Knowledge

Energy level

Source 📝

2507: 2470: 1075: 3736: 20: 2803:, energy bands are actually made up of many discrete energy levels which are too close together to resolve. Within a band the number of levels is of the order of the number of atoms in the crystal, so although electrons are actually restricted to these energies, they appear to be able to take on a continuum of values. The important energy levels in a crystal are the top of the 2762:
causes fluid atoms and molecules to move faster increasing their translational energy, and thermally excites molecules to higher average amplitudes of vibrational and rotational modes (excites the molecules to higher internal energy levels). This means that as temperature rises, translational,
2273:
is higher. For the bond in the molecule to be stable, the covalent bonding electrons occupy the lower energy bonding orbital, which may be signified by such symbols as σ or π depending on the situation. Corresponding anti-bonding orbitals can be signified by adding an asterisk to get σ* or π*
2697:
An asterisk is commonly used to designate an excited state. An electron transition in a molecule's bond from a ground state to an excited state may have a designation such as σ â†’ Ïƒ*, π â†’ Ï€*, or n â†’ Ï€* meaning excitation of an electron from a σ bonding to a
2702:
orbital, from a π bonding to a π antibonding orbital, or from an n non-bonding to a π antibonding orbital. Reverse electron transitions for all these types of excited molecules are also possible to return to their ground states, which can be designated as σ* â†’ Ïƒ,
2746:
radiation, depending on the type of transition. In a very general way, energy level differences between electronic states are larger, differences between vibrational levels are intermediate, and differences between rotational levels are smaller, although there can be overlap.
2384: 2252:
between atoms in a molecule form because they make the situation more stable for the involved atoms, which generally means the sum energy level for the involved atoms in the molecule is lower than if the atoms were not so bonded. As separate atoms approach each other to
1015:
to the nucleus, an atom's electrons will generally occupy outer shells only if the more inner shells have already been completely filled by other electrons. However, this is not a strict requirement: atoms may have two or even three incomplete outer shells. (See
1002:
Each shell can contain only a fixed number of electrons: The first shell can hold up to two electrons, the second shell can hold up to eight (2 + 6) electrons, the third shell can hold up to 18 (2 + 6 + 10) and so on. The general formula is that the
2779:
between each other. At even higher temperatures, electrons can be thermally excited to higher energy orbitals in atoms or molecules. A subsequent drop of an electron to a lower energy level can release a photon, causing a possibly coloured glow.
2783:
An electron farther from the nucleus has higher potential energy than an electron closer to the nucleus, thus it becomes less bound to the nucleus, since its potential energy is negative and inversely dependent on its distance from the nucleus.
1531: 1947: 985:. The closest shell to the nucleus is called the "1 shell" (also called "K shell"), followed by the "2 shell" (or "L shell"), then the "3 shell" (or "M shell"), and so on farther and farther from the nucleus. The shells correspond with the 2615:
a photon whose energy is equal to the energy difference between the levels. Conversely, an excited species can go to a lower energy level by spontaneously emitting a photon equal to the energy difference. A photon's energy is equal to the
2227: 2119: 1691: 130: 2037: 2304: 1580:, where the outer electrons see an effective nucleus of reduced charge, since the inner electrons are bound tightly to the nucleus and partially cancel its charge. This leads to an approximate correction where 2726:, electron transitions are simultaneously combined with both vibrational and rotational transitions. Photons involved in transitions may have energy of various ranges in the electromagnetic spectrum, such as 1564:
If there is more than one electron around the atom, electron–electron interactions raise the energy level. These interactions are often neglected if the spatial overlap of the electron wavefunctions is low.
2799:, instead of or in addition to energy levels. Electrons can take on any energy within an unfilled band. At first this appears to be an exception to the requirement for energy levels. However, as shown in 1861: 1305: 1231:. The energy of its state is mainly determined by the electrostatic interaction of the (negative) electron with the (positive) nucleus. The energy levels of an electron around a nucleus are given by: 1201:
In the formulas for energy of electrons at various levels given below in an atom, the zero point for energy is set when the electron in question has completely left the atom; i.e. when the electron's
2937: 1436: 1872: 2131: 2690:
photons to provide information on the material analyzed, including information on the energy levels and electronic structure of materials obtained by analyzing the
1600: 1144:
of the wavefunction, which results in a new state that consists of just a single energy state. Measurement of the possible energy levels of an object is called
1140:) of energy states is also a quantum state, but such states change with time and do not have well-defined energies. A measurement of the energy results in the 2072: 1085:
atom, showing the probability of finding the electron in the space around the nucleus. Each stationary state defines a specific energy level of the atom.
2576:, in effect so far away so as to have practically no more effect on the remaining atom (ion). For various types of atoms, there are 1st, 2nd, 3rd, etc. 2980: 1117:
along a closed path (a path that ends where it started), such as a circular orbit around an atom, where the number of wavelengths gives the type of
60: 3533: 2820: 1979: 2882: 3181: 396: 2592:
or rotational energy levels. Energy level transitions can also be nonradiative, meaning emission or absorption of a photon is not involved.
2282:
which do not participate in bonding and its energy level is the same as that of the constituent atom. Such orbitals can be designated as
897: 2941: 3704: 2580:
for removing the 1st, then the 2nd, then the 3rd, etc. of the highest energy electrons, respectively, from the atom originally in the
1568:
For multi-electron atoms, interactions between electrons cause the preceding equation to be no longer accurate as stated simply with
1113:
because they are the states that do not change in time. Informally, these states correspond to a whole number of wavelengths of the
3030: 1820: 1121:(0 for s-orbitals, 1 for p-orbitals and so on). Elementary examples that show mathematically how energy levels come about are the 1089:
Quantized energy levels result from the wave behavior of particles, which gives a relationship between a particle's energy and its
148: 3716: 2832: 604: 2379:{\displaystyle E=E_{\text{electronic}}+E_{\text{vibrational}}+E_{\text{rotational}}+E_{\text{nuclear}}+E_{\text{translational}}} 1237: 3400: 2973: 1371: 377: 3334: 560: 3257: 483: 2588:, when electrons are added to positively charged ions or sometimes atoms. Molecules can also undergo transitions in their 2719: 954:
or rotational energy levels in molecules. The energy spectrum of a system with such discrete energy levels is said to be
1773: 2506: 3003: 2966: 143: 3785: 3113: 2400: 232: 3671: 3380: 3375: 3098: 890: 339: 319: 187: 2595:
If an atom, ion, or molecule is at the lowest possible energy level, it and its electrons are said to be in the
1042:
If an atom, ion, or molecule is at the lowest possible energy level, it and its electrons are said to be in the
3780: 3683: 3355: 2892: 1176:
of the atom. The modern quantum mechanical theory giving an explanation of these energy levels in terms of the
579: 309: 3661: 3438: 3360: 3143: 3013: 2464: 2270: 619: 357: 257: 1758:
shell electrons inside the nucleus). These affect the levels by a typical order of magnitude of 10 eV.
