Knowledge

Atomic nucleus

Source 📝

1159:(helium nuclei) directed at a thin sheet of metal foil. He reasoned that if J. J. Thomson's model were correct, the positively charged alpha particles would easily pass through the foil with very little deviation in their paths, as the foil should act as electrically neutral if the negative and positive charges are so intimately mixed as to make it appear neutral. To his surprise, many of the particles were deflected at very large angles. Because the mass of an alpha particle is about 8000 times that of an electron, it became apparent that a very strong force must be present if it could deflect the massive and fast moving alpha particles. He realized that the plum pudding model could not be accurate and that the deflections of the alpha particles could only be explained if the positive and negative charges were separated from each other and that the mass of the atom was a concentrated point of positive charge. This justified the idea of a nuclear atom with a dense center of positive charge and mass. 946: 1228:-4 atom with the electron cloud in shades of gray. In the nucleus, the two protons and two neutrons are depicted in red and blue. This depiction shows the particles as separate, whereas in an actual helium atom, the protons are superimposed in space and most likely found at the very center of the nucleus, and the same is true of the two neutrons. Thus, all four particles are most likely found in exactly the same space, at the central point. Classical images of separate particles fail to model known charge distributions in very small nuclei. A more accurate image is that the spatial distribution of nucleons in a helium nucleus is much closer to the helium 1256:. The nuclear strong force extends far enough from each baryon so as to bind the neutrons and protons together against the repulsive electrical force between the positively charged protons. The nuclear strong force has a very short range, and essentially drops to zero just beyond the edge of the nucleus. The collective action of the positively charged nucleus is to hold the electrically negative charged electrons in their orbits about the nucleus. The collection of negatively charged electrons orbiting the nucleus display an affinity for certain configurations and numbers of electrons that make their orbits stable. Which 6005: 959: 1721: 4180: 174: 135: 36: 1221: 5993: 6017: 1886:, atomic nuclei are an example of a state in which both (1) "ordinary" particle physical rules for volume and (2) non-intuitive quantum mechanical rules for a wave-like nature apply. In superfluid helium, the helium atoms have volume, and essentially "touch" each other, yet at the same time exhibit strange bulk properties, consistent with a 1147:. Knowing that atoms are electrically neutral, J. J. Thomson postulated that there must be a positive charge as well. In his plum pudding model, Thomson suggested that an atom consisted of negative electrons randomly scattered within a sphere of positive charge. Ernest Rutherford later devised an experiment with his research partner 1802:
well known from experiments. The exact nature and capacity of nuclear shells differs from those of electrons in atomic orbitals, primarily because the potential well in which the nucleons move (especially in larger nuclei) is quite different from the central electromagnetic potential well which binds
1370:
The nuclear force is highly attractive at the distance of typical nucleon separation, and this overwhelms the repulsion between protons due to the electromagnetic force, thus allowing nuclei to exist. However, the residual strong force has a limited range because it decays quickly with distance (see
1852:
distortions of the shape of the potential well to fit experimental data, but the question remains whether these mathematical manipulations actually correspond to the spatial deformations in real nuclei. Problems with the shell model have led some to propose realistic two-body and three-body nuclear
1715:
The terms in the semi-empirical mass formula, which can be used to approximate the binding energy of many nuclei, are considered as the sum of five types of energies (see below). Then the picture of a nucleus as a drop of incompressible liquid roughly accounts for the observed variation of binding
1469:
Halos in effect represent an excited state with nucleons in an outer quantum shell which has unfilled energy levels "below" it (both in terms of radius and energy). The halo may be made of either neutrons or protons . Nuclei which have a single neutron halo include Be and C. A two-neutron halo is
1264:
in the nucleus; the neutral atom will have an equal number of electrons orbiting that nucleus. Individual chemical elements can create more stable electron configurations by combining to share their electrons. It is that sharing of electrons to create stable electronic orbits about the nuclei that
1823:
with 6 nucleons is highly stable without a closed second 1p shell orbital. For light nuclei with total nucleon numbers 1 to 6 only those with 5 do not show some evidence of stability. Observations of beta-stability of light nuclei outside closed shells indicate that nuclear stability is much more
1703:
Early models of the nucleus viewed the nucleus as a rotating liquid drop. In this model, the trade-off of long-range electromagnetic forces and relatively short-range nuclear forces, together cause behavior which resembled surface tension forces in liquid drops of different sizes. This formula is
1476:
because of this behavior (referring to a system of three interlocked rings in which breaking any ring frees both of the others). He and Be both exhibit a four-neutron halo. Nuclei which have a proton halo include B and P. A two-proton halo is exhibited by Ne and S. Proton halos are expected to be
1758:. Were it not for the Coulomb energy, the most stable form of nuclear matter would have the same number of neutrons as protons, since unequal numbers of neutrons and protons imply filling higher energy levels for one type of particle, while leaving lower energy levels vacant for the other type. 1831:
For larger nuclei, the shells occupied by nucleons begin to differ significantly from electron shells, but nevertheless, present nuclear theory does predict the magic numbers of filled nuclear shells for both protons and neutrons. The closure of the stable shells predicts unusually stable
1898:, Bose-Einstein condensation does not occur, yet nevertheless, many nuclear properties can only be explained similarly by a combination of properties of particles with volume, in addition to the frictionless motion characteristic of the wave-like behavior of objects trapped in 1735:. A nucleon at the surface of a nucleus interacts with fewer other nucleons than one in the interior of the nucleus and hence its binding energy is less. This surface energy term takes that into account and is therefore negative and is proportional to the surface area. 1331:
The neutron has a positively charged core of radius ≈ 0.3 fm surrounded by a compensating negative charge of radius between 0.3 fm and 2 fm. The proton has an approximately exponentially decaying positive charge distribution with a mean square radius of about 0.8 fm.
1807:, in which the two protons and two neutrons separately occupy 1s orbitals analogous to the 1s orbital for the two electrons in the helium atom, and achieve unusual stability for the same reason. Nuclei with 5 nucleons are all extremely unstable and short-lived, yet, 1836:
to have 10 stable isotopes, more than any other element. Similarly, the distance from shell-closure explains the unusual instability of isotopes which have far from stable numbers of these particles, such as the radioactive elements 43
1366:
that act between two inert gas atoms) are much weaker than the electromagnetic forces that hold the parts of the atoms together internally (for example, the forces that hold the electrons in an inert gas atom bound to its nucleus).
1729:. When an assembly of nucleons of the same size is packed together into the smallest volume, each interior nucleon has a certain number of other nucleons in contact with it. So, this nuclear energy is proportional to the volume. 1191:
used the term to refer to the "central point of an atom". The modern atomic meaning was proposed by Ernest Rutherford in 1912. The adoption of the term "nucleus" to atomic theory, however, was not immediate. In 1916, for example,
1544:
have made this possible for many low mass and relatively stable nuclei, but further improvements in both computational power and mathematical approaches are required before heavy nuclei or highly unstable nuclei can be
1560:) is considered to be one of the basic quantities that any model must predict. For stable nuclei (not halo nuclei or other unstable distorted nuclei) the nuclear radius is roughly proportional to the cube root of the 1786:
theory. These wave models imagine nucleons to be either sizeless point particles in potential wells, or else probability waves as in the "optical model", frictionlessly orbiting at high speed in potential wells.
1819:, with only one nucleon in each of the proton and neutron potential wells. While each nucleon is a fermion, the {NP} deuteron is a boson and thus does not follow Pauli Exclusion for close packing within shells. 2643:
Gaffney, L. P.; Butler, P. A.; Scheck, M.; Hayes, A. B.; Wenander, F.; Albers, M.; Bastin, B.; Bauer, C.; Blazhev, A.; Bönig, S.; Bree, N.; Cederkäll, J.; Chupp, T.; Cline, D.; Cocolios, T. E. (May 2013).
2692: 1666:
the same total size result as packing hard spheres of a constant size (like marbles) into a tight spherical or almost spherical bag (some stable nuclei are not quite spherical, but are known to be
1387:
which contains a total of 208 nucleons (126 neutrons and 82 protons). Nuclei larger than this maximum are unstable and tend to be increasingly short-lived with larger numbers of nucleons. However,
2449: 1549:
Historically, experiments have been compared to relatively crude models that are necessarily imperfect. None of these models can completely explain experimental data on nuclear structure.
1495:
of physics is widely believed to completely describe the composition and behavior of the nucleus, generating predictions from theory is much more difficult than for most other areas of
4768: 1328:
and/or other unusual quark(s), can also share the wave function. However, this type of nucleus is extremely unstable and not found on Earth except in high-energy physics experiments.
1764:. An energy which is a correction term that arises from the tendency of proton pairs and neutron pairs to occur. An even number of particles is more stable than an odd number. 1507:(QCD). In practice however, current computational and mathematical approaches for solving QCD in low-energy systems such as the nuclei are extremely limited. This is due to the 5354: 1624: 1858: 1854: 1338:
can be spherical, rugby ball-shaped (prolate deformation), discus-shaped (oblate deformation), triaxial (a combination of oblate and prolate deformation) or pear-shaped.
5548: 2621: 2362: 2338: 1391:
is also stable to beta decay and has the longest half-life to alpha decay of any known isotope, estimated at a billion times longer than the age of the universe.
1117:
The branch of physics concerned with the study and understanding of the atomic nucleus, including its composition and the forces that bind it together, is called
2645: 1088:. These dimensions are much smaller than the diameter of the atom itself (nucleus + electron cloud), by a factor of about 26,634 (uranium atomic radius is about 142:: protons (red) and neutrons (blue). In this diagram, protons and neutrons look like little balls stuck together, but an actual nucleus (as understood by modern 1848:
There are however problems with the shell model when an attempt is made to account for nuclear properties well away from closed shells. This has led to complex
1272:. Neutrons are electrically neutral, but contribute to the mass of a nucleus to nearly the same extent as the protons. Neutrons can explain the phenomenon of 4956: 1832:
configurations, analogous to the noble group of nearly-inert gases in chemistry. An example is the stability of the closed shell of 50 protons, which allows
2917:
Li, Pengjie (2023). "Validation of the 10Be Ground-State Molecular Structure Using 10Be(p,pα)6He Triple Differential Reaction Cross-Section Measurements".
