Knowledge

Nuclear fission

Source 📝

2783: 845: 2973:
had shown much earlier that neutrons were far more effectively captured by atoms if they were of low energy (so-called "slow" or "thermal" neutrons), because for quantum reasons it made the atoms look like much larger targets to the neutrons. Thus to slow down the secondary neutrons released by the fissioning uranium nuclei, Fermi and Szilard proposed a graphite "moderator", against which the fast, high-energy secondary neutrons would collide, effectively slowing them down. With enough uranium, and with sufficiently pure graphite, their "pile" could theoretically sustain a slow-neutron chain reaction. This would result in the production of heat, as well as the creation of radioactive fission products.
1799:(image below), and noting that the average binding energy of the actinide nuclides beginning with uranium is around 7.6 MeV per nucleon. Looking further left on the curve of binding energy, where the fission products cluster, it is easily observed that the binding energy of the fission products tends to center around 8.5 MeV per nucleon. Thus, in any fission event of an isotope in the actinide mass range, roughly 0.9 MeV are released per nucleon of the starting element. The fission of U by a slow neutron yields nearly identical energy to the fission of U by a fast neutron. This energy release profile holds for thorium and the various minor actinides as well. 2602:
blowing away." Rearrangement of the core material's subcritical components would need to proceed as fast as possible to ensure effective detonation. Additionally, a third basic component was necessary, "...an initiator—a Ra + Be source or, better, a Po + Be source, with the radium or polonium attached perhaps to one piece of the core and the beryllium to the other, to smash together and spray neutrons when the parts mated to start the chain reaction." However, any bomb would "necessitate locating, mining and processing hundreds of tons of uranium ore...", while U-235 separation or the production of Pu-239 would require additional industrial capacity.
1873: 2886:(uranium fission) for the first time, and predicted the existence and liberation of additional neutrons during the fission process, opening up the possibility of a nuclear chain reaction. The 11 February 1939 paper by Meitner and Frisch compared the process to the division of a liquid drop and estimated the energy released at 200 MeV. The 1 September 1939 paper by Bohr and Wheeler used this liquid drop model to quantify fission details, including the energy released, estimated the cross section for neutron-induced fission, and deduced 2622: 2351: 1273: 8802: 7881: 6888: 858: 2961: 8826: 2739:. In Chadwick's words, "...In order to explain the great penetrating power of the radiation we must further assume that the particle has no net charge..." The existence of the neutron was first postulated by Rutherford in 1920, and in the words of Chadwick, "...how on earth were you going to build up a big nucleus with a large positive charge? And the answer was a neutral particle." Subsequently, he communicated his findings in more detail. 3312: 73: 34: 2342:
reactor. However, many fission fragments are neutron-rich and decay via β emissions. According to Lilley, "The radioactive decay energy from the fission chains is the second release of energy due to fission. It is much less than the prompt energy, but it is a significant amount and is why reactors must continue to be cooled after they have been shut down and why the waste products must be handled with great care and stored safely."
4571:
fission' in that paper. Placzek was sceptical; couldn't I do some experiments to show the existence of those fast-moving fragments of the uranium nucleus? Oddly enough that thought hadn't occurred to me, but now I quickly set to work, and the experiment (which was really very easy) was done in two days, and a short note about it was sent off to Nature together with the other note I had composed over the telephone with Lise Meitner.
2248:
of equilibrium." The negative contribution of Coulomb energy arises from the repulsive electric force of the protons. The symmetry term arises from the fact that effective forces in the nucleus are stronger for unlike neutron-proton pairs, rather than like neutron–neutron or proton–proton pairs. The pairing term arises from the fact that like nucleons form spin-zero pairs in the same spatial state. The pairing is positive if
8838: 7871: 6876: 3298: 2452: 2573: 8814: 6900: 3130:
long in a tank of manganese solution, they were able to confirm more neutrons were emitted than absorbed. However, the hydrogen within the water absorbed the slow neutrons necessary for fission. Carbon in the form of graphite, was then considered, because of its smaller capture cross section. In April 1940, Fermi was able to confirm carbon's potential for a slow-neutron chain reaction, after receiving
2833:
Hahn's ability as a chemist. Marie Curie had been separating barium from radium for many years, and the techniques were well-known. Meitner and Frisch then correctly interpreted Hahn's results to mean that the nucleus of uranium had split roughly in half. Frisch suggested the process be named "nuclear fission", by analogy to the process of living cell division into two cells, which was then called
3138:. In August and September, the Columbia team enlarged upon the cross section measurements by making a series of exponential "piles". The first piles consisted of a uranium-graphite lattice, consisting of 288 cans, each containing 60 pounds of uranium oxide, surrounded by graphite bricks. Fermi's goal was to determine critical mass necessary to sustain neutron generation. Fermi defined the 1264: 1835:. The latter figure means that a nuclear fission explosion or criticality accident emits about 3.5% of its energy as gamma rays, less than 2.5% of its energy as fast neutrons (total of both types of radiation ~6%), and the rest as kinetic energy of fission fragments (this appears almost immediately when the fragments impact surrounding matter, as simple heat). 1881:
energy ratios of a deformed nucleus relative to a spherical form for the surface and Coulomb terms. Additional terms can be included such as symmetry, pairing, the finite range of the nuclear force, and charge distribution within the nuclei to improve the estimate. Normally binding energy is referred to and plotted as average binding energy per nucleon.
1734:, allowing an extra neutron to occupy the same nuclear orbital as the last neutron in the nucleus. In such isotopes, therefore, no neutron kinetic energy is needed, for all the necessary energy is supplied by absorption of any neutron, either of the slow or fast variety (the former are used in moderated nuclear reactors, and the latter are used in 1522: 2245: 3168:'s "eggs". Starting on 16 November 1942, Fermi had Anderson and Zinn working in two twelve-hours shifts, constructing a pile that eventually reached 57 layers by 1 Dec. The final pile consisted of 771,000 pounds of graphite, 80,590 pounds of uranium oxide, and 12,400 pounds of uranium metal, with ten cadmium 1344:. However, the binary process happens merely because it is the most probable. In anywhere from two to four fissions per 1000 in a nuclear reactor, ternary fission can produce three positively charged fragments (plus neutrons) and the smallest of these may range from so small a charge and mass as a proton ( 3285:
in 1956. Large-scale natural uranium fission chain reactions, moderated by normal water, had occurred far in the past and would not be possible now. This ancient process was able to use normal water as a moderator only because 2 billion years before the present, natural uranium was richer in the
2043:
The curve of binding energy is characterized by a broad maximum near mass number 60 at 8.6 MeV, then gradually decreases to 7.6 MeV at the highest mass numbers. Mass numbers higher than 238 are rare. At the lighter end of the scale, peaks are noted for helium-4, and the multiples such as beryllium-8,
3142:
k for assessing the chain reaction, with a value of 1.0 denoting a sustained chain reaction. In September 1941, Fermi's team was only able to achieve a k value of 0.87. In April 1942, before the project was centralized in Chicago, they had achieved 0.918 by removing moisture from the oxide. In May
3046:
not yet determined, but which was assumed to be much larger than that of natural uranium. They calculated only a pound or two in a volume less than a golf ball, would result in a chain reaction faster than vaporization, and the resultant explosion would generate temperature greater than the interior
2909:
realized that the neutron-driven fission of heavy atoms could be used to create a nuclear chain reaction. Such a reaction using neutrons was an idea he had first formulated in 1933, upon reading Rutherford's disparaging remarks about generating power from neutron collisions. However, Szilárd had not
2296:
In nuclear fission events the nuclei may break into any combination of lighter nuclei, but the most common event is not fission to equal mass nuclei of about mass 120; the most common event (depending on isotope and process) is a slightly unequal fission in which one daughter nucleus has a mass
2972:
With the news of fission neutrons from uranium fission, Szilárd immediately understood the possibility of a nuclear chain reaction using uranium. In the summer, Fermi and Szilard proposed the idea of a nuclear reactor (pile) to mediate this process. The pile would use natural uranium as fuel. Fermi
2865:
It was clear to a number of scientists at Columbia that they should try to detect the energy released in the nuclear fission of uranium from neutron bombardment. On 25 January 1939, a Columbia University team conducted the first nuclear fission experiment in the United States, which was done in the
2840:
News spread quickly of the new discovery, which was correctly seen as an entirely novel physical effect with great scientific—and potentially practical—possibilities. Meitner's and Frisch's interpretation of the discovery of Hahn and Strassmann crossed the Atlantic Ocean with Niels Bohr, who was to
2702:
noted in 1915, Rutherford attempted to "break up the atom." Rutherford was able to accomplish the first artificial transmutation of nitrogen into oxygen, using alpha particles directed at nitrogen N + α → O + p.  Rutherford stated, "...we must conclude that the nitrogen atom is disintegrated,"
2601:
would completely fission less than 1 percent of its nuclear material before it expanded enough to stop the chain reaction from proceeding. Tamper always increased efficiency: it reflected neutrons back into the core and its inertia...slowed the core's expansion and helped keep the core surface from
2247:
where the nuclear binding energy is proportional to the nuclear volume, while nucleons near the surface interact with fewer nucleons, reducing the effect of the volume term. According to Lilley, "For all naturally occurring nuclei, the surface-energy term dominates and the nucleus exists in a state
1880:
The binding energy of the nucleus is the difference between the rest-mass energy of the nucleus and the rest-mass energy of the neutron and proton nucleons. The binding energy formula includes volume, surface and Coulomb energy terms that include empirically derived coefficients for all three, plus
1838:
Some processes involving neutrons are notable for absorbing or finally yielding energy — for example neutron kinetic energy does not yield heat immediately if the neutron is captured by a uranium-238 atom to breed plutonium-239, but this energy is emitted if the plutonium-239 is later fissioned. On
1779:
After an incident particle has fused with a parent nucleus, if the excitation energy is sufficient, the nucleus breaks into fragments. This is called scission, and occurs at about 10 seconds. The fragments can emit prompt neutrons at between 10 and 10 seconds. At about 10 seconds, the fragments can
1725:
elements, however, those isotopes that have an odd number of neutrons (such as U with 143 neutrons) bind an extra neutron with an additional 1 to 2 MeV of energy over an isotope of the same element with an even number of neutrons (such as U with 146 neutrons). This extra binding energy is made
3129:
In April 1939, creating a chain reaction in natural uranium became the goal of Fermi and Szilard, as opposed to isotope separation. Their first efforts involved five hundred pounds of uranium oxide from the Eldorado Radium Corporation. Packed into fifty-two cans two inches in diameter and two feet
2778:
notably suggested in 1934 that instead of creating a new, heavier element 93, that "it is conceivable that the nucleus breaks up into several large fragments." However, the quoted objection comes some distance down, and was but one of several gaps she noted in Fermi's claim. Although Noddack was a
2467:
Critical fission reactors are the most common type of nuclear reactor. In a critical fission reactor, neutrons produced by fission of fuel atoms are used to induce yet more fissions, to sustain a controllable amount of energy release. Devices that produce engineered but non-self-sustaining fission
1822:
nucleus fissions into two daughter nuclei fragments, about 0.1 percent of the mass of the uranium nucleus appears as the fission energy of ~200 MeV. For uranium-235 (total mean fission energy 202.79 MeV), typically ~169 MeV appears as the kinetic energy of the daughter nuclei, which
1389:
in opposition. Plotting the sum of these two energies as a function of elongated shape, they determined the resultant energy surface had a saddle shape. The saddle provided an energy barrier called the critical energy barrier. Energy of about 6 MeV provided by the incident neutron was necessary to
3176:
counter, with the control rods removed, after the end of each shift. On 2 Dec. 1942, with k approaching 1.0, Fermi had all but one of the control rod removed, and gradually removed the last one. The neutron counter clicks increased, as did the pen recorder, when Fermi announced "The pile has gone
3082:
reported on the "strong indications that Pu undergoes fission with slow neutrons." This meant chemical separation was an alternative to uranium isotope separation. Instead, a nuclear reactor fueled with ordinary uranium could produce a plutonium isotope as a nuclear explosive substitute for U. In
1656:
About 6 MeV of the fission-input energy is supplied by the simple binding of an extra neutron to the heavy nucleus via the strong force; however, in many fissionable isotopes, this amount of energy is not enough for fission. Uranium-238, for example, has a near-zero fission cross section for
2832:
of the nucleus, but he was unsure of what the physical basis for the results were. Barium had an atomic mass 40% less than uranium, and no previously known methods of radioactive decay could account for such a large difference in the mass of the nucleus. Frisch was skeptical, but Meitner trusted
2359:
and does not continue the reaction. Another neutron is simply lost and does not collide with anything, also not continuing the reaction. However, the one neutron does collide with an atom of uranium-235, which then fissions and releases two neutrons and some binding energy. 3. Both of those
2341:
Neutron-induced fission of U-235 emits a total energy of 207 MeV, of which about 200 MeV is recoverable, Prompt fission fragments amount to 168 MeV, which are easily stopped with a fraction of a millimeter. Prompt neutrons total 5 MeV, and this energy is recovered as heat via scattering in the
4570:
The paper was composed by several long-distance telephone calls, Lise Meitner having returned to Stockholm in the meantime. I asked an American biologist who was working with Hevesy what they call the process by which single cells divide in two; 'fission', he said, so I used the term 'nuclear
2882:. There, the news on nuclear fission was spread even further, which fostered many more experimental demonstrations. The 6 January 1939 Hahn and Strassman paper announced the discover of fission. In their second publication on nuclear fission in February 1939, Hahn and Strassmann used the term 1795:(200 MeV) of energy, the equivalent of roughly >2 trillion kelvin, for each fission event. The exact isotope which is fissioned, and whether or not it is fissionable or fissile, has only a small impact on the amount of energy released. This can be easily seen by examining the curve of 1267:
A visual representation of an induced nuclear fission event where a slow-moving neutron is absorbed by the nucleus of a uranium-235 atom, which fissions into two fast-moving lighter elements (fission products) and additional neutrons. Most of the energy released is in the form of the kinetic
2754:
moving at about the speed of sound...produces nuclear reactions in many materials much more easily than a beam of protons...traveling thousands of times faster." According to Rhodes, "Slowing down a neutron gave it more time in the vicinity of the nucleus, and that gave it more time to be
2711:
then used alpha particles to "disintegrate" boron, fluorine, sodium, aluminum, and phosphorus before reaching a limitation associated with the energy of his alpha particle source. Eventually, in 1932, a fully artificial nuclear reaction and nuclear transmutation was achieved by Rutherford's
2387:
is exactly unity, the reactions proceed at a steady rate and the reactor is said to be critical. It is possible to achieve criticality in a reactor using natural uranium as fuel, provided that the neutrons have been efficiently moderated to thermal energies." Moderators include light water,
1855:
and increase in size faster than it could be controlled by human intervention. In this case, the first experimental atomic reactors would have run away to a dangerous and messy "prompt critical reaction" before their operators could have manually shut them down (for this reason, designer
2857:
physicists working at Princeton, heard the news and carried it back to Columbia. Rabi said he told Enrico Fermi; Fermi gave credit to Lamb. Bohr soon thereafter went from Princeton to Columbia to see Fermi. Not finding Fermi in his office, Bohr went down to the cyclotron area and found
2334:, while the heavier nuclei require additional neutrons to remain stable. Nuclei that are neutron- or proton-rich have excessive binding energy for stability, and the excess energy may convert a neutron to a proton or a proton to a neutron via the weak nuclear force, a process known as 1320:
During induced fission, a compound system is formed after an incident particle fuses with a target. The resultant excitation energy may be sufficient to emit neutrons, or gamma-rays, and nuclear scission. Fission into two fragments is called binary fission, and is the most common
2596:
The objective of an atomic bomb is to produce a device, according to Serber, "...in which energy is released by a fast neutron chain reaction in one or more of the materials known to show nuclear fission." According to Rhodes, "Untamped, a bomb core even as large as twice the
1698:
for application, where the fast neutrons are supplied by nuclear fusion). However, this process cannot happen to a great extent in a nuclear reactor, as too small a fraction of the fission neutrons produced by any type of fission have enough energy to efficiently fission
2755:
captured." Fermi's team, studying radiative capture which is the emission of gamma radiation after the nucleus captures a neutron, studied sixty elements, inducing radioactivity in forty. In the process, they discovered the ability of hydrogen to slow down the neutrons.
2074: 2930:, that during the fission of uranium, "the energy released in this new reaction must be very much higher than all previously known cases...," which might lead to "large-scale production of energy and radioactive elements, unfortunately also perhaps to atomic bombs." 2533:
While, in principle, all fission reactors can act in all three capacities, in practice the tasks lead to conflicting engineering goals and most reactors have been built with only one of the above tasks in mind. (There are several early counter-examples, such as the
1803: 3086:
In October 1941, MAUD released its final report to the U.S. Government. The report stated, "We have now reached the conclusion that it will be possible to make an effective uranium bomb...The material for the first bomb could be ready by the end of 1943..."
1530:
attraction distance, and are then pushed apart and away by their electrical charge. In the liquid drop model, the two fission fragments are predicted to be the same size. The nuclear shell model allows for them to differ in size, as usually experimentally
2354:
A schematic nuclear fission chain reaction. 1. A uranium-235 atom absorbs a neutron and fissions into two new atoms (fission fragments), releasing three new neutrons and some binding energy. 2. One of those neutrons is absorbed by an atom of
2870:. The experiment involved placing uranium oxide inside of an ionization chamber and irradiating it with neutrons, and measuring the energy thus released. The results confirmed that fission was occurring and hinted strongly that it was the isotope 1243:
collective motion that results in the division of a parent nucleus into two or more fragment nuclei. The fission process can occur spontaneously, or it can be induced by an incident particle." The energy from a fission reaction is produced by its
3117:
scientists discussed seven possible ways to extract plutonium from irradiated uranium, and decided to pursue investigation of all seven. On 17 June, the first batch of uranium nitrate hexahydrate (UNH) was undergoing neutron bombardment in the
1986: 1238:
Younes and Loveland define fission as, "...a collective motion of the protons and neutrons that make up the nucleus, and as such it is distinguishable from other phenomena that break up the nucleus. Nuclear fission is an extreme example of
1030:
Apart from fission induced by a neutron, harnessed and exploited by humans, a natural form of spontaneous radioactive decay (not requiring a neutron) is also referred to as fission, and occurs especially in very high-mass-number isotopes.
3979:
is emitted by means of the repulsive electrostatic energy between the 2 daughter nuclei, which takes the form of the "kinetic energy" of the fission products, this kinetic energy results in both later blast and thermal effects.