3760: 3395: 3329: 3324: 3295: 3008: 2301:) is the sum of the electronic, vibrational, rotational, nuclear, and translational components, such that: 555: 550: 521: 372: 153: 3463: 3370: 2446: 1126: 589: 334: 324: 2925: 3775: 3770: 3739: 3501: 3309: 3280: 2545: 2460: 930:
particles, which can have any amount of energy. The term is commonly used for the energy levels of the
883: 535: 506: 1526:{\displaystyle {\frac {1}{\lambda }}=RZ^{2}\left({\frac {1}{n_{1}^{2}}}-{\frac {1}{n_{2}^{2}}}\right)} 1363:. For hydrogen-like atoms (ions) only, the Rydberg levels depend only on the principal quantum number 3523: 3390: 3314: 3275: 3232: 3206: 3163: 3056: 2554: 2434: 2266: 1724: 540: 501: 454: 429: 352: 212: 1776:, resulting in a typical change in the energy levels by a typical order of magnitude of 10 eV. 3590: 3570: 3560: 3550: 3506: 3081: 2868: 2856: 2573: 2418:. The specific energies of these components vary with the specific energy state and the substance. 2404: 1696: 1585: 1393: 1340: 1202: 986: 624: 2290:. In polyatomic molecules, different vibrational and rotational energy levels are also involved. 3765: 3285: 3211: 2837: 2687: 2491:
resulting from absorption of a photon represented by the red squiggly arrow, and whose energy is
1942:{\displaystyle -{\boldsymbol {\mu }}_{L}={\dfrac {e\hbar }{2m}}\mathbf {L} =\mu _{B}\mathbf {L} } 1747: 1059: 793: 511: 419: 3699: 3247: 2914: 2222:{\displaystyle U_{B}=-{\boldsymbol {\mu }}\cdot \mathbf {B} =\mu _{\text{B}}B(M_{L}+g_{S}M_{S})} 1537: 1177: 469: 367: 133: 3610: 3385: 3365: 3290: 3158: 2707: 2560:
Electrons can also be completely removed from a chemical species such as an atom, molecule, or
1716: 1165: 1021: 955: 798: 516: 344: 314: 277: 3201: 1754:
and motion and the nucleus's electric field) and the Darwin term (contact term interaction of
424: 3790: 3635: 3148: 3128: 2748: 2715: 2584:. Energy in corresponding opposite quantities can also be released, sometimes in the form of 2528:
resulting in emission of a photon represented by the red squiggly arrow, and whose energy is
2415: 2298: 1161: 1141: 1133: 267: 252: 1719:
takes these differing energy levels into account. For filling an atom with electrons in the
1553: 3666: 3595: 3540: 3270: 3093: 3051: 1541: 584: 496: 222: 179: 1418:(principal quantum number of the energy level the electron descends from, when emitting a 1181: 828: 8: 3651: 3620: 3565: 3545: 3453: 3410: 3265: 3191: 3118: 3108: 3020: 2752: 2723: 2711: 2589: 2275: 1767: 1012: 951: 927: 683: 491: 409: 237: 217: 169: 2426:
There are various types of energy level diagrams for bonds between atoms in a molecule.
922:—that is, confined spatially—can only take on certain discrete values of energy, called 3711: 3580: 3478: 3186: 3133: 3025: 2751:
energy levels are practically continuous and can be calculated as kinetic energy using
2557:), whose energy must be exactly equal to the energy difference between the two levels. 2408: 2055: 1953:
Additionally taking into account the magnetic momentum arising from the electron spin.
1228: 1137: 404: 329: 262: 174: 2114:{\displaystyle {\boldsymbol {\mu }}={\boldsymbol {\mu }}_{L}+{\boldsymbol {\mu }}_{S}} 3721: 3630: 3600: 3528: 3491: 3486: 3468: 3433: 3423: 3138: 3103: 3086: 2989: 2888: 2772: 2577: 2440: 2262: 1556:, but the Rydberg constant would be replaced by other fundamental physics constants. 1427: 1185: 1122: 911: 838: 813: 753: 748: 648: 614: 594: 192: 51: 2706:
A transition in an energy level of an electron in a molecule may be combined with a
1536:
An equivalent formula can be derived quantum mechanically from the time-independent
3448: 3443: 3300: 3196: 2612: 2469: 1728: 1712: 1577: 1324: 1218: 1110: 1028: 843: 833: 823: 723: 703: 688: 658: 526: 414: 2859:
madsci.org, 17 March 1999, Dan Berger, Faculty Chemistry/Science, Bluffton College
3678: 3605: 3585: 3555: 3518: 3513: 3418: 3242: 2808: 2768: 2617: 2531: 2494: 1423: 1350: 1020:
for more details.) For an explanation of why electrons exist in these shells see
868: 738: 718: 464: 304: 39:, an electron may "jump" from the ground state to a higher energy excited state. 3656: 3625: 3615: 3237: 3227: 3061: 2569: 2279: 2258: 1957: 1751: 1743: 1732: 1360: 1224: 1157: 1118: 996: 995:= 1, 2, 3, 4, ...) or are labeled alphabetically with letters used in the 982: 966: 947: 803: 763: 743: 713: 693: 643: 609: 459: 449: 242: 1686:{\displaystyle E_{n,\ell }=-hcR_{\infty }{\frac {{Z_{\rm {eff}}}^{2}}{n^{2}}}} 3754: 3575: 3428: 3319: 3153: 3123: 3076: 2776: 2764: 2735: 2603: 2585: 2254: 2249: 1790: 1573: 1549: 1545: 1332: 1106: 1102: 1063: 1050: 1017: 863: 858: 788: 758: 728: 599: 545: 272: 247: 125:{\displaystyle i\hbar {\frac {d}{dt}}|\Psi \rangle ={\hat {H}}|\Psi \rangle } 32: 3458: 3071: 2816: 2804: 2683: 2597: 2581: 2239: 2032:{\displaystyle -{\boldsymbol {\mu }}_{S}=-\mu _{\text{B}}g_{S}\mathbf {S} } 1795:
There is an interaction energy associated with the magnetic dipole moment,
1720: 1311: 1145: 1114: 1078: 1044: 1036: 853: 848: 783: 768: 733: 3496: 2812: 2800: 2796: 2759: 2731: 2699: 1711:
and therefore also affect the various atomic electron energy levels. The
1173: 1074: 1035:
distance from the atomic nucleus or molecule, the usual convention, then
969:, an electron shell, or principal energy level, may be thought of as the 919: 818: 773: 708: 663: 2635: 2565: 2396: 2294: 1169: 1168:. The notion of energy levels was proposed in 1913 by Danish physicist 1090: 808: 778: 698: 673: 668: 653: 3350: 3046: 2743: 2686:
are based on detecting the frequency or wavelength of the emitted or
2627: 2607:, or any electrons that have higher energy than the ground state are 2534: 2497: 2287: 1054:, or any electrons that have higher energy than the ground state are 974: 962: 299: 2958: 1723:, the lowest energy levels are filled first and consistent with the 2739: 2691: 1156:
The first evidence of quantization in atoms was the observation of
1094: 1082: 1032: 943: 931: 915: 678: 24: 2261:
affect each other's energy levels to form bonding and antibonding
2792: 2634:) and thus is proportional to its frequency, or inversely to its 2564:. Complete removal of an electron from an atom can be a form of 1576:. A simple (though not complete) way to understand this is as a 1219:
Orbital state energy level: atom/ion with nucleus + one electron
1211:. When the electron is bound to the atom in any closer value of 19: 2550: 1419: 36: 2727: 1856:{\displaystyle U=-{\boldsymbol {\mu }}_{L}\cdot \mathbf {B} } 1215:, the electron's energy is lower and is considered negative. 970: 2611:. Such a species can be excited to a higher energy level by 1098: 978: 935: 28: 1559: 1300:{\displaystyle E_{n}=-hcR_{\infty }{\frac {Z^{2}}{n^{2}}}} 2561: 939: 1808:, arising from the electronic orbital angular momentum, 1062:
if there is more than one measurable quantum mechanical
2763:
vibrational, and rotational contributions to molecular
1779: 1597:
that depends strongly on the principal quantum number.
