Knowledge

Lab-on-a-chip

Source 📝

328:(PCB) substrates is an interesting alternative due to these differentiating characteristics: commercially available substrates with integrated electronics, sensors and actuators; disposable devices at low cost, and very high potential of commercialization. These devices are known as Lab-on-PCBs (LOPs). The following are some of the advantages of PCB technology: a) PCB-based circuit design offers great flexibility and can be tailored to specific demands. b) PCB technology enables the integration of electronic and sensing modules on the same platform, reducing device size while maintaining accuracy of detection. c) The standardized and established PCB manufacturing process allows for cost-effective large-scale production of PCB-based detection devices. d) The growth of flexible PCB technology has driven the development of wearable detection devices. As a result, over the past decade, there have been numerous reports on the application of Lab-on-PCB to various biomedical fields. e) PCBs are compatible with wet deposition methods, to allow for the fabrication of sensors using novel nanomaterials (e.g. graphene). 546:
for controlled separation and mixing. In such devices it is possible to quickly diagnose and potentially treat diseases. As mentioned above, a big motivation for development of these is that they can potentially be manufactured at very low cost. One more area of research that is being looked into with regards to LOC is with home security. Automated monitoring of volatile organic compounds (VOCs) is a desired functionality for LOC. If this application becomes reliable, these micro-devices could be installed on a global scale and notify homeowners of potentially dangerous compounds.
225:, developed in 1979 by S.C. Terry at Stanford University. However, only at the end of the 1980s and beginning of the 1990s did the LOC research start to seriously grow as a few research groups in Europe developed micropumps, flowsensors and the concepts for integrated fluid treatments for analysis systems. These μTAS concepts demonstrated that integration of pre-treatment steps, usually done at lab-scale, could extend the simple sensor functionality towards a complete laboratory analysis, including additional cleaning and separation steps. 176: 590: 576: 35: 265:. Sub-micrometre and nano-sized channels, DNA labyrinths, single cell detection and analysis, and nano-sensors, might become feasible, allowing new ways of interaction with biological species and large molecules. Many books have been written that cover various aspects of these devices, including the fluid transport, system properties, sensing techniques, and bioanalytical applications. 317:. The demand for cheap and easy LOC prototyping resulted in a simple methodology for the fabrication of PDMS microfluidic devices: ESCARGOT (Embedded SCAffold RemovinG Open Technology). This technique allows for the creation of microfluidic channels, in a single block of PDMS, via a dissolvable scaffold (made by e.g. 167:, the physics, manipulation and study of minute amounts of fluids. However, strictly regarded "lab-on-a-chip" indicates generally the scaling of single or multiple lab processes down to chip-format, whereas "μTAS" is dedicated to the integration of the total sequence of lab processes to perform chemical analysis. 545:
is the gold standard for obtaining CD4 counts, but flow cytometry is a complicated technique that is not available in most developing areas because it requires trained technicians and expensive equipment. Recently such a cytometer was developed for just $ 5. Another active area of LOC research is
460:
For the chips to be used in areas with limited resources, many challenges must be overcome. In developed nations, the most highly valued traits for diagnostic tools include speed, sensitivity, and specificity; but in countries where the healthcare infrastructure is less well developed, attributes
397:
In the microliter scale that LOCs deal with, surface dependent effects like capillary forces, surface roughness or chemical interactions are more dominant. This can sometimes make replicating lab processes in LOCs quite challenging and more complex than in conventional lab
321:). Furthermore, the LOC field more and more exceeds the borders between lithography-based microsystem technology, nanotechnology and precision engineering. Printing is considered as a well-established yet maturing method for rapid prototyping in chip fabrication. 252:
agents. The added value was not only limited to integration of lab processes for analysis but also the characteristic possibilities of individual components and the application to other, non-analysis, lab processes. Hence the term "lab-on-a-chip" was introduced.
386:
The complex fluidic actuation network requires multiple pumps and connectors, where fine control is difficult. It can be overcome by careful simulation, an intrinsic pump, such as air-bag embed chip, or by using a centrifugal force to replace the pumping, i.e.
261:, but also in synthetic chemistry such as rapid screening and microreactors for pharmaceutics. Besides further application developments, research in LOC systems is expected to extend towards downscaling of fluid handling structures as well, by using 220:
Next to pressure sensors, airbag sensors and other mechanically movable structures, fluid handling devices were developed. Examples are: channels (capillary connections), mixers, valves, pumps and dosing devices. The first LOC analysis system was a
798:
Chokkalingam Venkat; Tel Jurjen; Wimmers Florian; Liu Xin; Semenov Sergey; Thiele Julian; Figdor Carl G.; Huck Wilhelm T.S. (2013). "Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics".
