 6189:Stable Salt Reactor (SSR) 6102: 6084:Reduced-moderation (RMWR) 6049: 6032: 5972: 5899: 5891:Advanced gas-cooled (AGR) 5865: 5856: 5808: 5788: 5741: 5723: 5679: 5584: 5566: 5434: 5421: 5406: 5393: 5348: 5281: 5226: 5217: 5165: 5073: 5064: 5031: 4974: 4936: 4927: 4848: 4780: 4703: 4645: 4641: 4545: 4519: 4395: 4275:Fossil fuel power station 4243: 4156: 4062: 3937:Electric potential energy 3902: 3882:Thermodynamic temperature 3862:Thermodynamic free energy 3857:Thermodynamic equilibrium 3703: 3680: 2851:10.1016/j.net.2015.11.011 2363:Nuclear technology portal 2283:(3.02 MeV) + H (1.01 MeV) 2224:Fusion power § Fuels 2083:which converts heat into 1557:Idaho National Laboratory 1540:Idaho National Laboratory 1380:chemical vapor deposition 1147:Pressurized water reactor 995:(AHRs) use a solution of 576:U.S. Department of Energy 529:uranium zirconium hydride 462:, India and Japan. China 71:to produce heat to power 6094:Dual fluid reactor (DFR) 5710:Steam-generating (SGHWR) 5046:Electron-beam processing 4346:Concentrated solar power 3402:Annals of Nuclear Energy 2439: 2185:radioisotope heater unit 2179:Radioisotope heater unit 1960:Radioisotope decay fuels 1582:loss-of-coolant accident 1463:In QUADRISO particles a 1409:Generation IV initiative 1050:absorption cross section 129:that is controlled in a 6209:Organic nuclear reactor 5381:Nuclear power phase-out 5304:Nuclear decommissioning 5244:Reactor-grade plutonium 4994:Targeted alpha-particle 4873:Accidents and incidents 3887:Volume (thermodynamics) 3867:Thermodynamic potential 3770:Mass–energy equivalence 2391:Renewable energy portal 2232:reactors. They include 1719:being dissolved in the 1576:Accident tolerant fuels 1465:burnable neutron poison 1003:Liquid metals or alloys 878:is the strongest known 793:as well as radioactive 769:gas-cooled fast reactor 615:Non-oxide ceramic fuels 296:. This is then heated ( 273:to form a solid called 133:, or uncontrolled in a 3842:Quantum thermodynamics 3832:Laws of thermodynamics 3713:Conservation of energy 3458:TRISO fuel descripciĂłn 3348:Basics on CANDU design 3189:"Nuclear Fusion Power" 2454:fission product yields 2169: 2066: 1854:, it is common to use 1547: 1494: 1460: 1360: 1308:with small amounts of 1263: 1250:Less-common fuel forms 1192: 1177:boiling water reactors 1165:hydrogen embrittlement 1138: 765:Generation IV reactors 714:produced by producing 693:fractionally distilled 405: 262:. It can be made from 181: 69:nuclear power stations 61: 59:Institut Laue-Langevin 46: 31: 5371:Anti-nuclear movement 3959:Interatomic potential 3750:Energy transformation 2214:contains 35 devices. 2167: 2057: 1634:transplutonium metals 1553:Advanced Test Reactor 1536:Advanced Test Reactor 1530: 1489: 1456: 1358: 1261: 1190: 1126: 1019:Common physical forms 981:operating temperature 701:use it as a moderator 653:), a large amount of 541:fast breeder reactors 456:Marcoule Nuclear Site 354:While exposed to the 179: 52: 37: 29: 6458:Nuclear reprocessing 6279:Reversed field pinch 6074:Traveling-wave (TWR) 5558:Supercritical (SCWR) 5056:Gemstone irradiation 4407:Efficient energy use 4380:Airborne wind energy 4358:Solar thermal energy 4265:Electricity delivery 3877:Thermodynamic system 3822:Irreversible process 3239:"NEI fuel schematic" 2340:+ B → 3 He (8.7 MeV) 2081:electrical generator 1965:Radioisotope battery 1886:thermal conductivity 1856:Laser Flash Analysis 1705:thermal conductivity 1506:-designed and built 1341:nuclear reprocessing 901:molten-salt reactors 858:from 1965 to 1969. 716:carbon tetrafluoride 697:uranium hexafluoride 589:fast-neutron reactor 537:light-water reactors 452:Sellafield MOX Plant 437:light water reactors 370:rapidly decays into 351:of a metal surface. 337:thermal conductivity 267:uranium hexafluoride 67:is material used in 30:Nuclear fuel process 5444:Aqueous homogeneous 5239:Reprocessed uranium 4912:Safety and security 4429:Energy conservation 4351:Photovoltaic system 4324:Nuclear power plant 4009:Quantum fluctuation 3872:Thermodynamic state 3847:Thermal equilibrium 3435:2020NSE...194..163A 2954:2023JNuM..58254487A 2915:2014JNuM..448..374Z 2729:Hargraves, Robert. 2513:isotopes of caesium 2429:Reprocessed uranium 1915:thermal diffusivity 1590:light-water reactor 1544:Cherenkov radiation 1302:reinforced concrete 1029:Uranium dioxide (UO 961:stable salt reactor 682:Fluoride volatility 149:and other types of 119:slow-moving neutron 6463:Nuclear technology 6358:Dense plasma focus 5273:Actinide chemistry 4738:Isotope separation 4635:Nuclear technology 4466:Sustainable energy 4444:Energy development 4434:Energy consumption 4270:Energy engineering 3636:2016-04-15 at the 3495:2016-04-15 at the 3473:2006-03-06 at the 3107:10.3390/en15218008 3074:10.3390/en15145204 2887:10.3390/en15103772 2631:10.3390/jne3040022 2424:Nuclear fuel cycle 2170: 2079:(RTG) is a simple 2067: 2065:RTGs before launch 2019:have been tested. 