4483: 4778: 1534:
Even if the nuclear force is well constrained, a significant amount of computational power is required to accurately compute the properties of nuclei
2426: 5659: 1862: 5804: 2485: 4103: 1815:
is unstable and will decay into helium-3 when isolated. Weak nuclear stability with 2 nucleons {NP} in the 1s orbital is found in the deuteron
4463: 1375:); thus only nuclei smaller than a certain size can be completely stable. The largest known completely stable nucleus (i.e. stable to alpha, 4785: 4216: 3070: 1890:. The nucleons in atomic nuclei also exhibit a wave-like nature and lack standard fluid properties, such as friction. For nuclei made of 1571:
The stable nucleus has approximately a constant density and therefore the nuclear radius R can be approximated by the following formula,
4551: 5054: 3853: 990: 904: 5293: 1276:(same atomic number with different atomic mass). The main role of neutrons is to reduce electrostatic repulsion inside the nucleus. 4091: 1299:
since they are not identical quantum entities. They are sometimes viewed as two different quantum states of the same particle, the
1240:
The nucleus of an atom consists of neutrons and protons, which in turn are the manifestation of more elementary particles, called
5504: 5344: 5283: 1520: 5424: 3101: 2387: 5249: 1712:), but it does not explain the special stability which occurs when nuclei have special "magic numbers" of protons or neutrons. 1027:. After the discovery of the neutron in 1932, models for a nucleus composed of protons and neutrons were quickly developed by 4478: 2840: 2807: 2774: 2578: 2543: 2510: 2231: 2202: 100: 5300: 1811:, with 3 nucleons, is very stable even with lack of a closed 1s orbital shell. Another nucleus with 3 nucleons, the triton 72: 1853:
force effects involving nucleon clusters and then build the nucleus on this basis. Three such cluster models are the 1936
1398:(fm); roughly one or two nucleon diameters) and causes an attraction between any pair of nucleons. For example, between a 1232:
shown here, although on a far smaller scale, than to the fanciful nucleus image. Both the helium atom and its nucleus are
6021: 5217: 4763: 4728: 3133: 1568:) of the nucleus, and particularly in nuclei containing many nucleons, as they arrange in more spherical configurations: 1535: 1477:
more rare and unstable than the neutron examples, because of the repulsive electromagnetic forces of the halo proton(s).
253: 5915: 5499: 2895: 2595: 2355: 2307: 79: 4579: 4458: 3989: 3092: 1744:. The electric repulsion between each pair of protons in a nucleus contributes toward decreasing its binding energy. 119: 1903: 5809: 5674: 4209: 4070: 1790:
In the above models, the nucleons may occupy orbitals in pairs, due to being fermions, which allows explanation of
557: 945: 5752: 5586: 5188: 5066: 4723: 4584: 1803:
electrons in atoms. Some resemblance to atomic orbital models may be seen in a small atomic nucleus like that of
1335: 749: 53: 2247:
Castelvecchi, Davide (November 2019). "How big is the proton? Particle-size puzzle leaps closer to resolution".
86: 5742: 5591: 5049: 1887: 1659:
varies by 0.2 fm, depending on the nucleus in question, but this is less than 20% change from a constant.
1470:
exhibited by He, Li, B, B and C. Two-neutron halo nuclei break into three fragments, never two, and are called
1358:
neutrons and protons because it is mostly neutralized within them, in the same way that electromagnetic forces
1024: 454: 57: 5516: 5349: 4773: 4701: 983: 17: 1778:
A number of models for the nucleus have also been proposed in which nucleons occupy orbitals, much like the
6058: 5859: 5596: 5305: 5059: 4556: 4086: 68: 6009: 5922: 5894: 5851: 5816: 5654: 5481: 5419: 5244: 5148: 5034: 4502: 4202: 2418: 1709: 1698: 767: 737: 238: 1527:. Current approaches are limited to either phenomenological models such as the Argonne v18 potential or 6048: 5843: 5702: 5381: 4899: 4856: 4708: 1791: 1528: 1305:. Two fermions, such as two protons, or two neutrons, or a proton + neutron (the deuteron) can exhibit 814: 364: 1685:
The cluster model describes the nucleus as a molecule-like collection of proton-neutron groups (e.g.,
1577: 5997: 5679: 5288: 5071: 4162: 1755: 700: 1458:—the neutron drip line and proton drip line—and are all unstable with short half-lives, measured in 6053: 5927: 5769: 5669: 5581: 4790: 4676: 4636: 4448: 3574: 2535: 1652: = 1.25 fm = 1.25 × 10 m. In this equation, the "constant" 976: 963: 695: 399: 6063: 5832: 5799: 5774: 5388: 5165: 4971: 4894: 4851: 4834: 4795: 4718: 4130: 3765: 3392: 3126: 2919: 2832: 1942: 690: 587: 552: 248: 46: 5757: 5664: 4951: 4495: 4065: 3402: 1825: 1704:
successful at explaining many important phenomena of nuclei, such as their changing amounts of
1504: 744: 394: 359: 3067: 2568: 2500: 2219: 5958: 5694: 5649: 5111: 5039: 4966: 4961: 4926: 4713: 4681: 4468: 4395: 4152: 1455: 869: 754: 646: 3087: 2824: 2527: 1183:('nut'), meaning 'the kernel' (i.e., the 'small nut') inside a watery type of fruit (like a 809: 93: 5869: 5644: 5629: 4946: 4904: 4740: 4646: 4574: 3093:
Article on the "nuclear shell model", giving nuclear shell filling for the various elements
3038: 2993: 2728: 2660: 2322: 2256: 2159: 2116: 2073: 2019: 1035:. An atom is composed of a positively charged nucleus, with a cloud of negatively charged 879: 854: 671: 1899: 8: 5968: 5779: 5564: 5158: 5026: 5004: 4829: 4686: 4453: 4415: 4248: 4167: 3150: 2528: 1773: 1363: 1040: 774: 653: 547: 490: 483: 473: 414: 409: 243: 3042: 2997: 2732: 2664: 2326: 2260: 2163: 2120: 2077: 2023: 5948: 5684: 5521: 5448: 5259: 4909: 4879: 4863: 4846: 4490: 4380: 4328: 4278: 4225: 4110: 3119: 2983: 2954: 2928: 2869: 2825: 2744: 2718: 2709:
Machleidt, R.; Entem, D.R. (2011). "Chiral effective field theory and nuclear forces".
2613: 2477: 2391: 2288: 2175: 2132: 2089: 2045: 1351: 1245: 1233: 1140: 717: 712: 527: 1454:). These nuclei are not maximally dense. Halo nuclei form at the extreme edges of the 6073: 5016: 4809: 4696: 4671: 4609: 4566: 4410: 4405: 4400: 4243: 4179: 4147: 4060: 3539: 3284: 3211: 3098: 3050: 3009: 2958: 2946: 2887: 2836: 2803: 2780: 2770: 2748: 2684: 2676: 2617: 2574: 2549: 2539: 2506: 2469: 2395: 2292: 2280: 2272: 2227: 2198: 2179: 2136: 2093: 2037: 1921: 1874: 1674: 1486: 1472: 1136: 1032: 1020: 889: 884: 844: 722: 461: 449: 432: 404: 374: 215: 147: 2481: 1354:
which binds quarks together to form protons and neutrons. This force is much weaker
5864: 4919: 4884: 4641: 4631: 4519: 4507: 4348: 4343: 4333: 4323: 4318: 4157: 3928: 3703: 3564: 3549: 3231: 3142: 3046: 3001: 2974: 2942: 2938: 2883: 2879: 2736: 2668: 2603: 2461: 2330: 2264: 2167: 2124: 2081: 2049: 2027: 1932: 1739: 1541: 1508: 1496: 1394:
The residual strong force is effective over a very short range (usually only a few
1372: 1269: 1257: 1193: 1130: 909: 899: 829: 582: 500: 468: 288: 220: 2740: 6068: 5762: 5722: 5176: 4990: 4914: 4889: 4735: 4528: 4430: 4420: 4385: 4263: 4253: 4125: 4050: 4034: 3974: 3384: 3309: 3299: 3289: 3201: 3105: 3074: 3029: 1926: 1916: 1686: 1188: 1118: 1028: 894: 874: 849: 779: 666: 594: 540: 505: 165: 143: 138:
A model of the atomic nucleus showing it as a compact bundle of the two types of
5254: 1523:
unusable, making it difficult to construct an accurate QCD-derived model of the
6043: 5717: 5712: 5707: 5457: 5364: 5333: 5315: 4839: 4745: 4691: 4656: 4589: 4536: 4390: 4283: 4268: 4184: 4098: 4055: 3579: 3352: 3274: 3269: 3191: 2268: 1783: 1779: 1751: 1705: 1492: 1292: 1289: 1156: 1152: 1048: 950: 804: 799: 678: 611: 419: 354: 331: 318: 305: 205: 5737: 2608: 2334: 2224:
Unravelling the mystery of the atomic nucleus: a sixty year journey, 1896-1956
1047:
of an atom is located in the nucleus, with a very small contribution from the
6037: 5902: 5193: 4599: 4440: 4142: 3994: 3961: 3753: 3723: 3655: 3514: 3294: 3221: 3206: 2784: 2680: 2473: 2276: 2041: 1937: 1883: 1524: 1419: 1347: 1296: 1144: 1052: 929: 924: 919: 914: 864: 522: 495: 339: 278: 231: 210: 2857: 2553: 5468: 4604: 4546: 4473: 4425: 4295: 4120: 3670: 3660: 3650: 3411: 3362: 3304: 3226: 3181: 3013: 2950: 2891: 2688: 2284: 2197:(1. paperback ed.). Cambridge: Cambridge Univ. Press. pp. 84–88. 1553: 1427: 1423: 1313: 1309:
behavior when they become loosely bound in pairs, which have integer spin.
859: 834: 819: 564: 512: 369: 155: 151: 5879: 5526: 5116: 4623: 4594: 4135: 3903: 3806: 3801: 3718: 3713: 3643: 3597: 3554: 3519: 3478: 3370: 3334: 3196: 1845:), each of which is preceded and followed by 17 or more stable elements. 1634: 1561: 1459: 1451: 1388: 1380: 1325: 1148: 1104: 824: 517: 439: 292: 3005: 2769:(2nd ed.). Berlin ; New York: Springer Verlag. p. 57 ff. 2672: 2465: 1503:
In principle, the physics within a nucleus can be derived entirely from
1179: 5232: 3877: 3771: 3761: 3743: 3633: 3534: 3469: 3186: 3111: 2767:
Models of the Atomic Nucleus: unification through a lattice of nucleons
2171: 2128: 2085: 1880: 1842: 1838: 1816: 1812: 1431: 1395: 1376: 1080: 1061: 794: 784: 641: 621: 444: 314: 2499:
Sytenko, Oleksij H. & Tartakovskij, Viktor Konstantinovič (1997).
5874: 5237: 5227: 4355: 4308: 4273: 4194: 4019: 4009: 3979: 3872: 3838: 3831: 3708: 3698: 3693: 3665: 3433: 3216: 2032: 2007: 1820: 1439: 1110: 1091: 839: 789: 616: 604: 599: 478: 5732: 3083: 3079: 2831:(8th ed.). Belmont, CA: Brooks/Cole, Cengage Learning. p.  2570:
Fundamentals in nuclear physics: from nuclear structure to cosmology
2308:"Table of experimental nuclear ground state charge radii: An update" 2218:
Fernandez, Bernard; Ripka, Georges & Fernandez, Bernard (2012).
1720: 35: 5963: 5606: 5601: 5541: 5210: 5138: 5121: 5106: 5081: 4824: 4313: 4115: 3943: 3898: 3882: 3843: 3816: 3529: 3524: 3504: 3474: 3464: 3459: 3279: 3254: 3249: 3176: 3027:
Wildermuth, K. (1958). "The "cluster model" of the atomic nuclei".