1180:) whose radiotoxicity is far higher than that of the long lived fission products. Concerns over nuclear waste accumulation and the destructive potential of nuclear weapons are a counterbalance to the peaceful desire to use 3782: 2720:, who used artificially accelerated protons against lithium-7, to split this nucleus into two alpha particles. The feat was popularly known as "splitting the atom", and would win them the 1951 Nobel Prize in Physics for 2707:. This was the first observation of a nuclear reaction, that is, a reaction in which particles from one decay are used to transform another atomic nucleus. It also offered a new way to study the nucleus. Rutherford and 1851:" zone which deliberately relies on these neutrons for a supercritical chain-reaction (one in which each fission cycle yields more neutrons than it absorbs). Without their existence, the nuclear chain-reaction would be 954:. Hahn and Strassmann proved that a fission reaction had taken place on 19 December 1938, and Meitner and her nephew Frisch explained it theoretically in January 1939. Frisch named the process "fission" by analogy with 3155:
built sixteen exponential piles. Acquisition of purer forms of graphite, without traces of boron and its large cross section, became paramount. Also important was the acquisition of highly purified forms of oxide from
3083:
May, they demonstrated the cross section of plutonium was 1.7 times that of U235. When plutonium's cross section for fast fission was measured to be ten times that of U238, plutonium became a viable option for a bomb.
2479:
Critical fission reactors are built for three primary purposes, which typically involve different engineering trade-offs to take advantage of either the heat or the neutrons produced by the fission chain reaction:
1404: ≈ 240. It is found that the activation energy decreases as A increases. Eventually, a point is reached where activation energy disappears altogether...it would undergo very rapid spontaneous fission." 3055:
in two parts, "On the construction of a 'super-bomb; based on a nuclear chain reaction in uranium," and "Memorandum on the properties of a radioactive 'super-bomb.' ". On 10 April 1940, the first meeting of the
1377:, and Eugene Feenberg's estimates of nucleus radius and surface tension, to estimate the mass differences of parent and daughters in fission. They then equated this mass difference to energy using Einstein's 2773:
for his "demonstrations of the existence of new radioactive elements produced by neutron irradiation, and for his related discovery of nuclear reactions brought about by slow neutrons". The German chemist
2370:
John Lilley states, "...neutron-induced fission generates extra neutrons which can induce further fissions in the next generation and so on in a chain reaction. The chain reaction is characterized by the
1525:
The stages of binary fission in a liquid drop model. Energy input deforms the nucleus into a fat "cigar" shape, then a "peanut" shape, followed by binary fission as the two lobes exceed the short-range
3098:
report to Roosevelt. The report, amongst other things, called for parallel development of all isotope-separation systems. On 6 December, Bush and Conant reorganized the Uranium Committee's tasks, with
2824:, also a refugee, was also in Sweden when Meitner received a letter from Hahn dated 19 December describing his chemical proof that some of the product of the bombardment of uranium with neutrons was 3047:
of the sun, and pressures greater than the center of the earth. Additionally, the costs of isotope separation "would be insignificant compared to the cost of the war." By March 1940, encouraged by
1449:. In a nuclear reactor or nuclear weapon, the overwhelming majority of fission events are induced by bombardment with another particle, a neutron, which is itself produced by prior fission events. 2429:
is by definition a reactor that produces more fissile material than it consumes and needs a minimum of two neutrons produced for each neutron absorbed in a fissile nucleus. Thus, in general, the
7418: 1008:
as the original parent atom. The two (or more) nuclei produced are most often of comparable but slightly different sizes, typically with a mass ratio of products of about 3 to 2, for common
1358: = 18). The most common small fragments, however, are composed of 90% helium-4 nuclei with more energy than alpha particles from alpha decay (so-called "long range alphas" at ~16 1893: 1679:. The remaining energy to initiate fission can be supplied by two other mechanisms: one of these is more kinetic energy of the incoming neutron, which is increasingly able to fission a 5651: 2240:{\displaystyle B=a_{v}\mathbf {A} -a_{s}\mathbf {A} ^{2/3}-a_{c}{\frac {\mathbf {Z} ^{2}}{\mathbf {A} ^{1/3}}}-a_{a}{\frac {(\mathbf {N} -\mathbf {Z} )^{2}}{\mathbf {A} }}\pm \Delta } 1657:
neutrons of less than 1 MeV energy. If no additional energy is supplied by any other mechanism, the nucleus will not fission, but will merely absorb the neutron, as happens when
2592:. An estimated 39,000 people were killed by the atomic bomb, of whom 23,145–28,113 were Japanese factory workers, 2,000 were Korean slave laborers, and 150 were Japanese combatants. 2937:(in Paris) to refrain from publishing on the possibility of a chain reaction, lest the Nazi government become aware of the possibilities on the eve of what would later be known as 2030:. Thus, the mass of an atom is less than the mass of its constituent protons and neutrons, assuming the average binding energy of its electrons is negligible. The binding energy 1221:
to both enable uranium (and thorium) supplies to last longer and to reduce the amount of "waste". The industry term for a process that fissions all or nearly all actinides is a "
6237: 4664:(February 1939). "Nachweis der Entstehung aktiver Bariumisotope aus Uran und Thorium durch Neutronenbestrahlung; Nachweis weiterer aktiver Bruchstücke bei der Uranspaltung". 2765:
studied the results of bombarding uranium with neutrons in 1934. Fermi concluded that his experiments had created new elements with 93 and 94 protons, which the group dubbed
2820:, the union of Austria with Germany in March 1938, but she fled in July 1938 to Sweden and started a correspondence by mail with Hahn in Berlin. By coincidence, her nephew 2069:
may be used to express the binding energy as the sum of five terms, which are the volume energy, a surface correction, Coulomb energy, a symmetry term, and a pairing term:
1539:
are a measurable property related to the probability that fission will occur in a nuclear reaction. Cross sections are a function of incident neutron energy, and those for
1814:
level of color is proportional to (larger) nuclei charge. Electrons (smaller) on this time-scale are seen only stroboscopically and the hue level is their kinetic energy.
7411: 2918:
neutron, such an element, if assembled in sufficiently large mass, could sustain a nuclear chain reaction." On 25 January 1939, after learning of Hahn's discovery from
1426:(the isotope of plutonium with mass number 239). These fuels break apart into a bimodal range of chemical elements with atomic masses centering near 95 and 135 daltons ( 3938: 3286:
shorter-lived fissile isotope U (about 3%), than natural uranium available today (which is only 0.7%, and must be enriched to 3% to be usable in light-water reactors).
3004:. Roosevelt quickly understood the implications, stating, "Alex, what you are after is to see that the Nazis don't blow us up." Roosevelt ordered the formation of the 2910:
been able to achieve a neutron-driven chain reaction using beryllium. Szilard stated, "...if we could find an element which is split by neutrons and which would emit
6431: 7514: 5062: 2652:
proposed a model of the atom in which a very small, dense and positively charged nucleus of protons was surrounded by orbiting, negatively charged electrons (the
7404: 2957:
found "...the number of neutrons emitted by fission to be about two." Fermi and Anderson estimated "a yield of about two neutrons per each neutron captured."
7474: 5839: 4283: 7735: 7435: 7427: 958:
of living cells. In their second publication on nuclear fission in February 1939, Hahn and Strassmann predicted the existence and liberation of additional
7479: 5366: 3970: 1390:
overcome this barrier and cause the nucleus to fission. According to John Lilley, "The energy required to overcome the barrier to fission is called the
5661: 2383:> 1, the reactor is supercritical and the chain reaction diverges. This is the situation in a fission bomb where growth is at an explosive rate. If 1366:). Though less common than binary fission, it still produces significant helium-4 and tritium gas buildup in the fuel rods of modern nuclear reactors. 7519: 4019: 2437:(BR)...U offers a superior breeding potential for both thermal and fast reactors, while Pu offers a superior breeding potential for fast reactors." 6542: 2922:, Szilard noted, "...if enough neutrons are emitted...then it should be, of course, possible to sustain a chain reaction. All of the things which 2360:
neutrons collide with uranium-235 atoms, each of which fissions and releases between one and three neutrons, which can then continue the reaction.
1058:
The unpredictable composition of the products (which vary in a broad probabilistic and somewhat chaotic manner) distinguishes fission from purely
6687: 3830: 1493:
are not, meaning it can never achieve criticality. While there is a very small (albeit nonzero) chance of a thermal neutron inducing fission in
53:. The uranium-236, in turn, splits into fast-moving lighter elements (fission products) and releases several free neutrons, one or more "prompt 4487:
Hook, Ernest B. (2002). "Interdisciplinary Dissonance and Prematurity: Ida Noddack's Suggestion of Nuclear Fission". In Hook, Ernest B. (ed.).
8899: 7469: 7325: 5346: 3231:
at the University of Chicago, played important contributing roles. Overall scientific direction of the project was managed by the physicist
1683:
heavy nucleus as it exceeds a kinetic energy of 1 MeV or more (so-called fast neutrons). Such high energy neutrons are able to fission
7534: 7524: 7504: 5668: 5099: 7596: 7541: 7310: 2375:, which is defined as the ratio of the number of neutrons in one generation to the number in the preceding generation. If, in a reactor, 5035: 3177:
critical." They had achieved a k of 1.0006, which meant neutron intensity doubled every two minutes, in addition to breeding plutonium.
7884: 7558: 5434: 4952: 4921: 2505:
are intended to produce neutrons and/or activate radioactive sources for scientific, medical, engineering, or other research purposes.
1831:
kinetic energy per neutron of ~2 MeV (total of 4.8 MeV). The fission reaction also releases ~7 MeV in prompt gamma ray
7764: 7741: 7661: 5937: 5043: 3947:, interact readily with matter. They transfer their energy quickly to the surrounding weapon materials, which rapidly become heated"" 3251: 2837:. Just as the term nuclear "chain reaction" would later be borrowed from chemistry, so the term "fission" was borrowed from biology. 2581: 889: 803: 7673: 6176: 3277:) have been discovered at which self-sustaining nuclear fission took place approximately 2 billion years ago. French physicist 1847:, because they give a characteristic "reaction" time for the total nuclear reaction to double in size, if the reaction is run in a " 7602: 1860:
included radiation-counter-triggered control rods, suspended by electromagnets, which could automatically drop into the center of
7915: 7801: 7494: 7449: 6387: 6227: 6166: 1583:
needs a fast neutron to supply the additional 1 MeV needed to cross the critical energy barrier for fission. In the case of
6307: 4434:
E. Fermi, E. Amaldi, O. D'Agostino, F. Rasetti, and E. Segrè (1934) "Radioattività provocata da bombardamento di neutroni III",
2988:
and were spurred to attempt to attract the attention of the United States government to the issue. Towards this, they persuaded
8535: 7499: 7489: 7279: 6132: 1572:
at lower neutron energy levels. Absorption of any neutron makes available to the nucleus binding energy of about 5.3 MeV.
1086:
undergo fission when struck by fission neutrons, and in turn emit neutrons when they break apart. This makes a self-sustaining
4045: 3094:
were able to demonstrate the enrichment of uranium through gaseous barrier diffusion. On 27 November, Bush delivered to third
2044:
carbon-12, oxygen-16, neon-20 and magnesium-24. Binding energy due to the nuclear force approaches a constant value for large
1127:
than the heavy elements which are normally fissioned as fuel, and remain so for significant amounts of time, giving rise to a
8579: 8254: 7396: 5361: 4811: 4496: 4217: 4191: 4139: 3953: 3816: 3412: 2941:. With some hesitation Fermi agreed to self-censor. But Joliot-Curie did not, and in April 1939 his team in Paris, including 2862:. Bohr grabbed him by the shoulder and said: "Young man, let me explain to you about something new and exciting in physics." 3042:, who had been working on a critical mass formula. assuming isotope separation was possible, they considered U, which had a 7796: 7591: 7305: 7274: 7219: 6183: 1843:
emitted as radioactive decay products with half-lives up to several minutes, from fission-daughters, are very important to
3434:(1989). "Как было открыто спонтанное деление" [How spontaneous fission was discovered]. In Черникова, Вера (ed.). 3191:
In the United States, an all-out effort for making atomic weapons was begun in late 1942. This work was taken over by the
2782: 8721: 6938: 6904: 6100: 5646: 5611: 5059: 2735:
to observe protons knocked out of several elements by beryllium radiation, following up on earlier observations made by
2425:
Lee states, "One important comparison for the three major fissile nuclides, U, U, and Pu, is their breeding potential. A
1381:
formula. The stimulation of the nucleus after neutron bombardment was analogous to the vibrations of a liquid drop, with
152: 2779:
renowned analytical chemist, she lacked the background in physics to appreciate the enormity of what she was proposing.
1015:. Most fissions are binary fissions (producing two charged fragments), but occasionally (2 to 4 times per 1000 events), 7774: 7769: 7624: 7529: 7464: 7254: 6798: 6382: 4604:
H. L. Anderson; E. T. Booth; J. R. Dunning; E. Fermi; G. N. Glasoe & F. G. Slack (1939). "The Fission of Uranium".
3943:
of the fission energy is released as kinetic energy of the two large fission fragments. These fragments, being massive
3119: 2879: 2953:
that the number of neutrons emitted with nuclear fission of uranium was then reported at 3.5 per fission. Szilard and
1727: 50: 7790: 7759: 7619: 7548: 5462: 5341: 4647: 4591: 4563: 4121: 3720: 3559: 3493: 3447: 3385: 3340: 2379:
is less than unity, the reactor is subcritical, the number of neutrons decreases and the chain reaction dies out. If
1308:
Nuclear fission can occur without neutron bombardment as a type of radioactive decay. This type of fission is called
4520: 3238:
In July 1945, the first atomic explosive device, dubbed "The Gadget", was detonated in the New Mexico desert in the
3223:, in New Mexico, which was the scientific hub for research on bomb development and design. Other sites, notably the 2926:
predicted appeared suddenly real to me." After the Hahn-Strassman paper was published, Szilard noted in a letter to
8662: 7651: 7320: 6692: 6557: 5092: 3924:
These fission neutrons have a wide energy spectrum, ranging from 0 to 14 MeV, with a mean of 2 MeV and a
2460: 2290: 456: 4287: 2746:, referring to the neutron, "It would therefore serve as a new nuclear probe of surpassing power of penetration." 844: 7553: 6635: 6469: 6071: 5949: 5606: 5467: 5050:
Historical account complete with audio and teacher's guides from the American Institute of Physics History Center
3262: 2874:
in particular that was fissioning. The next day, the Fifth Washington Conference on Theoretical Physics began in
648: 3872:
V, Kopeikin; L, Mikaelyan and; V, Sinev (2004). "Reactor as a Source of Antineutrinos: Thermal Fission Energy".
8672: 7851: 6625: 6474: 5932: 4164: 3587: 3220: 2985: 2273:, which is called the odd–even effect on the fragments' charge distribution. This can be seen in the empirical 353: 7689: 4002: 2997: 7484: 7386: 6399: 6232: 5656: 5584: 4093: 3224: 3052: 3005: 882: 4361: 3143:
1942, Fermi planned a full-scale chain reacting pile, Chicago Pile-1, after one of the exponential piles at
2691:, "conveyed the tremendous and inevitable conclusion that the element thorium was slowly and spontaneously 8904: 8842: 8202: 7645: 7459: 6742: 6479: 6188: 5942: 5439: 4157:
Nuke-Rebuke: Writers & Artists Against Nuclear Energy & Weapons (The Contemporary anthology series)
3192: 3095: 2616: 2469: 1047:
in Moscow, in an experiment intended to confirm that, without bombardment by neutrons, the fission rate of
935: 4023: 2522: 2283:
have higher yield values. However, no odd–even effect is observed on fragment distribution based on their
1605:
adjusts from an odd to an even mass. In the words of Younes and Lovelace, "...the neutron absorption on a
8761: 8020: 7908: 7579: 7142: 6892: 6805: 6777: 6734: 6699: 6537: 6364: 6302: 6127: 6031: 5917: 5385: 5085: 2066: 666: 636: 137: 3027:. Subsequently, Dunning, bombarding the U-235 sample with neutrons generated by the Columbia University 2050:, while the Coulomb acts over a larger distance so that electrical potential energy per proton grows as 8894: 8874: 7657: 7585: 7374: 7229: 7202: 6726: 6585: 6264: 5782: 5739: 5591: 3278: 2934: 2549: 1132: 713: 263: 4535:"Entdeckung der Kernspaltung 1938, Versuchsaufbau, Deutsches Museum München | Faszination Museum" 2040:
relationship. The binding energy also provides an estimate of the total energy released from fission.
8667: 8525: 8187: 8132: 8112: 8107: 7875: 7811: 7720: 7454: 7259: 7112: 6880: 6562: 6171: 5954: 4930: 3834: 3303: 2641: 1731: 1098: 978: 599: 3126:'s team. On 20 August, using ultramicrochemistry techniques, they successfully extracted plutonium. 2769:. However, not all were convinced by Fermi's analysis of his results, though he would win the 1938 8889: 8879: 8869: 8864: 8596: 7940: 7197: 7107: 6971: 6810: 6652: 6552: 6464: 5673: 5559: 5519: 5331: 3335: 3228: 3114: 3035: 1981:{\displaystyle m(\mathbf {A} ,\mathbf {Z} )=\mathbf {Z} m_{H}+\mathbf {N} m_{n}-\mathbf {B} /c^{2}} 1430:). Most nuclear fuels undergo spontaneous fission only very slowly, decaying instead mainly via an 875: 862: 594: 298: 2399:
According to John C. Lee, "For all nuclear reactors in operation and those under development, the
8818: 8756: 8741: 8137: 8117: 7836: 7826: 7137: 6931: 6715: 6682: 6657: 6271: 6048: 5854: 5777: 5734: 5717: 5678: 5601: 3131: 2557: 2446: 2037: 1864:). If these delayed neutrons are captured without producing fissions, they produce heat as well. 1844: 1378: 1374: 589: 486: 451: 147: 6640: 3737: 3647: 3242:
test. It was fueled by plutonium created at Hanford. In August 1945, two more atomic devices – "
1627:
nucleus with excitation energy greater than the critical fission energy, whereas in the case of
1414:
for the nucleus. The nuclides that can sustain a fission chain reaction are suitable for use as
1252:, while about 6 percent each comes from initial neutrons and gamma rays and those emitted after 8884: 8269: 8165: 8092: 8082: 7963: 7901: 7831: 7632: 7378: 7289: 6963: 6547: 5834: 5378: 2770: 2766: 2637: 2553: 2490: 2365: 1810:
in the case of a cluster of positively charged nuclei, akin to a cluster of fission fragments.
1087: 994: 963: 643: 293: 258: 7426: 3582:
J. Kliman, M. G. Itkis, S. Gmuca (eds.). World Scientific Publishing Co. Pte. Ltd. Singapore.
3575: 3375: 8209: 8000: 7382: 7117: 6841: 6577: 6532: 5994: 5922: 5849: 5844: 5809: 5596: 5564: 5351: 5278: 4183:
Nagasaki 1945: the first full-length eyewitness account of the atomic bomb attack on Nagasaki
4087: 3855: 3601: 3402: 3232: 3043: 3020: 2794:. The table and instruments are originals, but would not have been together in the same room. 2692: 2274: 2062:
is larger than 120 nucleus fragments. Fusion energy is released when lighter nuclei combine.