1616:Spent nuclear fuel 1610:Spent nuclear fuel 1567:Sodium-bonded fuel 1548: 1495: 1461: 1397:pebble-bed reactor 1361: 1326:thermal efficiency 1264: 1242:content about 0.1 1214:neutron absorption 1193: 1181:density variations 1139: 1025:Active fuel length 1009:dual fluid reactor 676:that the nitrogen 520:Clementine reactor 479:spent nuclear fuel 439:which predominate 349:galvanic corrosion 275:ammonium diuranate 182: 85:nuclear fuel cycle 62: 47: 38:A graph comparing 32: 6468:Nuclear chemistry 6440: 6439: 6390: 6389: 6386: 6385: 6337:Magnetized-target 6234: 6233: 6197: 6196: 6028: 6027: 6024: 6023: 5968: 5967: 5852: 5851: 5784: 5783: 5389: 5388: 5344: 5343: 5213: 5212: 5200:Weapon-free zones 5027: 5026: 5019:Radiopharmacology 4601: 4600: 4368:Solar power tower 4014:Quantum potential 3852:Thermal reservoir 3755:Energy transition 2772:Nucl. Eng. Design 2419:Nuclear fuel bank 2312:Aneutronic fusion 2115:plutonium dioxide 1747:According to the 1458:QUADRISO Particle 1426:in China and the 1262:A Magnox fuel rod 1244:percentage points 1128:PWR fuel assembly 735:diamond batteries 731:nuclear batteries 539:and liquid metal 525:uranium zirconium 347:processes to the 269:by reacting with 143:radioactive decay 6480: 6428: 6427: 6416: 6415: 6405: 6404: 6403: 6315: 6274:Levitated dipole 6244: 6236: 6235: 6184:Helium gas (GFR) 6047: 6046: 6042: 5979: 5978: 5863: 5862: 5813: 5812: 5806: 5805: 5801: 5800: 5582: 5581: 5578: 5577: 5416: 5408: 5407: 5400:Nuclear reactors 5395: 5394: 5294:High-level (HLW) 5224: 5223: 5071: 5070: 5051:Food irradiation 5041:Atomic gardening 4934: 4933: 4917:Nuclear meltdown 4743:Nuclear material 4733:Fissile material 4728:Fertile material 4643: 4642: 4628: 4621: 4614: 4605: 4604: 4589: 4588: 4577: 4565: 4564: 4553: 4552: 4527:Carbon footprint 4461:Renewable energy 4302:Hydroelectricity 4292:Geothermal power 3735:Energy condition 3667: 3660: 3653: 3644: 3643: 3620: 3618: 3617: 3608:. Archived from 3572: 3570: 3569: 3563: 3557:. Archived from 3556: 3542: 3540: 3539: 3533: 3527:. Archived from 3526: 3454: 3417: 3379: 3377: 3376: 3370: 3364:. Archived from 3363: 3322: 3320: 3319: 3310:. Archived from 3296: 3294: 3293: 3284:. Archived from 3272: 3270: 3269: 3260:. Archived from 3253: 3251: 3250: 3241:. Archived from 3222: 3204: 3203: 3201: 3200: 3185: 3179: 3166: 3160: 3155: 3149: 3143: 3137: 3136: 3134: 3133: 3118: 3112: 3111: 3109: 3085: 3079: 3078: 3076: 3052: 3046: 3043: 3037: 3036: 3034: 3033: 3027:www.oecd-nea.org 3019: 3013: 3012: 3002: 2982: 2976: 2975: 2965: 2933: 2927: 2926: 2909:(1–3): 374–379. 2898: 2892: 2891: 2889: 2865: 2856: 2855: 2853: 2829: 2823: 2818: 2812: 2811: 2809: 2808: 2794: 2788: 2787: 2767: 2761: 2760: 2753: 2747: 2746: 2744: 2742: 2726: 2720: 2719: 2717: 2716: 2710: 2703: 2695: 2689: 2688: 2682: 2674: 2672: 2671: 2665: 2658: 2650: 2644: 2643: 2633: 2609: 2603: 2602: 2600: 2599: 2585: 2579: 2578: 2559:R. Norris Shreve 2555: 2538: 2536: 2534: 2533: 2525: 2523: 2522: 2510: 2508: 2507: 2499: 2497: 2496: 2488: 2486: 2485: 2477: 2475: 2474: 2466: 2464: 2463: 2450: 2399:Fissile material 2393: 2388: 2387: 2379: 2374: 2373: 2365: 2360: 2359: 2358: 2325:+ He (12.86 MeV) 2160: 2158: 2157: 2150: 2149: 2136: 2134: 2133: 2126: 2125: 2112: 2110: 2109: 2102: 2101: 2003:have been used. 1717:fission products 1658:fission products 1622:fission products 1384:pyrolytic carbon 1370:fuel (sometimes 1241: 1239: 1238: 1115: 1103: 1088: 1054:thermal neutrons 941: 938: 937: 928: 926: 925: 917: 915: 914: 894: 891: 890: 877: 874: 873: 839:Nuclear graphite 836: 834: 833: 825: 823: 822: 814: 812: 811: 803: 801: 800: 792: 790: 789: 781: 779: 778: 728: 726: 725: 713: 711: 710: 599:Molten plutonium 509: 505: 497: 493: 488:research reactor 464:plans to develop 433:depleted uranium 423:, is a blend of 401: 397: 393: 389: 385: 381: 377: 373: 369: 365: 361: 311: 310: 309: 295: 250: 211: 210: 209: 151:atomic batteries 103:fissile isotopes 55:research reactor 6488: 6487: 6483: 6482: 6481: 6479: 6478: 6477: 6443: 6442: 6441: 6436: 6401: 6399: 6382: 6346: 6313: 6298: 6255: 6245: 6240: 6230: 6193: 6098: 6043: 6036: 6035: 6020: 5964: 5895: 5870: 5848: 5820: 5802: 5795: 5794: 5793: 5780: 5746: 5737: 5719: 5684: 5675: 5589: 5572: 5571: 5570: 5562: 5476:Natural fission 5430: 5429: 5417: 5412: 5402: 5385: 5361:Nuclear weapons 5340: 5299:Low-level (LLW) 5277: 5209: 5161: 5060: 5023: 4970: 4923: 4844: 4776: 4699: 4637: 4632: 4602: 4597: 4541: 4537:Waste-to-energy 4515: 4451:Energy security 4397: 4391: 4247: 4239: 4218:Natural uranium 4152: 4133:Mechanical wave 4064:Energy carriers 4058: 3898: 3827:Isolated system 3705: 3699: 3676: 3671: 3638:Wayback Machine 3627: 3615: 3613: 3604: 3601: 3579: 3577:Plate type fuel 3567: 3565: 3561: 3554: 3550: 3537: 3535: 3531: 3524: 3520: 3517: 3505: 3497:Wayback Machine 3475:Wayback Machine 3396: 3374: 3372: 3368: 3361: 3357: 3339: 3317: 3315: 3306: 3303: 3291: 3289: 3280: 3267: 3265: 3256: 3248: 3246: 3237: 3234: 3217: 3213: 3208: 3207: 3198: 3196: 3187: 3186: 3182: 3167: 3163: 3156: 3152: 3144: 3140: 3131: 3129: 3120: 3119: 3115: 3086: 3082: 3053: 3049: 3044: 3040: 3031: 3029: 3021: 3020: 3016: 2983: 2979: 2934: 2930: 2899: 2895: 2866: 2859: 2830: 2826: 2819: 2815: 2806: 2804: 2796: 2795: 2791: 2768: 2764: 2755: 2754: 2750: 2740: 2738: 2727: 2723: 2714: 2712: 2708: 2701: 2697: 2696: 2692: 2676: 2675: 2669: 2667: 2663: 2656: 2654:"Archived copy" 2652: 2651: 2647: 2610: 2606: 2597: 2595: 2587: 2586: 2582: 2556: 2552: 2547: 2542: 2541: 2532: 2530: 2529: 2528: 2527: 2521: 2519: 2518: 2517: 