2601:. If it is at a higher energy level, it is said to be 2286:
orbitals. The electrons in an n orbital are typically
1750:(an electrodynamic interaction between the electron's 1048:. If it is at a higher energy level, it is said to be 2568:, which is effectively moving the electron out to an 2307: 2293:
Roughly speaking, a molecular energy state (i.e., an
2134: 2075: 1982: 1895: 1875: 1823: 1772:
This even finer structure is due to electron–nucleus
1746:
arises from relativistic kinetic energy corrections,
1702:) as well as their levels within the molecule affect 1603: 1439: 1240: 63: 2278:
in a molecule is an orbital with electrons in outer
1695:
In such cases, the orbital types (determined by the
2926:
Theory of Ultraviolet-Visible (UV-Vis) Spectroscopy
2887:. Vol. 2. W. H. Freeman and Co. p. 1129. 1105:that have well defined energies have the form of a 950:, but can also refer to energy levels of nuclei or 2862: 2543:Electrons in atoms and molecules can change (make 2378: 2221: 2113: 2031: 1941: 1855: 1685: 1525: 1299: 1109:. States having well-defined energies are called 124: 2871:. Corrosion Source. Retrieved on 1 December 2011. 2857:Re: Why do electron shells have set limits ? 2058:(about 2), resulting in a total magnetic moment, 3752: 2414:The molecular energy levels are labelled by the 2775:typically occurs as molecules or atoms collide 946:, which are bound by the electric field of the 2974: 2549:in) energy levels by emitting or absorbing a 1372:Rydberg formula for any hydrogen-like element 1370:This equation is obtained from combining the 891: 2884:Physics for Scientists and Engineers, 5th Ed 1160:in light from the sun in the early 1800s by 119: 93: 2910: 2908: 2906: 2904: 2880: 2454: 1738: 2981: 2967: 1196: 898: 884: 2125:The interaction energy therefore becomes 1715:of filling an atom with electrons for an 2901: 2787: 2767:let molecules absorb heat and hold more 2505: 2468: 2421: 1223:Assume there is one electron in a given 1073: 18: 2938:"Electron Density and Potential Energy" 2833:Perturbation theory (quantum mechanics) 2703:π* â†’ Ï€, or π* â†’ n. 2152: 2101: 2086: 2077: 1988: 1881: 1835: 1560:Electron–electron interactions in atoms 3753: 2269:is lower, and the energy level of the 1761: 1007:th shell can in principle hold up to 2 2988: 2962: 2881:Tipler, Paul A.; Mosca, Gene (2004). 2874: 2850: 1093:. For a confined particle such as an 2409:equilibrium geometry of the molecule 1780:Energy levels due to external fields 16:Different states of quantum systems 13: 1658: 1655: 1652: 1637: 1268: 430:Sum-over-histories (path integral) 116: 90: 46:Part of a series of articles about 14: 3802: 2473:An increase in energy level from 1973:, arising from the electron spin 1960:), there is a magnetic momentum, 1901: 1058:. An energy level is regarded as 67: 3735: 3734: 2674:, the speed of light, equals to 2510:A decrease in energy level from 2401:electronic molecular Hamiltonian 2160: 2025: 1935: 1917: 1849: 1784: 1039:have negative potential energy. 2819:, and the energy levels of any 2682:Correspondingly, many kinds of 2233: 1552:to obtain the energy levels as 1011:electrons. Since electrons are 3684:Relativistic quantum mechanics 2930: 2919: 2216: 2180: 1069: 580:Relativistic quantum mechanics 112: 105: 86: 1: 3662:Quantum statistical mechanics 3439:Quantum differential calculus 3361:Delayed-choice quantum eraser 3144:Symmetry in quantum mechanics 2915:UV-Visible Absorption Spectra 2843: 2465:molecular electron transition 1956:Due to relativistic effects ( 620:Quantum statistical mechanics 2244: 7: 3464:Quantum stochastic calculus 3454:Quantum measurement problem 3376:Mach–Zehnder interferometer 2826: 1426:was derived from empirical 1408:in the Rydberg formula and 1127:quantum harmonic oscillator 590:Quantum information science 10: 3807: 2461:atomic electron transition 2458: 2435:Molecular orbital diagrams 2265:. The energy level of the 2237: 1788: 1765: 1310:(typically between 1  1151: 3730: 3692: 3644: 3524:Quantum complexity theory 3502:Quantum cellular automata 3477: 3409: 3343: 3256: 3220: 3207:Path integral formulation 3174: 3039: 2996: 2555:electromagnetic radiation 1725:Pauli exclusion principle 987:principal quantum numbers 3591:Quantum machine learning 3571:Quantum key distribution 3561:Quantum image processing 3551:Quantum error correction 3401:Wheeler's delayed choice 2574:principal quantum number 2455:Energy level transitions 2405:potential energy surface 1739:Fine structure splitting 1697:azimuthal quantum number 1586:effective nuclear charge 1394:principal quantum number 1341:principal quantum number 1229:hydrogen-like atom (ion) 1203:principal quantum number 1191: 999:(K, L, M, N, ...). 