1536: 1460: 1276: 1001: 768: 653: 545: 4961: 4934: 4234: 2736: 2648:
and the elaboration of new nuclear physics that described the components of atoms. In 1911,
2431:
conversion ratio (CR) is defined as the ratio of fissile material produced to that destroyed
708: 8657: 8630: 8608: 8515: 8448: 8197: 8127: 8072: 7821: 7683: 7239: 7127: 7084: 7034: 6752: 6527: 6512: 5829: 5787: 5623: 5529: 5457: 5002: 4892: 4840: 4774: 4720: 4673: 4613: 4461: 4407: 4373: 4324: 4249: 4060: 3891: 3749: 3659: 3613: 3274: 3212: 2842: 2518: 2473: 2407:
materials, U, U, and Pu, and the associated isotopic chains. For the current generation of
1735: 1695: 1407: 1214: 1210: 778: 753: 570: 49:
nucleus, with the excitation energy provided by the kinetic energy of the neutron plus the
5040: 4449: 1023:. The smallest of these fragments in ternary processes ranges in size from a proton to an 8: 8736: 8679: 8601: 8574: 8259: 8122: 8097: 7806: 7356: 7234: 7147: 6851: 6662: 6447: 6041: 5909: 5887: 5712: 5569: 5336: 5298: 5131: 3431: 3148: 3139: 2859: 2854: 2545: 2485: 1872: 1848: 1411: 1309: 1117: 1040: 1032: 974: 673: 552: 446: 389: 382: 372: 313: 308: 142: 7608: 7315: 5006: 4896: 4844: 4778: 4724: 4677: 4617: 4465: 4411: 4377: 4328: 4253: 4136: 4064: 3895: 3753: 3738:"Resonance in Uranium and Thorium Disintegrations and the Phenomenon of Nuclear Fission" 3663: 3617: 3067:
at Oxford wrote his Estimate of the size of an actual separation plant." Simon proposed
1876:
The "curve of binding energy": A graph of binding energy per nucleon of common isotopes.
1752:
that fission easily following the absorption of a thermal (0.25 meV) neutron are called
8716: 8694: 8684: 8520: 7714: 7677: 7614: 7351: 7172: 7152: 7132: 7016: 6924: 6831: 6567: 6404: 6331: 6142: 5792: 5762: 5746: 5729: 5373: 5263: 5211: 5161: 5108: 4992: 4858: 4736: 4689: 4342: 4265: 3907: 3881: 3350: 3216: 3135: 2993: 2821: 2732: 2724:, although it was not the nuclear fission reaction later discovered in heavy elements. 2526: 2400: 1505: 1333:. Since in nuclear fission, the nucleus emits more neutrons than the one it absorbs, a 1218: 1185: 1136: 951: 616: 611: 426: 5053: 4046:"Microscopic calculations of potential energy surfaces: Fission and fusion properties" 3580:
Dynamical aspects of nuclear fission: proceedings of the 6th International Conference.
1718:
of only 0.75 MeV, meaning half of them have less than this insufficient energy).
8825: 8618: 8443: 8304: 8264: 8234: 8219: 8192: 8102: 8005: 7945: 7935: 7816: 7779: 7244: 7122: 7059: 7024: 5899: 5692: 5579: 5554: 5492: 5449: 5293: 5288: 5283: 5126: 4807: 4643: 4587: 4559: 4502: 4492: 4269: 4213: 4187: 4160: 4117: 3925: 3812: 3716: 3583: 3576:"Comparative study of the ternary particle emission in 243-Cm (nth,f) and 244-Cm(SF)" 3555: 3489: 3443: 3408: 3381: 3196: 3186: 3173: 3068: 3024: 3016: 2846: 2834: 2669: 2649: 2494: 1807: 1711: 1370: 1222: 1128: 1059: 955: 929: 788: 783: 743: 621: 360: 348: 331: 303: 273: 114: 4693: 3911: 8777: 8751: 8746: 8726: 8711: 8552: 8542: 8322: 8249: 7985: 7702: 7249: 6747: 5802: 5767: 5524: 5514: 5402: 5390: 5231: 5226: 5216: 5206: 5201: 5072: 5030: 5010: 4900: 4862: 4848: 4782: 4740: 4728: 4681: 4661: 4621: 4469: 4415: 4381: 4346: 4332: 4257: 4068: 3899: 3757: 3667: 3621: 3330: 3200: 3123: 3103: 2906: 2875: 2807: 2787: 2653: 2521:
makes Pu (a nuclear fuel) from the naturally very abundant U (not a nuclear fuel).
2501: 2264: 1840: 1824: 1427: 1359: 1322: 1245: 1206: 1202: 1005: 943: 906: 808: 798: 728: 481: 399: 367: 187: 119: 4309: 3207:
in Washington, which had the first industrial-scale nuclear reactors and produced
1890:
is the energy required to separate it into its constituent neutrons and protons."
1201:- or rather its decay products - are a major gamma ray emitter. All actinides are 8806: 8787: 8701: 8468: 8383: 8239: 8229: 8214: 8172: 8077: 8027: 7978: 7361: 7346: 7162: 7074: 6916: 6645: 6605: 6059: 5873: 5797: 5772: 5618: 5411: 5313: 5303: 5268: 5136: 5066: 5047: 4261: 4207: 4181: 3091: 3012: 3001: 2989: 2942: 2751: 2747: 2684: 2676: 2660:
improved upon this in 1913 by reconciling the quantum behavior of electrons (the
2585: 2509: 1852: 1781: 1382: 1326: 1280: 1091: 1063: 1020: 793: 773: 748: 678: 565: 493: 404: 64: 6137: 4521:"Originalgeräte zur Entdeckung der Kernspaltung, "Hahn-Meitner-Straßmann-Tisch"" 3939:"NUCLEAR EVENTS AND THEIR CONSEQUENCES by the Borden institute..."approximately 3075: 8782: 8731: 8706: 8510: 8475: 8408: 8398: 8314: 8294: 8289: 8274: 8244: 8224: 8182: 8160: 8142: 8042: 8032: 7968: 7841: 7708: 7667: 7209: 7167: 7157: 7079: 7069: 7039: 6600: 6595: 6590: 6340: 6247: 6216: 6198: 5722: 5628: 5574: 5539: 5472: 5419: 5273: 5166: 5151: 5141: 3345: 3165: 3107: 3057: 3039: 2965: 2743: 2728: 2717: 2708: 2699: 2577: 2561: 2027: 1861: 1796: 1431: 1334: 1330: 1249: 1155: 1079: 1044: 1036: 990: 982: 910: 849: 703: 698: 577: 510: 318: 253: 230: 217: 204: 104: 82: 27: 20: 6620: 4603: 4534: 4491:. Berkeley and Los Angeles: University of California Press. pp. 124–148. 3102:
developing gaseous diffusion, Lawrence developing electromagnetic separation,
2544:
As of 2019, the 448 nuclear power plants worldwide provided a capacity of 398
1074:, which give the same products each time. Nuclear fission produces energy for 8858: 8830: 8689: 8649: 8613: 8569: 8495: 8458: 8376: 8299: 8067: 8062: 8015: 7995: 7284: 7044: 7029: 6785: 6076: 5482: 5323: 4877: 4625: 4506: 4473: 4235:"The scattering of α and β particles by matter and the structure of the atom" 4143: 3761: 3671: 3317: 3048: 3031:, confirmed "U-235 was responsible for the slow neutron fission of uranium." 2981: 2977: 2927: 2919: 2722:"Transmutation of atomic nuclei by artificially accelerated atomic particles" 2713: 2645: 2598: 2564:, and the resultant generated steam is used to drive a turbine or generator. 2556:. Energy from fission is transmitted through conduction or convection to the 2456: 2005: 1785: 1527: 1446: 1435: 1423: 1386: 1345: 1341: 1296: 1288: 1181: 1075: 1071: 997:
of the resulting elements must be greater than that of the starting element.
828: 823: 818: 813: 763: 421: 394: 238: 177: 130: 109: 5015: 4980: 1340:
Binary fission may produce any of the fission products, at 95±15 and 135±15
8586: 8530: 8480: 8463: 8284: 8057: 7990: 7784: 7730: 7725: 7264: 7224: 7089: 6351: 5487: 5429: 5356: 5308: 5178: 4787: 4762: 4708: 4420: 4395: 4386: 3355: 3325: 3239: 3204: 3161: 3157: 3079: 2946: 2938: 2803: 2758: 2665: 2629: 2621: 2535: 2297:
of about 90 to 100 daltons and the other the remaining 130 to 140 daltons.
1857: 1792: 1456: 1415: 1329:, in which a third particle is emitted. This third particle is commonly an 1083: 947: 917:
splits into two or more smaller nuclei. The fission process often produces
758: 733: 718: 463: 411: 268: 7428:
Nuclear and radioactive disasters, former facilities, tests and test sites
3625: 2897:
was the major contributor to that cross section and slow-neutron fission.
2636:
The discovery of nuclear fission occurred in 1938 in the buildings of the
1291:, a combination of the two typical of current nuclear power reactors, and 8591: 8557: 8431: 8421: 8364: 8347: 8332: 8279: 8177: 7856: 7006: 6762: 6409: 5999: 5506: 5477: 5036:
Annotated bibliography for nuclear fission from the Alsos Digital Library
3282: 3169: 3152: 3144: 3099: 3064: 2954: 2923: 2871: 2850: 2775: 2680: 2589: 2588:, on 9 August 1945 rose over 18 kilometres (11 mi) above the bomb's 2389: 2356: 2350: 1995: 1767:
that do not easily fission when they absorb a thermal neutron are called
1680: 1452: 1438: 1419: 1399: 1292: 1284: 1190: 1124: 1067: 723: 416: 338: 191: 46: 42: 4284:"Cockcroft and Walton split lithium with high energy protons April 1932" 1248:, though a large majority of it, about 85 percent, is found in fragment 8625: 8547: 8485: 8453: 8393: 8087: 7846: 7054: 7001: 6115: 4709:"Disintegration of Uranium by Neutrons: a New Type of Nuclear Reaction" 4685: 3886: 3243: 2867: 2661: 2657: 2335: 1442: 1253: 1052: 693: 683: 540: 520: 343: 213: 4954:
DOE Fundamentals Handbook: Nuclear Physics and Reactor Theory Volume 2
4923:
DOE Fundamentals Handbook: Nuclear Physics and Reactor Theory Volume 1
4904: 4072: 3903: 3281:
discovered the Oklo Fossil Reactors in 1972, but it was postulated by
3195:
in 1943, and known as the Manhattan Engineer District. The top-secret
2960: 1272: 8635: 8562: 8436: 8416: 8388: 8327: 7638: 7341: 7214: 7049: 6996: 6986: 6947: 6757: 6120: 6110: 5238: 5191: 5156: 5077: 4853: 4828: 4732: 4337: 3208: 3028: 2878:
under the joint auspices of the George Washington University and the
2816: 2799: 2625: 2538: 2301: 1653:
nucleus has an excitation energy below the critical fission energy."
1240: 1140: 1004:
because the resulting fragments (or daughter atoms) are not the same
939: 918: 738: 688: 515: 503: 498: 377: 54: 6615: 4179: 2489:
are intended to produce heat for nuclear power, either as part of a
57:" (not shown) and a (proportionally) large amount of kinetic energy. 8371: 8352: 8337: 8037: 7509: 6991: 6976: 6846: 6489: 6484: 6424: 6093: 6021: 6004: 5989: 5964: 5707: 5196: 4997: 3715:. John Wiley & Sons, Ltd. pp. 7–9, 13–14, 38–43, 265–267. 2814:. Meitner, an Austrian Jew, lost her Austrian citizenship with the 2672:, which became essential to understanding the physics of fission. 2514: 2419: 2393: 1722: 1455:
isotopes such as uranium-238 require additional energy provided by
1418:. The most common nuclear fuels are U (the isotope of uranium with 1257: 1188:
produces virtually no plutonium and much less minor actinides, but
1123:
The products of nuclear fission, however, are on average far more
72: 33: 8505: 8047: 7269: 6815: 6767: 6630: 6610: 6009: 5984: 5424: 5255: 5243: 5221: 5186: 4826: 4539: 3311: 3247: 2688: 2513:
are intended to produce nuclear fuels in bulk from more abundant
1819: 1363: 1113: 1048: 1012: 1009: 970: 959: 200: 173: 165: 97: 87: 38: 4829:"Number of Neutrons Liberated in the Nuclear Fission of Uranium" 2451: 1668:
absorbs slow and even some fraction of fast neutrons, to become
1112:
is a million times more than that released in the combustion of
8052: 7973: 7924: 6419: 6414: 6394: 6374: 6359: 6242: 5979: 5959: 5927: 4159:. The Spirit That Moves Us Press. May 1, 1984. pp. 22–29. 3554:. New York: Simon & Schuster Paperbacks. pp. 135–138. 3160:
Chemical Works. Finally, acquiring pure uranium metal from the
2825: 2811: 2791: 2572: 1832: 1715: 925: 921: 92: 4489:
Prematurity in Scientific Discovery: On Resistance and Neglect
19:"Split the atom" redirects here. For the album by Noisia, see 7094: 6981: 6836: 6793: 6456: 6312: 6105: 5969: 3440:
Brief Moment of Triumph — About making scientific discoveries
3270: 1351: 1024: 4981:"Nuclear Fission Dynamics: Past, Present, Needs, and Future" 3436:Краткий Миг Торжества — О том, как делаются научные открытия 3147:
reached a k of 0.995. Between 15 September and 15 November,
1827:. Also, an average of 2.5 neutrons are emitted, with a 1213:
can fission them all albeit only in certain configurations.
962:
during the fission process, opening up the possibility of a
8426: 8359: 8342: 8010: 7695: 6317: 6206: 6016: 5974: 4878:"On the Nuclear Physical Stability of the Uranium Minerals" 3266: 2762: 2548:, with about 85% being light-water cooled reactors such as 2525:
previously tested using Th to breed the fissile isotope U (
2412: 1828: 1263: 1094:
or at a very rapid, uncontrolled rate in a nuclear weapon.
1082:. Both uses are possible because certain substances called 986: 914: 3257: 3252:
used against the Japanese cities of Hiroshima and Nagasaki
7893: 6290: 6154: 4960:. U.S. Department of Energy. January 1993. Archived from 4209:
The Impact of the A-bomb, Hiroshima and Nagasaki, 1945–85
2408: 1811: 1802: 1791:
Typical fission events release about two hundred million
1521: 1362:(MeV)), plus helium-6 nuclei, and tritons (the nuclei of 3122:
cyclotron. On 27 July, the irradiated UNH was ready for
2644:, following over four decades of work on the science of 4020:"Nuclear Fission and Fusion, and Nuclear Interactions" 1884:
According to Lilley, "The binding energy of a nucleus
16:
Nuclear reaction splitting an atom into multiple parts
4180:
Tatsuichirō Akizuki; Gordon Honeycombe (March 1982).
4116:. John Wiley & Sons, Inc. pp. 324, 327–329. 3975:
The various energies emitted per fission event pg 4.
2433:...when the CR is greater than 1.0, it is called the 2277:
data for each fission product, as products with even
2077: 1896: 1090:
possible, releasing energy at a controlled rate in a
4286:. Outreach.phy.cam.ac.uk. 1932-04-14. Archived from 4043: 3293: 3164:, meant the replacement of oxide pseudospheres with 2986:
Germans might make use of the fission chain reaction
1823:
fly apart at about 3% of the speed of light, due to
1268:
velocities of the fission products and the neutrons.