2516: 2506: 2504: 2503: 2502: 2501: 2495: 2493: 2492: 2491: 2490: 2484: 2482: 2481: 2480: 2479: 2473: 2471: 2470: 2469: 2468: 2462: 2460: 2459: 2458: 2457: 2451: 2447: 2442: 2389: 2382: 2375: 2368: 2361: 2356: 2354: 2351: 2314: 2308: 2290: 2254: 2240:(H) as well as 2226: 2220: 2204:Cassini–Huygens 2181: 2175: 2156: 2154: 2153: 2152: 2148: 2146: 2145: 2144: 2142: 2132: 2130: 2129: 2128: 2124: 2122: 2121: 2120: 2118: 2108: 2106: 2105: 2104: 2100: 2098: 2097: 2096: 2094: 2073: 2052: 1973: 1967: 1962: 1944: 1926: 1905: 1874: 1821: 1812: 1796: 1787: 1774:uranium dioxide 1771: 1709:uranium dioxide 1693: 1687: 1679: 1673: 1665:crystal lattice 1662:uranium dioxide 1648:metals such as 1618: 1612: 1578: 1569: 1525: 1523:Plate-type fuel 1516: 1500: 1451: 1435: 1368: 1353: 1345:remote handling 1333:spent fuel pool 1328:, of the plant. 1294:natural uranium 1292:reactors using 1275: 1269: 1252: 1237: 1235: 1234: 1233: 1232: 1206: 1198: 1173: 1155:heat conduction 1153:gas to improve 1144: 1119: 1116: 1107: 1104: 1095: 1089: 1070:Magnox reactors 1035:zirconium alloy 1032: 1027: 1021: 1005: 989: 978: 974: 970: 952: 936: 934: 933: 932: 930: 924: 922: 921: 920: 919: 913: 911: 910: 909: 908: 905:fuel efficiency 897:fission product 889: 887: 886: 885: 883: 872: 870: 869: 868: 866: 847: 832: 830: 829: 828: 827: 821: 819: 818: 817: 816: 810: 808: 807: 806: 805: 799: 797: 796: 795: 794: 788: 786: 785: 784: 783: 777: 775: 774: 773: 772: 761: 747:uranium carbide 743: 741:Uranium carbide 724: 722: 721: 720: 719: 709: 707: 706: 705: 704: 644: 635:Uranium nitride 632: 630:Uranium nitride 617: 601: 593:minor actinides 585: 560:General Atomics 553: 516: 507: 503: 495: 491: 414: 408: 399: 395: 391: 387: 383: 379: 375: 371: 367: 363: 359: 345:electrochemical 327: 323: 319: 315: 308: 305: 304: 303: 301: 294: 290: 286: 282: 278: 261: 248: 244: 240: 236: 232: 228: 224: 220: 216: 208: 205: 204: 203: 201: 190:Uranium dioxide 187: 185:Uranium dioxide 159: 131:nuclear reactor 77:nuclear fission 24: 17: 12: 11: 5: 6486: 6476: 6475: 6470: 6465: 6460: 6455: 6438: 6437: 6435: 6434: 6422: 6410: 6395: 6392: 6391: 6388: 6387: 6384: 6383: 6381: 6380: 6375: 6370: 6368:Muon-catalyzed 6365: 6360: 6354: 6352: 6348: 6347: 6345: 6344: 6339: 6334: 6329: 6328: 6327: 6317: 6308: 6306: 6300: 6299: 6297: 6296: 6291: 6286: 6281: 6276: 6271: 6265: 6263: 6257: 6256: 6250: 6247: 6246: 6232: 6231: 6229: 6228: 6223: 6222: 6221: 6216: 6205: 6203: 6199: 6198: 6195: 6194: 6192: 6191: 6186: 6181: 6176: 6175: 6174: 6169: 6164: 6159: 6154: 6149: 6144: 6139: 6134: 6129: 6124: 6119: 6108: 6106: 6100: 6099: 6097: 6096: 6091: 6086: 6081: 6076: 6071: 6066: 6061: 6059:Integral (IFR) 6056: 6050: 6044: 6033: 6030: 6029: 6026: 6025: 6022: 6021: 6019: 6018: 6013: 6008: 6003: 5998: 5993: 5987: 5985: 5976: 5970: 5969: 5966: 5965: 5963: 5962: 5961: 5960: 5955: 5954: 5953: 5948: 5943: 5938: 5923: 5918: 5917: 5916: 5905: 5903: 5897: 5896: 5894: 5893: 5888: 5883: 5874: 5872: 5868: 5860: 5854: 5853: 5850: 5849: 5847: 5846: 5841: 5836: 5831: 5825: 5823: 5818: 5810: 5803: 5789: 5786: 5785: 5782: 5781: 5779: 5778: 5777: 5776: 5771: 5766: 5761: 5750: 5748: 5744: 5739: 5738: 5736: 5735: 5729: 5727: 5721: 5720: 5718: 5717: 5712: 5707: 5706: 5705: 5700: 5689: 5687: 5682: 5677: 5676: 5674: 5673: 5672: 5671: 5666: 5661: 5656: 5651: 5650: 5649: 5644: 5639: 5629: 5624: 5623: 5622: 5617: 5614: 5611: 5608: 5594: 5592: 5587: 5579: 5564: 5563: 5561: 5560: 5555: 5554: 5553: 5550: 5545: 5540: 5539: 5538: 5533: 5523: 5518: 5513: 5508: 5503: 5498: 5493: 5488: 5478: 5473: 5472: 5471: 5466: 5461: 5456: 5446: 5440: 5438: 5432: 5431: 5423: 5422: 5419: 5418: 5404: 5403: 5391: 5390: 5387: 5386: 5384: 5383: 5378: 5376:Uranium mining 5373: 5368: 5363: 5358: 5352: 5350: 5346: 5345: 5342: 5341: 5339: 5338: 5333: 5332: 5331: 5326: 5316: 5311: 5306: 5301: 5296: 5291: 5285: 5283: 5279: 5278: 5276: 5275: 5270: 5269: 5268: 5258: 5253: 5252: 5251: 5249:Minor actinide 5246: 5241: 5230: 5228: 5221: 5215: 5214: 5211: 5210: 5208: 5207: 5202: 5197: 5192: 5191: 5190: 5185: 5175: 5169: 5167: 5163: 5162: 5160: 5159: 5158: 5157: 5147: 5142: 5141: 5140: 5135: 5125: 5120: 5115: 5114: 5113: 5103: 5098: 5093: 5088: 5083: 5077: 5075: 5068: 5062: 5061: 5059: 5058: 5053: 5048: 5043: 5037: 5035: 5029: 5028: 5025: 5024: 5022: 5021: 5016: 5011: 5006: 5001: 4996: 4991: 4986: 4980: 4978: 4972: 4971: 4969: 4968: 4963: 4958: 4953: 4948: 4946:Autoradiograph 4942: 4940: 4931: 4925: 4924: 4922: 4921: 4920: 4919: 4909: 4908: 4907: 4897: 4896: 4895: 4885: 4880: 4875: 4870: 4865: 4860: 4854: 4852: 4846: 4845: 4843: 4842: 4837: 4832: 4827: 4822: 4817: 4812: 4807: 4802: 4797: 4792: 4786: 4784: 4778: 4777: 4775: 4774: 4773: 4772: 4767: 4762: 4761: 4760: 4755: 4740: 4735: 4730: 4725: 4720: 4715: 4709: 4707: 4701: 4700: 4698: 4697: 4696: 4695: 4690: 4680: 4675: 4670: 4668:Atomic nucleus 4665: 4660: 4655: 4649: 4647: 4639: 4638: 4631: 4630: 4623: 4616: 4608: 4599: 4598: 4596: 4595: 4583: 4571: 4559: 4546: 4543: 4542: 4540: 4539: 4534: 4532:Jevons paradox 4529: 4523: 4521: 4517: 4516: 4514: 4513: 4508: 4503: 4498: 4493: 4488: 4483: 4478: 4473: 4468: 4463: 4458: 4456:Energy storage 4453: 4448: 4447: 4446: 4436: 4431: 4426: 4425: 4424: 4419: 4414: 4403: 4401: 4393: 4392: 