625:Quantum machine learning 378:Wheeler's delayed-choice 3786:Computational chemistry 3507:Quantum finite automata 2838:Computational chemistry 1584:is substituted with an 1314:and 10 eV), where 1197:Intrinsic energy levels 335:Leggett–Garg inequality 3611:Quantum neural network 2720:rovibrational coupling 2708:vibrational transition 2540: 2503: 2416:molecular term symbols 2380: 2223: 2115: 2033: 1943: 1857: 1717:electron configuration 1687: 1540:with a kinetic energy 1527: 1428:spectroscopic emission 1301: 1166:William Hyde Wollaston 1086: 1022:electron configuration 1013:electrically attracted 926:. This contrasts with 126: 40: 3781:Theoretical chemistry 3636:Quantum teleportation 3164:Wave–particle duality 2788:Crystalline materials 2777:transferring the heat 2716:rotational transition 2509: 2472: 2459:Further information: 2422:Energy level diagrams 2381: 2299:molecular Hamiltonian 2224: 2116: 2034: 1944: 1858: 1774:spin–spin interaction 1688: 1528: 1302: 1162:Joseph von Fraunhofer 1077: 1037:bound electron states 320:Elitzur–Vaidman 310:Davisson–Germer 127: 23:Energy levels for an 22: 3667:Quantum field theory 3596:Quantum metamaterial 3541:Quantum cryptography 3271:Consistent histories 2807:, the bottom of the 2714:. A vibrational and 2305: 2271:antibonding orbitals 2132: 2073: 1980: 1873: 1821: 1601: 1542:Hamiltonian operator 1538:Schrödinger equation 1437: 1238: 1178:Schrödinger equation 1066:associated with it. 585:Quantum field theory 497:Consistent histories 134:Schrödinger equation 61: 3761:Chemical properties 3652:Quantum fluctuation 3621:Quantum programming 3581:Quantum logic gates 3566:Quantum information 3546:Quantum electronics 3021:Classical mechanics 2753:classical mechanics 2724:rovibronic coupling 2718:may be combined by 2712:vibronic transition 2578:ionization energies 2276:non-bonding orbital 1768:Hyperfine structure 1762:Hyperfine structure 1748:spin–orbit coupling 1515: 1490: 1374:(shown below) with 373:Stern–Gerlach 170:Classical mechanics 31:: ground state and 3705:in popular culture 3487:Quantum algorithms 3335:Von Neumann–Wigner 3315:Objective collapse 3026:Old quantum theory 2869:Electron Subshells 2795:are found to have 2793:Crystalline solids 2773:Conduction of heat 2541: 2504: 2441:Jablonski diagrams 2403:(the value of the 2376: 2263:molecular orbitals 2219: 2111: 2054:the electron-spin 2029: 1939: 1914: 1853: 1683: 1523: 1501: 1476: 1392:assuming that the 1297: 1138:linear combination 1087: 1031:is set to zero at 912:quantum mechanical 561:Von Neumann–Wigner 541:Objective-collapse 340:Mach–Zehnder 330:Leggett inequality 325:Franck–Hertz 175:Old quantum theory 122: 41: 35:. After absorbing 3776:Quantum chemistry 3771:Molecular physics 3748: 3747: 3722:Quantum mysticism 3700:Schrödinger's cat 3631:Quantum simulator 3601:Quantum metrology 3529:Quantum computing 3492:Quantum amplifier 3469:Quantum spacetime 3434:Quantum cosmology 3424:Quantum chemistry 3139:Scattering theory 3087:Zero-point energy 3082:Degenerate levels 2990:Quantum mechanics 2572:with an infinite 2373: 2360: 2347: 2334: 2321: 2174: 2011: 1913: 1681: 1516: 1491: 1448: 1295: 1186:Werner Heisenberg 1182:Erwin Schrödinger 1123:particle in a box 1111:stationary states 908: 907: 615:Scattering theory 595:Quantum computing 368:Schrödinger's cat 300:Bell's inequality 108: 83: 52:Quantum mechanics 3798: 3738: 3737: 3449:Quantum geometry 3444:Quantum dynamics 3301:Superdeterminism 3197:Matrix mechanics 3052:Bra–ket notation 2983: 2976: 2969: 2960: 2959: 2953: 2952: 2950: 2949: 2940:. Archived from 2934: 2928: 2923: 2917: 2912: 2899: 2898: 2878: 2872: 2866: 2860: 2854: 2823:in the crystal. 2679: 2673: 2663: 2641: 2633: 2625: 2538: 2527: 2518: 2501: 2490: 2481: 2394: 2385: 2383: 2382: 2377: 2375: 2374: 2371: 2362: 2361: 2358: 2349: 2348: 2345: 2336: 2335: 2332: 2323: 2322: 2319: 2267:bonding orbitals 2228: 2226: 2225: 2220: 2215: 2214: 2205: 2204: 2192: 2191: 2176: 2175: 2172: 2163: 2155: 2144: 2143: 2120: 2118: 2117: 2112: 2110: 2109: 2104: 2095: 2094: 2089: 2080: 2065: 2053: 2038: 2036: 2035: 2030: 2028: 2023: 2022: 2013: 2012: 2009: 1997: 1996: 1991: 1972: 1948: 1946: 1945: 1940: 1938: 1933: 1932: 1920: 1915: 1912: 1904: 1896: 1890: 1889: 1884: 1862: 1860: 1859: 1854: 1852: 1844: 1843: 1838: 1813: 1807: 1757: 1729:Aufbau principle 1713:Aufbau principle 1710: 1701: 1692: 1690: 1689: 1684: 1682: 1680: 1679: 1670: 1669: 1664: 1663: 1662: 1661: 1643: 1641: 1640: 1619: 1618: 1596: 1583: 1578:shielding effect 1571: 1532: 1530: 1529: 1524: 1522: 1518: 1517: 1514: 1509: 1497: 1492: 1489: 1484: 1472: 1465: 1464: 1449: 1441: 1417: 1407: 1398: 1391: 1366: 1358: 1348: 1338: 1330: 1325:Rydberg constant 1322: 1306: 1304: 1303: 1298: 1296: 1294: 1293: 1284: 1283: 1274: 1272: 1271: 1250: 1249: 1214: 1210: 1180:was advanced by 1029:potential energy 994: 900: 893: 886: 