2933: 2874: 2646:"Studies of pear-shaped nuclei using accelerated radioactive beams" 2505:. Fundamental theories of physics. Dordrecht: Kluwer. p. 464. 2065: 1808: 1804: 1435: 1410:, and also between protons and protons, and neutrons and neutrons. 1407: 1384: 1074: 1051:. Protons and neutrons are bound together to form a nucleus by the 1036: 2988: 2723: 2534:. Cambridge ; New York: Cambridge University Press. pp.  2299: 1929:, Aage N Bohr and Ben R. Mottelson modelled non-spherical nuclei 1689:) with one or more valence neutrons occupying molecular orbitals. 1662:
In other words, packing protons and neutrons in the nucleus gives
173: 134: 5932: 5884: 5747: 5727: 5126: 5101: 4541: 4372: 4360: 4338: 4303: 4024: 4014: 3984: 3938: 3933: 3908: 3826: 3811: 3738: 3733: 3638: 3623: 3569: 3544: 3509: 3438: 3420: 3159: 1895: 1667: 1403: 1321: 1301: 1285: 1273: 1220: 1085: 1012: 301: 274: 266: 198: 188: 139: 1442:, or other collections of neutrons, orbit at distances of about 5536: 5531: 5511: 5491: 5476: 5359: 5096: 5076: 5044: 4004: 3999: 3628: 3615: 3606: 3428: 3342: 3241: 1891: 1516: 1399: 1317: 1261: 1253: 1249: 1241: 1225: 1008: 193: 3099:
Timeline: Subatomic Concepts, Nuclear Science & Technology
5953: 5910: 5573: 5429: 5222: 5086: 4029: 3969: 3821: 3680: 3559: 3499: 3454: 3347: 3325: 3168: 1512: 1413: 1306: 1268:
Protons define the entire charge of a nucleus, and hence its
1184: 2502:
Theory of nucleus: nuclear structure and nuclear interaction
1143:" of the atom. The electron had already been discovered by 27:
Core of an atom; composed of nucleons (protons and neutrons)
5434: 5323: 5133: 5091: 3796: 3728: 3688: 3264: 3259: 1295:, so two protons and two neutrons can share the same space 1044: 1016: 158:), each nucleon can be said to occupy a range of locations. 2567:
Basdevant, J. L.; Rich, James & Spiro, Michel (2005).
2150:
Heisenberg, W. (1933). "Über den Bau der Atomkerne. III".
5407: 5271: 2107:
Heisenberg, W. (1932). "Über den Bau der Atomkerne. II".
1833: 2642: 2063:
Heisenberg, W. (1932). "Über den Bau der Atomkerne. I".
1767: 1350:). The residual strong force is a minor residuum of the 1346:
Nuclei are bound together by the residual strong force (
1212:
meaning kernel is used for nucleus in German and Dutch.
2217: 2823:
Serway, Raymond; Vuille, Chris; Faughn, Jerry (2009).
1580: 2596:"Pear-shaped nucleus boosts search for new physics" 2498: 2220:"Nuclear Theory After the Discovery of the Neutron" 1824:complex than simple closure of shell orbitals with 1265:appears to us as the chemistry of our macro world. 1135:The nucleus was discovered in 1911, as a result of 146:) cannot be explained like this, but only by using 60:. Unsourced material may be challenged and removed. 4957:Blue Ribbon Commission on America's Nuclear Future 2858:"Nuclear Ground State Has Molecule-Like Structure" 2822: 2566: 1618: 1260:an atom represents is determined by the number of 2972:Ebran, J.P. (2012). "How atomic nuclei cluster". 1418:The effective absolute limit of the range of the 6035: 3068:The Nucleus – a chapter from an online textbook 1058:The diameter of the nucleus is in the range of 2708: 2305: 5660:Small sealed transportable autonomous (SSTAR) 4210: 3127: 1868: 1462:; for example, lithium-11 has a half-life of 984: 2246: 2195:Early quantum electrodynamics: a source book 2636: 2306:Angeli, I.; Marinova, K.P. (January 2013). 1708:as their size and composition changes (see 1172: 1077:(the diameter of a single proton) to about 4217: 4203: 3134: 3120: 3026: 2855: 2560: 2149: 2106: 2062: 1414:Halo nuclei and nuclear force range limits 991: 977: 2987: 2932: 2873: 2722: 2702: 2607: 2593: 2525: 2519: 2031: 1615: 1007:is the small, dense region consisting of 120:Learn how and when to remove this message 5572: 3141: 2454:Journal of the American Chemical Society 2005: 1754:Energy). An energy associated with the 1279: 1219: 133: 2856:Ehrenstein, David (November 21, 2023). 2760: 2758: 2624:from the original on September 17, 2016 2492: 2226:. New York, NY: Springer. p. 263. 150:. In a nucleus that occupies a certain 14: 6036: 5587:Liquid-fluoride thorium reactor (LFTR) 4224: 3605: 2898:from the original on November 23, 2023 2429:from the original on December 13, 2007 2344:from the original on December 3, 2021. 2192: 1244:, that are held in association by the 5829: 5592:Molten-Salt Reactor Experiment (MSRE) 5001: 4988: 4198: 3115: 2971: 2802:(Rev. ed.). Hoboken, NJ: Wiley. 2797: 2698:from the original on August 30, 2017. 2447: 1768:Shell models and other quantum models 6016: 4989: 2764: 2755: 1692: 1200:, that "the atom is composed of the 58:adding citations to reliable sources 29: 5597:Integral Molten Salt Reactor (IMSR) 2573:. New York: Springer. p. 155. 2315:Atomic Data and Nuclear Data Tables 1025:Geiger–Marsden gold foil experiment 24: 5406: 4557:Positron-emission tomography (PET) 2916: 2416: 1248:in certain stable combinations of 1155:, that involved the deflection of 1039:surrounding it, bound together by 25: 6085: 4580:Neutron capture therapy of cancer 4479:Radioisotope thermoelectric (RTG) 3061: 1480: 6015: 6004: 6003: 5991: 5680:Fast Breeder Test Reactor (FBTR) 4178: 4071:Timeline of particle discoveries 3080:The LIVEChart of Nuclides – IAEA 2368:from the original on May 7, 2018 1719: 1680: 1619:{\displaystyle R=r_{0}A^{1/3}\,} 1511:that occurs between high-energy 958: 957: 944: 172: 34: 4769:Historical stockpiles and tests 3020: 2965: 2910: 2849: 2816: 2791: 2587: 2441: 2410: 2380: 2193:Miller, Arthur I., ed. (1995). 1956: 1499:. This is due to two reasons: 1336:The shape of the atomic nucleus 1288:, with different values of the 45:needs additional citations for 5670:Energy Multiplier Module (EM2) 4552:Single-photon emission (SPECT) 3095:. Accessed September 16, 2009. 2943:10.1103/PhysRevLett.131.212501 2884:10.1103/PhysRevLett.131.212501 2526:Srednicki, Mark Allen (2007). 2348: 2240: 2211: 2186: 2143: 2100: 2056: 1999: 1641:, plus the number of neutrons 1224:A figurative depiction of the 1196:stated, in his famous article 1139:'s efforts to test Thomson's " 13: 1: 5998:Nuclear technology portal 2741:10.1016/j.physrep.2011.02.001 1992: 1529:chiral effective field theory 1215: 5860:Field-reversed configuration 5470:Uranium Naturel Graphite Gaz 4087:History of subatomic physics 3051:10.1016/0029-5582(58)90245-1 2800:Introductory nuclear physics 2356:""Uranium" IDC Technologies" 1162: 7: 5817:Aircraft Reactor Experiment 5002: 4764:States with nuclear weapons 2594:Battersby, Stephen (2013). 2450:"The Atom and the Molecule" 2423:Online Etymology Dictionary 2388:"The Rutherford Experiment" 1909: 1710:semi-empirical mass formula 1699:Semi-empirical mass formula 738:High-energy nuclear physics 10: 6090: 5830: 5655:Liquid-metal-cooled (LMFR) 4779:Tests in the United States 3073:December 14, 2010, at the 2798:Krane, Kenneth S. (1987). 2448:Lewis, Gilbert N. (1916). 2269:10.1038/d41586-019-03432-4 1888:Bose–Einstein condensation 1872: 1869:Consistency between models 1859:Close-Packed Spheron Model 1855:Resonating Group Structure 1771: 1696: 1484: 1128: 1124: 5985: 5941: 5893: 5850: 5840: 5792: 5780:Stable Salt Reactor (SSR) 5693: 5675:Reduced-moderation (RMWR) 5640: 5623: 5563: 5490: 5482:Advanced gas-cooled (AGR) 5456: 5447: 5399: 5379: 5332: 5314: 5270: 5175: 5157: 5025: 5012: 4997: 4984: 4939: 4872: 4817: 4808: 4756: 4664: 4655: 4622: 4565: 4527: 4518: 4439: 4371: 4294: 4236: 4232: 4176: 4079: 4043: 3960: 3921: 3891: 3865: 3861: 3852: 3784: 3752: 3679: 3614: 3596: 3492: 3447: 3419: 3410: 3401: 3383: 3361: 3333: 3324: 3240: 3167: 3158: 3149: 3104:February 5, 2021, at the 2609:10.1038/nature.2013.12952 2335:10.1016/j.adt.2011.12.006 1861:of Linus Pauling and the 1828:of protons and neutrons. 