256:
Although the application of LOCs is still novel and modest, a growing interest of companies and applied research groups is observed in different fields such as chemical analysis, environmental monitoring, medical diagnostics and
284:
fabrication. Because of demands for e.g. specific optical characteristics, bio- or chemical compatibility, lower production costs and faster prototyping, new processes have been developed such as glass, ceramics and metal
374:
The micro-manufacturing process required to make them is complex and labor-intensive, requiring both expensive equipment and specialized personnel. It can be overcome by the recent technology advancement on low-cost
461:
such as ease of use and shelf life must also be considered. The reagents that come with the chip, for example, must be designed so that they remain effective for months even if the chip is not kept in a
430:
to identify patients who should receive the drugs. Many researchers believe that LOC technology may be the key to powerful new diagnostic instruments. The goal of these researchers is to create
1265:
Fenech-Salerno, Benji; Holicky, Martin; Yao, Chengning; Cass, Anthony E. G.; Torrisi, Felice (2023). "A sprayed graphene transistor platform for rapid and low-cost chemical sensing".
268:
The size of the global lab on chip market was estimated at US$ 5,698 million in 2021 and is projected to increase to US$ 14,772 million by 2030, at a CAGR of 11.5% from 2022 to 2030
1432:
Sanchez-Salmeron, A. J.; Lopez-Tarazon, R.; Guzman-Diana, R.; Ricolfe-Viala, C. (2005-08-30). "Recent development in micro-handling systems for micro-manufacturing".
1719:
AK Yetisen; L Jiang; J R Cooper; Y Qin; R Palanivelu; Y Zohar (May 2011). "A microsystem-based assay for studying pollen tube guidance in plant reproduction".
788:
A.Manz, N.Graber and H.M.Widmer: Miniaturized total Chemical Analysis systems: A Novel Concept for Chemical Sensing, Sensors and Actuators, B 1 (1990) 244–248.
426:
that would be treatable in a developed nation are often deadly. In some cases, poor healthcare clinics have the drugs to treat a certain illness but lack the
394:
Most LOCs are novel proof of concept application that are not yet fully developed for widespread use. More validations are needed before practical employment.
361:
safer platform for chemical, radioactive or biological studies because of integration of functionality, smaller fluid volumes and stored energies
541:
in a person's blood is an accurate way to determine if a person has HIV and to track the progress of an HIV infection . At the moment, flow
228:
A big boost in research and commercial interest came in the mid-1990s, when μTAS technologies turned out to provide interesting tooling for
1009:"Fabrication and Functionalization of 3D Printed Polydimethylsiloxane-Based Microfluidic Devices Obtained through Digital Light Processing" 564:. Specifically, plant on a chip is a miniaturized device in which pollen tissues and ovules could be incubated for plant sciences studies. 343:
faster analysis and response times due to short diffusion distances, fast heating, high surface to volume ratios, small heat capacities.
209:-compatibility limited processes, a tool box became available to create micrometre or sub-micrometre sized mechanical structures in 913:
Ghallab, Y.; Badawy, W. (2004-01-01). "Sensing methods for dielectrophoresis phenomenon: from bulky instruments to lab-on-a-chip".
533:
infections are a good example. Around 36.9 million people are infected with HIV in the world today and 59% of these people receive
485:
One of the most prominent and well known LOC devices to reach the market is the at home pregnancy test kit, a device that utilizes
1847: 1829: 1810: 1791: 1478: 1370:
Pawell, Ryan S.; Taylor, Robert A.; Morris, Kevin V.; Barber, Tracie J. (2015). "Automating microfluidic part verification".
1222:
Zhao, Wenhao; Tian, Shulin; Huang, Lei; Liu, Ke; Dong, Lijuan (2020). "The review of Lab‐on‐PCB for biomedical application".
845: 99: 346:
better process control because of a faster response of the system (e.g. thermal control for exothermic chemical reactions)
71: 298: 1770:
Geschke, Klank & Telleman, eds.: Microsystem Engineering of Lab-on-a-chip Devices, 1st ed, John Wiley & Sons.
1775: 388: 118: 78: 1494:
Paul Yager; Thayne Edwards; Elain Fu; Kristen Helton; Kjell Nelson; Milton R. Tam; Bernhard H. Weigl (July 2006).