4390: 4389: 4388: 4387: 4382: 4372: 4371: 4370: 4365: 4355: 4354: 4353: 4348: 4338: 4333: 4332: 4331: 4326: 4316: 4315: 4314: 4309: 4304: 4294: 4289: 4288: 4287: 4282: 4272: 4267: 4262: 4260:Electric power 4257: 4251: 4249: 4241: 4240: 4238: 4237: 4232: 4227: 4222: 4221: 4220: 4210: 4205: 4200: 4195: 4190: 4189: 4188: 4183: 4178: 4168: 4162: 4160: 4158:Primary energy 4154: 4153: 4151: 4150: 4145: 4140: 4135: 4130: 4129: 4128: 4118: 4117: 4116: 4106: 4105: 4104: 4099: 4089: 4084: 4079: 4074: 4068: 4066: 4060: 4059: 4057: 4056: 4051: 4046: 4041: 4036: 4031: 4026: 4021: 4016: 4011: 4006: 4001: 3996: 3991: 3986: 3981: 3976: 3971: 3966: 3961: 3956: 3955: 3954: 3944: 3939: 3934: 3929: 3924: 3919: 3918: 3917: 3906: 3904: 3900: 3899: 3897: 3896: 3895: 3894: 3889: 3884: 3879: 3874: 3869: 3864: 3859: 3854: 3849: 3844: 3839: 3834: 3829: 3824: 3819: 3814: 3809: 3804: 3799: 3794: 3792:Entropic force 3789: 3782:Thermodynamics 3779: 3774: 3773: 3772: 3767: 3757: 3752: 3747: 3742: 3737: 3732: 3731: 3730: 3720: 3715: 3709: 3707: 3701: 3700: 3698: 3697: 3692: 3687: 3681: 3678: 3677: 3670: 3669: 3662: 3655: 3647: 3641: 3640: 3626: 3623: 3622: 3621: 3600: 3597: 3596: 3595: 3593:ATR plate fuel 3590: 3585: 3578: 3575: 3574: 3573: 3548: 3543: 3516: 3513: 3512: 3511: 3504: 3501: 3500: 3499: 3487: 3482: 3477: 3465: 3460: 3455: 3429:(2): 163–167. 3418: 3395: 3392: 3391: 3390: 3385: 3380: 3355: 3350: 3345: 3338: 3335: 3334: 3333: 3328: 3323: 3302: 3299: 3298: 3297: 3278: 3273: 3254: 3233: 3230: 3229: 3228: 3212: 3211:External links 3209: 3206: 3205: 3180: 3161: 3150: 3138: 3113: 3080: 3047: 3038: 3014: 2977: 2928: 2893: 2857: 2824: 2813: 2789: 2762: 2748: 2721: 2690: 2645: 2624:(4): 352–363. 2604: 2580: 2549: 2548: 2546: 2543: 2540: 2539: 2531: 2520: 2505: 2494: 2483: 2472: 2461: 2444: 2443: 2441: 2438: 2437: 2436: 2434:Uranium market 2431: 2426: 2421: 2416: 2411: 2406: 2401: 2395: 2394: 2380: 2366: 2350: 2347: 2342: 2341: 2327: 2326: 2310:Main article: 2307: 2304: 2303: 2302: 2289: 2286: 2285: 2284: 2276: 2275: 2267: 2266: 2253: 2250: 2222:Main article: 2219: 2216: 2177:Main article: 2174: 2171: 2155: 2147: 2131: 2123: 2107: 2099: 2069:Main article: 2058:Inspection of 2051: 2048: 2028:beta particles 2013:promethium-147 1985:bremsstrahlung 1977:atomic battery 1971:Atomic battery 1969:Main article: 1966: 1963: 1961: 1958: 1954: 1953: 1946: 1945: 1942: 1924: 1918: 1917: 1909: 1901: 1896: 1888: 1879: 1878: 1870: 1848:Forbes' method 1836: 1835: 1817: 1808: 1792: 1783: 1769: 1689:Main article: 1686: 1683: 1675:Main article: 1672: 1669: 1646:platinum group 1614:Main article: 1611: 1608: 1577: 1574: 1568: 1565: 1524: 1521: 1515: 1512: 1499: 1496: 1469:europium oxide 1450: 1447: 1433: 1416:Dragon reactor 1366: 1352: 1349: 1337: 1336: 1329: 1282:carbon dioxide 1271:Main article: 1268: 1265: 1251: 1248: 1236: 1204: 1197: 1194: 1172: 1169: 1143: 1140: 1121: 1120: 1117: 1110: 1108: 1105: 1098: 1096: 1090: 1083: 1030: 1020: 1017: 1004: 1001: 997:uranyl sulfate 988: 985: 976: 972: 968: 951: 948: 935: 923: 912: 888: 880:neutron poison 871: 846: 843: 831: 820: 809: 798: 787: 776: 759: 742: 739: 723: 708: 670:pyroprocessing 642: 631: 628: 616: 613: 600: 597: 584: 581: 572:neutron source 552: 549: 515: 512: 410:Main article: 407: 404: 325: 321: 317: 313: 306: 292: 288: 284: 280: 259: 252: 251: 246: 242: 238: 234: 230: 226: 222: 218: 206: 198:uranyl nitrate 194:semiconducting 186: 183: 158: 155: 135:nuclear weapon 127:chain reaction 81:energy density 44:binding energy 40:nucleon number 15: 9: 6: 4: 3: 2: 6485: 6474: 6471: 6469: 6466: 6464: 6461: 6459: 6456: 6454: 6453:Nuclear fuels 6451: 6450: 6448: 6433: 6432: 6423: 6421: 6420: 6411: 6409: 6408: 6397: 6396: 6393: 6379: 6376: 6374: 6371: 6369: 6366: 6364: 6361: 6359: 6356: 6355: 6353: 6349: 6343: 6340: 6338: 6335: 6333: 6330: 6326: 6325:electrostatic 6323: 6322: 6321: 6318: 6316: 6310: 6309: 6307: 6305: 6301: 6295: 6292: 6290: 6287: 6285: 6282: 6280: 6277: 6275: 6272: 6270: 6267: 6266: 6264: 6262: 6258: 6254: 6248: 6243: 6237: 6227: 6224: 6220: 6217: 6215: 6212: 6211: 6210: 6207: 6206: 6204: 6200: 6190: 6187: 6185: 6182: 6180: 6177: 6173: 6170: 6168: 6165: 6163: 6160: 6158: 6155: 6153: 6150: 6148: 6145: 6143: 6140: 6138: 6135: 6133: 6130: 6128: 6125: 6123: 6120: 6118: 6115: 6114: 6113: 6110: 6109: 6107: 6105: 6104:Generation IV 6101: 6095: 6092: 6090: 6087: 6085: 6082: 6080: 6077: 6075: 6072: 6070: 6067: 6065: 6062: 6060: 6057: 6055: 6054:Breeder (FBR) 6052: 6051: 6048: 6045: 6040: 6031: 6017: 6014: 6012: 6009: 6007: 6004: 6002: 5999: 5997: 5994: 5992: 5989: 5988: 5986: 5984: 5980: 5977: 5975: 5971: 5959: 5956: 5952: 5949: 5947: 5944: 5942: 5939: 5937: 5934: 5933: 5932: 5929: 5928: 5927: 5924: 5922: 5919: 5915: 5912: 5911: 5910: 5907: 5906: 5904: 5902: 5898: 5892: 5889: 5887: 5884: 5882: 5880: 5876: 5875: 5873: 5871: 5864: 5861: 5859: 5855: 5845: 5842: 5840: 5837: 5835: 5832: 5830: 5827: 5826: 5824: 5822: 5814: 5811: 5807: 5804: 5799: 5792: 5787: 5775: 5772: 5770: 5767: 5765: 5762: 5760: 5757: 5756: 5755: 5752: 5751: 5749: 5747: 5740: 5734: 5731: 5730: 5728: 5726: 5722: 5716: 5713: 5711: 5708: 5704: 5701: 5699: 5696: 5695: 5694: 5691: 5690: 5688: 5686: 5678: 5670: 5667: 5665: 5662: 5660: 5657: 5655: 