1756:Pauli exclusion principle 1450:radius of the nucleus of 1341: 1324:, containing one or more 1284:Protons and neutrons are 1198:The Atom and the Molecule 5685:Dual fluid reactor (DFR) 5301:Steam-generating (SGHWR) 4637:Electron-beam processing 4104:mathematical formulation 3699:Eta and eta prime mesons 2765:Cook, Norman D. (2010). 2008:"The Neutron Hypothesis" 1949: 1446:(roughly similar to the 1422:(also known as residual 1019:, discovered in 1911 by 5800:Organic nuclear reactor 4972:Nuclear power phase-out 4895:Nuclear decommissioning 4835:Reactor-grade plutonium 4585:Targeted alpha-particle 4464:Accidents and incidents 3766:Double-charm tetraquark 2920:Physical Review Letters 1943:Interacting boson model 1857:model of John Wheeler, 1716:energy of the nucleus: 1637:(the number of protons 1525:forces between nucleons 1521:perturbative techniques 1362:neutral atoms (such as 1171:is from the Latin word 249:Interacting boson model 1974:; 60,250 derives from 1620: 1519:matter, which renders 1515:matter and low-energy 1505:quantum chromodynamics 1312:In the rare case of a 1237: 1208:" Similarly, the term 1178: 1173: 1105:hydrogen atomic radius 159: 4962:Anti-nuclear movement 4163:Wave–particle duality 4153:Relativistic particle 3290:Electron antineutrino 2488:on November 25, 2013. 2006:Iwanenko, D. (1932). 1621: 1456:chart of the nuclides 1280:Composition and shape 1234:spherically symmetric 1223: 1204:and an outer atom or 636:High-energy processes 334:– equal all the above 232:Models of the nucleus 137: 5870:Reversed field pinch 5665:Traveling-wave (TWR) 5149:Supercritical (SCWR) 4647:Gemstone irradiation 3393:Faddeev–Popov ghosts 3143:Particles in physics 2530:Quantum field theory 2398:on November 14, 2001 1962:26,634 derives from 1879:As with the case of 1578: 1426:) is represented by 1364:van der Waals forces 1246:nuclear strong force 1103:)) to about 60,250 ( 1043:. Almost all of the 1015:at the center of an 672:nuclear astrophysics 54:improve this article 6059:Subatomic particles 5035:Aqueous homogeneous 4830:Reprocessed uranium 4503:Safety and security 4168:Particle chauvinism 4111:Subatomic particles 3043:1958NucPh...7..150W 3006:10.1038/nature11246 2998:2012Natur.487..341E 2733:2011PhR...503....1M 2673:10.1038/nature12073 2665:2013Natur.497..199G 2466:10.1021/ja02261a002 2327:2013ADNDT..99...69A 2261:2019Natur.575..269C 2164:1933ZPhy...80..587H 2121:1932ZPhy...78..156H 2078:1932ZPhy...77....1H 2024:1932Natur.129..798I 1774:Nuclear shell model 1041:electrostatic force 654:Photodisintegration 577:Capturing processes 491:Spontaneous fission 484:Internal conversion 415:Valley of stability 410:Island of stability 244:Nuclear shell model 5949:Dense plasma focus 4864:Actinide chemistry 4329:Isotope separation 4226:Nuclear technology 2392:Rutgers University 2172:10.1007/BF01335696 2129:10.1007/BF01337585 2086:10.1007/BF01342433 1616: 1540:. Developments in 1352:strong interaction 1238: 1177:, a diminutive of 1141:plum pudding model 1023:based on the 1909 951:Physics portal 745:Quark–gluon plasma 528:Radiogenic nuclide 160: 154:(for example, the 6049:Nuclear chemistry 6031: 6030: 5981: 5980: 5977: 5976: 5928:Magnetized-target 5825: 5824: 5788: 5787: 5619: 5618: 5615: 5614: 5559: 5558: 5443: 5442: 5375: 5374: 4980: 4979: 4935: 4934: 4804: 4803: 4791:Weapon-free zones 4618: 4617: 4610:Radiopharmacology 4192: 4191: 4148:Massless particle 3956: 3955: 3952: 3951: 3917: 3916: 3780: 3779: 3592: 3591: 3588: 3587: 3540:Magnetic monopole 3488: 3487: 3379: 3378: 3320: 3319: 3300:Muon antineutrino 3285:Electron neutrino 2982:(7407): 341–344. 2842:978-0-495-38693-3 2809:978-0-471-80553-3 2776:978-3-642-14736-4 2659:(7448): 199–204. 2580:978-0-387-01672-6 2545:978-0-521-86449-7 2512:978-0-7923-4423-0 2255:(7782): 269–270. 2233:978-1-4614-4180-9 2204:978-0-521-56891-3 2158:(9–10): 587–596. 1922:List of particles 1900:Erwin Schrödinger 1875:Nuclear structure 1693:Liquid drop model 1675:nuclear structure 1487:Nuclear structure 1270:chemical identity 1151:and with help of 1137:Ernest Rutherford 1033:Werner Heisenberg 1021:Ernest Rutherford 1001: 1000: 687: 433:Radioactive decay 389:Nuclear stability 216:Nuclear structure 148:quantum mechanics 130: 129: 122: 104: 16:(Redirected from 6081: 6019: 6018: 6007: 6006: 5996: 5995: 5994: 5906: 5865:Levitated dipole 5835: 5827: 5826: 5775:Helium gas (GFR) 5638: 5637: 5633: 5570: 5569: 5454: 5453: 5404: 5403: 5397: 5396: 5392: 5391: 5173: 5172: 5169: 5168: 5007: 4999: 4998: 4991:Nuclear reactors 4986: 4985: 4885:High-level (HLW) 4815: 4814: 4662: 4661: 4642:Food irradiation 4632:Atomic gardening 4525: 4524: 4508:Nuclear meltdown 4334:Nuclear material 4324:Fissile material 4319:Fertile material 4234: 4233: 4219: 4212: 4205: 4196: 4195: 4182: 4158:Virtual particle 3929:Mesonic molecule 3863: 3862: 3859: 3858: 3704:Bottom eta meson 3612: 3611: 3603: 3602: 3575:W′ and Z′ bosons 3565:Sterile neutrino 3550:Majorana fermion 3417: 3416: 3408: 3407: 3331: 3330: 3310:Tau antineutrino 3165: 3164: 3156: 3155: 3136: 3129: 3122: 3113: 3112: 3055: 3054: 3024: 3018: 3017: 2991: 2969: 2963: 2962: 2936: 2914: 2908: 2907: 2905: 2903: 2877: 2853: 2847: 2846: 2830: 2820: 2814: 2813: 2795: 2789: 2788: 2762: 2753: 2752: 2726: 2706: 2700: 2699: 2697: 2650: 2640: 2634: 2633: 2631: 2629: 2611: 2591: 2585: 2584: 2564: 2558: 2557: 2533: 2523: 2517: 2516: 2496: 2490: 2489: 2484:. Archived from 2445: 2439: 2438: 2436: 2434: 2414: 2408: 2407: 2405: 2403: 2394:. Archived from 2384: 2378: 2377: 2375: 2373: 2367: 2360: 2352: 2346: 2345: 2343: 2312: 2303: 2297: 2296: 2244: 2238: 2237: 2215: 2209: 2208: 2190: 2184: 2183: 2147: 2141: 2140: 2115:(3–4): 156–164. 2104: 2098: 2097: 2060: 2054: 2053: 2035: 2033:10.1038/129798d0 2003: 1986: 1985: 1981: 1977: 1973: 1969: 1965: 1960: 1933:Nuclear medicine 1904:quantum orbitals 1748:Asymmetry energy 1723: 1625: 1623: 1622: 1617: 1614: 1613: 1609: 1596: 1595: 1542:many-body theory 1509:phase transition 1497:particle physics 1473:Borromean nuclei 1465: 1449: 1445: 1373:Yukawa potential 1258:chemical element 1194:Gilbert N. Lewis 1176: 1131:Rutherford model 1113: 1102: 1100: 1094: 1083: 1072: 1070: 1064: 993: 986: 979: 966: 961: 960: 953: 949: 948: 825:Skłodowska-Curie 685: 501:Neutron emission 269:' classification 221:Nuclear reaction 176: 162: 161: 125: 118: 114: 111: 105: 103: 69:"Atomic nucleus" 62: 38: 30: 21: 6089: 6088: 6084: 6083: 6082: 6080: 6079: 6078: 6054:Nuclear physics 6034: 6033: 6032: 6027: 5992: 5990: 5973: 5937: 5904: 5889: 5846: 5836: 5831: 5821: 5784: 5689: 5634: 5627: 5626: 5611: 5555: 5486: 5461: 5439: 5411: 5393: 5386: 5385: 5384: 5371: 5337: 5328: 5310: 5275: 5266: 5180: 5163: 5162: 5161: 5153: 5067:Natural fission 5021: 5020: 5008: 5003: 4993: 4976: 4952:Nuclear weapons 4931: 4890:Low-level (LLW) 4868: 4800: 4752: 4651: 4614: 4561: 4514: 4435: 4367: 4290: 4228: 4223: 4193: 4188: 4172: 4126:Nuclear physics 4075: 4039: 3975:Davydov soliton 3948: 3913: 3887: 3848: 3776: 3748: 3675: 3584: 3484: 3443: 3397: 3375: 3357: 3316: 3236: 3145: 3140: 3106:Wayback Machine 3075:Wayback Machine 3064: 3059: 3058: 3030:Nuclear Physics 3025: 3021: 2970: 2966: 2915: 2911: 2901: 2899: 2854: 2850: 2843: 2827:College Physics 2821: 2817: 2810: 2796: 2792: 2777: 2763: 2756: 2711:Physics Reports 2707: 2703: 2695: 2648: 2641: 2637: 2627: 2625: 2592: 2588: 2581: 2565: 2561: 2546: 2524: 2520: 2513: 2497: 2493: 2446: 2442: 2432: 2430: 2415: 2411: 2401: 2399: 2386: 2385: 2381: 2371: 2369: 2365: 2358: 2354: 2353: 2349: 2341: 2310: 2304: 2300: 2245: 2241: 2234: 2216: 2212: 2205: 2191: 2187: 2148: 2144: 2105: 2101: 2061: 2057: 2004: 2000: 1995: 1990: 1989: 1983: 1979: 1975: 1972:11.7142 fm 1971: 1967: 1963: 1961: 