340:
low fluid volumes consumption (less waste, lower reagents costs and less required sample volumes for diagnostics)
244:(Defense Advanced Research Projects Agency), for their interest in portable systems to aid in the detection of 214: 179: 156: 85: 56: 52: 280:. Initially most processes were in silicon, as these well-developed technologies were directly derived from 1862: 1839: 434:
chips that will allow healthcare providers in poorly equipped clinics to perform diagnostic tests such as
67: 620: 1867: 1008: 709:
James B. Angell; Stephen C. Terry; Phillip W. Barth (April 1983). "Silicon Micromechanical Devices".
642: 486: 314: 233: 148: 147:(commonly called a "chip") of only millimeters to a few square centimeters to achieve automation and 1598:"Digital dipstick: miniaturized bacteria detection and digital quantification for the point-of-care" 1007:
Gonzalez, Gustavo; Chiappone, Annalisa; Dietlikee, Kurt; Pirri, Fabrizio; Roppolo, Ignazio (2020).
514: 1872: 1596:
Iseri, Emre; Biggel, Michael; Goossens, Herman; Moons, Pieter; van der Wijngaart, Wouter (2020).
1100: 1048:"Simple 3D Printed Scaffold-Removal Method for the Fabrication of Intricate Microfluidic Devices" 986: 522: 435: 45: 20: 355:
lower fabrication costs, allowing cost-effective disposable chips, fabricated in mass production
1877: 1660: 537:
treatment. Only 75% of people living with HIV knew their HIV status. Measuring the number of
336:
LOCs may provide advantages, which are specific to their application. Typical advantages are:
1882: 1405:
Engel, U; Eckstein, R (2002-09-09). "Microforming – from basic research to its realization".
746:
Terry J.H.Jerman (1979). "A Gas Chromatographic Air Analyzer Fabricated on a Silicon Wafer".
654: 489:
technology. Another active area of LOC research involves ways to diagnose and manage common
419: 402: 325: 160: 1728: 1509: 755: 720: 560: 290: 92: 8: 711: 674:
Volpatti, L. R.; Yetisen, A. K. (Jul 2014). "Commercialization of microfluidic devices".
538: 490: 423: 210: 1740: 1732: 1513: 759: 724: 1744: 1578: 1535: 1387: 1347: 1322: 1300: 1247: 1199: 1170: 1151: 1072: 1047: 1028: 938: 771: 603: 286: 245: 182: 144: 1431: 1418: 1115: 732: 1843: 1825: 1806: 1787: 1771: 1627: 1619: 1570: 1527: 1474: 1445: 1352: 1304: 1292: 1251: 1239: 1204: 1155: 1143: 1077: 1032: 930: 841: 816: 691: 608: 595: 518: 349:
compactness of the systems due to integration of much functionality and small volumes
310: 302: 222: 1748: 1582: 1391: 775: 1736: 1699: 1609: 1562: 1553:
Yetisen A. K. (2013). "Paper-based microfluidic point-of-care diagnostic devices".
1539: 1517: 1500: 1466: 1441: 1414: 1379: 1342: 1334: 1282: 1274: 1231: 1194: 1184: 1135: 1127: 1067: 1059: 1020: 942: 922: 808: 797: 763: 728: 683: 631: 521:. A recent study based on lab-on-a-chip technology, Digital Dipstick, miniaturised 294: 277: 249: 1131: 687: 881: 636: 534: 462: 427: 414:
Lab-on-a-chip technology may soon become an important part of efforts to improve
401:
Detection principles may not always scale down in a positive way, leading to low
380: 352:
massive parallelization due to compactness, which allows high-throughput analysis
237: 202: 190: 1645: 1436:. 2005 International Forum on the Advances in Materials Processing Technology. 708: 649: 581: 306: 262: 240:. A big boost in research support also came from the military, especially from 1704: 1687: 1493: 1470: 1383: 1096: 926: 1856: 1623: 1175: 934: 626: 526: 474: 415: 281: 194: 164: 1287: 767: 1631: 1574: 1531: 1356: 1296: 1243: 1235: 1208: 1147: 1081: 1063: 1024: 820: 695: 617:: detect bacteria, viruses and cancers based on antigen-antibody reactions. 446: 442: 431: 205:
manufacturing (1966) as well. Due to further development of these usually
1323:"Manufacturing and wetting low-cost microfluidic cell separation devices" 614: 555: 510: 498: 477:
in mind as they choose what materials and fabrication techniques to use.