527:Superdeterminism 180:Bra–ket notation 131: 129: 128: 123: 115: 110: 109: 101: 89: 84: 82: 71: 43: 42: 3806: 3805: 3801: 3800: 3799: 3797: 3796: 3795: 3751: 3750: 3749: 3744: 3726: 3712:Wigner's friend 3688: 3679:Quantum gravity 3640: 3626:Quantum sensing 3606:Quantum network 3586:Quantum machine 3556:Quantum imaging 3519:Quantum circuit 3514:Quantum channel 3473: 3419:Quantum biology 3405: 3381:Elitzur–Vaidman 3356:Davisson–Germer 3339: 3291:Hidden-variable 3281:de Broglie–Bohm 3258:Interpretations 3252: 3216: 3170: 3057:Complementarity 3035: 2992: 2987: 2957: 2956: 2947: 2945: 2936: 2935: 2931: 2924: 2920: 2913: 2902: 2895: 2879: 2875: 2867: 2863: 2855: 2851: 2846: 2829: 2809:conduction band 2790: 2769:internal energy 2675: 2669: 2646: 2639: 2631: 2621: 2618:Planck constant 2529: 2526: 2520: 2517: 2511: 2492: 2489: 2483: 2480: 2474: 2467: 2457: 2424: 2393: 2387: 2370: 2366: 2357: 2353: 2344: 2340: 2331: 2327: 2318: 2314: 2306: 2303: 2302: 2255:covalently bond 2247: 2242: 2236: 2210: 2206: 2200: 2196: 2187: 2183: 2171: 2167: 2159: 2151: 2139: 2135: 2133: 2130: 2129: 2105: 2100: 2099: 2090: 2085: 2084: 2076: 2074: 2071: 2070: 2059: 2052: 2044: 2024: 2018: 2014: 2008: 2004: 1992: 1987: 1986: 1981: 1978: 1977: 1971: 1961: 1934: 1928: 1924: 1916: 1905: 1897: 1894: 1885: 1880: 1879: 1874: 1871: 1870: 1848: 1839: 1834: 1833: 1822: 1819: 1818: 1809: 1806: 1796: 1793: 1787: 1782: 1770: 1764: 1755: 1741: 1709: 1703: 1699: 1675: 1671: 1665: 1651: 1650: 1646: 1645: 1644: 1642: 1636: 1632: 1608: 1604: 1602: 1599: 1598: 1595: 1589: 1581: 1569: 1562: 1510: 1505: 1496: 1485: 1480: 1471: 1470: 1466: 1460: 1456: 1440: 1438: 1435: 1434: 1424:Rydberg formula 1415: 1409: 1406: 1400: 1396: 1375: 1364: 1354: 1351:Planck constant 1344: 1336: 1328: 1321: 1315: 1289: 1285: 1279: 1275: 1273: 1267: 1263: 1245: 1241: 1239: 1236: 1235: 1221: 1212: 1205: 1199: 1194: 1154: 1072: 990: 973:of one or more 904: 875: 874: 873: 638: 630: 629: 575: 574:Advanced topics 567: 566: 565: 517:Hidden-variable 507:de Broglie–Bohm 486: 484:Interpretations 476: 475: 474: 444: 436: 435: 434: 392: 384: 383: 382: 349: 305:CHSH inequality 294: 286: 285: 284: 213:Complementarity 207: 199: 198: 197: 165: 136: 111: 100: 99: 85: 75: 70: 62: 59: 58: 17: 12: 11: 5: 3804: 3794: 3793: 3788: 3783: 3778: 3773: 3768: 3766:Atomic physics 3763: 3746: 3745: 3743: 3742: 3731: 3728: 3727: 3725: 3724: 3719: 3714: 3709: 3708: 3707: 3696: 3694: 3690: 3689: 3687: 3686: 3681: 3676: 3675: 3674: 3664: 3659: 3657:Casimir effect 3654: 3648: 3646: 3642: 3641: 3639: 3638: 3633: 3628: 3623: 3618: 3616:Quantum optics 3613: 3608: 3603: 3598: 3593: 3588: 3583: 3578: 3573: 3568: 3563: 3558: 3553: 3548: 3543: 3538: 3537: 3536: 3526: 3521: 3516: 3511: 3510: 3509: 3499: 3494: 3489: 3483: 3481: 3475: 3474: 3472: 3471: 3466: 3461: 3456: 3451: 3446: 3441: 3436: 3431: 3426: 3421: 3415: 3413: 3407: 3406: 3404: 3403: 3398: 3393: 3391:Quantum eraser 3388: 3383: 3378: 3373: 3368: 3363: 3358: 3353: 3347: 3345: 3341: 3340: 3338: 3337: 3332: 3327: 3322: 3317: 3312: 3307: 3306: 3305: 3304: 3303: 3288: 3283: 3278: 3273: 3268: 3262: 3260: 3254: 3253: 3251: 3250: 3245: 3240: 3235: 3230: 3224: 3222: 3218: 3217: 3215: 3214: 3209: 3204: 3199: 3194: 3189: 3184: 3178: 3176: 3172: 3171: 3169: 3168: 3167: 3166: 3161: 3151: 3146: 3141: 3136: 3131: 3126: 3121: 3116: 3111: 3106: 3101: 3096: 3091: 3090: 3089: 3084: 3079: 3074: 3064: 3062:Density matrix 3059: 3054: 3049: 3043: 3041: 3037: 3036: 3034: 3033: 3028: 3023: 3018: 3017: 3016: 3006: 3000: 2998: 2994: 2993: 2986: 2985: 2978: 2971: 2963: 2955: 2954: 2929: 2918: 2900: 2893: 2873: 2861: 2848: 2847: 2845: 2842: 2841: 2840: 2835: 2828: 2825: 2789: 2786: 2666: 2665: 2524: 2515: 2487: 2478: 2456: 2453: 2452: 2451: 2431: 2423: 2420: 2391: 2369: 2365: 2356: 2352: 2343: 2339: 2330: 2326: 2317: 2313: 2310: 2250:Chemical bonds 2246: 2243: 2238:Main article: 2235: 2232: 2231: 2230: 2218: 2213: 2209: 2203: 2199: 2195: 2190: 2186: 2182: 2179: 2170: 2166: 2162: 2158: 2154: 2150: 2147: 2142: 2138: 2123: 2122: 2108: 2103: 2098: 2093: 2088: 2083: 2079: 2048: 2041: 2040: 2027: 2021: 2017: 2007: 2003: 2000: 1995: 1990: 1985: 1967: 1958:Dirac equation 1951: 1950: 1937: 1931: 1927: 1923: 1919: 1911: 1908: 1903: 1900: 1893: 1888: 1883: 1878: 1864: 1863: 1851: 1847: 1842: 1837: 1832: 1829: 1826: 1802: 1789:Main article: 1786: 1783: 1781: 1778: 1766:Main article: 1763: 1760: 1744:Fine structure 1740: 1737: 1707: 1678: 1674: 1668: 1660: 1657: 1654: 1649: 1639: 1635: 1631: 1628: 1625: 1622: 1617: 1614: 1611: 1607: 1593: 1588:symbolized as 1561: 1558: 1534: 1533: 1521: 1513: 1508: 1504: 1500: 1495: 1488: 1483: 1479: 1475: 1469: 1463: 1459: 1455: 1452: 1447: 1444: 1413: 1404: 1361:speed of light 1319: 1308: 1307: 1292: 1288: 1282: 1278: 1270: 1266: 1262: 1259: 1256: 