4827:H. Von Halban; F. Joliot & L. Kowarski (1939). 3373: 3199:, as it was colloquially known, was led by General 3071:as the best method for uranium isotope separation. 2992:to lend his name to a letter directed to President 2687:, investigating the radioactive gas emanating from 1135:make up only a small fraction of fission products. 1101:released in the fission of an equivalent amount of 989:the bulk material where fission takes place). Like 6946: 5840:Blue Ribbon Commission on America's Nuclear Future 4212:. Iwanami Shoten. 1 January 1985. pp. 56–78. 4075:. Archived from the original on September 29, 2006 3996:in beta decay and gamma decay(residual radiation)" 3984:is released in prompt or initial gamma radiation, 2900: 2300:Stable nuclei, and unstable nuclei with very long 2239: 1980: 1741:According to Younes and Loveland, "Actinides like 977:which can release large amounts of energy both as 3426: 3424: 2731:discovered the neutron in 1932. Chadwick used an 8856: 4558:. Cambridge University Press. pp. 114–117. 3828: 3110:responsible for theoretical studies and design. 1019:positively charged fragments are produced, in a 4979:Bulgac, Aurel; Jin, Shi; Stetcu, Ionel (2020). 4978: 3988:in prompt neutron radiation (99.36% of total), 3180: 2610: 2036:is expressed in energy units, using Einstein's 7674:Thor missile launch failures at Johnston Atoll 4659: 4438:, vol. 5, no. 1, pages 452–453. 4022:. National Physical Laboratory. Archived from 3483: 3421: 2683:named, radioactivity. In 1900, Rutherford and 7909: 7475:Nuclear and radiation accidents by death toll 7470:Nuclear and radiation accidents and incidents 7412: 6932: 6543:Small sealed transportable autonomous (SSTAR) 5093: 4706: 4232: 4137:The Atomic Bombings of Hiroshima and Nagasaki 4001:. Technical University Vienna. Archived from 3865: 3442:] (in Russian). Наука. pp. 108–112. 3400: 2260:are both even, adding to the binding energy. 2056:increases. Fission energy is released when a 1478:are fast enough to induce another fission in 1467:of the neutrons released from the fission of 1459:(such as those produced by nuclear fusion in 883: 4875: 4393: 4359: 3848: 3648:"On the Shape and Stability of Heavy Nuclei" 3203:. Among the project's dozens of sites were: 2698:In 1919, following up on an earlier anomaly 1594:however, that extra energy is provided when 45:nucleus, turning it briefly into an excited 7597:1996 San Juan de Dios radiotherapy accident 7480:Nuclear and radiation fatalities by country 4760: 4447: 4307: 3811:, Dover Publications, Mineola, NY, p. 259, 3713:Nuclear Physics: Principles and Application 2905:During this period the Hungarian physicist 2304:, follow a trend of stability evident when 1350: = 1), to as large a fragment as 993:, for fission to produce energy, the total 7916: 7902: 7419: 7405: 6939: 6925: 5100: 5086: 3833:. European Nuclear Society. Archived from 3019:was able to separate U-235 and U-238 from 3011:In February 1940, encouraged by Fermi and 2933:Szilard now urged Fermi (in New York) and 1780:emit gamma rays. At 10 seconds β decay, β- 1726:available as a result of the mechanism of 890: 876: 7765:Vulnerability of nuclear plants to attack 7742:Atomic bombings of Hiroshima and Nagasaki 7662:Three Mile Island accident health effects 5014: 4996: 4852: 4786: 4419: 4385: 4336: 3885: 3748:(4). American Physical Society: 418–419. 3658:(5). American Physical Society: 504–505. 3602:"The Atomic Masses of the Heavy Elements" 2964:Drawing of the first artificial reactor, 7760:International Nuclear Event Scale (INES) 7603:Clinic of Zaragoza radiotherapy accident 6455: 4801: 3645: 3599: 3484:Younes, Walid; Loveland, Walter (2021). 3172:. Neutron intensity was measured with a 2959: 2810:began performing similar experiments in 2781: 2620: 2571: 2472:. Such devices use radioactive decay or 2450: 2349: 1871: 1801: 1520: 1422:235 and of use in nuclear reactors) and 1271: 1262: 1139:which does not lead to fission produces 32: 7802:International Day against Nuclear Tests 7450:Crimes involving radioactive substances 4114:Nuclear Reactor Physics and Engineering 3612:(1). American Physical Society: 64–75. 3430: 3258:Natural fission chain-reactors on Earth 2529:) continue to be studied and developed. 2015:is the atomic mass of a hydrogen atom, 8857: 8536:Integrated gasification combined cycle 7592:Instituto Oncológico Nacional#Accident 7280:Wireless electronic devices and health 6470:Liquid-fluoride thorium reactor (LFTR) 5107: 4553: 4107: 4105: 4103: 3992:in delayed neutron energy (0.64%) and 3928:of 0.75 MeV. See Byrne, op. cite. 3710: 3549: 3265:is uncommon. At three ore deposits at 1784:, and gamma rays are emitted from the 924:, and releases a very large amount of 8580:Radioisotope thermoelectric generator 8255:Quantum chromodynamics binding energy 7897: 7400: 6920: 6712: 6475:Molten-Salt Reactor Experiment (MSRE) 5884: 5871: 5081: 3545: 3543: 3541: 3539: 3537: 3535: 3533: 3531: 3529: 3527: 3525: 3479: 3215:, which was primarily concerned with 2263:In fission there is a preference for 1217:aims to recover usable material from 8900:German inventions of the Nazi period 8813: 7797:History of the anti-nuclear movement 7306:List of civilian radiation accidents 7275:Wireless device radiation and health 7270:Biological dose units and quantities 7220:Electromagnetic radiation and health 6899: 5872: 4707:Meitner, Lisa; Frisch, O.R. (1939). 4486: 3735: 3706: 3704: 3702: 3700: 3698: 3696: 3694: 3692: 3690: 3688: 3523: 3521: 3519: 3517: 3515: 3513: 3511: 3509: 3507: 3505: 3477: 3475: 3473: 3471: 3469: 3467: 3465: 3463: 3461: 3459: 1508:is orders of magnitude more likely. 1303: 1228: 8837: 8722:World energy supply and consumption 7455:Criticality accidents and incidents 6480:Integral Molten Salt Reactor (IMSR) 4761:Bohr, Niels; Wheeler, John (1939). 4642:, Simon and Schuster, pp. 267–270, 4396:"The Bakerian Lecture: The neutron" 4186:. Quartet Books. pp. 134–137. 4111: 4100: 3871: 3822: 3380:. Anmol Publications. p. 202. 3374:M. G. Arora & M. Singh (1994). 3090:In November 1941, John Dunning and 2786:The nuclear fission display at the 2703:while the newspapers stated he had 2440: 1315: 928:even by the energetic standards of 13: 7559:Nuclear power accidents by country 7255:Radioactivity in the life sciences 6289: 5440:Positron-emission tomography (PET) 4914: 4806:. Viking Penguin. pp. 28–30. 4795: 4763:"The Mechanism of Nuclear Fission" 4400:Proceedings of the Royal Society A 4366:Proceedings of the Royal Society A 3486:An Introduction to Nuclear Fission 3120:Washington University in St. Louis 2880:Carnegie Institution of Washington 2493:or a local power system such as a 2422:and loaded into fuel assemblies." 2411:, the enriched U contains 2.5~4.5 2345: 2234: 1312:, and was first observed in 1940. 14: 8916: 7791:Bulletin of the Atomic Scientists 5463:Neutron capture therapy of cancer 5362:Radioisotope thermoelectric (RTG) 5024: 4454:Zeitschrift für Angewandte Chemie 4310:"Possible Existence of a Neutron" 3860:Bulletin of the Atomic Scientists 3685: 3502: 3456: 3401:Gopal B. Saha (1 November 2010). 2640:for Chemistry, today part of the 2415:of U, which is fabricated into UO 1867: 8836: 8824: 8812: 8801: 8800: 7880: 7879: 7869: 7652:Kramatorsk radiological accident 6898: 6887: 6886: 6874: 6563:Fast Breeder Test Reactor (FBTR) 5041:The Discovery of Nuclear Fission 3404:Fundamentals of Nuclear Pharmacy 3310: 3296: 2567: 2461:Philippsburg Nuclear Power Plant 2225: 2209: 2201: 2161: 2149: 2114: 2095: 2065:Carl Friedrich von Weizsäcker's 1959: 1941: 1923: 1912: 1904: 1730:, which itself is caused by the 1561:are a million times higher than 1373:, the packing fraction curve of 1325:. Occurring least frequently is 1051:was negligible, as predicted by 857: 856: 843: 71: 7554:List of orphan source incidents 5652:Historical stockpiles and tests 4885:The Journal of Chemical Physics 4869: 4820: 4754: 4700: 4653: 4632: 4597: 4576: 4547: 4527: 4513: 4480: 4441: 4428: 4353: 4301: 4276: 4226: 4200: 4173: 4149: 4130: 4044:L. Bonneau; P. Quentin (2005). 4037: 4012: 3963: 3931: 3918: 3801: 3775: 3729: 3273:, sixteen sites (the so-called 2901:Fission chain reaction realized 2373:neutron multiplication factor k 2316:. For lighter nuclei less than 2289:. This result is attributed to 6553:Energy Multiplier Module (EM2) 5435:Single-photon emission (SPECT) 5031:The Effects of Nuclear Weapons 4933:. January 1993. Archived from 4586:, Simon and Schuster, p. 268, 3639: 3593: 3568: 3394: 3367: 2214: 2197: 2022:is the mass of a neutron, and 1916: 1900: 1260:as the product of such decay. 936:Nuclear fission was discovered 1: 7876:Nuclear technology portal 6881:Nuclear technology portal 4640:The Making of the Atomic Bomb 4584:The Making of the Atomic Bomb 3552:The Making of the Atomic Bomb 3361: 3225:Berkeley Radiation Laboratory 3006:Advisory Committee on Uranium 2798:After the Fermi publication, 2322:= 20, the line has the slope 1511: 7646:Andreev Bay nuclear accident 7633:Chazhma Bay nuclear accident 6743:Field-reversed configuration 6353:Uranium Naturel Graphite Gaz 4554:Frisch, Otto Robert (1980). 4362:"The existence of a neutron" 4262:10.1080/14786435.2011.617037 3973:Nuclear Engineering Overview 3945:and highly charged particles 3854:Hans A. Bethe (April 1950), 3809:Neutrons, Nuclei, and Matter 3488:. Springer. pp. 28–30. 3246:", a uranium-235 bomb, and " 3193:U.S. Army Corps of Engineers 3181:Manhattan Project and beyond 3134:'s graphite bricks at their 3106:developing centrifuges, and 3096:National Academy of Sciences 2617:Discovery of nuclear fission 2611:Discovery of nuclear fission 2470:subcritical fission reactors 1714:energy of 2 MeV, but a 1369:Bohr and Wheeler used their 1256:, plus about 3 percent from 1233: 1131:problem. However, the seven 1078:and drives the explosion of 51:forces that bind the neutron 37:Induced fission reaction. A 7: 7580:Nyonoksa radiation accident 7143:Cosmic background radiation 6700:Aircraft Reactor Experiment 5885: 5647:States with nuclear weapons 3289: 3250:", a plutonium bomb – were 2067:semi-empirical mass formula 1182:fission as an energy source 1133:long-lived fission products 637:High-energy nuclear physics 10: 8921: 7923: 7852:Russell–Einstein Manifesto 7775:Films about nuclear issues 7770:Books about nuclear issues 7658:Three Mile Island accident 7586:Fukushima nuclear accident 7465:Military nuclear accidents 7460:Nuclear meltdown accidents 7372: 7230:Lasers and aviation safety 6713: 6538:Liquid-metal-cooled (LMFR) 5662:Tests in the United States 4053:AIP Conference Proceedings 3783:"Essential cross sections" 3574:S. Vermote, et al. (2008) 3407:. Springer. pp. 11–. 3184: 2949:, reported in the journal 2614: 2605: 2550:pressurized water reactors 2444: 2363: 1839:the other hand, so-called 1035:was discovered in 1940 by 25: 18: 8796: 8770: 8646: 8526:Fossil fuel power station 8494: 8407: 8313: 8188:Electric potential energy 8153: 8133:Thermodynamic temperature 8113:Thermodynamic free energy 8108:Thermodynamic equilibrium 7954: 7931: 7865: 7812:Nuclear-Free Future Award 7750: 7721:Totskoye nuclear exercise 7567: 7549:Sunken nuclear submarines 7434: 7370: 7334: 7298: 7260:Radioactive contamination 7185: 7113:Electromagnetic radiation 7103: 7015: 6962: 6955: 6868: 6824: 6776: 6733: 6723: 6675: 6663:Stable Salt Reactor (SSR) 6576: 6558:Reduced-moderation (RMWR) 6523: 6506: 6446: 6373: 6365:Advanced gas-cooled (AGR) 6339: 6330: 6282: 6262: 6215: 6197: 6153: 6058: 6040: 5908: 5895: 5880: 5867: 5822: 5755: 5700: 5691: 5639: 5547: 5538: 5505: 5448: 5410: 5401: 5322: 5254: 5177: 5119: 5115: 5073:Nuclear Fission Animation 5056:Nuclear Fission Explained 4931:U.S. Department of Energy 4092:: CS1 maint: unfit URL ( 3646:Feenberg, eugene (1939). 3304:Nuclear technology portal 3053:Frisch–Peierls memorandum 2976:In August 1939, Szilard, 2914:neutrons when it absorbs 2642:Free University of Berlin 2403:is based on one of three 1774: 1732:Pauli exclusion principle 1710:(fission neutrons have a 1055:; it was not negligible. 979:electromagnetic radiation 8597:Concentrated solar power 7373:See also the categories 7311:1996 Costa Rica accident 6972:Acoustic radiation force 6568:Dual fluid reactor (DFR) 6184:Steam-generating (SGHWR) 5520:Electron-beam processing 5069:What is Nuclear Fission? 4626:10.1103/PhysRev.55.511.2 4474:10.1002/ange.19340473707 3874:Physics of Atomic Nuclei 3762:10.1103/PhysRev.55.418.2 3672:10.1103/PhysRev.55.504.2 3550:Rhodes, Richard (1986). 3336:Fission fragment reactor 3229:Metallurgical Laboratory 3038:, Frisch teamed up with 3036:University of Birmingham 2695:itself into argon gas!" 2523:Thermal breeder reactors 1516: 26:Not to be confused with 8138:Volume (thermodynamics) 8118:Thermodynamic potential 8021:Mass–energy equivalence 7827:Nuclear power phase-out 7285:Radiation heat-transfer 7138:Gravitational radiation 6683:Organic nuclear reactor 5855:Nuclear power phase-out 5778:Nuclear decommissioning 5718:Reactor-grade plutonium 5468:Targeted alpha-particle 5347:Accidents and incidents 5016:10.3389/fphy.2020.00063 4638:Richard Rhodes (1986). 4582:Richard Rhodes. (1986) 3600:Dempster, A.J. (1938). 3132:National Carbon Company 3025:glass mass spectrometer 2998:Einstein–Szilárd letter 2558:nuclear reactor coolant 2541:, now decommissioned). 2447:Nuclear reactor physics 2038:mass-energy equivalence 1728:neutron pairing effects 1398:and is about 6 MeV for 1379:mass-energy equivalence 1375:Arthur Jeffrey Dempster 148:Interacting boson model 8093:Quantum thermodynamics 8083:Laws of thermodynamics 7964:Conservation of energy 7832:Nuclear weapons debate 7326:1990 Zaragoza accident 7321:1984 Moroccan accident 7290:Linear energy transfer 6964:Non-ionizing radiation 4802:Zoellner, Tom (2009). 