470: 376: 318: 198: 1522: 1495: 835: 1614: 1597: 1566: 1278: 1189: 837:
Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices
812: 140: 1338: 1139: 175: 542: 506: 258: 875: 34: 575: 494: 229: 589: 151:. LOCs can handle extremely small fluid volumes down to less than 1688:"Chip-scale gas chromatography: From injection through detection" 1822:
Lab-on-a-chip: Techniques, Circuits, and Biomedical Applications
1718: 1496:"Microfluidic diagnostic technologies for global public health" 1097:"Simple fabrication of complex microfluidic devices (ESCARGOT)" 1006: 449: 438: 16:
Device integrating laboratory functions on a integrated circuit
1803:
Lab-on-a-Chip Technology: Biomolecular Separation and Analysis
271: 673: 502: 241: 152: 1264: 1819: 466: 305:-based 3D printing as well as fast replication methods via 206: 19:
This article is about the technology. For the journal, see
1045: 1686:
Akbar, Muhammad; Restaino, Michael; Agah, Masoud (2015).
530: 1595: 1369: 525:
into a dipstick format and enabled it to be used at the
1840:
Methods in Molecular Biology – Microfluidic Diagnostics
1784:
Lab-on-a-Chip Technology: Fabrication and Microfluidics
648:
Testing the safety and efficacy of new drugs, as with
422:
devices. In countries with few healthcare resources,
370:
The most prominent disadvantages of labs-on-chip are:
1838:(2012) Gareth Jenkins & Colin D Mansfield (eds): 955: 480: 1800: 1781: 1646:"Global HIV & AIDS statistics — 2019 fact sheet" 1103:
from the original on 2021-12-22 – via YouTube.
571: 554:
Lab-on-a-chip devices could be used to characterize
1316: 1314: 59:. Unsourced material may be challenged and removed. 1465:. Microsystems. Vol. 10. SpringerLink. 2002. 1685: 1094: 876:Karniadakis, G.M.; Beskok, A.; Aluru, N. (2005). 1854: 1311: 1221: 1171:"Lab-on-PCB and Flow Driving: A Critical Review" 745: 276:The basis for most LOC fabrication processes is 1589: 1113: 1552: 1404: 1320: 912: 645:: detection of bacteria, viruses and cancers. 139:) is a device that integrates one or several 1116:"Integrated Printed Microfluidic Biosensors" 465:environment. Chip designers must also keep 197:structures for microelectronic chips, these 1546: 833: 272:Chip materials and fabrication technologies 159:(MEMS) devices and sometimes called "micro 1434:Journal of Materials Processing Technology 1407:Journal of Materials Processing Technology 1168: 869: 418:, particularly through the development of 358:part quality may be verified automatically 1703: 1613: 1521: 1487: 1346: 1286: 1198: 1188: 1071: 1046:Saggiomo, V.; Velders, H. A. (Jul 2015). 860: 611:: detection of cancer cells and bacteria. 201:-based technologies were soon applied in 119:Learn how and when to remove this message 973:Biological Applications of Microfluidics 949: 894: 174: 155:. Lab-on-a-chip devices are a subset of 970: 888: 1855: 1820:Yehya H. Ghallab; Wael Badawy (2010). 1463:Microfluidics and BioMEMS Applications 1114:Loo J, Ho A, Turner A, Mak WC (2019). 301:(OSTEmer) processing, thick-film- and 1801:Herold, KE; Rasooly, A, eds. (2009). 1782:Herold, KE; Rasooly, A, eds. (2009). 1457: 1455: 964: 908: 906: 529:. When it comes to viral infections, 324:The development of LOC devices using 1661:"Diagnosis in the palm of your hand" 854: 827: 455: 299:Off-stoichiometry thiol-ene polymers 57:adding citations to reliable sources 28: 13: 1759: 1692:Microsystems & Nanoengineering 1452: 1095:Vittorio Saggiomo (17 July 2015). 