1957: 1952: 1947: 1927:James Rainwater 1917:Giant resonance 1912: 1877: 1871: 1780:atomic orbitals 1776: 1770: 1701: 1695: 1687:alpha particles 1683: 1658: 1651: 1605: 1601: 1597: 1591: 1587: 1579: 1576: 1575: 1489: 1483: 1463: 1447: 1443: 1416: 1344: 1282: 1218: 1189:Michael Faraday 1165: 1157:alpha particles 1133: 1127: 1119:nuclear physics 1108: 1098: 1096: 1089: 1078: 1068: 1066: 1059: 1029:Dmitri Ivanenko 997: 956: 943: 942: 935: 934: 770: 760: 759: 740: 730: 729: 674: 670: 667:Nucleosynthesis 659: 658: 637: 629: 628: 578: 570: 569: 543: 541:Nuclear fission 533: 532: 506:Proton emission 435: 425: 424: 390: 382: 381: 283: 270: 259: 258: 234: 166:Nuclear physics 144:nuclear physics 126: 115: 109: 106: 63: 61: 51: 39: 28: 23: 22: 15: 12: 11: 5: 6087: 6077: 6076: 6071: 6066: 6064:Radiochemistry 6061: 6056: 6051: 6046: 6029: 6028: 6026: 6025: 6013: 6001: 5986: 5983: 5982: 5979: 5978: 5975: 5974: 5972: 5971: 5966: 5961: 5959:Muon-catalyzed 5956: 5951: 5945: 5943: 5939: 5938: 5936: 5935: 5930: 5925: 5920: 5919: 5918: 5908: 5899: 5897: 5891: 5890: 5888: 5887: 5882: 5877: 5872: 5867: 5862: 5856: 5854: 5848: 5847: 5841: 5838: 5837: 5823: 5822: 5820: 5819: 5814: 5813: 5812: 5807: 5796: 5794: 5790: 5789: 5786: 5785: 5783: 5782: 5777: 5772: 5767: 5766: 5765: 5760: 5755: 5750: 5745: 5740: 5735: 5730: 5725: 5720: 5715: 5710: 5699: 5697: 5691: 5690: 5688: 5687: 5682: 5677: 5672: 5667: 5662: 5657: 5652: 5650:Integral (IFR) 5647: 5641: 5635: 5624: 5621: 5620: 5617: 5616: 5613: 5612: 5610: 5609: 5604: 5599: 5594: 5589: 5584: 5578: 5576: 5567: 5561: 5560: 5557: 5556: 5554: 5553: 5552: 5551: 5546: 5545: 5544: 5539: 5534: 5529: 5514: 5509: 5508: 5507: 5496: 5494: 5488: 5487: 5485: 5484: 5479: 5474: 5465: 5463: 5459: 5451: 5445: 5444: 5441: 5440: 5438: 5437: 5432: 5427: 5422: 5416: 5414: 5409: 5401: 5394: 5380: 5377: 5376: 5373: 5372: 5370: 5369: 5368: 5367: 5362: 5357: 5352: 5341: 5339: 5335: 5330: 5329: 5327: 5326: 5320: 5318: 5312: 5311: 5309: 5308: 5303: 5298: 5297: 5296: 5291: 5280: 5278: 5273: 5268: 5267: 5265: 5264: 5263: 5262: 5257: 5252: 5247: 5242: 5241: 5240: 5235: 5230: 5220: 5215: 5214: 5213: 5208: 5205: 5202: 5199: 5185: 5183: 5178: 5170: 5155: 5154: 5152: 5151: 5146: 5145: 5144: 5141: 5136: 5131: 5130: 5129: 5124: 5114: 5109: 5104: 5099: 5094: 5089: 5084: 5079: 5069: 5064: 5063: 5062: 5057: 5052: 5047: 5037: 5031: 5029: 5023: 5022: 5014: 5013: 5010: 5009: 4995: 4994: 4982: 4981: 4978: 4977: 4975: 4974: 4969: 4967:Uranium mining 4964: 4959: 4954: 4949: 4943: 4941: 4937: 4936: 4933: 4932: 4930: 4929: 4924: 4923: 4922: 4917: 4907: 4902: 4897: 4892: 4887: 4882: 4876: 4874: 4870: 4869: 4867: 4866: 4861: 4860: 4859: 4849: 4844: 4843: 4842: 4840:Minor actinide 4837: 4832: 4821: 4819: 4812: 4806: 4805: 4802: 4801: 4799: 4798: 4793: 4788: 4783: 4782: 4781: 4776: 4766: 4760: 4758: 4754: 4753: 4751: 4750: 4749: 4748: 4738: 4733: 4732: 4731: 4726: 4716: 4711: 4706: 4705: 4704: 4694: 4689: 4684: 4679: 4674: 4668: 4666: 4659: 4653: 4652: 4650: 4649: 4644: 4639: 4634: 4628: 4626: 4620: 4619: 4616: 4615: 4613: 4612: 4607: 4602: 4597: 4592: 4587: 4582: 4577: 4571: 4569: 4563: 4562: 4560: 4559: 4554: 4549: 4544: 4539: 4537:Autoradiograph 4533: 4531: 4522: 4516: 4515: 4513: 4512: 4511: 4510: 4500: 4499: 4498: 4488: 4487: 4486: 4476: 4471: 4466: 4461: 4456: 4451: 4445: 4443: 4437: 4436: 4434: 4433: 4428: 4423: 4418: 4413: 4408: 4403: 4398: 4393: 4388: 4383: 4377: 4375: 4369: 4368: 4366: 4365: 4364: 4363: 4358: 4353: 4352: 4351: 4346: 4331: 4326: 4321: 4316: 4311: 4306: 4300: 4298: 4292: 4291: 4289: 4288: 4287: 4286: 4281: 4271: 4266: 4261: 4259:Atomic nucleus 4256: 4251: 4246: 4240: 4238: 4230: 4229: 4222: 4221: 4214: 4207: 4199: 4190: 4189: 4185:Physics portal 4177: 4174: 4173: 4171: 4170: 4165: 4160: 4155: 4150: 4145: 4140: 4139: 4138: 4128: 4123: 4118: 4113: 4108: 4107: 4106: 4099:Standard Model 4096: 4095: 4094: 4083: 4081: 4077: 4076: 4074: 4073: 4068: 4066:Quasiparticles 4063: 4058: 4053: 4047: 4045: 4041: 4040: 4038: 4037: 4032: 4027: 4022: 4017: 4012: 4007: 4002: 3997: 3992: 3987: 3982: 3977: 3972: 3966: 3964: 3962:Quasiparticles 3958: 3957: 3954: 3953: 3950: 3949: 3947: 3946: 3941: 3936: 3931: 3925: 3923: 3919: 3918: 3915: 3914: 3912: 3911: 3906: 3901: 3895: 3893: 3889: 3888: 3886: 3885: 3880: 3875: 3869: 3867: 3856: 3850: 3849: 3847: 3846: 3841: 3836: 3835: 3834: 3829: 3824: 3819: 3814: 3809: 3799: 3794: 3788: 3786: 3782: 3781: 3778: 3777: 3775: 3774: 3769: 3758: 3756: 3754:Exotic hadrons 3750: 3749: 3747: 3746: 3741: 3736: 3731: 3726: 3721: 3716: 3711: 3706: 3701: 3696: 3691: 3685: 3683: 3677: 3676: 3674: 3673: 3668: 3663: 3658: 3653: 3648: 3647: 3646: 3641: 3636: 3631: 3620: 3618: 3609: 3600: 3594: 3593: 3590: 3589: 3586: 3585: 3583: 3582: 3580:X and Y bosons 3577: 3572: 3567: 3562: 3557: 3552: 3547: 3542: 3537: 3532: 3527: 3522: 3517: 3512: 3507: 3502: 3496: 3494: 3490: 3489: 3486: 3485: 3483: 3482: 3472: 3467: 3462: 3457: 3451: 3449: 3445: 3444: 3442: 3441: 3436: 3431: 3425: 3423: 3414: 3405: 3399: 3398: 3396: 3395: 3389: 3387: 3381: 3380: 3377: 3376: 3374: 3373: 3367: 3365: 3359: 3358: 3356: 3355: 3353:W and Z bosons 3350: 3345: 3339: 3337: 3328: 3322: 3321: 3318: 3317: 3315: 3314: 3313: 3312: 3307: 3302: 3297: 3292: 3287: 3277: 3272: 3267: 3262: 3257: 3252: 3246: 3244: 3238: 3237: 3235: 3234: 3229: 3224: 3219: 3214: 3209: 3207:Strange (quark 3204: 3199: 3194: 3189: 3184: 3179: 3173: 3171: 3162: 3153: 3147: 3146: 3139: 3138: 3131: 3124: 3116: 3110: 3109: 3096: 3090: 3077: 3063: 3062:External links 3060: 3057: 3056: 3019: 2964: 2927:(21): 212501. 2909: 2848: 2841: 2815: 2808: 2790: 2775: 2754: 2701: 2635: 2586: 2579: 2559: 2544: 2518: 2511: 2491: 2460:(4): 762–785. 2440: 2409: 2379: 2347: 2298: 2239: 2232: 2210: 2203: 2185: 2142: 2099: 2055: 1997: 1996: 1994: 1991: 1988: 1987: 1984:1.7166 fm 1954: 1953: 1951: 1948: 1946: 1945: 1940: 1935: 1930: 1924: 1919: 1913: 1911: 1908: 1873:Main article: 1870: 1867: 1865:of MacGregor. 1863:2D Ising Model 1784:atomic physics 1772:Main article: 1769: 1766: 1762:Pairing energy 1733:Surface energy 1706:binding energy 1697:Main article: 1694: 1691: 1682: 1679: 1656: 1649: 1627: 1626: 1612: 1608: 1604: 1600: 1594: 1590: 1586: 1583: 1554:nuclear radius 1547: 1546: 1532: 1493:standard model 1485:Main article: 1482: 1481:Nuclear models 1479: 1415: 1412: 1343: 1340: 1326:strange quarks 1293:quantum number 1290:strong isospin 1281: 1278: 1230:electron cloud 1217: 1214: 1164: 1161: 1153:Ernest Marsden 1129:Main article: 1126: 1123: 1049:electron cloud 1005:atomic nucleus 999: 998: 996: 995: 988: 981: 973: 970: 969: 968: 967: 954: 937: 936: 933: 932: 927: 922: 917: 912: 907: 902: 897: 892: 887: 882: 877: 872: 867: 862: 857: 852: 847: 842: 837: 832: 827: 822: 817: 812: 807: 802: 797: 792: 787: 782: 777: 771: 766: 765: 762: 761: 758: 757: 752: 747: 741: 736: 735: 732: 731: 728: 727: 726: 725: 720: 715: 706: 705: 704: 703: 698: 693: 682: 681: 679:Nuclear fusion 675: 665: 664: 661: 660: 657: 656: 651: 650: 649: 638: 635: 634: 631: 630: 627: 626: 625: 624: 619: 609: 608: 607: 602: 592: 591: 590: 579: 576: 575: 572: 571: 568: 567: 562: 561: 560: 550: 544: 539: 538: 535: 534: 531: 530: 525: 520: 515: 509: 508: 503: 498: 493: 488: 487: 486: 481: 471: 466: 465: 464: 459: 458: 457: 442: 436: 431: 430: 427: 426: 423: 422: 420:Stable nuclide 417: 412: 407: 402: 397: 395:Binding energy 391: 388: 387: 384: 383: 380: 379: 378: 377: 367: 362: 357: 351: 350: 336: 335: 328: 327: 311: 310: 298: 297: 285: 284: 271: 265: 264: 261: 260: 257: 256: 251: 246: 241: 235: 230: 229: 226: 225: 224: 223: 218: 213: 208: 206:Nuclear matter 203: 202: 201: 196: 186: 178: 177: 169: 168: 128: 127: 42: 40: 33: 26: 9: 6: 4: 3: 2: 6086: 6075: 6072: 6070: 6067: 6065: 