5652: 5648: 5645: 5643: 5640: 5638: 5635: 5634: 5633: 5630: 5628: 5625: 5621: 5618: 5615: 5612: 5609: 5606: 5605: 5604: 5601: 5600: 5599: 5596: 5595: 5593: 5591: 5583: 5580: 5576: 5569: 5565: 5559: 5556: 5551: 5549: 5546: 5544: 5541: 5537: 5534: 5532: 5529: 5528: 5527: 5524: 5522: 5519: 5517: 5514: 5512: 5509: 5507: 5504: 5502: 5499: 5497: 5494: 5492: 5489: 5487: 5484: 5483: 5482: 5479: 5477: 5474: 5470: 5467: 5465: 5462: 5460: 5457: 5455: 5452: 5451: 5450: 5447: 5445: 5442: 5441: 5439: 5437: 5433: 5428: 5427: 5420: 5415: 5409: 5405: 5401: 5396: 5392: 5382: 5379: 5377: 5374: 5372: 5369: 5367: 5364: 5362: 5359: 5357: 5356:Nuclear power 5354: 5353: 5351: 5347: 5337: 5336:Transmutation 5334: 5330: 5327: 5325: 5322: 5321: 5320: 5317: 5315: 5312: 5310: 5307: 5305: 5302: 5300: 5297: 5295: 5292: 5290: 5287: 5286: 5284: 5280: 5274: 5271: 5267: 5264: 5263: 5262: 5259: 5257: 5254: 5250: 5247: 5245: 5242: 5240: 5237: 5236: 5235: 5232: 5231: 5229: 5225: 5222: 5220: 5216: 5206: 5203: 5201: 5198: 5196: 5193: 5189: 5186: 5184: 5181: 5180: 5179: 5176: 5174: 5171: 5170: 5168: 5164: 5156: 5153: 5152: 5151: 5148: 5146: 5143: 5139: 5136: 5134: 5133:high-altitude 5131: 5130: 5129: 5126: 5124: 5123:Proliferation 5121: 5119: 5116: 5112: 5109: 5108: 5107: 5104: 5102: 5099: 5097: 5094: 5092: 5089: 5087: 5084: 5082: 5079: 5078: 5076: 5072: 5069: 5067: 5063: 5057: 5054: 5052: 5049: 5047: 5044: 5042: 5039: 5038: 5036: 5034: 5030: 5020: 5017: 5015: 5012: 5010: 5009:Brachytherapy 5007: 5005: 5002: 5000: 4997: 4995: 4992: 4990: 4987: 4985: 4982: 4981: 4979: 4977: 4973: 4967: 4964: 4962: 4959: 4957: 4954: 4952: 4949: 4947: 4944: 4943: 4941: 4939: 4935: 4932: 4930: 4926: 4918: 4915: 4914: 4913: 4910: 4906: 4903: 4902: 4901: 4898: 4894: 4891: 4890: 4889: 4886: 4884: 4881: 4879: 4876: 4874: 4871: 4869: 4866: 4864: 4861: 4859: 4856: 4855: 4853: 4851: 4847: 4841: 4838: 4836: 4833: 4831: 4828: 4826: 4823: 4821: 4818: 4816: 4813: 4811: 4808: 4806: 4805:Cross section 4803: 4801: 4798: 4796: 4793: 4791: 4788: 4787: 4785: 4783: 4779: 4771: 4768: 4766: 4763: 4759: 4756: 4754: 4751: 4750: 4749: 4746: 4745: 4744: 4741: 4739: 4736: 4734: 4731: 4729: 4726: 4724: 4721: 4719: 4716: 4714: 4711: 4710: 4708: 4706: 4702: 4694: 4691: 4689: 4686: 4685: 4684: 4681: 4679: 4676: 4674: 4671: 4669: 4666: 4664: 4661: 4659: 4656: 4654: 4651: 4650: 4648: 4644: 4640: 4636: 4629: 4624: 4622: 4617: 4615: 4610: 4609: 4606: 4594: 4593: 4584: 4582: 4581: 4576: 4572: 4570: 4569: 4560: 4558: 4557: 4548: 4547: 4544: 4538: 4535: 4533: 4530: 4528: 4525: 4524: 4522: 4518: 4512: 4511:United States 4509: 4507: 4506:South America 4504: 4502: 4499: 4497: 4494: 4492: 4489: 4487: 4484: 4482: 4479: 4477: 4474: 4472: 4469: 4467: 4464: 4462: 4459: 4457: 4454: 4452: 4449: 4445: 4442: 4441: 4440: 4439:Energy policy 4437: 4435: 4432: 4430: 4427: 4423: 4420: 4418: 4415: 4413: 4410: 4409: 4408: 4405: 4404: 4402: 4400: 4394: 4386: 4383: 4381: 4378: 4377: 4376: 4373: 4369: 4366: 4364: 4363:Solar furnace 4361: 4360: 4359: 4356: 4352: 4349: 4347: 4344: 4343: 4342: 4339: 4337: 4334: 4330: 4327: 4325: 4322: 4321: 4320: 4319:Nuclear power 4317: 4313: 4310: 4308: 4305: 4303: 4300: 4299: 4298: 4295: 4293: 4290: 4286: 4283: 4281: 4278: 4277: 4276: 4273: 4271: 4268: 4266: 4263: 4261: 4258: 4256: 4253: 4252: 4250: 4246: 4245:Energy system 4242: 4236: 4233: 4231: 4228: 4226: 4223: 4219: 4216: 4215: 4214: 4211: 4209: 4206: 4204: 4201: 4199: 4198:Gravitational 4196: 4194: 4191: 4187: 4184: 4182: 4179: 4177: 4174: 4173: 4172: 4169: 4167: 4164: 4163: 4161: 4159: 4155: 4149: 4146: 4144: 4141: 4139: 4136: 4134: 4131: 4127: 4126:Hydrogen fuel 4124: 4123: 4122: 4119: 4115: 4112: 4111: 4110: 4107: 4103: 4100: 4098: 4095: 4094: 4093: 4090: 4088: 4085: 4083: 4080: 4078: 4075: 4073: 4070: 4069: 4067: 4065: 4061: 4055: 4052: 4050: 4047: 4045: 4042: 4040: 4037: 4035: 4032: 4030: 4027: 4025: 4022: 4020: 4017: 4015: 4012: 4010: 4007: 4005: 4002: 4000: 3997: 3995: 3992: 3990: 3987: 3985: 3982: 3980: 3977: 3975: 3972: 3970: 3967: 3965: 3962: 3960: 3957: 3953: 3950: 3949: 3948: 3947:Gravitational 3945: 3943: 3940: 3938: 3935: 3933: 3930: 3928: 3925: 3923: 3920: 3916: 3913: 3912: 3911: 3908: 3907: 3905: 3901: 3893: 3890: 3888: 3885: 3883: 3880: 3878: 3875: 3873: 3870: 3868: 3865: 3863: 3860: 3858: 3855: 3853: 3850: 3848: 3845: 3843: 3840: 3838: 3835: 3833: 3830: 3828: 3825: 3823: 3820: 3818: 3817:Heat transfer 3815: 3813: 3812:Heat capacity 3810: 3808: 3805: 3803: 3800: 3798: 3795: 3793: 3790: 3788: 3785: 3784: 3783: 3780: 3778: 3775: 3771: 3768: 3766: 3765:Negative mass 3763: 3762: 3761: 3758: 3756: 3753: 3751: 3748: 3746: 3745:Energy system 3743: 3741: 3738: 3736: 3733: 3729: 3726: 3725: 3724: 3721: 3719: 3716: 3714: 3711: 3710: 3708: 3702: 3696: 3693: 3691: 3688: 3686: 3683: 3682: 3679: 3675: 3668: 3663: 3661: 3656: 3654: 3649: 3648: 3645: 3639: 3635: 3632: 3629: 3628: 3612:on 2005-12-23 3611: 3607: 3603: 3602: 3594: 3591: 3589: 3586: 3584: 3581: 3580: 3564:on 2006-03-19 3560: 3553: 3549: 3547: 3544: 3534:on 2005-12-30 3530: 3523: 3519: 3518: 3510: 3507: 3506: 3503:QUADRISO fuel 3498: 3494: 3491: 3488: 3486: 3483: 3481: 3478: 3476: 3472: 3469: 3466: 3464: 3461: 3459: 3456: 3452: 3448: 3444: 3440: 3436: 3432: 3428: 3424: 3419: 