915:IEEE Circuits and Systems Magazine 903: 481:Examples of global LOC application 185:, sometimes called "lab on a chip" 14: 1894: 1658: 733:10.1038/scientificamerican0483-44 549: 509:. A gold standard for diagnosing 389:centrifugal micro-fluidic biochip 193:(≈1954) for realizing integrated 1446:10.1016/j.jmatprotec.2005.06.027 987:"Acumen Research and Consulting" 588: 574: 409: 365: 33: 1712: 1679: 1652: 1638: 1425: 1398: 1363: 1258: 1215: 1162: 1107: 1088: 1039: 1013:Advanced Materials Technologies 1000: 979: 958:Microfluidics for Biotechnology 44:needs additional citations for 1372:Microfluidics and Nanofluidics 1169:Perdigones, Francisco (2021). 840:. Cambridge University Press. 791: 782: 739: 702: 667: 215:microelectromechanical systems 180:Microelectromechanical systems 157:microelectromechanical systems 1: 1824:. Artech House. p. 220. 1741:10.1088/0960-1317/21/5/054018 1419:10.1016/S0924-0136(02)00415-6 1132:10.1016/j.tibtech.2019.03.009 688:10.1016/j.tibtech.2014.04.010 660: 331: 956:Berthier, J.; Silberzan, P. 897:Introduction to Microfluidic 748:IEEE Trans. Electron Devices 452:with no laboratory support. 7: 567: 10: 1899: 1805:. Caister Academic Press. 1786:. Caister Academic Press. 289:, deposition and bonding, 170: 18: 1705:10.1038/micronano.2015.39 1471:10.1007/978-1-4757-3534-5 1384:10.1007/s10404-014-1464-1 927:10.1109/MCAS.2004.1337805 863:Theoretical Microfluidics 487:paper-based microfluidics 293:(PDMS) processing (e.g., 234:capillary electrophoresis 149:high-throughput screening 878:Microflows and Nanoflows 515:urinary tract infections 217:(MEMS) era had started. 1413:(Supplement C): 35–44. 1120:Trends in Biotechnology 768:10.1109/T-ED.1979.19791 676:Trends in Biotechnology 523:microbiological culture 436:microbiological culture 189:After the invention of 163:" (μTAS). LOCs may use 1721:J. Micromech. Microeng 1321:Pawell Ryan S (2013). 1236:10.1002/elps.201900444 1064:10.1002/advs.201500125 1025:10.1002/admt.202000374 403:signal-to-noise ratios 186: 161:total analysis systems 143:functions on a single 1665:Multimedia::Cytometer 655:Total analysis system 621:Ion channel screening 420:point-of-care testing 326:printed circuit board 178: 1230:(16–17): 1433–1445. 834:Kirby, B.J. (2010). 561:Arabidopsis thaliana 291:polydimethylsiloxane 53:improve this article 1863:Integrated circuits 1733:2011JMiMi..21e4018Y 1523:10.1038/nature05064 1514:2006Natur.442..412Y 760:1979ITED...26.1880T 725:1983SciAm.248d..44A 712:Scientific American 491:infectious diseases 424:infectious diseases 232:applications, like 1615:10.1039/D0LC00793E 1567:10.1039/C3LC50169H 1279:10.1039/d2nr05838c 1190:10.3390/mi12020175 861:Bruus, H. (2007). 813:10.1039/C3LC50945A 604:Biochemical assays 539:CD4+ T lymphocytes 463:climate controlled 187: 145:integrated circuit 1848:978-1-62703-133-2 1831:978-1-59693-418-4 1812:978-1-904455-47-9 1793:978-1-904455-46-2 1667:. The Daily Bruin 1608:(23): 4349–4356. 1561:(12): 2210–2251. 1508:(7101): 412–418. 1480:978-1-4419-5316-2 1339:10.1063/1.4821315 1126:(10): 1104–1120. 847:978-0-521-11903-0 807:(24): 4740–4744. 754:(12): 1880–1886. 