4788:10.1103/PhysRev.56.426 4556:What Little I Remember 4436:La Ricerca Scientifica 4421:10.1098/rspa.1933.0152 4387:10.1098/rspa.1932.0112 4242:Philosophical Magazine 4233:E. Rutherford (1911). 3829:Marion Brünglinghaus. 2969: 2795: 2771:Nobel Prize in Physics 2767:ausenium and hesperium 2761:and his colleagues in 2638:Kaiser Wilhelm Society 2633: 2593: 2554:boiling water reactors 2464: 2366:Nuclear chain reaction 2361: 2241: 1982: 1877: 1815: 1532: 1300: 1277:Fission product yields 1269: 1088:nuclear chain reaction 964:nuclear chain reaction 58: 8210:Interatomic potential 8001:Energy transformation 7690:K-19 nuclear accident 7485:Nuclear weapons tests 7316:1987 Goiânia accident 7118:Synchrotron radiation 7108:Earth's energy budget 7090:Radioactive materials 7085:Particle accelerators 5845:Anti-nuclear movement 4876:P. K. Kuroda (1956). 4450:"Über das Element 93" 4394:Chadwick, J. (1933). 4360:Chadwick, J. (1932). 4112:Lee, John C. (2020). 3711:Lilley, John (2001). 3626:10.1103/PhysRev.53.64 3341:Hybrid fusion/fission 3263:Criticality in nature 3233:J. Robert Oppenheimer 3021:uranium tetrachloride 2996:. On 11 October, the 2963: 2935:Frédéric Joliot-Curie 2785: 2624: 2575: 2476:to trigger fissions. 2474:particle accelerators 2454: 2353: 2291:nucleon pair breaking 2242: 1983: 1875: 1805: 1756:, whereas those like 1736:fast-neutron reactors 1524: 1461:thermonuclear weapons 1275: 1266: 1211:fast breeder reactors 1002:nuclear transmutation 1000:Fission is a form of 535:High-energy processes 233:– equal all the above 131:Models of the nucleus 36: 8658:Efficient energy use 8631:Airborne wind energy 8609:Solar thermal energy 8516:Electricity delivery 8128:Thermodynamic system 8073:Irreversible process 7822:Nuclear power debate 7684:Cuban Missile Crisis 7535:in the United States 7387:Radiation protection 7240:Radiation protection 7128:Black-body radiation 7035:Background radiation 6950:(physics and health) 6753:Reversed field pinch 6548:Traveling-wave (TWR) 6032:Supercritical (SCWR) 5530:Gemstone irradiation 4985:Frontiers in Physics 4448:Ida Noddack (1934). 4308:J. Chadwick (1932). 3275:Oklo Fossil Reactors 3213:Oak Ridge, Tennessee 2843:Princeton University 2519:fast breeder reactor 2075: 1894: 1696:thermonuclear weapon 1408:Maria Goeppert Mayer 1215:Nuclear reprocessing 571:nuclear astrophysics 8905:Austrian inventions 8680:Energy conservation 8602:Photovoltaic system 8575:Nuclear power plant 8260:Quantum fluctuation 8123:Thermodynamic state 8098:Thermal equilibrium 7807:Nuclear close calls 7357:Radiation hardening 7299:Radiation incidents 7235:Medical radiography 7194:Radiation syndrome 7148:Cherenkov radiation 5918:Aqueous homogeneous 5713:Reprocessed uranium 5386:Safety and security 5007:2020FrP.....8...63B 4897:1956JChPh..25..781K 4845:1939Natur.143..680V 4779:1939PhRv...56..426B 4725:1939Natur.143..239M 4678:1939NW.....27...89H 4666:Naturwissenschaften 4618:1939PhRv...55..511A 4466:1934AngCh..47..653N 4412:1933RSPSA.142....1C 4378:1932RSPSA.136..692C 4329:1932Natur.129Q.312C 4254:2012PMag...92..379R 4146:. atomicarchive.com 4065:2005AIPC..798...77B 3959:on 25 January 2017. 3896:2004PAN....67.1892K 3856:"The Hydrogen Bomb" 3754:1939PhRv...55..418B 3664:1939PhRv...55..504F 3618:1938PhRv...53...64D 3432:Петржак, Константин 3149:Herbert L. Anderson 3140:reproduction factor 2860:Herbert L. Anderson 2855:Columbia University 2828:. Hahn suggested a 2750:stated, "A beam of 2582:atomic bomb dropped 2517:. The better known 2310:is plotted against 1738:, and in weapons). 1412:nuclear shell model 1410:later proposed the 1310:spontaneous fission 1118:hydrogen fuel cells 1033:Spontaneous fission 975:exothermic reaction 553:Photodisintegration 476:Capturing processes 390:Spontaneous fission 383:Internal conversion 314:Valley of stability 309:Island of stability 143:Nuclear shell model 8717:Sustainable energy 8695:Energy development 8685:Energy consumption 8521:Energy engineering 7715:Operation Plumbbob 7678:Operation Fishbowl 7615:Chernobyl disaster 7352:Radioactive source 7173:Radiation exposure 7153:Askaryan radiation 7133:Particle radiation 7017:Ionizing radiation 6832:Dense plasma focus 5747:Actinide chemistry 5212:Isotope separation 5109:Nuclear technology 5065:2018-03-08 at the 5046:2010-02-16 at the 4686:10.1007/BF01488988 3787:LibreTexts Library 3351:Nuclear propulsion 3217:uranium enrichment 3136:Pupin Laboratories 3113:On 23 April 1942, 3074:On 28 March 1941, 3063:In December 1940, 3000:was delivered via 2994:Franklin Roosevelt 2970: 2822:Otto Robert Frisch 2796: 2733:ionization chamber 2727:English physicist 2634: 2594: 2527:thorium fuel cycle 2491:generating station 2465: 2401:nuclear fuel cycle 2362: 2237: 1978: 1878: 1816: 1533: 1506:neutron absorption 1301: 1270: 1219:spent nuclear fuel 1186:thorium fuel cycle 1137:Neutron absorption 1062:processes such as 985:of the fragments ( 956:biological fission 952:Otto Robert Frisch 850:Physics portal 644:Quark–gluon plasma 427:Radiogenic nuclide 59: 8895:German inventions 8875:Nuclear chemistry 8852: 8851: 8619:Solar power tower 8265:Quantum potential 8103:Thermal reservoir 8006:Energy transition 7891: 7890: 7817:Nuclear-free zone 7780:Anti-war movement 7736:Rocky Flats Plant 7394: 7393: 7375:Radiation effects 7245:Radiation therapy 7181: 7180: 7123:Thermal radiation 7060:Neutron radiation 7025:Radioactive decay 6914: 6913: 6864: 6863: 6860: 6859: 6811:Magnetized-target 6708: 6707: 6671: 6670: 6502: 6501: 6498: 6497: 6442: 6441: 6326: 6325: 6258: 6257: 5863: 5862: 5818: 5817: 5687: 5686: 5674:Weapon-free zones 5501: 5500: 5493:Radiopharmacology 5060:Nuclear Files.org 5054:atomicarchive.com 4905:10.1063/1.1743058 4813:978-0-670-02064-5 4719:(3615): 239–240. 4498:978-0-520-23106-1 4219:978-4-00-009766-6 4193:978-0-7043-3382-6 4073:10.1063/1.2137231 3904:10.1134/1.1811196 3831:"Nuclear fission" 3817:978-0-486-48238-5 3736:Bohr, N. (1939). 3414:978-1-4419-5860-0 3377:Nuclear Chemistry 3197:Manhattan Project 3187:Manhattan Project 3174:boron trifluoride 3069:gaseous diffusion 3051:, they wrote the 3017:Alfred O. C. Nier 2984:thought that the 2670:Liquid drop model 2650:Ernest Rutherford 2502:research reactors 2495:nuclear submarine 2265:fission fragments 2229: 2179: 1825:Coulomb repulsion 1808:Coulomb explosion 1392:activation energy 1371:liquid drop model 1360:megaelectronvolts 1304:Radioactive decay 1229:Physical overview 1223:closed fuel cycle 1060:quantum tunneling 930:radioactive decay 900: 899: 586: 332:Radioactive decay 288:Nuclear stability 115:Nuclear structure 41:is absorbed by a 8912: 8840: 8839: 8828: 8816: 8815: 8804: 8803: 8778:Carbon footprint 8712:Renewable energy 8553:Hydroelectricity 8543:Geothermal power 7986:Energy condition 7918: 7911: 7904: 7895: 7894: 7883: 7882: 7874: 7873: 7872: 7703:Kyshtym disaster 7698:nuclear meltdown 7625:Related articles 7609:Goiânia accident 7421: 7414: 7407: 7398: 7397: 7335:Related articles 7250:Radiation damage 7075:Nuclear reactors 6960: 6959: 6941: 6934: 6927: 6918: 6917: 6902: 6901: 6890: 6889: 6879: 6878: 6877: 6789: 6748:Levitated dipole 6718: 6710: 6709: 6658:Helium gas (GFR) 6521: 6520: 6516: 6453: 6452: 6337: 6336: 6287: 6286: 6280: 6279: 6275: 6274: 6056: 6055: 6052: 6051: 5890: 5882: 5881: 5874:Nuclear reactors 5869: 5868: 5768:High-level (HLW) 5698: 5697: 5545: 5544: 5525:Food irradiation 5515:Atomic gardening 5408: 5407: 5391:Nuclear meltdown 5217:Nuclear material 5207:Fissile material 5202:Fertile material 5117: 5116: 5102: 5095: 5088: 5079: 5078: 5020: 5018: 5000: 4975: 4973: 4972: 4966: 4959: 4948: 4946: 4945: 4939: 4928: 4909: 4908: 4882: 4873: 4867: 4866: 4856: 4854:10.1038/143680a0 4824: 4818: 4817: 4799: 4793: 4792: 4790: 4758: 4752: 4751: 4749: 4747: 4733:10.1038/143239a0 4704: 4698: 4697: 4657: 4651: 4636: 4630: 4629: 4601: 4595: 4580: 4574: 4573: 4551: 4545: 4544: 4531: 4525: 4524: 4517: 4511: 4510: 4484: 4478: 4477: 4445: 4439: 4432: 4426: 4425: 4423: 4391: 4389: 4372:(830): 692–708. 4357: 4351: 4350: 4340: 4338:10.1038/129312a0 4314: 4305: 4299: 4298: 4296: 4295: 4280: 4274: 4273: 4239: 4230: 4224: 4223: 4204: 4198: 4197: 4177: 4171: 4170: 4153: 4147: 4134: 4128: 4127: 4109: 4098: 4097: 4091: 4083: 4081: 4080: 4050: 4041: 4035: 4034: 4032: 4031: 4016: 4010: 4009: 4008:on May 15, 2018. 4007: 4000: 3967: 3961: 3960: 3958: 3952:. Archived from 3951: 3935: 3929: 3922: 3916: 3915: 3889: 3869: 3863: 3852: 3846: 3845: 3843: 3842: 3826: 3820: 3807:J. Byrne (2011) 3805: 3799: 3798: 3796: 3794: 3779: 3773: 3772: 3770: 3768: 3733: 3727: 3726: 3708: 3683: 3682: 3680: 3678: 3643: 3637: 3636: 3634: 3632: 3597: 3591: 3572: 3566: 3565: 3547: 3500: 3499: 3481: 3454: 3453: 3428: 3419: 3418: 3398: 3392: 3391: 3371: 3331:Fissile material 3320: 3315: 3314: 3306: 3301: 3300: 3299: 3201:Leslie R. Groves 3124:Glenn T. Seaborg 3104:Eger V. Murphree 2896: 2894: 2893: 2876:Washington, D.C. 2808:Fritz Strassmann 2788:Deutsches Museum 2752:thermal neutrons 2742:In the words of 2654:Rutherford model 2510:breeder reactors 2441:Fission reactors 2333: 2327: 2321: 2315: 2309: 2288: 2282: 2272: 2259: 2253: 2246: 2244: 2243: 2238: 2230: 2228: 2223: 2222: 2221: 2212: 2204: 2195: 2193: 2192: 2180: 2178: 2177: 2173: 2164: 2158: 2157: 2152: 2146: 2144: 2143: 2131: 2130: 2126: 2117: 2111: 2110: 2098: 2093: 2092: 2061: 2055: 2049: 2035: 2025: 2021: 2014: 2003: 1993: 1987: 1985: 1984: 1979: 1977: 1976: 1967: 1962: 1954: 1953: 1944: 1936: 1935: 1926: 1915: 1907: 1889: 1849:delayed-critical 1841:delayed neutrons 1782:delayed neutrons 1766: 1764: 1763: 1751: 1749: 1748: 1721:Among the heavy 1709: 1707: 1706: 1693: 1691: 1690: 1678: 1676: 1675: 1667: 1665: 1664: 1652: 1650: 1649: 1642:, the resulting 1641: 1639: 1638: 1626: 1624: 1623: 1615: 1613: 1612: 1604: 1602: 1601: 1593: 1591: 1590: 1582: 1580: 1579: 1571: 1569: 1568: 1560: 1558: 1557: 1549: 1547: 1546: 1503: 1501: 1500: 1488: 1486: 1485: 1477: 1475: 1474: 1441:over periods of 1428:fission products 1323:nuclear reaction 1316:Nuclear reaction 1246:fission products 1200: 1197: 1196: 1179: 1177: 1176: 1168: 1166: 1165: 1153: 1151: 1150: 1111: 1109: 1108: 944:Fritz Strassmann 892: 885: 878: 865: 860: 859: 852: 848: 847: 724:Skłodowska-Curie 584: 400:Neutron emission 168:' classification 120:Nuclear reaction 75: 61: 60: 8920: 8919: 8915: 8914: 8913: 8911: 8910: 8909: 8890:1938 in science 8880:Neutron sources 8870:Nuclear physics 8865:Nuclear fission 8855: 8854: 8853: 8848: 8792: 8788:Waste-to-energy 8766: 8702:Energy security 8648: 8642: 8498: 8490: 8469:Natural uranium 8403: 8384:Mechanical wave 8315:Energy carriers 8309: 8149: 8078:Isolated system 7956: 7950: 7927: 7922: 7892: 7887: 7870: 7868: 7861: 7837:Peace activists 7752: 7746: 7571: 7569: 7563: 7441: 7439: 7437: 7430: 7425: 7395: 7390: 7389: 7366: 7362:Havana syndrome 7347:Nuclear physics 7330: 7294: 7187: 7177: 7163:Unruh radiation 7099: 7080:Nuclear weapons 7065:Nuclear fission 7011: 6951: 6945: 6915: 6910: 6875: 6873: 6856: 6820: 6787: 6772: 6729: 6719: 6714: 6704: 6667: 6572: 6517: 6510: 6509: 6494: 6438: 6369: 6344: 6322: 6294: 6276: 6269: 6268: 6267: 6254: 6220: 6211: 6193: 6158: 6149: 6063: 6046: 6045: 6044: 6036: 5950:Natural fission 5904: 5903: 5891: 5886: 5876: 5859: 5835:Nuclear weapons 5814: 5773:Low-level (LLW) 5751: 5683: 5635: 5534: 5497: 5444: 5397: 5318: 5250: 5173: 5111: 5106: 5067:Wayback Machine 5048:Wayback Machine 5027: 4970: 4968: 4964: 4957: 4951: 4943: 4941: 4937: 4926: 4920: 4917: 4915:Further reading 4912: 4880: 4874: 4870: 4825: 4821: 4814: 4800: 4796: 4767:Physical Review 4759: 4755: 4745: 4743: 4705: 4701: 4658: 4654: 4637: 4633: 4606:Physical Review 4602: 4598: 4581: 4577: 4566: 4552: 4548: 4533: 4532: 4528: 4519: 4518: 4514: 4499: 4485: 4481: 4446: 4442: 4433: 4429: 4358: 4354: 4312: 4306: 4302: 4293: 4291: 4282: 4281: 4277: 4237: 4231: 4227: 4220: 4206: 4205: 4201: 4194: 4178: 4174: 4167: 4155: 4154: 4150: 4135: 4131: 4124: 4110: 4101: 4085: 4084: 4078: 4076: 4048: 4042: 4038: 4029: 4027: 4018: 4017: 4013: 4005: 3998: 3969: 3968: 3964: 3956: 3949: 3937: 3936: 3932: 3923: 3919: 3870: 3866: 3853: 3849: 3840: 3838: 3827: 3823: 3806: 3802: 3792: 3790: 3781: 3780: 3776: 3766: 3764: 3742:Physical Review 3734: 3730: 3723: 3709: 3686: 3676: 3674: 3652:Physical Review 3644: 3640: 3630: 3628: 3606:Physical Review 3598: 3594: 3573: 3569: 3562: 3548: 3503: 3496: 3482: 3457: 3450: 3429: 3422: 3415: 3399: 3395: 3388: 3372: 3368: 3364: 3316: 3309: 3302: 3297: 3295: 3292: 3260: 3189: 3183: 3092:Eugene T. Booth 3013:John R. Dunning 3002:Alexander Sachs 2990:Albert Einstein 2943:Hans von Halban 2903: 2892: 2890: 2889: 2888: 2887: 2748:Philip Morrison 2685:Frederick Soddy 2679:had found, and 2677:Henri Becquerel 2619: 2613: 2608: 2586:Nagasaki, Japan 2570: 2449: 2443: 2418: 2368: 2348: 2346:Chain reactions 2329: 2323: 2317: 2311: 2305: 2284: 2278: 2268: 2255: 2249: 2224: 2217: 2213: 2208: 2200: 2196: 2194: 2188: 2184: 2169: 2165: 2160: 2159: 2153: 2148: 2147: 2145: 2139: 2135: 2122: 2118: 2113: 2112: 2106: 2102: 2094: 2088: 2084: 2076: 2073: 2072: 2057: 2051: 2045: 2031: 2023: 2020: 2016: 2013: 2009: 1999: 1989: 1972: 1968: 1963: 1958: 1949: 1945: 1940: 1931: 1927: 1922: 1911: 1903: 1895: 1892: 1891: 1885: 1870: 1853:prompt critical 1845:reactor control 1806:Animation of a 1777: 1762: 1760: 1759: 1758: 1757: 1747: 1745: 1744: 1743: 1742: 1705: 1703: 1702: 1701: 1700: 1689: 1687: 1686: 1685: 1684: 1674: 1672: 1671: 1670: 1669: 1663: 1661: 1660: 1659: 1658: 1648: 1646: 1645: 1644: 1643: 1637: 1635: 1634: 1633: 1632: 1622: 1620: 1619: 1618: 1617: 1616:target forms a 1611: 1609: 1608: 1607: 1606: 1600: 1598: 1597: 1596: 1595: 