1253: 1248: 1244: 1225:atomic orbital 1220: 1217: 1198: 1195: 1193: 1190: 1158:spectral lines 1153: 1150: 1119:atomic orbital 1103:wave functions 1071: 1068: 997:X-ray notation 967:atomic physics 906: 905: 903: 902: 895: 888: 880: 877: 876: 872: 871: 866: 861: 856: 851: 846: 841: 836: 831: 826: 821: 816: 811: 806: 801: 796: 791: 786: 781: 776: 771: 766: 761: 756: 751: 746: 741: 736: 731: 726: 721: 716: 711: 706: 701: 696: 691: 686: 681: 676: 671: 666: 661: 656: 651: 646: 640: 639: 636: 635: 632: 631: 628: 627: 622: 617: 612: 610:Density matrix 607: 602: 597: 592: 587: 582: 576: 573: 572: 569: 568: 564: 563: 558: 553: 548: 543: 538: 533: 532: 531: 530: 529: 514: 509: 504: 499: 494: 488: 487: 482: 481: 478: 477: 473: 472: 467: 462: 457: 452: 446: 445: 442: 441: 438: 437: 433: 432: 427: 422: 417: 412: 407: 401: 400: 399: 393: 390: 389: 386: 385: 381: 380: 375: 370: 364: 363: 362: 361: 360: 358:Delayed-choice 353:Quantum eraser 348: 347: 342: 337: 332: 327: 322: 317: 312: 307: 302: 296: 295: 292: 291: 288: 287: 283: 282: 281: 280: 270: 265: 260: 255: 250: 245: 243:Quantum number 240: 235: 230: 225: 220: 215: 209: 208: 205: 204: 201: 200: 196: 195: 190: 184: 183: 182: 177: 172: 166: 163: 162: 159: 158: 157: 156: 151: 146: 138: 137: 132: 121: 118: 114: 107: 104: 98: 95: 92: 88: 81: 78: 74: 69: 66: 55: 54: 48: 47: 33:excited states 15: 9: 6: 4: 3: 2: 3803: 3792: 3789: 3787: 3784: 3782: 3779: 3777: 3774: 3772: 3769: 3767: 3764: 3762: 3759: 3758: 3756: 3741: 3733: 3732: 3729: 3723: 3720: 3718: 3715: 3713: 3710: 3706: 3703: 3702: 3701: 3698: 3697: 3695: 3691: 3685: 3682: 3680: 3677: 3673: 3670: 3669: 3668: 3665: 3663: 3660: 3658: 3655: 3653: 3650: 3649: 3647: 3643: 3637: 3634: 3632: 3629: 3627: 3624: 3622: 3619: 3617: 3614: 3612: 3609: 3607: 3604: 3602: 3599: 3597: 3594: 3592: 3589: 3587: 3584: 3582: 3579: 3577: 3576:Quantum logic 3574: 3572: 3569: 3567: 3564: 3562: 3559: 3557: 3554: 3552: 3549: 3547: 3544: 3542: 3539: 3535: 3532: 3531: 3530: 3527: 3525: 3522: 3520: 3517: 3515: 3512: 3508: 3505: 3504: 3503: 3500: 3498: 3495: 3493: 3490: 3488: 3485: 3484: 3482: 3480: 3476: 3470: 3467: 3465: 3462: 3460: 3457: 3455: 3452: 3450: 3447: 3445: 3442: 3440: 3437: 3435: 3432: 3430: 3429:Quantum chaos 3427: 3425: 3422: 3420: 3417: 3416: 3414: 3412: 3408: 3402: 3399: 3397: 3396:Stern–Gerlach 3394: 3392: 3389: 3387: 3384: 3382: 3379: 3377: 3374: 3372: 3369: 3367: 3364: 3362: 3359: 3357: 3354: 3352: 3349: 3348: 3346: 3342: 3336: 3333: 3331: 3330:Transactional 3328: 3326: 3323: 3321: 3320:Quantum logic 3318: 3316: 3313: 3311: 3308: 3302: 3299: 3298: 3297: 3294: 3293: 3292: 3289: 3287: 3284: 3282: 3279: 3277: 3274: 3272: 3269: 3267: 3264: 3263: 3261: 3259: 3255: 3249: 3246: 3244: 3241: 3239: 3236: 3234: 3231: 3229: 3226: 3225: 3223: 3219: 3213: 3210: 3208: 3205: 3203: 3200: 3198: 3195: 3193: 3190: 3188: 3185: 3183: 3180: 3179: 3177: 3173: 3165: 3162: 3160: 3157: 3156: 3155: 3154:Wave function 3152: 3150: 3147: 3145: 3142: 3140: 3137: 3135: 3132: 3130: 3129:Superposition 3127: 3125: 3124:Quantum state 3122: 3120: 3117: 3115: 3112: 3110: 3107: 3105: 3102: 3100: 3097: 3095: 3092: 3088: 3085: 3083: 3080: 3078: 3077:Excited state 3075: 3073: 3070: 3069: 3068: 3065: 3063: 3060: 3058: 3055: 3053: 3050: 3048: 3045: 3044: 3042: 3038: 3032: 3029: 3027: 3024: 3022: 3019: 3015: 3012: 3011: 3010: 3007: 3005: 3002: 3001: 2999: 2995: 2991: 2984: 2979: 2977: 2972: 2970: 2965: 2964: 2961: 2944:on 2010-07-18 2943: 2939: 2933: 2927: 2922: 2916: 2911: 2909: 2907: 2905: 2896: 2890: 2886: 2885: 2877: 2870: 2865: 2858: 2853: 2849: 2839: 2836: 2834: 2831: 2830: 2824: 2822: 2821:defect states 2818: 2814: 2810: 2806: 2802: 2798: 2794: 2785: 2781: 2778: 2774: 2770: 2766: 2765:heat capacity 2761: 2756: 2754: 2750: 2749:Translational 2745: 2741: 2737: 2736:visible light 2733: 2729: 2725: 2721: 2717: 2713: 2710:and called a 2709: 2704: 2701: 2695: 2693: 2689: 2685: 2680: 2678: 2672: 2662: 2658: 2654: 2650: 2645: 2644: 2643: 2637: 2629: 2624: 2619: 2614: 2610: 2606: 2605: 2600: 2599: 2593: 2591: 2587: 2586:photon energy 2583: 2579: 2575: 2571: 2567: 2563: 2558: 2556: 2552: 2548: 2547: 2537: 2536: 2533: 2523: 2514: 2508: 2500: 2499: 2496: 2486: 2477: 2471: 2466: 2462: 2449: 2448: 2447:Franck–Condon 2443: 2442: 2437: 2436: 2432: 2429: 2428: 2427: 2419: 2417: 2412: 2410: 2406: 2402: 2398: 2390: 2372:translational 2367: 2363: 2354: 2350: 2341: 2337: 2328: 2324: 2315: 2311: 2308: 2300: 2296: 2291: 2289: 2285: 2281: 2277: 2272: 2268: 2264: 2260: 2256: 2251: 2241: 2211: 2207: 2201: 2197: 2193: 2188: 2184: 2177: 2168: 2164: 2156: 2148: 2145: 2140: 2136: 2128: 2127: 2126: 2106: 2096: 2091: 2081: 2069: 2068: 2067: 2064: 2063: 2057: 2051: 2047: 2019: 2015: 2005: 2001: 1998: 1993: 1983: 1976: 1975: 1974: 1970: 1966: 1965: 1959: 1954: 1929: 1925: 