609:Dielectrophoresis 596:Technology portal 519:microbial culture 456:Global challenges 311:injection molding 303:stereolithography 223:gas chromatograph 129: 128: 121: 103: 1890: 1868:Laboratory types 1842:, Humana Press, 1835: 1816: 1797: 1753: 1752: 1716: 1710: 1709: 1707: 1683: 1677: 1676: 1674: 1672: 1659:Ozcan, Aydogan. 1656: 1650: 1649: 1642: 1636: 1635: 1617: 1593: 1587: 1586: 1550: 1544: 1543: 1525: 1491: 1485: 1484: 1459: 1450: 1449: 1429: 1423: 1422: 1402: 1396: 1395: 1367: 1361: 1360: 1350: 1327:Biomicrofluidics 1318: 1309: 1308: 1290: 1273:(7): 3243–3254. 1262: 1256: 1255: 1219: 1213: 1212: 1202: 1192: 1166: 1160: 1159: 1111: 1105: 1104: 1092: 1086: 1085: 1075: 1052:Advanced Science 1043: 1037: 1036: 1004: 998: 997: 995: 993: 983: 977: 976: 968: 962: 961: 953: 947: 946: 910: 901: 900: 892: 886: 885: 873: 867: 866: 858: 852: 851: 831: 825: 824: 795: 789: 786: 780: 779: 743: 737: 736: 706: 700: 699: 671: 632:Microphysiometry 598: 593: 592: 584: 579: 578: 428:diagnostic tools 295:soft lithography 278:photolithography 250:chemical warfare 124: 117: 113: 110: 104: 102: 61: 37: 29: 1898: 1897: 1893: 1892: 1891: 1889: 1888: 1887: 1853: 1852: 1832: 1813: 1794: 1762: 1760:Further reading 1757: 1756: 1717: 1713: 1684: 1680: 1670: 1668: 1657: 1653: 1644: 1643: 1639: 1594: 1590: 1551: 1547: 1492: 1488: 1481: 1461: 1460: 1453: 1430: 1426: 1403: 1399: 1368: 1364: 1319: 1312: 1263: 1259: 1224:Electrophoresis 1220: 1216: 1167: 1163: 1112: 1108: 1093: 1089: 1044: 1040: 1005: 1001: 991: 989: 985: 984: 980: 969: 965: 954: 950: 911: 904: 893: 889: 882:Springer Verlag 874: 870: 859: 855: 848: 832: 828: 796: 792: 787: 783: 744: 740: 707: 703: 672: 668: 663: 637:Organ-on-a-chip 594: 587: 580: 573: 570: 552: 535:anti-retroviral 483: 458: 412: 381:laser engraving 368: 334: 274: 238:DNA microarrays 203:pressure sensor 191:microtechnology 173: 125: 114: 108: 105: 68:"Lab-on-a-chip" 62: 60: 50: 38: 27: 17: 12: 11: 5: 1896: 1886: 1885: 1880: 1875: 1873:Nanotechnology 1870: 1865: 1851: 1850: 1836: 1830: 1817: 1811: 1798: 1792: 1779: 1767: 1766: 1761: 1758: 1755: 1754: 1711: 1678: 1651: 1637: 1588: 1545: 1486: 1479: 1451: 1440:(2): 499–507. 1424: 1397: 1378:(4): 657–665. 1362: 1310: 1288:10044/1/102808 1257: 1214: 1161: 1106: 1087: 1038: 1019:(9): 2000374. 999: 978: 963: 948: 902: 887: 868: 853: 846: 826: 790: 781: 738: 701: 682:(7): 347–350. 665: 664: 662: 659: 658: 657: 652: 650:lung on a chip 646: 639: 634: 629: 624: 618: 612: 606: 600: 599: 585: 582:Biology portal 569: 566: 551: 550:Plant sciences 548: 482: 479: 457: 454: 411: 408: 407: 406: 399: 395: 392: 384: 367: 364: 363: 362: 359: 356: 353: 350: 347: 344: 341: 333: 330: 307:electroplating 273: 270: 263:nanotechnology 211:silicon wafers 172: 169: 127: 126: 41: 39: 32: 15: 9: 6: 4: 3: 2: 1895: 1884: 1881: 1879: 1878:Microfluidics 1876: 1874: 1871: 1869: 1866: 1864: 1861: 1860: 1858: 1849: 1845: 1841: 1837: 1833: 1827: 1823: 1818: 1814: 1808: 1804: 1799: 1795: 1789: 1785: 1780: 1777: 1776:3-527-30733-8 1773: 1769: 1768: 1764: 1763: 1750: 1746: 1742: 1738: 1734: 1730: 1727:(5): 054018. 