3415: 3411: 3407: 3403: 3398: 3397: 3389: 3386: 3384: 3381: 3371:on 2006-03-15 3367: 3360: 3356: 3354: 3351: 3349: 3346: 3344: 3341: 3340: 3332: 3329: 3327: 3324: 3314:on 2006-08-28 3313: 3309: 3305: 3304: 3288:on 2012-02-24 3287: 3283: 3279: 3277: 3274: 3264:on 2015-04-23 3263: 3259: 3255: 3245:on 2004-10-22 3244: 3240: 3236: 3235: 3227: 3223: 3220: 3215: 3214: 3195:on 2012-12-25 3194: 3190: 3184: 3178: 3176: 3172: 3165: 3159: 3154: 3147: 3142: 3127: 3123: 3117: 3108: 3103: 3099: 3095: 3091: 3084: 3075: 3070: 3066: 3062: 3058: 3051: 3042: 3028: 3024: 3018: 3010: 3006: 3001: 2996: 2992: 2988: 2981: 2973: 2969: 2964: 2959: 2955: 2951: 2947: 2943: 2939: 2932: 2924: 2920: 2916: 2912: 2908: 2904: 2897: 2888: 2883: 2879: 2875: 2871: 2864: 2862: 2852: 2847: 2843: 2839: 2835: 2828: 2822: 2817: 2803: 2799: 2793: 2785: 2781: 2777: 2773: 2766: 2758: 2752: 2737:. APS Physics 2736: 2732: 2725: 2707: 2700: 2694: 2686: 2680: 2662: 2655: 2649: 2641: 2637: 2632: 2627: 2623: 2619: 2615: 2608: 2594: 2593:Nuclear Power 2590: 2584: 2576: 2572: 2568: 2564: 2560: 2554: 2550: 2526:(stable) and 2514: 2455: 2449: 2445: 2435: 2432: 2430: 2427: 2425: 2422: 2420: 2417: 2415: 2412: 2410: 2407: 2405: 2402: 2400: 2397: 2396: 2392: 2386: 2381: 2378: 2377:Energy portal 2372: 2367: 2364: 2353: 2346: 2339: 2336: 2335: 2334: 2332: 2324: 2320: 2319: 2318: 2313: 2300: 2296: 2295: 2294: 2282: 2278: 2277: 2273: 2269: 2268: 2264: 2260: 2259: 2258: 2249: 2247: 2243: 2239: 2235: 2231: 2225: 2215: 2213: 2209: 2205: 2201: 2196: 2194: 2190: 2186: 2180: 2166: 2162: 2159: 2140: 2135: 2116: 2111: 2092: 2090: 2089:thermocouples 2086: 2082: 2078: 2072: 2064: 2062: 2056: 2047: 2045: 2041: 2037: 2033: 2029: 2025: 2020: 2018: 2017:technetium-99 2014: 2010: 2006: 2002: 1998: 1994: 1990: 1989:plutonium-238 1986: 1982: 1981:radioisotopes 1978: 1972: 1957: 1951: 1948: 1947: 1941: 1937: 1933: 1930: 1929: 1928: 1923: 1916: 1913: 1910: 1908: 1907:heat capacity 1904: 1900: 1897: 1895: 1892: 1889: 1887: 1884: 1881: 1880: 1877: 1873: 1869: 1865: 1862: 1861: 1860: 1857: 1853: 1849: 1845: 1841: 1833: 1829: 1825: 1820: 1816: 1811: 1807: 1804: 1803: 1802: 1800: 1795: 1791: 1786: 1782: 1777: 1775: 1768: 1764: 1759: 1757: 1752: 1750: 1745: 1742: 1738: 1734: 1730: 1726: 1722: 1718: 1714: 1710: 1706: 1701: 1697: 1692: 1682: 1678: 1668: 1666: 1663: 1659: 1655: 1651: 1647: 1643: 1642:nanoparticles 1639: 1638:heterogeneous 1635: 1631: 1627: 1623: 1617: 1607: 1605: 1604:radionuclides 1601: 1596: 1593: 1591: 1587: 1583: 1573: 1564: 1562: 1558: 1554: 1545: 1541: 1537: 1533: 1529: 1520: 1511: 1509: 1505: 1492: 1488: 1484: 1482: 1478: 1474: 1470: 1466: 1459: 1455: 1449:QUADRISO fuel 1446: 1444: 1440: 1436: 1429: 1425: 1421: 1417: 1412: 1410: 1406: 1402: 1398: 1394: 1389: 1385: 1381: 1377: 1373: 1369: 1357: 1348: 1346: 1342: 1334: 1330: 1327: 1323: 1322: 1321: 1319: 1315: 1311: 1307: 1303: 1299: 1295: 1291: 1287: 1283: 1279: 1274: 1260: 1256: 1247: 1245: 1230: 1226: 1222: 1219: 1215: 1210: 1202: 1189: 1185: 1182: 1178: 1168: 1166: 1161: 1156: 1152: 1148: 1136: 1135: 1129: 1125: 1114: 1109: 1102: 1097: 1093: 1087: 1082: 1081: 1080: 1078: 1075: 1071: 1067: 1063: 1059: 1055: 1051: 1047: 1042: 1040: 1036: 1026: 1016: 1014: 1010: 1000: 998: 994: 984: 982: 964: 962: 958: 947: 945: 944:alkali metals 940: 906: 902: 898: 893: 881: 876: 864: 859: 857: 851: 842: 840: 804:. Unlike the 770: 766: 755: 752: 748: 738: 736: 732: 717: 702: 698: 694: 689: 687: 683: 679: 675: 671: 667: 662: 660: 656: 652: 648: 640: 636: 627: 625: 621: 612: 610: 606: 596: 594: 590: 583:Actinide fuel 580: 577: 573: 569: 565: 561: 557: 548: 546: 542: 538: 534: 530: 526: 521: 511: 501: 489: 485: 480: 476: 472: 467: 465: 461: 457: 453: 449: 448:transmutation 444: 443:generation. 442: 441:nuclear power 438: 434: 430: 426: 422: 418: 413: 403: 357: 352: 350: 346: 342: 338: 333: 331: 299: 276: 272: 268: 265: 257: 215: 214: 213: 199: 195: 191: 178: 174: 172: 171:melting point 168: 164: 154: 152: 148: 144: 140: 139:plutonium-238 136: 132: 128: 124: 120: 116: 115:plutonium-239 112: 108: 104: 100: 96: 93: 88: 86: 82: 78: 74: 70: 66: 60: 56: 51: 45: 41: 36: 28: 22: 6429: 6417: 6398: 6378:Pyroelectric 6332:Laser-driven 6112:Sodium (SFR) 6039:fast-neutron 5878: 5424: 5314:Reprocessing 5195:WMD treaties 5014:Radiosurgery 4984:Fast-neutron 4956:Scintigraphy 4704: 4590: 4578: 4566: 4554: 4336:Oil refinery 4280:Cogeneration 4213:Nuclear fuel 4212: 4019:Quintessence 3807:Free entropy 3740:Energy level 3704:Fundamental 3614:. Retrieved 3610:the original 3566:. Retrieved 3559:the original 3536:. Retrieved 3529:the original 3426: 3422: 3405: 3401: 3373:. Retrieved 3366:the original 3316:. Retrieved 3312:the original 3290:. Retrieved 3286:the original 3266:. Retrieved 3262:the original 3247:. Retrieved 3243:the original 3218: 3197:. Retrieved 3193:the original 3183: 3174: 3170: 3164: 3153: 3141: 3130:. Retrieved 3125: 3116: 3100:(21): 8008. 3097: 3093: 3083: 3067:(14): 5204. 3064: 3060: 3050: 3041: 3030:. Retrieved 3026: 3017: 2990: 2980: 2945: 2941: 2931: 2906: 2902: 2896: 2880:(10): 3772. 