1589: 1587: 1586: 1585: 1584: 1578: 1576: 1575: 1574: 1573: 1567: 1565: 1564: 1563: 1562: 1556: 1554: 1553: 1552: 1551: 1545: 1543: 1542: 1541: 1540: 1519: 1514: 1499: 1497: 1496: 1495: 1494: 1484: 1482: 1481: 1480: 1479: 1473: 1471: 1470: 1469: 1468: 1396:fission barrier 1383:surface tension 1327:ternary fission 1318: 1306: 1281:thermal neutron 1236: 1231: 1195: 1193: 1192: 1191: 1189: 1175: 1173: 1172: 1171: 1170: 1164: 1162: 1161: 1160: 1159: 1156:minor actinides 1149: 1147: 1146: 1145: 1144: 1107: 1105: 1104: 1103: 1102: 1092:nuclear reactor 1080:nuclear weapons 1064:proton emission 1021:ternary fission 946:and physicists 903:Nuclear fission 896: 855: 842: 841: 834: 833: 669: 659: 658: 639: 629: 628: 573: 569: 566:Nucleosynthesis 558: 557: 536: 528: 527: 477: 469: 468: 442: 440:Nuclear fission 432: 431: 405:Proton emission 334: 324: 323: 289: 281: 280: 182: 169: 158: 157: 133: 65:Nuclear physics 31: 24: 17: 12: 11: 5: 8918: 8908: 8907: 8902: 8897: 8892: 8887: 8882: 8877: 8872: 8867: 8850: 8849: 8847: 8846: 8834: 8822: 8810: 8797: 8794: 8793: 8791: 8790: 8785: 8783:Jevons paradox 8780: 8774: 8772: 8768: 8767: 8765: 8764: 8759: 8754: 8749: 8744: 8739: 8734: 8729: 8724: 8719: 8714: 8709: 8707:Energy storage 8704: 8699: 8698: 8697: 8687: 8682: 8677: 8676: 8675: 8670: 8665: 8654: 8652: 8644: 8643: 8641: 8640: 8639: 8638: 8633: 8623: 8622: 8621: 8616: 8606: 8605: 8604: 8599: 8589: 8584: 8583: 8582: 8577: 8567: 8566: 8565: 8560: 8555: 8545: 8540: 8539: 8538: 8533: 8523: 8518: 8513: 8511:Electric power 8508: 8502: 8500: 8492: 8491: 8489: 8488: 8483: 8478: 8473: 8472: 8471: 8461: 8456: 8451: 8446: 8441: 8440: 8439: 8434: 8429: 8419: 8413: 8411: 8409:Primary energy 8405: 8404: 8402: 8401: 8396: 8391: 8386: 8381: 8380: 8379: 8369: 8368: 8367: 8357: 8356: 8355: 8350: 8340: 8335: 8330: 8325: 8319: 8317: 8311: 8310: 8308: 8307: 8302: 8297: 8292: 8287: 8282: 8277: 8272: 8267: 8262: 8257: 8252: 8247: 8242: 8237: 8232: 8227: 8222: 8217: 8212: 8207: 8206: 8205: 8195: 8190: 8185: 8180: 8175: 8170: 8169: 8168: 8157: 8155: 8151: 8150: 8148: 8147: 8146: 8145: 8140: 8135: 8130: 8125: 8120: 8115: 8110: 8105: 8100: 8095: 8090: 8085: 8080: 8075: 8070: 8065: 8060: 8055: 8050: 8045: 8043:Entropic force 8040: 8033:Thermodynamics 8030: 8025: 8024: 8023: 8018: 8008: 8003: 7998: 7993: 7988: 7983: 7982: 7981: 7971: 7966: 7960: 7958: 7952: 7951: 7949: 7948: 7943: 7938: 7932: 7929: 7928: 7921: 7920: 7913: 7906: 7898: 7889: 7888: 7866: 7863: 7862: 7860: 7859: 7854: 7849: 7844: 7842:Peace movement 7839: 7834: 7829: 7824: 7819: 7814: 7809: 7804: 7799: 7794: 7787: 7782: 7777: 7772: 7767: 7762: 7756: 7754: 7748: 7747: 7745: 7744: 7738: 7733: 7728: 7723: 7717: 7711: 7709:Windscale fire 7705: 7699: 7692: 7686: 7680: 7670: 7668:Lucens reactor 7664: 7654: 7648: 7642: 7635: 7629: 7628: 7627: 7622: 7611: 7605: 7599: 7594: 7588: 7582: 7575: 7573: 7565: 7564: 7562: 7561: 7556: 7551: 7546: 7545: 7544: 7539: 7538: 7537: 7532: 7525:United Kingdom 7522: 7517: 7512: 7507: 7502: 7497: 7492: 7482: 7477: 7472: 7467: 7462: 7457: 7452: 7446: 7444: 7432: 7431: 7424: 7423: 7416: 7409: 7401: 7392: 7391: 7371: 7368: 7367: 7365: 7364: 7359: 7354: 7349: 7344: 7338: 7336: 7332: 7331: 7329: 7328: 7323: 7318: 7313: 7308: 7302: 7300: 7296: 7295: 7293: 7292: 7287: 7282: 7277: 7272: 7267: 7262: 7257: 7252: 7247: 7242: 7237: 7232: 7227: 7222: 7217: 7212: 7210:Health physics 7207: 7206: 7205: 7200: 7191: 7189: 7183: 7182: 7179: 7178: 7176: 7175: 7170: 7168:Dark radiation 7165: 7160: 7158:Bremsstrahlung 7155: 7150: 7145: 7140: 7135: 7130: 7125: 7120: 7115: 7110: 7104: 7101: 7100: 7098: 7097: 7092: 7087: 7082: 7077: 7072: 7070:Nuclear fusion 7067: 7062: 7057: 7052: 7047: 7042: 7040:Alpha particle 7037: 7032: 7027: 7021: 7019: 7013: 7012: 7010: 7009: 7004: 6999: 6994: 6989: 6984: 6979: 6974: 6968: 6966: 6957: 6953: 6952: 6944: 6943: 6936: 6929: 6921: 6912: 6911: 6909: 6908: 6896: 6884: 6869: 6866: 6865: 6862: 6861: 6858: 6857: 6855: 6854: 6849: 6844: 6842:Muon-catalyzed 6839: 6834: 6828: 6826: 6822: 6821: 6819: 6818: 6813: 6808: 6803: 6802: 6801: 6791: 6782: 6780: 6774: 6773: 6771: 6770: 6765: 6760: 6755: 6750: 6745: 6739: 6737: 6731: 6730: 6724: 6721: 6720: 6706: 6705: 6703: 6702: 6697: 6696: 6695: 6690: 6679: 6677: 6673: 6672: 6669: 6668: 6666: 6665: 6660: 6655: 6650: 6649: 6648: 6643: 6638: 6633: 6628: 6623: 6618: 6613: 6608: 6603: 6598: 6593: 6582: 6580: 6574: 6573: 6571: 6570: 6565: 6560: 6555: 6550: 6545: 6540: 6535: 6533:Integral (IFR) 6530: 6524: 6518: 6507: 6504: 6503: 6500: 6499: 6496: 6495: 6493: 6492: 6487: 6482: 6477: 6472: 6467: 6461: 6459: 6450: 6444: 6443: 6440: 6439: 6437: 6436: 6435: 6434: 6429: 6428: 6427: 6422: 6417: 6412: 6397: 6392: 6391: 6390: 6379: 6377: 6371: 6370: 6368: 6367: 6362: 6357: 6348: 6346: 6342: 6334: 6328: 6327: 6324: 6323: 6321: 6320: 6315: 6310: 6305: 6299: 6297: 6292: 6284: 6277: 6263: 6260: 6259: 6256: 6255: 6253: 6252: 6251: 6250: 6245: 6240: 6235: 6224: 6222: 6218: 6213: 6212: 6210: 6209: 6203: 6201: 6195: 6194: 6192: 6191: 6186: 6181: 6180: 6179: 6174: 6163: 6161: 6156: 6151: 6150: 6148: 6147: 6146: 6145: 6140: 6135: 6130: 6125: 6124: 6123: 6118: 6113: 6103: 6098: 6097: 6096: 6091: 6088: 6085: 6082: 6068: 6066: 6061: 6053: 6038: 6037: 6035: 6034: 6029: 6028: 6027: 6024: 6019: 6014: 6013: 6012: 6007: 5997: 5992: 5987: 5982: 5977: 5972: 5967: 5962: 5952: 5947: 5946: 5945: 5940: 5935: 5930: 5920: 5914: 5912: 5906: 5905: 5897: 5896: 5893: 5892: 5878: 5877: 5865: 5864: 5861: 5860: 5858: 5857: 5852: 5850:Uranium mining 5847: 5842: 5837: 5832: 5826: 5824: 5820: 5819: 5816: 5815: 5813: 5812: 5807: 5806: 5805: 5800: 5790: 5785: 5780: 5775: 5770: 5765: 5759: 5757: 5753: 5752: 5750: 5749: 5744: 5743: 5742: 5732: 5727: 5726: 5725: 5723:Minor actinide 5720: 5715: 5704: 5702: 5695: 5689: 5688: 5685: 5684: 5682: 5681: 5676: 5671: 5666: 5665: 5664: 5659: 5649: 5643: 5641: 5637: 5636: 5634: 5633: 5632: 5631: 5621: 5616: 5615: 5614: 5609: 5599: 5594: 5589: 5588: 5587: 5577: 5572: 5567: 5562: 5557: 5551: 5549: 5542: 5536: 5535: 5533: 5532: 5527: 5522: 5517: 5511: 5509: 5503: 5502: 5499: 5498: 5496: 5495: 5490: 5485: 5480: 5475: 5470: 5465: 5460: 5454: 5452: 5446: 5445: 5443: 5442: 5437: 5432: 5427: 5422: 5420:Autoradiograph 5416: 5414: 5405: 5399: 5398: 5396: 5395: 5394: 5393: 5383: 5382: 5381: 5371: 5370: 5369: 5359: 5354: 5349: 5344: 5339: 5334: 5328: 5326: 5320: 5319: 5317: 5316: 5311: 5306: 5301: 5296: 5291: 5286: 5281: 5276: 5271: 5266: 5260: 5258: 5252: 5251: 5249: 5248: 5247: 5246: 5241: 5236: 5235: 5234: 5229: 5214: 5209: 5204: 5199: 5194: 5189: 5183: 5181: 5175: 5174: 5172: 5171: 5170: 5169: 5164: 5154: 5149: 5144: 5142:Atomic nucleus 5139: 5134: 5129: 5123: 5121: 5113: 5112: 5105: 5104: 5097: 5090: 5082: 5076: 5075: 5070: 5057: 5051: 5038: 5033: 5026: 5025:External links 5023: 5022: 5021: 4976: 4949: 4916: 4913: 4911: 4910: 4868: 4819: 4812: 4794: 4773:(5): 426–450. 4753: 4699: 4662:Strassmann, F. 4652: 4631: 4596: 4575: 4564: 4546: 4543:. 7 July 2015. 4526: 4512: 4497: 4479: 4440: 4427: 4352: 4300: 4275: 4248:(4): 669–688. 4225: 4218: 4199: 4192: 4172: 4165: 4148: 4142:2002-10-07 at 4129: 4122: 4099: 4036: 4011: 3977:"167 MeV" 3962: 3930: 3917: 3887:hep-ph/0410100 3864: 3847: 3821: 3800: 3774: 3728: 3721: 3684: 3638: 3592: 3567: 3560: 3501: 3494: 3455: 3448: 3420: 3413: 3393: 3386: 3365: 3363: 3360: 3359: 3358: 3353: 3348: 3346:Nuclear fusion 3343: 3338: 3333: 3328: 3322: 3321: 3307: 3291: 3288: 3279:Francis Perrin 3259: 3256: 3182: 3179: 3166:Frank Spedding 3108:Arthur Compton 3058:MAUD Committee 2966:Chicago Pile-1 2902: 2899: 2891: 2835:binary fission 2744:Richard Rhodes 2729:James Chadwick 2718:John Cockcroft 2709:James Chadwick 2705:split the atom 2700:Ernest Marsden 2615:Main article: 2612: 2609: 2607: 2604: 2578:mushroom cloud 2569: 2566: 2562:heat exchanger 2531: 2530: 2506: 2498: 2486:power reactors 2468:reactions are 2457:cooling towers 2442: 2439: 2435:breeding ratio 2416: 2364:Main article: 2347: 2344: 2275:fragment yield 2236: 2233: 2227: 2220: 2216: 2211: 2207: 2203: 2199: 2191: 2187: 2183: 2176: 2172: 2168: 2163: 2156: 2151: 2142: 2138: 2134: 2129: 2125: 2121: 2116: 2109: 2105: 2101: 2097: 2091: 2087: 2083: 2080: 2028:speed of light 2018: 2011: 1975: 1971: 1966: 1961: 1957: 1952: 1948: 1943: 1939: 1934: 1930: 1925: 1921: 1918: 1914: 1910: 1906: 1902: 1899: 1869: 1868:Binding energy 1866: 1862:Chicago Pile-1 1797:binding energy 1786:decay products 1776: 1773: 1761: 1746: 1704: 1694:directly (see 1688: 1673: 1662: 1647: 1636: 1621: 1610: 1599: 1588: 1577: 1566: 1555: 1544: 1537:cross sections 1518: 1515: 1513: 1510: 1498: 1483: 1472: 1335:chain reaction 1317: 1314: 1305: 1302: 1295:, used in the 1250:kinetic energy 1235: 1232: 1230: 1227: 1194: 1174: 1163: 1148: 1106: 1097:The amount of 995:binding energy 991:nuclear fusion 983:kinetic energy 898: 897: 895: 894: 887: 880: 872: 869: 868: 867: 866: 853: 836: 835: 832: 831: 826: 821: 816: 811: 806: 801: 796: 791: 786: 781: 776: 771: 766: 761: 756: 751: 746: 741: 736: 731: 726: 721: 716: 711: 706: 701: 696: 691: 686: 681: 676: 670: 665: 664: 661: 660: 657: 656: 651: 646: 640: 635: 634: 631: 630: 627: 626: 625: 624: 619: 614: 605: 604: 603: 602: 597: 592: 581: 580: 578:Nuclear fusion 574: 564: 563: 560: 559: 556: 555: 550: 549: 548: 537: 534: 533: 530: 529: 526: 525: 524: 523: 518: 508: 507: 506: 501: 491: 490: 489: 478: 475: 474: 471: 470: 467: 466: 461: 460: 459: 449: 443: 438: 437: 434: 433: 430: 429: 424: 419: 414: 408: 407: 402: 397: 392: 387: 386: 385: 380: 370: 365: 364: 363: 358: 357: 356: 341: 335: 330: 329: 326: 325: 322: 321: 319:Stable nuclide 316: 311: 306: 301: 296: 294:Binding energy 290: 287: 286: 283: 282: 279: 278: 277: 276: 266: 261: 256: 250: 249: 235: 234: 227: 226: 210: 209: 197: 196: 184: 183: 170: 164: 163: 160: 159: 156: 155: 150: 145: 140: 134: 129: 128: 125: 124: 123: 122: 117: 112: 107: 105:Nuclear matter 102: 101: 100: 95: 85: 77: 76: 68: 67: 28:Nuclear fusion 21:Split the Atom 15: 9: 6: 4: 3: 2: 8917: 8906: 8903: 8901: 8898: 8896: 8893: 8891: 8888: 8886: 8885:Radioactivity 8883: 8881: 8878: 8876: 8873: 8871: 8868: 8866: 8863: 8862: 8860: 8845: 8844: 8835: 8833: 8832: 8827: 8823: 8821: 8820: 8811: 8809: 8808: 8799: 8798: 8795: 8789: 8786: 8784: 8781: 8779: 8776: 8775: 8773: 8769: 8763: 8762:United States 8760: 8758: 8757:South America 8755: 8753: 8750: 8748: 8745: 8743: 8740: 8738: 8735: 8733: 8730: 8728: 8725: 8723: 8720: 8718: 8715: 8713: 8710: 8708: 8705: 8703: 8700: 8696: 8693: 8692: 8691: 8690:Energy policy 8688: 8686: 8683: 8681: 8678: 8674: 8671: 8669: 8666: 8664: 8661: 8660: 8659: 8656: 8655: 8653: 8651: 8645: 8637: 8634: 8632: 8629: 8628: 8627: 8624: 8620: 8617: 8615: 8614:Solar furnace 8612: 8611: 8610: 8607: 8603: 8600: 8598: 8595: 8594: 8593: 8590: 8588: 8585: 8581: 8578: 8576: 8573: 8572: 8571: 8570:Nuclear power 8568: 8564: 8561: 8559: 8556: 8554: 8551: 8550: 8549: 8546: 8544: 8541: 8537: 8534: 8532: 8529: 8528: 8527: 8524: 8522: 8519: 8517: 8514: 8512: 8509: 8507: 8504: 8503: 8501: 8497: 8496:Energy system 8493: 8487: 8484: 8482: 8479: 8477: 8474: 8470: 8467: 8466: 8465: 8462: 8460: 8457: 8455: 8452: 8450: 8449:Gravitational 8447: 8445: 8442: 8438: 8435: 8433: 8430: 8428: 8425: 8424: 8423: 8420: 8418: 8415: 8414: 8412: 8410: 8406: 8400: 8397: 8395: 8392: 8390: 8387: 8385: 8382: 8378: 8377:Hydrogen fuel 8375: 8374: 8373: 8370: 8366: 8363: 8362: 8361: 8358: 8354: 8351: 8349: 8346: 8345: 8344: 8341: 8339: 8336: 8334: 8331: 8329: 8326: 8324: 8321: 8320: 8318: 8316: 8312: 8306: 8303: 8301: 8298: 8296: 8293: 8291: 8288: 8286: 8283: 8281: 8278: 8276: 8273: 8271: 8268: 8266: 8263: 8261: 8258: 8256: 8253: 8251: 8248: 8246: 8243: 8241: 8238: 8236: 8233: 8231: 8228: 8226: 8223: 8221: 8218: 8216: 8213: 8211: 8208: 8204: 8201: 8200: 8199: 8198:Gravitational 8196: 8194: 8191: 8189: 8186: 8184: 8181: 8179: 8176: 8174: 8171: 8167: 8164: 8163: 8162: 8159: 8158: 8156: 8152: 8144: 8141: 8139: 8136: 8134: 8131: 8129: 8126: 8124: 8121: 8119: 8116: 8114: 8111: 8109: 8106: 8104: 8101: 8099: 8096: 8094: 8091: 8089: 8086: 8084: 8081: 8079: 8076: 8074: 8071: 8069: 8068:Heat transfer 8066: 8064: 8063:Heat capacity 8061: 8059: 8056: 8054: 8051: 8049: 8046: 8044: 8041: 8039: 8036: 8035: 8034: 8031: 8029: 8026: 8022: 8019: 8017: 8016:Negative mass 8014: 8013: 8012: 8009: 8007: 8004: 8002: 7999: 7997: 7996:Energy system 7994: 7992: 7989: 7987: 7984: 7980: 7977: 7976: 7975: 7972: 7970: 7967: 7965: 7962: 7961: 7959: 7953: 7947: 7944: 7942: 7939: 7937: 7934: 7933: 7930: 7926: 7919: 7914: 7912: 7907: 7905: 7900: 7899: 7896: 7886: 7878: 7877: 7864: 7858: 7855: 7853: 7850: 7848: 7845: 7843: 7840: 7838: 7835: 7833: 7830: 7828: 7825: 7823: 7820: 7818: 7815: 7813: 7810: 7808: 7805: 7803: 7800: 7798: 7795: 7793: 7792: 7788: 7786: 7783: 7781: 7778: 7776: 7773: 7771: 7768: 7766: 7763: 7761: 7758: 7757: 7755: 7749: 7743: 7739: 7737: 7734: 7732: 7729: 7727: 7724: 7722: 7718: 7716: 7712: 7710: 7706: 7704: 7700: 7697: 7693: 7691: 7687: 7685: 7681: 7679: 7675: 7671: 7669: 7665: 7663: 7659: 7655: 7653: 7649: 7647: 7643: 7640: 7636: 7634: 7630: 7626: 7623: 7621: 7618: 7617: 7616: 7612: 7610: 7606: 7604: 7600: 7598: 7595: 7593: 7589: 7587: 7583: 7581: 7577: 7576: 7574: 7566: 7560: 7557: 7555: 7552: 7550: 7547: 7543: 7542:United States 7540: 7536: 7533: 7531: 7528: 7527: 7526: 7523: 7521: 7518: 7516: 7513: 7511: 7508: 7506: 7503: 7501: 7498: 7496: 7493: 7491: 7488: 7487: 7486: 7483: 7481: 7478: 7476: 7473: 7471: 7468: 7466: 7463: 7461: 7458: 7456: 7453: 7451: 7448: 7447: 7445: 7443: 7433: 7429: 7422: 7417: 7415: 7410: 7408: 7403: 7402: 7399: 7388: 7384: 7380: 7379:Radioactivity 7376: 7369: 7363: 7360: 7358: 7355: 7353: 7350: 7348: 7345: 7343: 7340: 7339: 7337: 