1921: 1909: 1906: 1898: 1891: 1886: 1876: 1869: 1868: 1867: 1845: 1840: 1830: 1827: 1824: 1817: 1816: 1815: 1812: 1805: 1801: 1800: 1792: 1791:Zeeman effect 1785:Zeeman effect 1777: 1775: 1769: 1759: 1753: 1749: 1745: 1736: 1734: 1730: 1726: 1722: 1718: 1714: 1706: 1698: 1693: 1676: 1672: 1666: 1647: 1633: 1629: 1626: 1623: 1620: 1615: 1612: 1609: 1605: 1592: 1587: 1579: 1575: 1574:atomic number 1566: 1557: 1555: 1551: 1550:eigenfunction 1547: 1546:wave function 1543: 1539: 1519: 1511: 1506: 1502: 1498: 1493: 1486: 1481: 1477: 1473: 1467: 1461: 1457: 1453: 1450: 1445: 1442: 1433: 1432: 1431: 1429: 1425: 1421: 1412: 1403: 1395: 1390: 1386: 1382: 1378: 1373: 1368: 1362: 1357: 1352: 1347: 1342: 1334: 1333:atomic number 1326: 1318: 1313: 1290: 1286: 1280: 1276: 1264: 1260: 1257: 1254: 1251: 1246: 1242: 1234: 1233: 1232: 1230: 1226: 1216: 1208: 1204: 1189: 1187: 1183: 1179: 1175: 1171: 1167: 1163: 1159: 1149: 1147: 1143: 1139: 1135: 1134:superposition 1130: 1128: 1124: 1120: 1116: 1112: 1108: 1107:standing wave 1104: 1100: 1096: 1092: 1084: 1080: 1079:Wavefunctions 1076: 1067: 1065: 1061: 1057: 1053: 1052: 1047: 1046: 1040: 1038: 1034: 1030: 1025: 1023: 1019: 1018:Madelung rule 1014: 1010: 1006: 1000: 998: 993: 988: 984: 980: 976: 972: 968: 964: 959: 957: 953: 949: 945: 941: 937: 933: 929: 925: 924:energy levels 921: 917: 913: 901: 896: 894: 889: 887: 882: 881: 879: 878: 870: 867: 865: 862: 860: 857: 855: 852: 850: 847: 845: 842: 840: 837: 835: 832: 830: 827: 825: 822: 820: 817: 815: 812: 810: 807: 805: 802: 800: 797: 795: 792: 790: 787: 785: 782: 780: 777: 775: 772: 770: 767: 765: 762: 760: 757: 755: 752: 750: 747: 745: 742: 740: 737: 735: 732: 730: 727: 725: 722: 720: 717: 715: 712: 710: 707: 705: 702: 700: 697: 695: 692: 690: 687: 685: 682: 680: 677: 675: 672: 670: 667: 665: 662: 660: 657: 655: 652: 650: 647: 645: 642: 641: 634: 633: 626: 623: 621: 618: 616: 613: 611: 608: 606: 603: 601: 600:Quantum chaos 598: 596: 593: 591: 588: 586: 583: 581: 578: 577: 571: 570: 562: 559: 557: 556:Transactional 554: 552: 549: 547: 546:Quantum logic 544: 542: 539: 537: 534: 528: 525: 524: 523: 520: 519: 518: 515: 513: 510: 508: 505: 503: 500: 498: 495: 493: 490: 489: 485: 480: 479: 471: 468: 466: 463: 461: 458: 456: 453: 451: 448: 447: 440: 439: 431: 428: 426: 423: 421: 418: 416: 413: 411: 408: 406: 403: 402: 398: 395: 394: 388: 387: 379: 376: 374: 371: 369: 366: 365: 359: 356: 355: 354: 351: 350: 346: 343: 341: 338: 336: 333: 331: 328: 326: 323: 321: 318: 316: 313: 311: 308: 306: 303: 301: 298: 297: 290: 289: 279: 276: 275: 274: 273:Wave function 271: 269: 266: 264: 261: 259: 256: 254: 253:Superposition 251: 249: 246: 244: 241: 239: 236: 234: 231: 229: 226: 224: 221: 219: 216: 214: 211: 210: 203: 202: 194: 191: 189: 186: 185: 181: 178: 176: 173: 171: 168: 167: 161: 160: 155: 152: 150: 147: 145: 142: 141: 140: 139: 135: 102: 96: 79: 76: 72: 64: 57: 56: 53: 50: 49: 45: 44: 38: 34: 30: 26: 21: 3791:Spectroscopy 3459:Quantum mind 3371:Franck–Hertz 3233:Klein–Gordon 3182:Formulations 3175:Formulations 3104:Interference 3094:Entanglement 3072:Ground state 3067:Energy level 3066: 3040:Fundamentals 3004:Introduction 2946:. Retrieved 2942:the original 2932: 2921: 2883: 2876: 2864: 2852: 2817:vacuum level 2805:valence band 2797:energy bands 2791: 2782: 2757: 2705: 2696: 2684:spectroscopy 2681: 2676: 2670: 2667: 2660: 2656: 2652: 2648: 2626:) times its 2622: 2608: 2602: 2598:ground state 2596: 2594: 2582:ground state 2559: 2544: 2542: 2530: 2521: 2512: 2493: 2484: 2475: 2445: 2439: 2433: 2425: 2413: 2388: 2292: 2283: 2274:orbitals. A 2248: 2240:Stark effect 2234:Stark effect 2124: 2061: 2060: 2049: 2045: 2042: 1968: 1963: 1962: 1955: 1952: 1865: 1810: 1803: 1798: 1797: 1794: 1771: 1742: 1721:ground state 1704: 1694: 1590: 1567: 1563: 1535: 1410: 1401: 1388: 1384: 1380: 1376: 1369: 1355: 1345: 1316: 1309: 1222: 1206: 1200: 1155: 1146:spectroscopy 1131: 1115:wavefunction 1088: 1055: 1049: 1045:ground state 1043: 1041: 1026: 1008: 1004: 1001: 991: 960: 923: 909: 455:Klein–Gordon 391:Formulations 228:Energy level 227: 223:Entanglement 206:Fundamentals 193:Interference 144:Introduction 3717:EPR paradox 3497:Quantum bus 3366:Double-slit 3344:Experiments 3310:Many-worlds 3248:Schrödinger 3212:Phase space 3202:Schrödinger 3192:Interaction 3149:Uncertainty 3119:Nonlocality 3114:Measurement 3109:Decoherence 3099:Hamiltonian 2813:Fermi level 2801:band theory 2760:temperature 2732:ultraviolet 2700:antibonding 2590:vibrational 2546:transitions 2333:vibrational 1814:, given by 1733:Hund's rule 1554:eigenvalues 1174:Bohr theory 1070:Explanation 952:vibrational 844:von Neumann 829:Schrödinger 605:EPR paradox 536:Many-worlds 470:Schrödinger 425:Schrödinger 420:Phase-space 410:Interaction 315:Double-slit 293:Experiments 268:Uncertainty 238:Nonlocality 233:Measurement 218:Decoherence 188:Hamiltonian 3755:Categories 3645:Extensions 3479:Technology 3325:Relational 3276:Copenhagen 3187:Heisenberg 3134:Tunnelling 2997:Background 2948:2010-10-07 2894:0716708108 2844:References 2636:wavelength 2566:ionization 2397:eigenvalue 2392:electronic 2346:rotational 2320:electronic 2295:eigenstate 2288:lone pairs 1170:Niels Bohr 1091:wavelength 1060:degenerate 977:around an 914:system or 839:Sommerfeld 754:Heisenberg 749:Gutzwiller 689:de Broglie 637:Scientists 551:Relational 502:Copenhagen 405:Heisenberg 263:Tunnelling 164:Background 3351:Bell test 3221:Equations 3047:Born rule 2744:microwave 2628:frequency 2613:absorbing 2450:diagrams. 