1726: 1722: 1715: 1706: 1701: 1697: 1693: 1689: 1682: 1666: 1662: 1655: 1647: 1641: 1633: 1629: 1625: 1621: 1616: 1611: 1607: 1603: 1602:Lab on a Chip 1599: 1592: 1584: 1580: 1576: 1572: 1568: 1564: 1560: 1556: 1555:Lab on a Chip 1549: 1541: 1537: 1533: 1529: 1524: 1519: 1515: 1511: 1507: 1503: 1502: 1497: 1490: 1482: 1476: 1472: 1468: 1464: 1458: 1456: 1447: 1443: 1439: 1435: 1428: 1420: 1416: 1412: 1408: 1401: 1393: 1389: 1385: 1381: 1377: 1373: 1366: 1358: 1354: 1349: 1344: 1340: 1336: 1333:(5): 056501. 1332: 1328: 1324: 1317: 1315: 1306: 1302: 1298: 1294: 1289: 1284: 1280: 1276: 1272: 1268: 1261: 1253: 1249: 1245: 1241: 1237: 1233: 1229: 1225: 1218: 1210: 1206: 1201: 1196: 1191: 1186: 1182: 1178: 1177: 1176:Micromachines 1172: 1165: 1157: 1153: 1149: 1145: 1141: 1137: 1133: 1129: 1125: 1121: 1117: 1110: 1102: 1098: 1091: 1083: 1079: 1074: 1069: 1065: 1061: 1057: 1053: 1049: 1042: 1034: 1030: 1026: 1022: 1018: 1014: 1010: 1003: 988: 982: 974: 967: 959: 952: 944: 940: 936: 932: 928: 924: 920: 916: 909: 907: 898: 895:Tabeling, P. 891: 883: 879: 872: 864: 857: 849: 843: 839: 838: 830: 822: 818: 814: 810: 806: 802: 801:Lab on a Chip 794: 785: 777: 773: 769: 765: 761: 757: 753: 749: 742: 734: 730: 726: 722: 718: 714: 713: 705: 697: 693: 689: 685: 681: 677: 670: 666: 656: 653: 651: 647: 644: 640: 638: 635: 633: 630: 628: 627:Microfluidics 625: 623:(patch clamp) 622: 619: 616: 613: 610: 607: 605: 602: 601: 597: 591: 586: 583: 577: 572: 565: 563: 562: 557: 547: 544: 540: 536: 532: 528: 527:point-of-care 524: 520: 516: 512: 508: 504: 500: 496: 492: 488: 478: 476: 475:recyclability 472: 468: 464: 453: 451: 448: 444: 440: 437: 433: 429: 425: 421: 417: 416:global health 410:Global health 404: 400: 396: 393: 390: 385: 382: 378: 373: 372: 371: 366:Disadvantages 360: 357: 354: 351: 348: 345: 342: 339: 338: 337: 329: 327: 322: 320: 316: 312: 308: 304: 300: 296: 292: 288: 283: 282:semiconductor 279: 269: 266: 264: 260: 254: 251: 247: 243: 239: 235: 231: 226: 224: 218: 216: 213:as well: the 212: 208: 204: 200: 196: 195:semiconductor 192: 184: 181: 177: 168: 166: 165:microfluidics 162: 158: 154: 150: 146: 142: 138: 134: 133:lab-on-a-chip 123: 120: 112: 101: 98: 94: 91: 87: 84: 80: 77: 73: 70: –  69: 65: 64:Find sources: 58: 54: 48: 47: 42:This article 40: 36: 31: 30: 25: 23: 22:Lab on a Chip 1883:Optofluidics 1821: 1802: 1783: 1724: 1720: 1714: 1695: 1691: 1681: 1669:. Retrieved 1664: 1654: 1640: 1605: 1601: 1591: 1558: 1554: 1548: 1505: 1499: 1489: 1462: 1437: 1433: 1427: 1410: 1406: 1400: 1375: 1371: 1365: 1330: 1326: 1270: 1266: 1260: 1227: 1223: 1217: 1180: 1174: 1164: 1123: 1119: 1109: 1090: 1055: 1051: 1041: 1016: 1012: 1002: 990:. Retrieved 981: 972: 971:Gomez, F.A. 966: 957: 951: 918: 914: 896: 890: 877: 871: 862: 856: 836: 829: 804: 800: 793: 784: 751: 747: 741: 719:(4): 44–55. 716: 710: 704: 679: 675: 669: 559: 558:guidance in 553: 484: 459: 447:nucleic acid 443:immunoassays 432:microfluidic 413: 369: 335: 323: 275: 267: 255: 227: 219: 188: 136: 132: 130: 115: 106: 96: 89: 82: 75: 63: 51:Please help 46:verification 43: 21: 921:(3): 5–15. 615:Immunoassay 556:pollen tube 511:bacteriuria 499:bacteriuria 471:scalability 377:3D printing 319:3D printing 199:lithography 153:pico-liters 109:August 2010 1857:Categories 1671:26 January 1183:(2): 175. 1140:1826/15985 661:References 641:Real-time 493:caused by 398:equipment. 