7333: 7327: 7324: 7322: 7319: 7317: 7314: 7312: 7309: 7307: 7304: 7303: 7301: 7297: 7291: 7288: 7286: 7283: 7281: 7278: 7276: 7273: 7271: 7268: 7266: 7263: 7261: 7258: 7256: 7253: 7251: 7248: 7246: 7243: 7241: 7238: 7236: 7233: 7231: 7228: 7226: 7223: 7221: 7218: 7216: 7213: 7211: 7208: 7204: 7201: 7199: 7196: 7195: 7193: 7192: 7190: 7184: 7174: 7171: 7169: 7166: 7164: 7161: 7159: 7156: 7154: 7151: 7149: 7146: 7144: 7141: 7139: 7136: 7134: 7131: 7129: 7126: 7124: 7121: 7119: 7116: 7114: 7111: 7109: 7106: 7105: 7102: 7096: 7093: 7091: 7088: 7086: 7083: 7081: 7078: 7076: 7073: 7071: 7068: 7066: 7063: 7061: 7058: 7056: 7053: 7051: 7048: 7046: 7045:Beta particle 7043: 7041: 7038: 7036: 7033: 7031: 7030:Cluster decay 7028: 7026: 7023: 7022: 7020: 7018: 7014: 7008: 7005: 7003: 7000: 6998: 6995: 6993: 6990: 6988: 6985: 6983: 6980: 6978: 6975: 6973: 6970: 6969: 6967: 6965: 6961: 6958: 6956:Main articles 6954: 6949: 6942: 6937: 6935: 6930: 6928: 6923: 6922: 6919: 6907: 6906: 6897: 6895: 6894: 6885: 6883: 6882: 6871: 6870: 6867: 6853: 6850: 6848: 6845: 6843: 6840: 6838: 6835: 6833: 6830: 6829: 6827: 6823: 6817: 6814: 6812: 6809: 6807: 6804: 6800: 6799:electrostatic 6797: 6796: 6795: 6792: 6790: 6784: 6783: 6781: 6779: 6775: 6769: 6766: 6764: 6761: 6759: 6756: 6754: 6751: 6749: 6746: 6744: 6741: 6740: 6738: 6736: 6732: 6728: 6722: 6717: 6711: 6701: 6698: 6694: 6691: 6689: 6686: 6685: 6684: 6681: 6680: 6678: 6674: 6664: 6661: 6659: 6656: 6654: 6651: 6647: 6644: 6642: 6639: 6637: 6634: 6632: 6629: 6627: 6624: 6622: 6619: 6617: 6614: 6612: 6609: 6607: 6604: 6602: 6599: 6597: 6594: 6592: 6589: 6588: 6587: 6584: 6583: 6581: 6579: 6578:Generation IV 6575: 6569: 6566: 6564: 6561: 6559: 6556: 6554: 6551: 6549: 6546: 6544: 6541: 6539: 6536: 6534: 6531: 6529: 6528:Breeder (FBR) 6526: 6525: 6522: 6519: 6514: 6505: 6491: 6488: 6486: 6483: 6481: 6478: 6476: 6473: 6471: 6468: 6466: 6463: 6462: 6460: 6458: 6454: 6451: 6449: 6445: 6433: 6430: 6426: 6423: 6421: 6418: 6416: 6413: 6411: 6408: 6407: 6406: 6403: 6402: 6401: 6398: 6396: 6393: 6389: 6386: 6385: 6384: 6381: 6380: 6378: 6376: 6372: 6366: 6363: 6361: 6358: 6356: 6354: 6350: 6349: 6347: 6345: 6338: 6335: 6333: 6329: 6319: 6316: 6314: 6311: 6309: 6306: 6304: 6301: 6300: 6298: 6296: 6288: 6285: 6281: 6278: 6273: 6266: 6261: 6249: 6246: 6244: 6241: 6239: 6236: 6234: 6231: 6230: 6229: 6226: 6225: 6223: 6221: 6214: 6208: 6205: 6204: 6202: 6200: 6196: 6190: 6187: 6185: 6182: 6178: 6175: 6173: 6170: 6169: 6168: 6165: 6164: 6162: 6160: 6152: 6144: 6141: 6139: 6136: 6134: 6131: 6129: 6126: 6122: 6119: 6117: 6114: 6112: 6109: 6108: 6107: 6104: 6102: 6099: 6095: 6092: 6089: 6086: 6083: 6080: 6079: 6078: 6075: 6074: 6073: 6070: 6069: 6067: 6065: 6057: 6054: 6050: 6043: 6039: 6033: 6030: 6025: 6023: 6020: 6018: 6015: 6011: 6008: 6006: 6003: 6002: 6001: 5998: 5996: 5993: 5991: 5988: 5986: 5983: 5981: 5978: 5976: 5973: 5971: 5968: 5966: 5963: 5961: 5958: 5957: 5956: 5953: 5951: 5948: 5944: 5941: 5939: 5936: 5934: 5931: 5929: 5926: 5925: 5924: 5921: 5919: 5916: 5915: 5913: 5911: 5907: 5902: 5901: 5894: 5889: 5883: 5879: 5875: 5870: 5866: 5856: 5853: 5851: 5848: 5846: 5843: 5841: 5838: 5836: 5833: 5831: 5830:Nuclear power 5828: 5827: 5825: 5821: 5811: 5810:Transmutation 5808: 5804: 5801: 5799: 5796: 5795: 5794: 5791: 5789: 5786: 5784: 5781: 5779: 5776: 5774: 5771: 5769: 5766: 5764: 5761: 5760: 5758: 5754: 5748: 5745: 5741: 5738: 5737: 5736: 5733: 5731: 5728: 5724: 5721: 5719: 5716: 5714: 5711: 5710: 5709: 5706: 5705: 5703: 5699: 5696: 5694: 5690: 5680: 5677: 5675: 5672: 5670: 5667: 5663: 5660: 5658: 5655: 5654: 5653: 5650: 5648: 5645: 5644: 5642: 5638: 5630: 5627: 5626: 5625: 5622: 5620: 5617: 5613: 5610: 5608: 5607:high-altitude 5605: 5604: 5603: 5600: 5598: 5597:Proliferation 5595: 5593: 5590: 5586: 5583: 5582: 5581: 5578: 5576: 5573: 5571: 5568: 5566: 5563: 5561: 5558: 5556: 5553: 5552: 5550: 5546: 5543: 5541: 5537: 5531: 5528: 5526: 5523: 5521: 5518: 5516: 5513: 5512: 5510: 5508: 5504: 5494: 5491: 5489: 5486: 5484: 5483:Brachytherapy 5481: 5479: 5476: 5474: 5471: 5469: 5466: 5464: 5461: 5459: 5456: 5455: 5453: 5451: 5447: 5441: 5438: 5436: 5433: 5431: 5428: 5426: 5423: 5421: 5418: 5417: 5415: 5413: 5409: 5406: 5404: 5400: 5392: 5389: 5388: 5387: 5384: 5380: 5377: 5376: 5375: 5372: 5368: 5365: 5364: 5363: 5360: 5358: 5355: 5353: 5350: 5348: 5345: 5343: 5340: 5338: 5335: 5333: 5330: 5329: 5327: 5325: 5321: 5315: 5312: 5310: 5307: 5305: 5302: 5300: 5297: 5295: 5292: 5290: 5287: 5285: 5282: 5280: 5279:Cross section 5277: 5275: 5272: 5270: 5267: 5265: 5262: 5261: 5259: 5257: 5253: 5245: 5242: 5240: 5237: 5233: 5230: 5228: 5225: 5224: 5223: 5220: 5219: 5218: 5215: 5213: 5210: 5208: 5205: 5203: 5200: 5198: 5195: 5193: 5190: 5188: 5185: 5184: 5182: 5180: 5176: 5168: 5165: 5163: 5160: 5159: 5158: 5155: 5153: 5150: 5148: 5145: 5143: 5140: 5138: 5135: 5133: 5130: 5128: 5125: 5124: 5122: 5118: 5114: 5110: 5103: 5098: 5096: 5091: 5089: 5084: 5083: 5080: 5074: 5071: 5068: 5064: 5061: 5058: 5055: 5052: 5049: 5045: 5042: 5039: 5037: 5034: 5032: 5029: 5028: 5017: 5012: 5008: 5004: 4999: 4994: 4990: 4986: 4982: 4977: 4967:on 2013-12-03 4963: 4956: 4955: 4950: 4940:on 2014-03-19 4936: 4932: 4925: 4924: 4919: 4918: 4906: 4902: 4898: 4894: 4890: 4886: 4879: 4872: 4864: 4860: 4855: 4850: 4846: 4842: 4839:(3625): 680. 4838: 4834: 4830: 4823: 4815: 4809: 4805: 4798: 4789: 4784: 4780: 4776: 4772: 4768: 4764: 4757: 4742: 4738: 4734: 4730: 4726: 4722: 4718: 4714: 4710: 4703: 4695: 4691: 4687: 4683: 4679: 4675: 4671: 4667: 4663: 4656: 4649: 4648:0-671-44133-7 4645: 4641: 4635: 4627: 4623: 4619: 4615: 4611: 4607: 4600: 4593: 4592:0-671-44133-7 4589: 4585: 4579: 4572: 4567: 4565:0-52-128010-9 4561: 4557: 4550: 4542: 4541: 4536: 4530: 4522: 4516: 4508: 4504: 4500: 4494: 4490: 4483: 4475: 4471: 4467: 4463: 4459: 4455: 4451: 4444: 4437: 4431: 4422: 4417: 4413: 4409: 4406:(846): 1–25. 4405: 4401: 4397: 4388: 4383: 4379: 4375: 4371: 4367: 4363: 4356: 4348: 4344: 4339: 4334: 4330: 4326: 4323:(3252): 312. 4322: 4318: 4311: 4304: 4290:on 2012-09-02 4289: 4285: 4279: 4271: 4267: 4263: 4259: 4255: 4251: 4247: 4243: 4236: 4229: 4221: 4215: 4211: 4210: 4203: 4195: 4189: 4185: 4184: 4176: 4168: 4162: 4158: 4152: 4145: 4144:archive.today 4141: 4138: 4133: 4125: 4123:9781119582328 4119: 4115: 4108: 4106: 4104: 4095: 4089: 4074: 4070: 4066: 4062: 4058: 4054: 4047: 4040: 4026:on 2010-03-05 4025: 4021: 4015: 4004: 3997: 3995: 3994:"13 MeV" 3991: 3987: 3983: 3978: 3974: 3966: 3955: 3948: 3946: 3942: 3934: 3927: 3921: 3913: 3909: 3905: 3901: 3897: 3893: 3888: 3883: 3879: 3875: 3868: 3861: 3857: 3851: 3837:on 2013-01-17 3836: 3832: 3825: 3818: 3814: 3810: 3804: 3788: 3784: 3778: 3763: 3759: 3755: 3751: 3747: 3743: 3739: 3732: 3724: 3722:9780471979364 3718: 3714: 3707: 3705: 3703: 3701: 3699: 3697: 3695: 3693: 3691: 3689: 3673: 3669: 3665: 3661: 3657: 3653: 3649: 3642: 3627: 3623: 3619: 3615: 3611: 3607: 3603: 3596: 3589: 3585: 3581: 3577: 3571: 3563: 3561:9781451677614 3557: 3553: 3546: 3544: 3542: 3540: 3538: 3536: 3534: 3532: 3530: 3528: 3526: 3524: 3522: 3520: 3518: 3516: 3514: 3512: 3510: 3508: 3506: 3497: 3495:9783030845940 3491: 3487: 3480: 3478: 3476: 3474: 3472: 3470: 3468: 3466: 3464: 3462: 3460: 3451: 3449:5-02-007779-8 3445: 3441: 3437: 3433: 3427: 3425: 3416: 3410: 3406: 3405: 3397: 3389: 3387:81-261-1763-X 3383: 3379: 3378: 3370: 3366: 3357: 3354: 3352: 3349: 3347: 3344: 3342: 3339: 3337: 3334: 3332: 3329: 3327: 3324: 3323: 3319: 3318:Energy portal 3313: 3308: 3305: 3294: 3287: 3284: 3280: 3276: 3272: 3268: 3264: 3255: 3253: 3249: 3245: 3241: 3236: 3234: 3230: 3226: 3222: 3218: 3214: 3210: 3206: 3202: 3198: 3194: 3188: 3178: 3175: 3171: 3167: 3163: 3159: 3154: 3150: 3146: 3141: 3137: 3133: 3127: 3125: 3121: 3116: 3111: 3109: 3105: 3101: 3097: 3093: 3088: 3084: 3081: 3077: 3072: 3070: 3066: 3061: 3059: 3054: 3050: 3049:Mark Oliphant 3045: 3044:cross section 3041: 3037: 3032: 3030: 3026: 3022: 3018: 3014: 3009: 3007: 3003: 2999: 2995: 2991: 2987: 2983: 2979: 2974: 2967: 2962: 2958: 2956: 2952: 2948: 2944: 2940: 2936: 2931: 2929: 2928:Lewis Strauss 2925: 2921: 2920:Eugene Wigner 2917: 2913: 2908: 2898: 2885: 2881: 2877: 2873: 2869: 2863: 2861: 2856: 2852: 2848: 2844: 2838: 2836: 2831: 2827: 2823: 2819: 2818: 2813: 2809: 2805: 2801: 2793: 2789: 2784: 2780: 2777: 2772: 2768: 2764: 2760: 2756: 2753: 2749: 2745: 2740: 2738: 2737:Joliot-Curies 2734: 2730: 2725: 2723: 2719: 2715: 2714:Ernest Walton 2710: 2706: 2701: 2696: 2694: 2690: 2686: 2682: 2678: 2673: 2671: 2668:proposed the 2667: 2663: 2659: 2655: 2651: 2647: 2646:radioactivity 2643: 2639: 2631: 2627: 2623: 2618: 2603: 2600: 2599:critical mass 2591: 2587: 2583: 2579: 2574: 2568:Fission bombs 2565: 2563: 2559: 2555: 2551: 2547: 2542: 2540: 2537: 2528: 2524: 2520: 2516: 2512: 2511: 2507: 2504: 2503: 2499: 2496: 2492: 2488: 2487: 2483: 2482: 2481: 2477: 2475: 2471: 2462: 2458: 2453: 2448: 2438: 2436: 2432: 2428: 2423: 2421: 2414: 2410: 2406: 2402: 2397: 2395: 2391: 2386: 2382: 2378: 2374: 2367: 2358: 2352: 2343: 2339: 2337: 2332: 2326: 2320: 2314: 2308: 2303: 2298: 2294: 2292: 2287: 2281: 2276: 2271: 2266: 2261: 2258: 2252: 2231: 2218: 2205: 2189: 2185: 2181: 2174: 2170: 2166: 2154: 2140: 2136: 2132: 2127: 2123: 2119: 2107: 2103: 2099: 2089: 2085: 2081: 2078: 2070: 2068: 2063: 2060: 2054: 2048: 2041: 2039: 2034: 2029: 2007: 2006:atomic number 2002: 1997: 1992: 1973: 1969: 1964: 1955: 1950: 1946: 1937: 1932: 1928: 1919: 1908: 1897: 1888: 1882: 1874: 1865: 1863: 1859: 1854: 1850: 1846: 1842: 1836: 1834: 1830: 1826: 1821: 1813: 1809: 1804: 1800: 1798: 1794: 1789: 1787: 1783: 1772: 1770: 1755: 1739: 1737: 1733: 1729: 1724: 1719: 1717: 1713: 1697: 1682: 1654: 1630: 1538: 1529: 1528:nuclear force 1523: 1509: 1507: 1492: 1466: 1462: 1458: 1457:fast neutrons 1454: 1450: 1448: 1444: 1440: 1437: 1433: 1429: 1425: 1421: 1417: 1416:nuclear fuels 1413: 1409: 1405: 1403: 1402: 1397: 1393: 1388: 1387:Coulomb force 1384: 1380: 1376: 1372: 1367: 1365: 1361: 1357: 1353: 1349: 1348: 1343: 1338: 1337:is possible. 1336: 1332: 1328: 1324: 1313: 1311: 1298: 1297:thorium cycle 1294: 1290: 1289:plutonium-239 1286: 1282: 1278: 1274: 1265: 1261: 1259: 1255: 1251: 1247: 1242: 1226: 1224: 1220: 1216: 1212: 1208: 1204: 1199: 1187: 1183: 1157: 1142: 1138: 1134: 1130: 1129:nuclear waste 1126: 1121: 1119: 1115: 1100: 1095: 1093: 1089: 1085: 1084:nuclear fuels 1081: 1077: 1076:nuclear power 1073: 1072:cluster decay 1069: 1065: 1061: 1056: 1054: 1050: 1046: 1042: 1038: 1034: 1028: 1026: 1022: 1018: 1014: 1011: 1007: 1003: 998: 996: 992: 988: 984: 980: 976: 972: 967: 965: 961: 957: 953: 949: 945: 941: 937: 933: 931: 927: 923: 920: 916: 912: 909:in which the 908: 904: 893: 888: 886: 881: 879: 874: 873: 871: 870: 864: 854: 851: 846: 840: 839: 838: 837: 830: 827: 825: 822: 820: 817: 815: 812: 810: 807: 805: 802: 800: 797: 795: 792: 790: 787: 785: 782: 780: 777: 775: 772: 770: 767: 765: 762: 760: 757: 755: 752: 750: 747: 745: 742: 740: 737: 735: 732: 730: 727: 725: 722: 720: 717: 715: 712: 710: 707: 705: 702: 700: 697: 695: 692: 690: 687: 685: 682: 680: 677: 675: 672: 671: 668: 663: 662: 655: 652: 650: 647: 645: 642: 641: 638: 633: 632: 623: 620: 618: 615: 613: 610: 609: 607: 606: 601: 598: 596: 593: 591: 588: 587: 583: 582: 579: 576: 575: 572: 567: 562: 561: 554: 551: 547: 546:by cosmic ray 544: 543: 542: 539: 538: 532: 531: 522: 519: 517: 514: 513: 512: 509: 505: 502: 500: 497: 496: 495: 492: 488: 485: 484: 483: 480: 479: 473: 472: 465: 462: 458: 457:pair breaking 455: 454: 453: 450: 448: 445: 444: 441: 436: 435: 428: 425: 423: 422:Decay product 420: 418: 415: 413: 410: 409: 406: 403: 401: 398: 396: 395:Cluster decay 393: 391: 388: 384: 381: 379: 376: 375: 374: 371: 369: 366: 362: 359: 355: 352: 351: 350: 347: 346: 345: 342: 340: 337: 336: 333: 328: 327: 320: 317: 315: 312: 310: 307: 305: 302: 300: 297: 295: 292: 291: 285: 284: 275: 272: 271: 270: 267: 265: 262: 260: 257: 255: 252: 251: 248: 244: 240: 239:Mirror nuclei 237: 236: 232: 229: 228: 225: 224: 221: −  220: 215: 212: 211: 208: 207: 202: 199: 198: 195: 194: 189: 186: 185: 181: 180: 175: 172: 171: 167: 162: 161: 154: 151: 149: 146: 144: 141: 139: 136: 135: 132: 127: 126: 121: 118: 116: 113: 111: 110:Nuclear force 108: 106: 103: 99: 96: 94: 91: 90: 89: 86: 84: 81: 80: 79: 78: 74: 70: 69: 66: 63: 62: 56: 52: 48: 44: 40: 35: 29: 22: 8841: 8829: 8817: 8805: 8587:Oil refinery 8531:Cogeneration 8464:Nuclear fuel 8270:Quintessence 8058:Free entropy 7991:Energy level 7955:Fundamental 7867: 7789: 7785:Bikini Atoll 7731:Hanford Site 7726:Bikini Atoll 7530:in Australia 7520:Soviet Union 7515:South Africa 7383:Radiobiology 7265:Radiobiology 7225:Laser safety 7064: 6903: 6891: 6872: 6852:Pyroelectric 6806:Laser-driven 6586:Sodium (SFR) 6513:fast-neutron 6352: 5898: 5788:Reprocessing 5669:WMD treaties 5488:Radiosurgery 5458:Fast-neutron 5430:Scintigraphy 5146: 4988: 4984: 4969:. Retrieved 4962:the original 4953: 4942:. Retrieved 4935:the original 4922: 4888: 4884: 4871: 4836: 4832: 4822: 4803: 4797: 4770: 4766: 4756: 4746:20 September 4744:. Retrieved 4716: 4712: 4702: 4672:(6): 89–95. 4669: 4665: 4655: 4639: 4634: 4609: 4605: 4599: 4583: 4578: 4569: 4555: 4549: 4538: 4529: 4515: 4488: 4482: 4457: 4453: 4443: 4435: 4430: 4403: 4399: 4369: 4365: 4355: 4320: 4316: 4303: 4292:. Retrieved 4288:the original 4278: 4245: 4241: 4228: 4208: 4202: 4182: 4175: 4156: 4151: 4132: 4113: 4088:cite journal 4077:. Retrieved 4056: 4052: 4039: 4028:. Retrieved 4024:the original 4014: 4003:the original 3993: 3990:"7 MeV" 3989: 3986:"5 MeV" 3985: 3982:"5 MeV" 3981: 3976: 3972: 3965: 3954:the original 3944: 3940: 3933: 3920: 3880:(10): 1892. 