2407:) at the 2245:Molecules 2169:μ 2157:⋅ 2153:μ 2149:− 2102:μ 2087:μ 2078:μ 2006:μ 2002:− 1989:μ 1984:− 1926:μ 1902:ℏ 1882:μ 1877:− 1846:⋅ 1836:μ 1831:− 1638:∞ 1624:− 1616:ℓ 1494:− 1446:λ 1269:∞ 1255:− 1188:in 1926. 975:electrons 963:chemistry 956:quantized 944:molecules 932:electrons 928:classical 869:Zeilinger 714:Ehrenfest 443:Equations 120:⟩ 117:Ψ 106:^ 94:⟩ 91:Ψ 68:ℏ 3740:Category 3534:Timeline 3286:Ensemble 3266:Bayesian 3159:Collapse 3031:Glossary 3014:Timeline 2827:See also 2740:infrared 2692:spectrum 2688:absorbed 2430:Examples 2259:orbitals 2257:, their 2056:g-factor 1544:using a 1399:above = 1142:collapse 1125:and the 1095:electron 1083:hydrogen 1033:infinite 918:that is 916:particle 794:Millikan 719:Einstein 704:Davisson 659:Blackett 644:Aharonov 512:Ensemble 492:Bayesian 397:Overview 278:Collapse 258:Symmetry 149:Glossary 25:electron 3693:Related 3672:History 3411:Science 3243:Rydberg 3009:History 2758:Higher 2698:σ  2609:excited 2604:excited 2570:orbital 2399:of the 2359:nuclear 2297:of the 1572:as the 1422:). The 1381:hν 1359:is the 1349:is the 1339:is the 1331:is the 1323:is the 1172:in the 1152:History 1056:excited 1051:excited 1027:If the 983:nucleus 948:nucleus 834:Simmons 824:Rydberg 789:Moseley 769:Kramers 759:Hilbert 744:Glauber 739:Feynman 724:Everett 694:Compton 465:Rydberg 154:History 3386:Popper 2891:  2815:, the 2811:, the 2668:since 2551:photon 2535:ν 2498:ν 2444:, and 2395:is an 2386:where 2280:shells 1731:, and 1727:, the 1548:as an 1430:data. 1420:photon 1389:λ 1353:, and 1101:, the 1097:in an 864:Zeeman 859:Wigner 809:Planck 779:Landau 764:Jordan 415:Matrix 345:Popper 37:energy 27:in an 3296:Local 3238:Pauli 3228:Dirac 2742:, or 2728:X-ray 2722:. In 2043:with 1866:with 1227:in a 1192:Atoms 1081:of a 1064:state 971:orbit 942:, or 936:atoms 920:bound 819:Raman 804:Pauli 799:Onnes 734:Fermi 709:Debye 699:Dirac 664:Bloch 654:Bethe 522:Local 460:Pauli 450:Dirac 248:State 2889:ISBN 2553:(of 2463:and 1752:spin 1184:and 1164:and 1132:Any 1099:atom 979:atom 965:and 940:ions 854:Wien 849:Weyl 814:Rabi 784:Laue 774:Lamb 729:Fock 684:Bose 679:Born 674:Bohr 669:Bohm 649:Bell 29:atom 2642:). 2562:ion 2519:to 2482:to 1708:eff 1594:eff 1416:= ∞ 1209:= ∞ 981:'s 961:In 934:in 3757:: 2903:^ 2771:. 2755:. 2738:, 2734:, 2730:, 2694:. 2677:fλ 2659:/ 2657:hc 2655:= 2653:hf 2651:= 2438:, 2411:. 2066:, 1735:. 1387:/ 1385:hc 1383:= 1379:= 1367:. 1343:, 1335:, 1327:, 1312:eV 1148:. 1129:. 1024:. 958:. 938:, 910:A 2982:e 2975:t 2968:v 2951:. 2897:. 2671:c 2664:, 2661:λ 2649:E 2647:Δ 2640:λ 2638:( 2632:f 2630:( 2623:h 2620:( 2539:. 2532:h 2525:1 2522:E 2516:2 2513:E 2502:. 2495:h 2488:2 2485:E 2479:1 2476:E 2389:E 2368:E 2364:+ 2355:E 2351:+ 2342:E 2338:+ 2329:E 2325:+ 2316:E 2312:= 2309:E 2284:n 2229:. 2217:) 2212:S 2208:M 2202:S 2198:g 2194:+ 2189:L 2185:M 2181:( 2178:B 2173:B 2165:= 2161:B 2146:= 2141:B 2137:U 2121:. 2107:S 2097:+ 2092:L 2082:= 2062:ÎŒ 2050:S 2046:g 2039:, 2026:S 2020:S 2016:g 2010:B 1999:= 1994:S 1969:S 1964:ÎŒ 1949:. 1936:L 1930:B 1922:= 1918:L 1910:m 1907:2 1899:e 1892:= 1887:L 1850:B 1841:L 1828:= 1825:U 1811:L 1804:L 1799:ÎŒ 1756:s 1705:Z 1700:ℓ 1677:2 1673:n 1667:2 1659:f 1656:f 1653:e 1648:Z 1634:R 1630:c 1627:h 1621:= 1613:, 1610:n 1606:E 1591:Z 1582:Z 1570:Z 1520:) 1512:2 1507:2 1503:n 1499:1 1487:2 1482:1 1478:n 1474:1 1468:( 1462:2 1458:Z 1454:R 1451:= 1443:1 1414:2 1411:n 1405:1 1402:n 1397:n 1377:E 1365:n 1356:c 1346:h 1337:n 1329:Z 1320:∞ 1317:R 1291:2 1287:n 1281:2 1277:Z 1265:R 1261:c 1258:h 1252:= 1247:n 1243:E 1213:n 1207:n 1136:( 1009:n 1005:n 992:n 989:( 899:e 892:t 885:v 113:| 103:H 97:= 87:| 80:t 77:d 73:d 65:i

Index


electron
atom
excited states
energy
Quantum mechanics
Schrödinger equation
Introduction
Glossary
History
Classical mechanics
Old quantum theory
Bra–ket notation
Hamiltonian
Interference
Complementarity
Decoherence
Entanglement
Energy level
Measurement
Nonlocality
Quantum number
State
Superposition
Symmetry
Tunnelling
Uncertainty
Wave function
Collapse
Bell's inequality

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