2877: 2873: 2841: 2837: 2827: 2816: 2805:. Retrieved 2802:Kairos Power 2801: 2798:"Technology" 2792: 2775: 2771: 2765: 2751: 2739:. Retrieved 2734: 2724: 2713:. Retrieved 2693: 2668:. Retrieved 2648: 2621: 2617: 2607: 2596:. Retrieved 2592: 2583: 2566: 2563:Joseph Brink 2553: 2448: 2343: 2328: 2321:He + He → 2 2315: 2291: 2255: 2230:Fusion power 2227: 2218:Fusion fuels 2197: 2182: 2141:, have used 2093: 2074: 2060: 2036:betavoltaics 2021: 2001:strontium-90 1974: 1955: 1949: 1939: 1935: 1931: 1921: 1919: 1911: 1902: 1898: 1890: 1882: 1875: 1871: 1867: 1863: 1852:Searle's bar 1838:Rather than 1837: 1831: 1827: 1823: 1818: 1814: 1809: 1805: 1798: 1793: 1789: 1784: 1780: 1778: 1766: 1762: 1760: 1753: 1746: 1702: 1698: 1694: 1680: 1637: 1619: 1597: 1594: 1579: 1570: 1549: 1531: 1517: 1501: 1490: 1473:erbium oxide 1462: 1457: 1413: 1362: 1338: 1298:Magnox alloy 1276: 1253: 1199: 1174: 1160:control rods 1145: 1133: 1127: 1074:alkali metal 1043: 1038: 1028: 1006: 990: 965: 953: 950:Molten salts 860: 852: 848: 845:Liquid fuels 767:such as the 756: 744: 690: 663: 633: 618: 602: 586: 554: 517: 468: 445: 420: 416: 415: 356:neutron flux 353: 334: 253: 188: 160: 89: 65:Nuclear fuel 64: 63: 6289:Stellarator 6253:confinement 6147:SuperphĂ©nix 5974:Molten-salt 5926:VHTR (HTGR) 5703:HW BLWR 250 5669:R4 Marviken 5598:Pressurized 5568:Heavy water 5552:many others 5481:Pressurized 5436:Light water 5138:underground 5096:Disarmament 5004:Tomotherapy 4999:Proton-beam 4863:Power plant 4825:Temperature 4658:Engineering 4592:WikiProject 4412:Agriculture 4341:Solar power 4307:Tidal power 4181:Natural gas 4171:Fossil fuel 4114:Latent heat 4082:Electricity 3625:Fusion fuel 3515:CERMET fuel 3126:www.nrc.gov 2206:orbiter to 2200:outer space 2085:electricity 1826:/1 + ( 1725:lanthanides 1660:within the 1514:CerMet fuel 1267:Magnox fuel 1218:heavy water 674:nitric acid 417:Mixed oxide 192:is a black 111:uranium-235 107:uranium-233 6447:Categories 6314:(acoustic) 5931:PBR (PBMR) 5319:Spent fuel 5309:Repository 5289:Fuel cycle 5256:Activation 5033:Processing 4900:Propulsion 4858:by country 4790:Activation 4375:Wind power 4297:Hydropower 4248:components 4203:Hydropower 4193:Geothermal 4143:Sound wave 4054:Zero-point 3984:Mechanical 3969:Ionization 3942:Electrical 3837:Negentropy 3718:Energetics 3616:2005-12-14 3599:TRIGA fuel 3568:2005-12-14 3538:2005-12-14 3394:TRISO fuel 3375:2005-12-17 3337:CANDU fuel 3318:2005-12-14 3292:2005-12-14 3268:2005-12-14 3249:2005-12-14 3199:2010-01-27 3132:2021-05-10 3032:2019-03-16 2948:: 154487. 2807:2023-09-13 2715:2013-11-11 2670:2016-06-04 2598:2023-11-03 2575:B000OFVCCG 2545:References 2333:reaction: 2063:spacecraft 2042:, and the 1997:curium-244 1993:curium-242 1844:Lees' disk 1830: âˆ’ 1) 1822:(1 âˆ’ 1632:, and the 1395:) and the 1056:, usually 1023:See also: 551:TRIGA fuel 543:, such as 514:Metal fuel 300:) to form 258:to form UO 229:· 6 H 157:Oxide fuel 6473:Actinides 6284:Spheromak 5983:Fluorides 5647:IPHWR-700 5642:IPHWR-540 5637:IPHWR-220 5426:Moderator 5106:Explosion 5081:Arms race 4868:Economics 4820:Reflector 4815:Radiation 4810:Generator 4765:Plutonium 4718:Deuterium 4683:Radiation 4653:Chemistry 4486:Australia 4422:Transport 4417:Computing 4385:Wind farm 4312:Wave farm 4186:Petroleum 4166:Bioenergy 4138:Radiation 4077:Capacitor 3999:Potential 3451:209983934 3009:2191-4281 2972:0022-3115 2778:: 60–68. 2640:2673-4362 2297:H + He → 2234:deuterium 2009:nickel-63 1934:= 0.1388 1754:The bulk 1729:palladium 1723:(such as 1654:actinides 1650:palladium 1630:plutonium 1555:(ATR) at 1498:RBMK fuel 1376:isotropic 1310:aluminium 1306:magnesium 1290:moderated 1284:–cooled, 1221:moderator 1216:in their 1066:magnesium 1046:corrosion 1039:fuel rods 533:actinides 425:plutonium 386:. As the 341:zirconium 6419:Category 6373:Polywell 6304:Inertial 6261:Magnetic 6016:TMSR-LF1 6011:TMSR-500 5991:Fuji MSR 5951:THTR-300 5791:Graphite 5654:PHWR KWU 5620:ACR-1000 5548:IPWR-900 5531:ACPR1000 5526:HPR-1000 5516:CPR-1000 5491:APR-1400 5282:Disposal 5234:Actinide 5227:Products 5086:Delivery 4929:Medicine 4758:depleted 4753:enriched 4723:Helium-3 4688:ionizing 4556:Category 4121:Hydrogen 4087:Enthalpy 3989:Negative 3979:Magnetic 3964:Internal 3922:Chemical 3787:Enthalpy 3706:concepts 3634:Archived 3493:Archived 3471:Archived 3301:BWR fuel 3232:PWR fuel 3094:Energies 3061:Energies 2874:Energies 2844:: 1–15. 2706:Archived 2679:cite web 2661:Archived 2565:(1977). 2456:of both 2349:See also 2279:H + H → 2270:H + H → 2261:H + H → 2246:hydrogen 2242:helium-3 2236:(H) and 1713:porosity 1532:ATR Core 1420:THTR-300 1286:graphite 1134:Savannah 1132:NS  1058:Zircaloy 1013:eutectic 678:enriched 666:nitrogen 659:reaction 624:swelling 605:tantalum 568:meltdown 421:MOX fuel 412:MOX fuel 398:and 30% 324:. The UO 298:calcined 264:enriched 256:hydrogen 233:O → UO 200:to form 123:neutrons 95:actinide 73:turbines 42:against 6431:Commons 6342:Z-pinch 6312:Bubble 6294:Tokamak 6157:FBR-600 6137:CFR-600 6132:BN-1200 5798:coolant 5725:Organic 5610:CANDU 9 5607:CANDU 6 5575:coolant 5536:ACP1000 5511:CAP1400 5449:Boiling 5414:Fission 5261:Fission 5205:Weapons 5145:Warfare 5128:Testing 5118:History 5111:effects 5066:Weapons 4976:Therapy 4951:RadBall 4938:Imaging 4830:Thermal 4795:Capture 4782:Neutron 4770:Thorium 4748:Uranium 4713:Tritium 4693:braking 4673:Fission 4663:Physics 4646:Science 4568:Commons 4396:Use