3877: 3873: 3867: 3859: 3850: 3839:. Retrieved 3835:the original 3824: 3808: 3803: 3791:. Retrieved 3786: 3777: 3765:. Retrieved 3745: 3741: 3731: 3712: 3675:. Retrieved 3655: 3651: 3641: 3629:. Retrieved 3609: 3605: 3595: 3579: 3570: 3551: 3485: 3439: 3435: 3403: 3396: 3376: 3369: 3356:Photofission 3326:Cold fission 3261: 3237: 3205:Hanford Site 3190: 3170:control rods 3162:Ames process 3158:Mallinckrodt 3128: 3112: 3089: 3085: 3080:Glen Seaborg 3076:Emilio Segré 3073: 3062: 3033: 3010: 2975: 2971: 2950: 2947:Lew Kowarski 2939:World War II 2932: 2915: 2911: 2904: 2884:Uranspaltung 2883: 2866:basement of 2864: 2839: 2829: 2815: 2804:Lise Meitner 2797: 2759:Enrico Fermi 2757: 2741: 2726: 2721: 2704: 2697: 2674: 2666:George Gamow 2664:). In 1928, 2635: 2630:Lise Meitner 2595: 2560:, then to a 2543: 2532: 2508: 2500: 2484: 2478: 2466: 2434: 2430: 2426: 2424: 2404: 2398: 2384: 2380: 2376: 2372: 2369: 2340: 2330: 2324: 2318: 2312: 2306: 2299: 2295: 2285: 2279: 2269: 2262: 2256: 2250: 2071: 2064: 2058: 2052: 2046: 2042: 2032: 2000: 1990: 1886: 1883: 1879: 1858:Enrico Fermi 1837: 1817: 1790: 1778: 1768: 1753: 1740: 1720: 1655: 1628: 1534: 1490: 1464: 1451: 1406: 1400: 1395: 1391: 1368: 1355: 1346: 1339: 1319: 1307: 1279:by mass for 1237: 1122: 1096: 1057: 1029: 1016: 999: 968: 948:Lise Meitner 938:by chemists 934: 902: 901: 464:Photofission 439: 412:Decay energy 339:Alpha α 246: 242: 222: 218: 205: 192: 178: 8843:WikiProject 8663:Agriculture 8592:Solar power 8558:Tidal power 8432:Natural gas 8422:Fossil fuel 8365:Latent heat 8333:Electricity 7857:Smiling Sun 7568:Individual 7505:North Korea 7007:Ultraviolet 7002:Radio waves 6763:Stellarator 6727:confinement 6621:Superphénix 6448:Molten-salt 6400:VHTR (HTGR) 6177:HW BLWR 250 6143:R4 Marviken 6072:Pressurized 6042:Heavy water 6026:many others 5955:Pressurized 5910:Light water 5612:underground 5570:Disarmament 5478:Tomotherapy 5473:Proton-beam 5337:Power plant 5299:Temperature 5132:Engineering 4460:(37): 653. 3789:. July 2022 3283:Paul Kuroda 3153:Walter Zinn 3145:Stagg Field 3100:Harold Urey 3065:Franz Simon 2955:Walter Zinn 2924:H. G. Wells 2907:Leó Szilárd 2872:uranium 235 2851:Willis Lamb 2841:lecture at 2776:Ida Noddack 2712:colleagues 2693:transmuting 2681:Marie Curie 2390:heavy water 2357:uranium-238 1996:mass number 1769:fissionable 1681:fissionable 1453:Fissionable 1439:decay chain 1420:mass number 1293:uranium-233 1285:uranium-235 1283:fission of 1158:(from both 1125:radioactive 1099:free energy 1068:alpha decay 973:, it is an 769:Oppenheimer 447:Spontaneous 417:Decay chain 368:K/L capture 344:Beta β 214:Isodiaphers 138:Liquid drop 47:uranium-236 43:uranium-235 8859:Categories 8626:Wind power 8548:Hydropower 8499:components 8454:Hydropower 8444:Geothermal 8394:Sound wave 8305:Zero-point 8235:Mechanical 8220:Ionization 8193:Electrical 8088:Negentropy 7969:Energetics 7847:Peace camp 7637:1985–1987 7570:accidents 7438:disasters 7188:and health 7186:Radiation 7055:Cosmic ray 6788:(acoustic) 6405:PBR (PBMR) 5793:Spent fuel 5783:Repository 5763:Fuel cycle 5730:Activation 5507:Processing 5374:Propulsion 5332:by country 5264:Activation 4998:1912.00287 4971:2012-01-03 4944:2012-01-03 4891:(4): 781. 4660:Hahn, O.; 4612:(5): 511. 4294:2013-01-04 4166:0930370155 4079:2008-07-28 4030:2013-01-04 3841:2013-01-04 3588:9812837523 3362:References 3244:Little Boy 3221:Los Alamos 3185:See also: 3060:was held. 2868:Pupin Hall 2662:Bohr model 2658:Niels Bohr 2590:hypocenter 2463:in Germany 2445:See also: 2336:beta decay 2302:half-lives 2267:with even 1512:Energetics 1331:α particle 1254:beta decay 1053:Niels Bohr 969:For heavy 799:Strassmann 789:Rutherford 667:Scientists 622:Artificial 617:Cosmogenic 612:Primordial 608:Nuclides: 585:Processes: 541:Spallation 55:gamma rays 8737:Australia 8673:Transport 8668:Computing 8636:Wind farm 8563:Wave farm 8437:Petroleum 8417:Bioenergy 8389:Radiation 8328:Capacitor 8250:Potential 7639:Therac-25 7572:and sites 7442:incidents 7436:Lists of 7342:Half-life 7215:Dosimetry 7050:Gamma ray 6997:Microwave 6987:Starlight 6948:Radiation 6758:Spheromak 6457:Fluorides 6121:IPHWR-700 6116:IPHWR-540 6111:IPHWR-220 5900:Moderator 5580:Explosion 5555:Arms race 5342:Economics 5294:Reflector 5289:Radiation 5284:Generator 5239:Plutonium 5192:Deuterium 5157:Radiation 5127:Chemistry 4507:883986381 4270:126189920 4059:: 77–84. 3793:9 October 3767:9 October 3677:9 October 3631:9 October 3209:plutonium 3029:cyclotron 2847:I.I. Rabi 2817:Anschluss 2800:Otto Hahn 2675:In 1896, 2626:Otto Hahn 2539:N reactor 2420:fuel rods 2235:Δ 2232:± 2206:− 2182:− 2133:− 2100:− 1956:− 1531:observed. 1463:). While 1443:millennia 1258:neutrinos 1241:amplitude 1234:Mechanism 1141:plutonium 1045:Kurchatov 1027:nucleus. 940:Otto Hahn 804:Świątecki 719:Pi. Curie 714:Fr. Curie 709:Ir. Curie 704:Cockcroft 679:Becquerel 600:Supernova 304:Drip line 299:p–n ratio 274:Borromean 153:Ab initio 8807:Category 8372:Hydrogen 8338:Enthalpy 8240:Negative 8230:Magnetic 8215:Internal 8173:Chemical 8038:Enthalpy 7957:concepts 7885:Category 7751:Related 7641:accident 7510:Pakistan 6992:Sunlight 6977:Infrared 6893:Category 6847:Polywell 6778:Inertial 6735:Magnetic 6490:TMSR-LF1 6485:TMSR-500 6465:Fuji MSR 6425:THTR-300 6265:Graphite 6128:PHWR KWU 6094:ACR-1000 6022:IPWR-900 6005:ACPR1000 6000:HPR-1000 5990:CPR-1000 5965:APR-1400 5756:Disposal 5708:Actinide 5701:Products 5560:Delivery 5403:Medicine 5232:depleted 5227:enriched 5197:Helium-3 5162:ionizing 5063:Archived 5044:Archived 4694:33512939 4140:Archived 3912:18521811 3862:, p. 99. 3290:See also 3227:and the 2830:bursting 2515:isotopes 2394:graphite 1723:actinide 1535:Fission 1385:and the 1116:or from 1041:Petrzhak 1013:isotopes 971:nuclides 960:neutrons 907:reaction 863:Category 764:Oliphant 749:Lawrence 729:Davisson 699:Chadwick 595:Big Bang 482:electron 452:Products 373:Isomeric 264:Even/odd 241: – 216:– equal 203:– equal 201:Isotones 190:– equal 176:– equal 174:Isotopes 166:Nuclides 88:Nucleons 8819:Commons 8647:Use and 8506:Biomass 8476:Radiant 8323:Battery 8295:Thermal 8290:Surface 8275:Radiant 8245:Phantom 8225:Kinetic 8203:Binding 8183:Elastic 8166:Nuclear 8161:Binding 8048:Entropy 7946:Outline 7936:History 7620:Effects 7203:chronic 6905:Commons 6816:Z-pinch 6786:Bubble 6768:Tokamak 6631:FBR-600 6611:CFR-600 6606:BN-1200 6272:coolant 6199:Organic 6084:CANDU 9 6081:CANDU 6 6049:coolant 6010:ACP1000 5985:CAP1400 5923:Boiling 5888:Fission 5735:Fission 5679:Weapons 5619:Warfare 5602:Testing 5592:History 5585:effects 5540:Weapons 5450:Therapy 5425:RadBall 5412:Imaging 5304:Thermal 5269:Capture 5256:Neutron 5244:Thorium 5222:Uranium 5187:Tritium 5167:braking 5147:Fission 5137:Physics 5120:Science 5003:Bibcode 4893:Bibcode 4863:4089039 4841:Bibcode 4804:Uranium 4775:Bibcode 4741:4113262 4721:Bibcode 4674:Bibcode 4614:Bibcode 4540:YouTube 4462:Bibcode 4408:Bibcode 4374:Bibcode 4347:4076465 4325:Bibcode 4250:Bibcode 4061:Bibcode 3892:Bibcode 3750:Bibcode 3660:Bibcode 3614:Bibcode 3248:Fat Man 3240:Trinity 3115:Met Lab 3040:Peierls 3034:At the 2689:thorium 2632:in 1912 2606:History 2580:of the 2536:Hanford 2459:of the 2427:breeder 2405:fissile 2026:is the 1833:photons 1820:uranium 1818:When a 1754:fissile 1364:tritium 1342:daltons 1207:fissile 1203:fertile 1114:methane 1049:uranium 1037:Flyorov 1010:fissile 1006:element 987:heating 981:and as 922:photons 911:nucleus 819:Thomson 809:Szilárd 779:Purcell 759:Meitner 694:N. Bohr 689:A. Bohr 674:Alvarez 590:Stellar 494:neutron 378:Gamma γ 231:Isomers 188:Isobars 83:Nucleus 39:neutron 8831:Portal 8752:Mexico 8747:Europe 8742:Canada 8727:Africa 8650:supply 8459:Marine 8348:Fossil 8300:Vacuum 8053:Exergy 7974:Energy 7925:Energy 7753:topics 7676:under 7495:France 7385:, and 6716:Fusion 6676:Others 6616:Phénix 6601:BN-800 6596:BN-600 6591:BN-350 6420:HTR-PM 6415:HTR-10 6395:UHTREX 6360:Magnox 6355:(UNGG) 6248:Lucens 6243:KS 150 5980:ATMEA1 5960:AP1000 5943:Kerena 5823:Debate 5575:Ethics 5565:Design 5548:Topics 5379:rocket 5357:Fusion 5352:Policy 5314:Fusion 5274:Poison 5152:Fusion 4991:: 63. 4861:  4833:Nature 4810:  4739:  4713:Nature 4692:  4646:  4590:  4562:  4505:  4495:  4345:  4317:Nature 4268:  4216:  4190:  4163:  4120:  3910:  3815:  3719:  3586:  3558:  3492:  3446:  3411:  3384:  3219:; and 2982:Wigner 2978:Teller 2951:Nature 2853:, two 2826:barium 2812:Berlin 2806:, and 2792:Munich 2392:, and 1988:where 1775:Output 1716:median 1239:large- 1184:. The 1154:) and 1143:(from 1070:, and 1043:, and 926:energy 913:of an 861:  829:Wigner 824:Walton 814:Teller 744:Jensen 511:proton 254:Stable 8771:Misc. 8481:Solar 8285:Sound 8154:Types 8028:Power 7979:Units 7941:Index 7740:1945 7719:1954 7713:1957 7707:1957 7701:1957 7694:1961 7688:1961 7682:1962 7672:1962 7666:1969 7656:1979 7650:1980 7644:1982 7631:1985 7613:1986 7607:1987 7601:1990 7590:2001 7584:2011 7578:2019 7500:India 7490:China 7198:acute 7095:X-ray 6982:Light 6837:Migma 6825:Other 6794:Fusor 6693:Piqua 6688:Arbus 6646:PRISM 6388:MHR-T 6383:GTMHR 6313:EGP-6 6308:AMB-X 6283:Water 6228:HWGCR 6167:HWLWR 6106:IPHWR 6077:CANDU 5938:ESBWR 5693:Waste 5657:Tests 5640:Lists 5624:Yield 5367:MMRTG 5324:Power 4993:arXiv 4965:(PDF) 4958:(PDF) 4938:(PDF) 4927:(PDF) 4881:(PDF) 4859:S2CID 4737:S2CID 4690:S2CID 4343:S2CID 4313:(PDF) 4266:S2CID 4238:(PDF) 4049:(PDF) 4006:(PDF) 3999:(PDF) 3957:(PDF) 3950:(PDF) 3908:S2CID 3882:arXiv 3438:[ 3271:Gabon 3023:in a 1517:Input 1432:alpha 1352:argon 1025:argon 1017:three 919:gamma 905:is a 794:Soddy 774:Proca 754:Mayer 734:Fermi 684:Bethe 259:Magic 8732:Asia 8486:Wind 8427:Coal 8399:Work 8360:Heat 8343:Fuel 8280:Rest 8178:Dark 8143:Work 8011:Mass 7696:SL-1 7660:and 7440:and 6653:Lead 6636:CEFR 6626:PFBR 6508:None 6318:RBMK 6303:AM-1 6233:EL-4 6207:WR-1 6189:AHWR 6133:MZFR 6101:CVTR 6090:AFCR 6017:VVER 5975:APWR 5970:APR+ 5933:ABWR 5803:cask 5798:pool 5740:LLFP 5629:TNTe 5309:Fast 5179:Fuel 4808:ISBN 4748:2023 4644:ISBN 4588:ISBN 4560:ISBN 4503:OCLC 4493:ISBN 4392:and 4214:ISBN 4188:ISBN 4161:ISBN 4118:ISBN 4094:link 3926:mode 3813:ISBN 3795:2023 3769:2023 3717:ISBN 3679:2023 3633:2023 3584:ISBN 3556:ISBN 3490:ISBN 3444:ISBN 3409:ISBN 3382:ISBN 3267:Oklo 3151:and 3078:and 2980:and 2945:and 2849:and 2763:Rome 2716:and 2628:and 2576:The 2455:The 2409:LWRs 2254:and 1829:mean 1712:mode 1550:and 1491:most 1465:some 1447:eons 1436:beta 1209:and 1169:and 950:and 942:and 915:atom 784:Rabi 739:Hahn 649:RHIC 269:Halo 8353:Oil 6725:by 6641:PFR 6432:PMR 6410:AVR 6332:Gas 6270:by 6238:KKN 6172:ATR 6087:EC6 6047:by 5995:EPR 5928:BWR 5011:doi 4901:doi 4849:doi 4837:143 4783:doi 4729:doi 4717:143 4682:doi 4622:doi 4470:doi 4416:doi 4404:142 4382:doi 4370:136 4333:doi 4321:129 4258:doi 4069:doi 4057:798 3941:82% 3900:doi 3758:doi 3668:doi 3622:doi 3578:in 3269:in 2916:one 2912:two 2790:in 2656:). 2584:on 2552:or 2546:GWE 2413:wt% 2004:is 1994:is 1812:Hue 1771:." 1445:to 1394:or 1225:". 1205:or 654:LHC 568:and 8861:: 7381:, 7377:, 6375:He 6341:CO 6217:CO 6138:R3 5009:. 5001:. 4987:. 4983:. 4929:. 4899:. 4889:25 4887:. 4883:. 4857:. 4847:. 4835:. 4831:. 4781:. 4771:56 4769:. 4765:. 4735:. 4727:. 4715:. 4711:. 4688:. 4680:. 4670:27 4668:. 4620:. 4610:55 4608:. 4568:. 4537:. 4501:. 4468:. 4458:47 4456:. 4452:. 4414:. 4402:. 4398:. 4380:. 4368:. 4364:. 4341:. 4331:. 4319:. 4315:. 4264:. 4256:. 4246:21 4244:. 4240:. 4102:^ 4090:}} 4086:{{ 4067:. 4055:. 4051:. 3906:. 3898:. 3890:. 3878:67 3876:. 3858:, 3785:. 3756:. 3746:55 3744:. 3740:. 3687:^ 3666:. 3656:55 3654:. 3650:. 3620:. 3610:53 3608:. 3604:. 3504:^ 3458:^ 3423:^ 3254:. 3235:. 3211:; 3015:, 3008:. 2845:. 2802:, 2396:. 2338:. 2328:= 2293:. 2008:, 1998:, 1793:eV 1788:. 1631:+ 1559:Pu 1504:, 1489:, 1424:Pu 1287:, 1120:. 1066:, 1039:, 966:. 932:. 521:rp 487:2× 354:0v 349:2β 245:↔ 7917:e 7910:t 7903:v 7420:e 7413:t 7406:v 6940:e 6933:t 6926:v 6515:) 6511:( 6343:2 6295:O 6293:2 6291:H 6219:2 6159:O 6157:2 6155:H 6064:O 6062:2 6060:D 5101:e 5094:t 5087:v 5019:. 5013:: 5005:: 4995:: 4989:8 4974:. 4947:. 4907:. 4903:: 4895:: 4865:. 4851:: 4843:: 4816:. 4791:. 4785:: 4777:: 4750:. 4731:: 4723:: 4696:. 4684:: 4676:: 4650:. 4628:. 4624:: 4616:: 4594:. 4523:. 4509:. 4476:. 4472:: 4464:: 4424:. 4418:: 4410:: 4390:. 4384:: 4376:: 4349:. 4335:: 4327:: 4297:. 4272:. 4260:: 4252:: 4222:. 4196:. 4169:. 4126:. 4096:) 4082:. 4071:: 4063:: 4033:. 3971:" 3914:. 3902:: 3894:: 3884:: 3844:. 3819:. 3797:. 3771:. 3760:: 3752:: 3725:. 3681:. 3670:: 3662:: 3635:. 3624:: 3616:: 3590:. 3564:. 3498:. 3452:. 3417:. 3390:. 2968:. 2895:U 2497:. 2417:2 2385:k 2381:k 2377:k 2331:Z 2325:N 2319:N 2313:N 2307:Z 2286:A 2280:Z 2270:Z 2257:Z 2251:N 2226:A 2219:2 2215:) 2210:Z 2202:N 2198:( 2190:a 2186:a 2175:3 2171:/ 2167:1 2162:A 2155:2 2150:Z 2141:c 2137:a 2128:3 2124:/ 2120:2 2115:A 2108:s 2104:a 2096:A 2090:v 2086:a 2082:= 2079:B 2059:A 2053:Z 2047:A 2033:B 2024:c 2019:n 2017:m 2012:H 2010:m 2001:Z 1991:A 1974:2 1970:c 1965:/ 1960:B 1951:n 1947:m 1942:N 1938:+ 1933:H 1929:m 1924:Z 1920:= 1917:) 1913:Z 1909:, 1905:A 1901:( 1898:m 1887:B 1765:U 1750:U 1708:U 1692:U 1677:U 1666:U 1651:U 1640:U 1629:n 1625:U 1614:U 1603:U 1592:U 1581:U 1570:U 1548:U 1502:U 1487:U 1476:U 1434:- 1401:A 1356:Z 1354:( 1347:Z 1299:. 1198:U 1178:U 1167:U 1152:U 1110:U 891:e 884:t 877:v 516:p 504:r 499:s 361:β 247:N 243:Z 223:Z 219:N 206:N 193:A 179:Z 98:n 93:p 30:. 23:.

Index

Split the Atom
Nuclear fusion

neutron
uranium-235
uranium-236
forces that bind the neutron
gamma rays
Nuclear physics

Nucleus
Nucleons
p
n
Nuclear matter
Nuclear force
Nuclear structure
Nuclear reaction
Models of the nucleus
Liquid drop
Nuclear shell model
Interacting boson model
Ab initio
Nuclides
Isotopes
Z
Isobars
A
Isotones
N

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.