6062: 6060: 6057: 6055: 6052: 6050: 6047: 6045: 6042: 6041: 6039: 6024: 6023: 6014: 6012: 6011: 6002: 6000: 5999: 5988: 5987: 5984: 5970: 5967: 5965: 5962: 5960: 5957: 5955: 5952: 5950: 5947: 5946: 5944: 5940: 5934: 5931: 5929: 5926: 5924: 5921: 5917: 5916:electrostatic 5914: 5913: 5912: 5909: 5907: 5901: 5900: 5898: 5896: 5892: 5886: 5883: 5881: 5878: 5876: 5873: 5871: 5868: 5866: 5863: 5861: 5858: 5857: 5855: 5853: 5849: 5845: 5839: 5834: 5828: 5818: 5815: 5811: 5808: 5806: 5803: 5802: 5801: 5798: 5797: 5795: 5791: 5781: 5778: 5776: 5773: 5771: 5768: 5764: 5761: 5759: 5756: 5754: 5751: 5749: 5746: 5744: 5741: 5739: 5736: 5734: 5731: 5729: 5726: 5724: 5721: 5719: 5716: 5714: 5711: 5709: 5706: 5705: 5704: 5701: 5700: 5698: 5696: 5695:Generation IV 5692: 5686: 5683: 5681: 5678: 5676: 5673: 5671: 5668: 5666: 5663: 5661: 5658: 5656: 5653: 5651: 5648: 5646: 5645:Breeder (FBR) 5643: 5642: 5639: 5636: 5631: 5622: 5608: 5605: 5603: 5600: 5598: 5595: 5593: 5590: 5588: 5585: 5583: 5580: 5579: 5577: 5575: 5571: 5568: 5566: 5562: 5550: 5547: 5543: 5540: 5538: 5535: 5533: 5530: 5528: 5525: 5524: 5523: 5520: 5519: 5518: 5515: 5513: 5510: 5506: 5503: 5502: 5501: 5498: 5497: 5495: 5493: 5489: 5483: 5480: 5478: 5475: 5473: 5471: 5467: 5466: 5464: 5462: 5455: 5452: 5450: 5446: 5436: 5433: 5431: 5428: 5426: 5423: 5421: 5418: 5417: 5415: 5413: 5405: 5402: 5398: 5395: 5390: 5383: 5378: 5366: 5363: 5361: 5358: 5356: 5353: 5351: 5348: 5347: 5346: 5343: 5342: 5340: 5338: 5331: 5325: 5322: 5321: 5319: 5317: 5313: 5307: 5304: 5302: 5299: 5295: 5292: 5290: 5287: 5286: 5285: 5282: 5281: 5279: 5277: 5269: 5261: 5258: 5256: 5253: 5251: 5248: 5246: 5243: 5239: 5236: 5234: 5231: 5229: 5226: 5225: 5224: 5221: 5219: 5216: 5212: 5209: 5206: 5203: 5200: 5197: 5196: 5195: 5192: 5191: 5190: 5187: 5186: 5184: 5182: 5174: 5171: 5167: 5160: 5156: 5150: 5147: 5142: 5140: 5137: 5135: 5132: 5128: 5125: 5123: 5120: 5119: 5118: 5115: 5113: 5110: 5108: 5105: 5103: 5100: 5098: 5095: 5093: 5090: 5088: 5085: 5083: 5080: 5078: 5075: 5074: 5073: 5070: 5068: 5065: 5061: 5058: 5056: 5053: 5051: 5048: 5046: 5043: 5042: 5041: 5038: 5036: 5033: 5032: 5030: 5028: 5024: 5019: 5018: 5011: 5006: 5000: 4996: 4992: 4987: 4983: 4973: 4970: 4968: 4965: 4963: 4960: 4958: 4955: 4953: 4950: 4948: 4947:Nuclear power 4945: 4944: 4942: 4938: 4928: 4927:Transmutation 4925: 4921: 4918: 4916: 4913: 4912: 4911: 4908: 4906: 4903: 4901: 4898: 4896: 4893: 4891: 4888: 4886: 4883: 4881: 4878: 4877: 4875: 4871: 4865: 4862: 4858: 4855: 4854: 4853: 4850: 4848: 4845: 4841: 4838: 4836: 4833: 4831: 4828: 4827: 4826: 4823: 4822: 4820: 4816: 4813: 4811: 4807: 4797: 4794: 4792: 4789: 4787: 4784: 4780: 4777: 4775: 4772: 4771: 4770: 4767: 4765: 4762: 4761: 4759: 4755: 4747: 4744: 4743: 4742: 4739: 4737: 4734: 4730: 4727: 4725: 4724:high-altitude 4722: 4721: 4720: 4717: 4715: 4714:Proliferation 4712: 4710: 4707: 4703: 4700: 4699: 4698: 4695: 4693: 4690: 4688: 4685: 4683: 4680: 4678: 4675: 4673: 4670: 4669: 4667: 4663: 4660: 4658: 4654: 4648: 4645: 4643: 4640: 4638: 4635: 4633: 4630: 4629: 4627: 4625: 4621: 4611: 4608: 4606: 4603: 4601: 4600:Brachytherapy 4598: 4596: 4593: 4591: 4588: 4586: 4583: 4581: 4578: 4576: 4573: 4572: 4570: 4568: 4564: 4558: 4555: 4553: 4550: 4548: 4545: 4543: 4540: 4538: 4535: 4534: 4532: 4530: 4526: 4523: 4521: 4517: 4509: 4506: 4505: 4504: 4501: 4497: 4494: 4493: 4492: 4489: 4485: 4482: 4481: 4480: 4477: 4475: 4472: 4470: 4467: 4465: 4462: 4460: 4457: 4455: 4452: 4450: 4447: 4446: 4444: 4442: 4438: 4432: 4429: 4427: 4424: 4422: 4419: 4417: 4414: 4412: 4409: 4407: 4404: 4402: 4399: 4397: 4396:Cross section 4394: 4392: 4389: 4387: 4384: 4382: 4379: 4378: 4376: 4374: 4370: 4362: 4359: 4357: 4354: 4350: 4347: 4345: 4342: 4341: 4340: 4337: 4336: 4335: 4332: 4330: 4327: 4325: 4322: 4320: 4317: 4315: 4312: 4310: 4307: 4305: 4302: 4301: 4299: 4297: 4293: 4285: 4282: 4280: 4277: 4276: 4275: 4272: 4270: 4267: 4265: 4262: 4260: 4257: 4255: 4252: 4250: 4247: 4245: 4242: 4241: 4239: 4235: 4231: 4227: 4220: 4215: 4213: 4208: 4206: 4201: 4200: 4197: 4187: 4186: 4181: 4175: 4169: 4166: 4164: 4161: 4159: 4156: 4154: 4151: 4149: 4146: 4144: 4143:Exotic matter 4141: 4137: 4134: 4133: 4132: 4131:Eightfold way 4129: 4127: 4124: 4122: 4121:Antiparticles 4119: 4117: 4114: 4112: 4109: 4105: 4102: 4101: 4100: 4097: 4093: 4090: 4089: 4088: 4085: 4084: 4082: 4078: 4072: 4069: 4067: 4064: 4062: 4059: 4057: 4054: 4052: 4049: 4048: 4046: 4042: 4036: 4033: 4031: 4028: 4026: 4023: 4021: 4018: 4016: 4013: 4011: 4008: 4006: 4003: 4001: 3998: 3996: 3993: 3991: 3988: 3986: 3983: 3981: 3978: 3976: 3973: 3971: 3968: 3967: 3965: 3963: 3959: 3945: 3942: 3940: 3937: 3935: 3932: 3930: 3927: 3926: 3924: 3920: 3910: 3907: 3905: 3902: 3900: 3897: 3896: 3894: 3890: 3884: 3881: 3879: 3876: 3874: 3871: 3870: 3868: 3864: 3860: 3857: 3855: 3851: 3845: 3842: 3840: 3837: 3833: 3830: 3828: 3825: 3823: 3820: 3818: 3815: 3813: 3810: 3808: 3805: 3804: 3803: 3800: 3798: 3795: 3793: 3792:Atomic nuclei 3790: 3789: 3787: 3783: 3773: 3770: 3767: 3763: 3760: 3759: 3757: 3755: 3751: 3745: 3742: 3740: 3737: 3735: 3732: 3730: 3727: 3725: 3724:Upsilon meson 3722: 3720: 3717: 3715: 3712: 3710: 3707: 3705: 3702: 3700: 3697: 3695: 3692: 3690: 3687: 3686: 3684: 3682: 3678: 3672: 3669: 3667: 3664: 3662: 3659: 3657: 3656:Lambda baryon 3654: 3652: 3649: 3645: 3642: 3640: 3637: 3635: 3632: 3630: 3627: 3626: 3625: 3622: 3621: 3619: 3617: 3613: 3610: 3608: 3604: 3601: 3599: 3595: 3581: 3578: 3576: 3573: 3571: 3568: 3566: 3563: 3561: 3558: 3556: 3553: 3551: 3548: 3546: 3543: 3541: 3538: 3536: 3533: 3531: 3528: 3526: 3523: 3521: 3518: 3516: 3515:Dual graviton 3513: 3511: 3508: 3506: 3503: 3501: 3498: 3497: 3495: 3491: 3480: 3476: 3473: 3471: 3468: 3466: 3463: 3461: 3458: 3456: 3453: 3452: 3450: 3446: 3440: 3437: 3435: 3432: 3430: 3427: 3426: 3424: 3422: 3418: 3415: 3413: 3412:Superpartners 3409: 3406: 3404: 3400: 3394: 3391: 3390: 3388: 3386: 3382: 3372: 3369: 3368: 3366: 3364: 3360: 3354: 3351: 3349: 3346: 3344: 3341: 3340: 3338: 3336: 3332: 3329: 3327: 3323: 3311: 3308: 3306: 3303: 3301: 3298: 3296: 3295:Muon neutrino 3293: 3291: 3288: 3286: 3283: 3282: 3281: 3278: 3276: 3273: 3271: 3268: 3266: 3263: 3261: 3258: 3256: 3253: 3251: 3248: 3247: 3245: 3243: 3239: 3233: 3230: 3228: 3227:Bottom (quark 3225: 3223: 3220: 3218: 3215: 3213: 3210: 3208: 3205: 3203: 3200: 3198: 3195: 3193: 3190: 3188: 3185: 3183: 3180: 3178: 3175: 3174: 3172: 3170: 3166: 3163: 3161: 3157: 3154: 3152: 3148: 3144: 3137: 3132: 3130: 3125: 3123: 3118: 3117: 3114: 3107: 3103: 3100: 3097: 3094: 3091: 3089: 3085: 3081: 3078: 3076: 3072: 3069: 3066: 3065: 3052: 3048: 3044: 3040: 3036: 3032: 3031: 3023: 3015: 3011: 3007: 3003: 2999: 2995: 2990: 2985: 2981: 2977: 2976: 2968: 2960: 2956: 2952: 2948: 2944: 2940: 2935: 2930: 2926: 2922: 2921: 2913: 2897: 2893: 2889: 2885: 2881: 2876: 2871: 2867: 2863: 2859: 2852: 2844: 2838: 2834: 2829: 2828: 2819: 2811: 2805: 2801: 2794: 2786: 2782: 2778: 2772: 2768: 2761: 2759: 2750: 2746: 2742: 2738: 2734: 2730: 2725: 2720: 2716: 2712: 2705: 2694: 2690: 2686: 2682: 2678: 2674: 2670: 2666: 2662: 2658: 2654: 2647: 2639: 2623: 2619: 2615: 2610: 2605: 2601: 2597: 2590: 2582: 2576: 2572: 2571: 2563: 2555: 2551: 2547: 2541: 2537: 2532: 2531: 2522: 2514: 2508: 2504: 2503: 2495: 2487: 2483: 2479: 2475: 2471: 2467: 2463: 2459: 2455: 2451: 2444: 2428: 2424: 2420: 2413: 2397: 2393: 2389: 2383: 2364: 2357: 2351: 2340: 2336: 2332: 2328: 2324: 2320: 2316: 2309: 2302: 2294: 2290: 2286: 2282: 2278: 2274: 2270: 2266: 2262: 2258: 2254: 2250: 2243: 2235: 2229: 2225: 2221: 2214: 2206: 2200: 2196: 2189: 2181: 2177: 2173: 2169: 2165: 2161: 2157: 2153: 2146: 2138: 2134: 2130: 2126: 2122: 2118: 2114: 2110: 2103: 2095: 2091: 2087: 2083: 2079: 2075: 2072:(1–2): 1–11. 