and 4255:Biomass 4225:Radiant 4072:Battery 4044:Thermal 4039:Surface 4024:Radiant 3994:Phantom 3974:Kinetic 3952:Binding 3932:Elastic 3915:Nuclear 3910:Binding 3797:Entropy 3695:Outline 3685:History 3431:Bibcode 3226:YouTube 3173:, Vol. 2950:Bibcode 2911:Bibcode 2741:14 July 2238:tritium 2202:). The 2061:Cassini 2005:Tritium 1894:density 1756:density 1741:krypton 1733:bubbles 1721:lattice 1626:uranium 1600:cooling 1477:carbide 1318:neutron 1314:uranium 1209:CANFLEX 1077:caesium 967:LiF-BeF 733:called 664:As the 620:Ceramic 429:natural 271:ammonia 163:uranium 92:fissile 57:at the 21:FuelRod 6242:Fusion 6202:Others 6142:PhĂ©nix 6127:BN-800 6122:BN-600 6117:BN-350 5946:HTR-PM 5941:HTR-10 5921:UHTREX 5886:Magnox 5881:(UNGG) 5774:Lucens 5769:KS 150 5506:ATMEA1 5486:AP1000 5469:Kerena 5349:Debate 5101:Ethics 5091:Design 5074:Topics 4905:rocket 4883:Fusion 4878:Policy 4840:Fusion 4800:Poison 4678:Fusion 4580:Portal 4501:Mexico 4496:Europe 4491:Canada 4476:Africa 4399:supply 4208:Marine 4097:Fossil 4049:Vacuum 3802:Exergy 3723:Energy 3674:Energy 3449:  3007:  2970:  2638:  2573:  2208:Saturn 2038:, the 2015:, and 1846:, the 1761:Where 1504:Soviet 1443:Xe-100 1424:HTR-10 1393:GT-MHR 1278:Magnox 1273:Magnox 1151:helium 506:, 15% 500:burnup 330:sinter 237:+ 2 NO 6363:Migma 6351:Other 6320:Fusor 6219:Piqua 6214:Arbus 6172:PRISM 5914:MHR-T 5909:GTMHR 5839:EGP-6 5834:AMB-X 5809:Water 5754:HWGCR 5693:HWLWR 5632:IPHWR 5603:CANDU 5464:ESBWR 5219:Waste 5183:Tests 5166:Lists 5150:Yield 4893:MMRTG 4850:Power 4520:Misc. 4230:Solar 4034:Sound 3903:Types 3777:Power 3728:Units 3690:Index 3562:(PDF) 3555:(PDF) 3532:(PDF) 3525:(PDF) 3447:S2CID 3369:(PDF) 3362:(PDF) 2709:(PDF) 2702:(PDF) 2664:(PDF) 2657:(PDF) 2515:like 2440:Notes 2331:boron 2212:Titan 2193:grams 2024:alpha 1850:, or 1737:xenon 1062:steel 895:as a 863:xenon 686:PUREX 587:In a 556:TRIGA 419:, or 312:and U 249:O (g) 245:+ 6 H 241:+ Âœ O 167:oxide 6179:Lead 6162:CEFR 6152:PFBR 6034:None 5844:RBMK 5829:AM-1 5759:EL-4 5733:WR-1 5715:AHWR 5659:MZFR 5627:CVTR 5616:AFCR 5543:VVER 5501:APWR 5496:APR+ 5459:ABWR 5329:cask 5324:pool 5266:LLFP 5155:TNTe 4835:Fast 4705:Fuel 4481:Asia 4235:Wind 4176:Coal 4148:Work 4109:Heat 4092:Fuel 4029:Rest 3927:Dark 3892:Work 3760:Mass 3005:ISSN 2968:ISSN 2743:2018 2685:link 2636:ISSN 2571:ASIN 2500:and 2467:and 2452:The 2189:watt 2026:and 1999:and 1739:and 1703:The 1656:and 1534:The 1508:RBMK 1437:and 1052:for 1007:The 991:The 971:-ThF 639:NASA 469:The 427:and 335:The 113:and 105:are 6251:by 6167:PFR 5958:PMR 5936:AVR 5858:Gas 5796:by 5764:KKN 5698:ATR 5613:EC6 5573:by 5521:EPR 5454:BWR 4102:Oil 3439:doi 3427:194 3410:doi 3406:163 3224:on 3102:doi 3069:doi 2995:doi 2958:doi 2946:582 2919:doi 2907:448 2882:doi 2846:doi 2780:doi 2776:251 2626:doi 1975:An 1943:1/2 1925:1/2 1920:If 1707:of 1644:of 1538:at 1475:or 1471:or 1388:SiC 1229:KWU 1175:In 1060:or 975:-UF 661:. 510:). 431:or 406:MOX 279:(NH 221:(NO 145:in 6449:: 5901:He 5867:CO 5743:CO 5664:R3 3445:. 3437:. 3425:. 3408:. 3404:. 3175:64 3124:. 3098:15 3096:. 3092:. 3065:15 3063:. 3059:. 3025:. 3003:. 2993:. 2989:. 2966:. 2956:. 2944:. 2940:. 2917:. 2905:. 2878:15 2876:. 2872:. 2860:^ 2842:48 2840:. 2836:. 2800:. 2774:. 2733:. 2704:. 2681:}} 2677:{{ 2659:. 2634:. 2620:. 2616:. 2591:. 2561:; 2535:Cs 2524:Cs 2509:Cs 2498:Cs 2476:Cs 2465:Cs 2183:A 2151:Po 2127:Sr 2103:Pu 2091:. 2075:A 2034:, 2011:, 2007:, 1995:, 1991:, 1868:ρC 1866:= 1813:= 1776:. 1770:td 1628:, 1624:, 1563:. 1483:. 1439:UC 1432:UO 1372:UC 1365:UO 939:Cs 927:Xe 916:Xe 875:Xe 737:. 718:. 547:. 508:Pu 504:Pu 492:Pu 400:Pu 388:Pu 380:Pu 376:Pu 372:Np 366:. 302:UO 277:, 217:UO 212:. 202:UO 153:. 109:, 87:. 6041:) 6037:( 5869:2 5821:O 5819:2 5817:H 5745:2 5685:O 5683:2 5681:H 5590:O 5588:2 5586:D 4627:e 4620:t 4613:v 3666:e 3659:t 3652:v 3619:. 3571:. 3541:. 3453:. 3441:: 3433:: 3416:. 3412:: 3378:. 3321:. 3295:. 3271:. 3252:. 3202:. 3135:. 3110:. 3104:: 3077:. 3071:: 3035:. 3011:. 2997:: 2974:. 2960:: 2952:: 2925:. 2921:: 2913:: 2890:. 2884:: 2854:. 2848:: 2810:. 2786:. 2782:: 2759:. 2745:. 2718:. 2687:) 2673:. 2642:. 2628:: 2622:3 2601:. 2577:. 2487:U 2338:p 2323:p 2299:p 2281:p 2272:n 2263:n 1950:L 1940:t 1938:/ 1936:L 1932:α 1922:t 1912:α 1903:p 1899:C 1891:ρ 1883:λ 1876:α 1872:p 1864:λ 1834:) 1832:p 1828:s 1824:p 1819:o 1815:K 1810:f 1806:K 1799:s 1794:o 1790:K 1785:f 1781:K 1767:ρ 1763:ρ 1546:. 1467:( 1434:2 1367:X 1335:. 1288:- 1240:U 1205:2 1031:2 977:4 973:4 969:2 892:I 835:C 824:C 813:C 802:C 791:C 780:C 760:2 758:O 727:C 712:C 655:C 651:N 647:N 643:2 496:U 396:U 392:U 384:U 368:U 364:U 360:U 326:2 322:2 318:8 316:O 314:3 307:3 293:7 291:O 289:2 287:U 285:2 283:) 281:4 260:2 247:2 243:2 239:2 235:2 231:2 227:2 225:) 223:3 219:2 207:2 23:.

Index

FuelRod


nucleon number
binding energy

research reactor
Institut Laue-Langevin
nuclear power stations
turbines
nuclear fission
energy density
nuclear fuel cycle
fissile
actinide
sustaining nuclear fission
fissile isotopes
uranium-233
uranium-235
plutonium-239
slow-moving neutron
neutrons
chain reaction
nuclear reactor
nuclear weapon
plutonium-238
radioactive decay
radioisotope thermoelectric generators
atomic batteries
uranium

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