332:Advantages 246:biological 141:laboratory 79:newspapers 1624:1473-0197 1305:256261782 1267:Nanoscale 1252:210699552 1156:119536401 1033:225360332 935:1531-636X 543:cytometry 507:influenza 315:embossing 259:cellomics 24:(journal) 1749:12989263 1632:33169747 1583:17745196 1575:23652632 1532:16871209 1392:96793921 1357:24404077 1297:36723120 1244:31945803 1209:33578984 1148:30992149 1101:Archived 1082:27709002 1058:(8): X. 821:24185478 776:21971431 696:24954000 568:See also 495:bacteria 230:genomics 1729:Bibcode 1540:4429504 1510:Bibcode 1348:3785532 1200:7916810 1073:5115388 943:6178424 756:Bibcode 721:Bibcode 505:, e.g. 497:, e.g. 287:etching 171:History 93:scholar 1846:  1828:  1809:  1790:  1774:  1747:  1630:  1622:  1581:  1573:  1538:  1530:  1501:Nature 1477:  1390:  1355:  1345:  1303:  1295:  1250:  1242:  1207:  1197:  1154:  1146:  1080:  1070:  1031:  992:23 May 941:  933:  844:  819:  774:  694:  473:, and 450:assays 439:assays 95:  88:  81:  74:  66:  1765:Books 1745:S2CID 1579:S2CID 1536:S2CID 1388:S2CID 1301:S2CID 1248:S2CID 1152:S2CID 1029:S2CID 939:S2CID 772:S2CID 517:) is 503:virus 242:DARPA 100:JSTOR 86:books 1844:ISBN 1826:ISBN 1807:ISBN 1788:ISBN 1772:ISBN 1673:2015 1628:PMID 1620:ISSN 1571:PMID 1528:PMID 1475:ISBN 1353:PMID 1293:PMID 1240:PMID 1205:PMID 1144:PMID 1078:PMID 994:2023 931:ISSN 842:ISBN 817:PMID 692:PMID 467:cost 445:and 379:and 313:and 248:and 236:and 207:CMOS 183:chip 72:news 1737:doi 1700:doi 1610:doi 1563:doi 1518:doi 1506:442 1467:doi 1442:doi 1438:167 1415:doi 1411:125 1380:doi 1343:PMC 1335:doi 1283:hdl 1275:doi 1232:doi 1195:PMC 1185:doi 1136:hdl 1128:doi 1068:PMC 1060:doi 1021:doi 923:doi 809:doi 764:doi 729:doi 717:248 684:doi 643:PCR 531:HIV 501:or 297:), 137:LOC 55:by 1859:: 1743:. 1735:. 1725:25 1723:. 1698:. 1694:. 1690:. 1663:. 1626:. 1618:. 1606:20 1604:. 1600:. 1577:. 1569:. 1559:13 1557:. 1534:. 1526:. 1516:. 1504:. 1498:. 1473:. 1454:^ 1409:. 1386:. 1376:18 1374:. 1351:. 1341:. 1329:. 1325:. 1313:^ 1299:. 1291:. 1281:. 1271:15 1269:. 1246:. 1238:. 1228:41 1226:. 1203:. 1193:. 1181:12 1179:. 1173:. 1150:. 1142:. 1134:. 1124:37 1122:. 1118:. 1099:. 1076:. 1066:. 1054:. 1050:. 1027:. 1015:. 1011:. 937:. 929:. 917:. 905:^ 880:. 815:. 805:13 803:. 770:. 762:. 752:26 750:. 727:. 715:. 690:. 680:32 678:. 469:, 441:, 309:, 131:A 1834:. 1815:. 1796:. 1778:. 1751:. 1739:: 1731:: 1708:. 1702:: 1696:1 1675:. 1648:. 1634:. 1612:: 1585:. 1565:: 1542:. 1520:: 1512:: 1483:. 1469:: 1448:. 1444:: 1421:. 1417:: 1394:. 1382:: 1359:. 1337:: 1331:7 1307:. 1285:: 1277:: 1254:. 1234:: 1211:. 1187:: 1158:. 1138:: 1130:: 1084:. 1062:: 1056:2 1035:. 1023:: 1017:5 996:. 975:. 960:. 945:. 925:: 919:4 899:. 884:. 865:. 850:. 823:. 811:: 778:. 766:: 758:: 735:. 731:: 723:: 698:. 686:: 513:( 405:. 391:. 383:. 135:( 122:) 116:( 111:) 107:( 97:· 90:· 83:· 76:· 49:. 26:.

Index

Lab on a Chip (journal)

verification
improve this article
adding citations to reliable sources
"Lab-on-a-chip"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
laboratory
integrated circuit
high-throughput screening
pico-liters
microelectromechanical systems
total analysis systems
microfluidics

Microelectromechanical systems
chip
microtechnology
semiconductor
lithography
pressure sensor
CMOS
silicon wafers
microelectromechanical systems
gas chromatograph

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.