2071: 2068: 2067: 2059: 2051: 2047: 2043: 2039: 2034: 2029: 2025: 2021: 2018:(3265): 798. 2017: 2013: 2009: 2002: 1998: 1980:52.92 pm 1959: 1955: 1944: 1941: 1939: 1938:Radioactivity 1936: 1934: 1931: 1928: 1925: 1923: 1920: 1918: 1915: 1914: 1907: 1905: 1901: 1897: 1893: 1889: 1885: 1884:liquid helium 1882: 1876: 1866: 1864: 1860: 1856: 1851: 1846: 1844: 1840: 1835: 1829: 1827: 1826:magic numbers 1822: 1818: 1814: 1810: 1806: 1801: 1799: 1795: 1788: 1785: 1781: 1775: 1765: 1763: 1759: 1757: 1753: 1750:(also called 1749: 1745: 1743: 1741: 1736: 1734: 1730: 1728: 1727:Volume energy 1724: 1722: 1717: 1713: 1711: 1707: 1700: 1690: 1688: 1681:Cluster model 1678: 1676: 1671: 1669: 1665: 1664:approximately 1660: 1655: 1648: 1644: 1640: 1636: 1632: 1610: 1606: 1602: 1598: 1592: 1588: 1584: 1581: 1574: 1573: 1572: 1569: 1567: 1563: 1559: 1555: 1550: 1543: 1539: 1538: 1533: 1530: 1526: 1522: 1518: 1514: 1510: 1506: 1502: 1501: 1500: 1498: 1494: 1491:Although the 1488: 1478: 1475: 1474: 1467: 1461: 1457: 1453: 1441: 1437: 1433: 1429: 1425: 1421: 1420:nuclear force 1411: 1409: 1405: 1401: 1397: 1392: 1390: 1386: 1382: 1378: 1374: 1368: 1365: 1361: 1357: 1353: 1349: 1348:nuclear force 1339: 1337: 1333: 1329: 1327: 1323: 1319: 1315: 1310: 1308: 1304: 1303: 1298: 1297:wave function 1294: 1291: 1287: 1277: 1275: 1271: 1266: 1263: 1259: 1255: 1251: 1247: 1243: 1235: 1231: 1227: 1222: 1213: 1211: 1207: 1203: 1199: 1195: 1190: 1186: 1182: 1181: 1175: 1170: 1160: 1158: 1154: 1150: 1146: 1145:J. J. Thomson 1142: 1138: 1132: 1122: 1120: 1115: 1112: 1106: 1093: 1087: 1082: 1076: 1063: 1056: 1054: 1053:nuclear force 1050: 1046: 1042: 1038: 1034: 1030: 1026: 1022: 1018: 1014: 1010: 1006: 994: 989: 987: 982: 980: 975: 974: 972: 971: 965: 955: 952: 947: 941: 940: 939: 938: 931: 928: 926: 923: 921: 918: 916: 913: 911: 908: 906: 903: 901: 898: 896: 893: 891: 888: 886: 883: 881: 878: 876: 873: 871: 868: 866: 863: 861: 858: 856: 853: 851: 848: 846: 843: 841: 838: 836: 833: 831: 828: 826: 823: 821: 818: 816: 813: 811: 808: 806: 803: 801: 798: 796: 793: 791: 788: 786: 783: 781: 778: 776: 773: 772: 769: 764: 763: 756: 753: 751: 748: 746: 743: 742: 739: 734: 733: 724: 721: 719: 716: 714: 711: 710: 708: 707: 702: 699: 697: 694: 692: 689: 688: 684: 683: 680: 677: 676: 673: 668: 663: 662: 655: 652: 648: 647:by cosmic ray 645: 644: 643: 640: 639: 633: 632: 623: 620: 618: 615: 614: 613: 610: 606: 603: 601: 598: 597: 596: 593: 589: 586: 585: 584: 581: 580: 574: 573: 566: 563: 559: 558:pair breaking 556: 555: 554: 551: 549: 546: 545: 542: 537: 536: 529: 526: 524: 523:Decay product 521: 519: 516: 514: 511: 510: 507: 504: 502: 499: 497: 496:Cluster decay 494: 492: 489: 485: 482: 480: 477: 476: 475: 472: 470: 467: 463: 460: 456: 453: 452: 451: 448: 447: 446: 443: 441: 438: 437: 434: 429: 428: 421: 418: 416: 413: 411: 408: 406: 403: 401: 398: 396: 393: 392: 386: 385: 376: 373: 372: 371: 368: 366: 363: 361: 358: 356: 353: 352: 349: 345: 341: 340:Mirror nuclei 338: 337: 333: 330: 329: 326: 325: 322: −  321: 316: 313: 312: 309: 308: 303: 300: 299: 296: 295: 290: 287: 286: 282: 281: 276: 273: 272: 268: 263: 262: 255: 252: 250: 247: 245: 242: 240: 237: 236: 233: 228: 227: 222: 219: 217: 214: 212: 211:Nuclear force 209: 207: 204: 200: 197: 195: 192: 191: 190: 187: 185: 182: 181: 180: 179: 175: 171: 170: 167: 164: 163: 157: 153: 149: 145: 141: 136: 132: 124: 121: 113: 102: 99: 95: 92: 88: 85: 81: 78: 74: 71: –  70: 66: 65:Find sources: 59: 55: 49: 48: 43:This article 41: 37: 32: 31: 19: 18:Nuclear model 6020: 6008: 5989: 5969:Pyroelectric 5923:Laser-driven 5703:Sodium (SFR) 5630:fast-neutron 5469: 5015: 4905:Reprocessing 4786:WMD treaties 4605:Radiosurgery 4575:Fast-neutron 4547:Scintigraphy 4258: 4183: 3854:Hypothetical 3802:Exotic atoms 3791: 3671:Omega baryon 3661:Sigma baryon 3651:Delta baryon 3403:Hypothetical 3385:Ghost fields 3371:Higgs boson 3305:Tau neutrino 3197:Charm (quark 3034: 3028: 3022: 2979: 2973: 2967: 2924: 2918: 2912: 2902:November 23, 2900:. Retrieved 2868:(21): s167. 2865: 2861: 2851: 2826: 2818: 2799: 2793: 2766: 2714: 2710: 2704: 2656: 2652: 2638: 2628:November 23, 2626:. Retrieved 2599: 2589: 2569: 2562: 2529: 2521: 2501: 2494: 2486:the original 2457: 2453: 2443: 2431:. Retrieved 2422: 2412: 2402:February 26, 2400:. Retrieved 2396:the original 2382: 2370:. Retrieved 2350: 2321:(1): 69–95. 2318: 2314: 2301: 2252: 2248: 2242: 2223: 2213: 2194: 2188: 2155: 2151: 2145: 2112: 2108: 2102: 2069: 2064: 2058: 2015: 2011: 2001: 1958: 1878: 1849: 1847: 1830: 1797: 1793: 1789: 1777: 1761: 1760: 1747: 1746: 1738: 1737: 1732: 1731: 1726: 1725: 1718: 1714: 1702: 1684: 1672: 1663: 1661: 1653: 1646: 1642: 1638: 1630: 1628: 1570: 1565: 1557: 1551: 1548: 1536: 1490: 1471: 1468: 1460:milliseconds 1424:strong force 1417: 1393: 1369: 1359: 1355: 1345: 1334: 1330: 1314:hypernucleus 1311: 1300: 1283: 1267: 1239: 1229: 1209: 1205: 1201: 1197: 1187:). In 1844, 1168: 1166: 1134: 1116: 1057: 1004: 1002: 565:Photofission 513:Decay energy 440:Alpha α 347: 343: 323: 319: 306: 293: 279: 183: 156:ground state 152:energy level 131: 116: 110:October 2022 107: 97: 90: 83: 76: 64: 52:Please help 47:verification 44: 5880:Stellarator 5844:confinement 5738:Superphénix 5565:Molten-salt 5517:VHTR (HTGR) 5294:HW BLWR 250 5260:R4 Marviken 5189:Pressurized 5159:Heavy water 5143:many others 5072:Pressurized 5027:Light water 4729:underground 4687:Disarmament 4595:Tomotherapy 4590:Proton-beam 4454:Power plant 4416:Temperature 4249:Engineering 4136:Quark model 3904:Theta meson 3807:Positronium 3719:Omega meson 3714:J/psi meson 3644:Antineutron 3555:Dark photon 3520:Graviphoton 3479:Stop squark 3187:Down (quark 3037:: 150–162. 2717:(1): 1–75. 2417:Harper, D. 1968:156 pm 1635:mass number 1562:mass number 1464:8.8 ms 1452:uranium-238 1438:, in which 1428:halo nuclei 1396:femtometres 1389:bismuth-209 1381:gamma decay 1149:Hans Geiger 1109:52.92  870:Oppenheimer 548:Spontaneous 518:Decay chain 469:K/L capture 445:Beta β 315:Isodiaphers 239:Liquid drop 6038:Categories 5905:(acoustic) 5522:PBR (PBMR) 4910:Spent fuel 4900:Repository 4880:Fuel cycle 4847:Activation 4624:Processing 4491:Propulsion 4449:by country 4381:Activation 3878:Heptaquark 3839:Superatoms 3772:Pentaquark 3762:Tetraquark 3744:Quarkonium 3634:Antiproton 3535:Leptoquark 3470:Neutralino 3232:antiquark) 3222:antiquark) 3217:Top (quark 3212:antiquark) 3202:antiquark) 3192:antiquark) 3182:antiquark) 3151:Elementary 2934:2311.13129 2875:2311.13129 1993:References 1894:which are 1881:superfluid 1843:promethium 1841:) and 61 ( 1839:technetium 1817:hydrogen-2 1813:hydrogen-3 1673:Models of 1444:10 fm 1440:dineutrons 1432:lithium-11 1406:to form a 1316:, a third 1216:Principles 1079:11.7  1060:1.70  900:Strassmann 890:Rutherford 768:Scientists 723:Artificial 718:Cosmogenic 713:Primordial 709:Nuclides: 686:Processes: 642:Spallation 80:newspapers 5875:Spheromak 5574:Fluorides 5238:IPHWR-700 5233:IPHWR-540 5228:IPHWR-220 5017:Moderator 4697:Explosion 4672:Arms race 4459:Economics 4411:Reflector 4406:Radiation 4401:Generator 4356:Plutonium 4309:Deuterium 4274:Radiation 4244:Chemistry 4116:Particles 4061:Particles 4020:Polariton 4010:Plasmaron 3980:Dropleton 3873:Hexaquark 3844:Molecules 3832:Protonium 3709:Phi meson 3694:Rho meson 3666:Xi baryon 3598:Composite 3434:Gravitino 3177:Up (quark 2989:1203.1244 2959:265351452 2785:648933232 2749:118434586 2724:1105.2919 2681:0028-0836 2618:124188454 2474:0002-7863 2419:"Nucleus" 2293:207938065 2277:0028-0836 2180:126422047 2137:186221789 2094:186218053 2042:0028-0836 1821:Lithium-6 1792:even/odd 1677:include: 1633:= Atomic 1537:ab initio 1448:8 fm 1320:called a 1252:, called 1167:The term 1163:Etymology 1107:is about 1101:10 m 1090:156  1071:10 m 1037:electrons 905:Świątecki 820:Pi. Curie 815:Fr. Curie 810:Ir. Curie 805:Cockcroft 780:Becquerel 701:Supernova 405:Drip line 400:p–n ratio 375:Borromean 254:Ab initio 6074:Electron 6010:Category 5964:Polywell 5895:Inertial 5852:Magnetic 5607:TMSR-LF1 5602:TMSR-500 5582:Fuji MSR 5542:THTR-300 5382:Graphite 5245:PHWR KWU 5211:ACR-1000 5139:IPWR-900 5122:ACPR1000 5117:HPR-1000 5107:CPR-1000 5082:APR-1400 4873:Disposal 4825:Actinide 4818:Products 4677:Delivery 4520:Medicine 4349:depleted 4344:enriched 4314:Helium-3 4279:ionizing 4092:timeline 3944:R-hadron 3899:Glueball 3883:Skyrmion 3817:Tauonium 3530:Inflaton 3525:Graviton 3505:Curvaton 3475:Sfermion 3465:Higgsino 3460:Chargino 3421:Gauginos 3280:Neutrino 3265:Antimuon 3255:Positron 3250:Electron 3160:Fermions 3102:Archived 3071:Archived 3014:22810698 2951:38072612 2896:Archived 2892:38072612 2693:Archived 2689:23657348 2622:Archived 2554:71808151 2482:95865413 2433:March 6, 2427:Archived 2363:Archived 2339:Archived 2285:31719693 2066:Z. Phys. 1910:See also 1896:fermions 1850:post hoc 1809:helium-3 1805:helium-4 1545:tackled. 1517:hadronic 1436:boron-14 1430:such as 1408:deuteron 1385:lead-208 1286:fermions 1274:isotopes 1075:hydrogen 1013:neutrons 964:Category 865:Oliphant 850:Lawrence 830:Davisson 800:Chadwick 696:Big Bang 583:electron 553:Products 474:Isomeric 365:Even/odd 342: – 317:– equal 304:– equal 302:Isotones 291:– equal 277:– equal 275:Isotopes 267:Nuclides 189:Nucleons 140:nucleons 6022:Commons 5933:Z-pinch 5903:Bubble 5885:Tokamak 5748:FBR-600 5728:CFR-600 5723:BN-1200 5389:coolant 5316:Organic 5201:CANDU 9 5198:CANDU 6 5166:coolant 5127:ACP1000 5102:CAP1400 5040:Boiling 5005:Fission 4852:Fission 4796:Weapons 4736:Warfare 4719:Testing 4709:History 4702:effects 4657:Weapons 4567:Therapy 4542:RadBall 4529:Imaging 4421:Thermal 4386:Capture 4373:Neutron 4361:Thorium 4339:Uranium 4304:Tritium 4284:braking 4264:Fission 4254:Physics 4237:Science 4080:Related 4051:Baryons 4025:Polaron 4015:Plasmon 3990:Fracton 3985:Exciton 3939:Diquark 3934:Pomeron 3909:T meson 3866:Baryons 3827:Pionium 3812:Muonium 3739:D meson 3734:B meson 3639:Neutron 3624:Nucleon 3616:Baryons 3607:Hadrons 3570:Tachyon 3545:Majoron 3510:Dilaton 3439:Photino 3275:Antitau 3242:Leptons 3039:Bibcode 2994:Bibcode 2862:Physics 2729:Bibcode 2661:Bibcode 2323:Bibcode 2257:Bibcode 2160:Bibcode 2152:Z. Phys 2117:Bibcode 2109:Z. Phys 2074:Bibcode 2050:4096734 2020:Bibcode 1892:hadrons 1800:effects 1740:Coulomb 1668:prolate 1404:neutron 1360:between 1356:between 1322:hyperon 1307:bosonic 1302:nucleon 1262:protons 1254:baryons 1250:hadrons 1174:nucleus 1169:nucleus 1125:History 1086:uranium 1009:protons 920:Thomson 910:Szilárd 880:Purcell 860:Meitner 795:N. Bohr 790:A. Bohr 775:Alvarez 691:Stellar 595:neutron 479:Gamma γ 332:Isomers 289:Isobars 184:Nucleus 94:scholar 6069:Proton 5833:Fusion 5793:Others 5733:Phénix 5718:BN-800 5713:BN-600 5708:BN-350 5537:HTR-PM 5532:HTR-10 5512:UHTREX 5477:Magnox 5472:(UNGG) 5365:Lucens 5360:KS 150 5097:ATMEA1 5077:AP1000 5060:Kerena 4940:Debate 4692:Ethics 4682:Design 4665:Topics 4496:rocket 4474:Fusion 4469:Policy 4431:Fusion 4391:Poison 4269:Fusion 4056:Mesons 4005:Phonon 4000:Magnon 3922:Others 3892:Mesons 3785:Others 3681:Mesons 3629:Proton 3493:Others 3448:Others 3429:Gluino 3363:Scalar 3343:Photon 3326:Bosons 3169:Quarks 3012:  2975:Nature 2957:  2949:  2890:  2839:  2806:  2783:  2773:  2747:  2687:  2679:  2653:Nature 2616:  2600:Nature 2577:  2552:  2542:  2538:–523. 2509:  2480:  2472:  2372:May 7, 2291:  2283:  2275:  2249:Nature 2230:  2201:  2178:  2135:  2092:  2048:  2040:  2012:Nature 1742:energy 1645:) and 1629:where 1402:and a 1400:proton 1379:, and 1342:Forces 1318:baryon 1242:quarks 1226:helium 1206:shell. 1202:kernel 1073:) for 962:  930:Wigner 925:Walton 915:Teller 845:Jensen 612:proton 355:Stable 96:  89:  82:  75:  67:  6044:Atoms 5954:Migma 5942:Other 5911:Fusor 5810:Piqua 5805:Arbus 5763:PRISM 5505:MHR-T 5500:GTMHR 5430:EGP-6 5425:AMB-X 5400:Water 5345:HWGCR 5284:HWLWR 5223:IPHWR 5194:CANDU 5055:ESBWR 4810:Waste 4774:Tests 4757:Lists 4741:Yield 4484:MMRTG 4441:Power 4044:Lists 4035:Trion 4030:Roton 3970:Anyon 3797:Atoms 3560:Preon 3500:Axion 3455:Axino 3348:Gluon 3335:Gauge 3084:Java 2984:arXiv 2955:S2CID 2929:arXiv 2870:arXiv 2745:S2CID 2719:arXiv 2696:(PDF) 2649:(PDF) 2614:S2CID 2478:S2CID 2366:(PDF) 2359:(PDF) 2342:(PDF) 2311:(PDF) 2289:S2CID 2176:S2CID 2133:S2CID 2090:S2CID 2046:S2CID 1950:Notes 1752:Pauli 1513:quark 1383:) is 1185:peach 895:Soddy 875:Proca 855:Mayer 835:Fermi 785:Bethe 360:Magic 101:JSTOR 87:books 5770:Lead 5753:CEFR 5743:PFBR 5625:None 5435:RBMK 5420:AM-1 5350:EL-4 5324:WR-1 5306:AHWR 5250:MZFR 5218:CVTR 5207:AFCR 5134:VVER 5092:APWR 5087:APR+ 5050:ABWR 4920:cask 4915:pool 4857:LLFP 4746:TNTe 4426:Fast 4296:Fuel 3995:Hole 3822:Onia 3729:Kaon 3689:Pion 3260:Muon 3088:HTML 3010:PMID 2947:PMID 2904:2023 2888:PMID 2837:ISBN 2804:ISBN 2781:OCLC 2771:ISBN 2685:PMID 2677:ISSN 2630:2017 2575:ISBN 2550:OCLC 2540:ISBN 2507:ISBN 2470:ISSN 2435:2010 2404:2013 2374:2018 2281:PMID 2273:ISSN 2228:ISBN 2199:ISBN 2038:ISSN 1796:and 1552:The 1377:beta 1210:kern 1084:for 1067:1.70 1045:mass 1031:and 1017:atom 1011:and 1003:The 885:Rabi 840:Hahn 750:RHIC 370:Halo 73:news 5842:by 5758:PFR 5549:PMR 5527:AVR 5449:Gas 5387:by 5355:KKN 5289:ATR 5204:EC6 5164:by 5112:EPR 5045:BWR 3270:Tau 3086:or 3082:in 3047:doi 3002:doi 2980:487 2939:doi 2925:131 2880:doi 2833:915 2737:doi 2715:503 2669:doi 2657:497 2604:doi 2536:522 2462:doi 2331:doi 2265:doi 2253:575 2168:doi 2125:doi 2082:doi 2028:doi 2016:129 1902:'s 1834:tin 1782:in 1670:). 1434:or 1180:nux 1114:). 1097:156 755:LHC 669:and 56:by 6040:: 5492:He 5458:CO 5334:CO 5255:R3 3045:. 3033:. 3008:. 3000:. 2992:. 2978:. 2953:. 2945:. 2937:. 2923:. 2894:. 2886:. 2878:. 2866:16 2864:. 2860:. 2835:. 2779:. 2757:^ 2743:. 2735:. 2727:. 2713:. 2691:. 2683:. 2675:. 2667:. 2655:. 2651:. 2620:. 2612:. 2602:. 2598:. 2548:. 2476:. 2468:. 2458:38 2456:. 2452:. 2425:. 2421:. 2390:. 2361:. 2337:. 2329:. 2319:99 2317:. 2313:. 2287:. 2279:. 2271:. 2263:. 2251:. 2222:. 2174:. 2166:. 2156:80 2154:. 2131:. 2123:. 2113:78 2111:. 2088:. 2080:. 2070:77 2044:. 2036:. 2026:. 2014:. 2010:. 1982:/ 1978:x 1970:/ 1966:x 1906:. 1466:. 1121:. 1111:pm 1092:pm 1081:fm 1062:fm 1055:. 622:rp 588:2× 455:0v 450:2β 346:↔ 5632:) 5628:( 5460:2 5412:O 5410:2 5408:H 5336:2 5276:O 5274:2 5272:H 5181:O 5179:2 5177:D 4218:e 4211:t 4204:v 3768:) 3764:( 3481:) 3477:( 3135:e 3128:t 3121:v 3108:. 3053:. 3049:: 3041:: 3035:7 3016:. 3004:: 2996:: 2986:: 2961:. 2941:: 2931:: 2906:. 2882:: 2872:: 2845:. 2812:. 2787:. 2751:. 2739:: 2731:: 2721:: 2671:: 2663:: 2632:. 2606:: 2583:. 2556:. 2515:. 2464:: 2437:. 2406:. 2376:. 2333:: 2325:: 2295:. 2267:: 2259:: 2236:. 2207:. 2182:. 2170:: 2162:: 2139:. 2127:: 2119:: 2096:. 2084:: 2076:: 2052:. 2030:: 2022:: 1976:2 1964:2 1837:( 1798:N 1794:Z 1657:0 1654:r 1650:0 1647:r 1643:N 1639:Z 1631:A 1611:3 1607:/ 1603:1 1599:A 1593:0 1589:r 1585:= 1582:R 1566:A 1564:( 1558:R 1556:( 1531:. 1236:. 1099:× 1095:( 1069:× 1065:( 992:e 985:t 978:v 617:p 605:r 600:s 462:β 348:N 344:Z 324:Z 320:N 307:N 294:A 280:Z 199:n 194:p 123:) 117:( 112:) 108:( 98:· 91:· 84:· 77:· 50:. 20:)

Index

Nuclear model

verification
improve this article
adding citations to reliable sources
"Atomic nucleus"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

nucleons
nuclear physics
quantum mechanics
energy level
ground state
Nuclear physics

Nucleus
Nucleons
p
n
Nuclear matter
Nuclear force
Nuclear structure
Nuclear reaction
Models of the nucleus
Liquid drop

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.