Knowledge

X-ray photoelectron spectroscopy

Source 📝

567:
Some, but not all, polymers, catalysts, certain highly oxygenated compounds, various inorganic compounds and fine organics are. Non-monochromatic X-ray sources produce a significant amount of high energy Bremsstrahlung X-rays (1–15 keV of energy) which directly degrade the surface chemistry of various materials. Non-monochromatic X-ray sources also produce a significant amount of heat (100 to 200 °C) on the surface of the sample because the anode that produces the X-rays is typically only 1 to 5 cm (2 in) away from the sample. This level of heat, when combined with the Bremsstrahlung X-rays, acts to increase the amount and rate of degradation for certain materials. Monochromatised X-ray sources, because they are farther away (50–100 cm) from the sample, do not produce noticeable heat effects. In those, a quartz monochromator system diffracts the Bremsstrahlung X-rays out of the X-ray beam, which means the sample is only exposed to one narrow band of X-ray energy. For example, if aluminum K-alpha X-rays are used, the intrinsic energy band has a FWHM of 0.43 eV, centered on 1,486.7 eV (
1008:(FWHM) values are useful indicators of chemical state changes and physical influences. Their increase may indicate a change in the number of chemical bonds, a change in the sample condition (x-ray damage) or differential charging of the surface (localised differences in the charge state of the surface). However, the FWHM also depends on the detector, and can also increase due to the sample getting charged. When using high energy resolution experiment settings on an XPS equipped with a monochromatic Al K-alpha X-ray source, the FWHM of the major XPS peaks range from 0.3 eV to 1.7 eV. The following is a simple summary of FWHM from major XPS signals: Main metal peaks (e.g. 1s, 2p3, 3d5, 4f7) from pure metals have FWHMs that range from 0.30 eV to 1.0 eV Main metal peaks (e.g. 1s, 2p3, 3d5, 4f7) from binary metal oxides have FWHMs that range from 0.9 eV to 1.7 eV The O (1s) peak from binary metal oxides have FWHMs that, in general, range from 1.0 eV to 1.4 eV The C (1s) peak from adventitious hydrocarbons have FWHMs that, in general, range from 1.0 eV to 1.4 eV 541:, peak intensity, accuracy of relative sensitivity factors, correction for electron transmission function, surface volume homogeneity, correction for energy dependence of electron mean free path, and degree of sample degradation due to analysis. Under optimal conditions, the quantitative accuracy of the atomic percent (at%) values calculated from the major XPS peaks is 90-95% for each peak. The quantitative accuracy for the weaker XPS signals, that have peak intensities 10-20% of the strongest signal, are 60-80% of the true value, and depend upon the amount of effort used to improve the signal-to-noise ratio (for example by signal averaging). Quantitative precision (the ability to repeat a measurement and obtain the same result) is an essential consideration for proper reporting of quantitative results. 843:. They have high energy resolution and spatial selection of the emitted electrons. Sometimes, however, much simpler electron energy filters - the cylindrical mirror analyzers are used, most often for checking the elemental composition of the surface. They represent a trade-off between the need for high count rates and high angular/energy resolution. This type consists of two co-axial cylinders placed in front of the sample, the inner one being held at a positive potential, while the outer cylinder is held at a negative potential. Only the electrons with the right energy can pass through this setup and are detected at the end. The count rates are high but the resolution (both in energy and angle) is poor. 391: 550:
because of secondary emitted electrons. For example, in the case of gold on silicon where the high cross section Au4f peak is at a higher kinetic energy than the major silicon peaks, it sits on a very low background and detection limits of 1ppm or better may be achieved with reasonable acquisition times. Conversely for silicon on gold, where the modest cross section Si2p line sits on the large background below the Au4f lines, detection limits would be much worse for the same acquisition time. Detection limits are often quoted as 0.1–1.0 % atomic percent (0.1% = 1
1000:
needs to know if the topmost 15 nm of the sample is expected to be a homogeneous material or is expected to be a mixture of materials. If the top 15 nm is a homogeneous material with only very minor amounts of adventitious carbon and adsorbed gases, then the analyst can use theoretical peak area ratios to enhance the peak-fitting process. Peak fitting results are affected by overall peak widths (at half maximum, FWHM), possible chemical shifts, peak shapes, instrument design factors and experimental settings, as well as sample properties:
623:
trapping in various excited states within the material, all of which can reduce the number of escaping photoelectrons. These effects appear as an exponential attenuation function as the depth increases, making the signals detected from analytes at the surface much stronger than the signals detected from analytes deeper below the sample surface. Thus, the signal measured by XPS is an exponentially surface-weighted signal, and this fact can be used to estimate analyte depths in layered materials.
399: 4951: 979:
spectra. Charge induced shifting is normally due to a modest excess of low voltage (-1 to -20 eV) electrons attached to the surface, or a modest shortage of electrons (+1 to +15 eV) within the top 1-12 nm of the sample caused by the loss of photo-emitted electrons. If, by chance, the charging of the surface is excessively positive, then the spectrum might appear as a series of rolling hills, not sharp peaks as shown in the example spectrum.
850:: a single channeltron for single energy detection, or arrays of channeltrons and microchannel plates for parallel acquisition. These devices consists of a glass channel with a resistive coating on the inside. A high voltage is applied between the front and the end. An incoming electron is accelerated to the wall, where it removes more electrons, in such a way that an electron avalanche is created, until a measurable current pulse is obtained. 4963: 203: 20: 58:, and the overall electronic structure and density of the electronic states in the material. XPS is a powerful measurement technique because it not only shows what elements are present, but also what other elements they are bonded to. The technique can be used in line profiling of the elemental composition across the surface, or in depth profiling when paired with 492: 632: 1840: 987:
from the sample mount. The peak is normally found between 284.5 eV and 285.5 eV. The 284.8 eV binding energy is routinely used as the reference binding energy for charge referencing insulators, so that the charge correction factor is the difference between 284.8 eV and the experimentally measured C (1s) peak position.
2595: 1335:
From the theoretical point of view, the photoemission process from a solid can be described with a semiclassical approach, where the electromagnetic field is still treated classically, while a quantum-mechanical description is used for matter. The one—particle Hamiltonian for an electron subjected to
999:
The process of peak-fitting high energy resolution XPS spectra is a mixture of scientific knowledge and experience. The process is affected by instrument design, instrument components, experimental settings and sample variables. Before starting any peak-fit effort, the analyst performing the peak-fit
947:
to produce a high brilliance and high flux photon beam. The beam is orders of magnitude more intense and better collimated than typically produced by anode-based sources. Synchrotron radiation is also tunable over a wide wavelength range, and can be made polarized in several distinct ways. This way,
918:
peak for a clean silver film or foil will typically have a FWHM of 0.45 eV. Non-monochromatic magnesium X-rays have a wavelength of 9.89 angstroms (0.989 nm) which corresponds to a photon energy of 1253 eV. The energy width of the non-monochromated X-ray is roughly 0.70 eV, which is the ultimate
906:
X-rays is 0.16 eV, but energy broadening in common electron energy analyzers (spectrometers) produces an ultimate energy resolution on the order of FWHM=0.25 eV which is the ultimate energy resolution of most commercial systems. Under practical conditions, high energy-resolution settings produce peak
566:
Degradation depends on the sensitivity of the material to the wavelength of X-rays used, the total dose of the X-rays, the temperature of the surface and the level of the vacuum. Metals, alloys, ceramics and most glasses are not measurably degraded by either non-monochromatic or monochromatic X-rays.
536:
XPS is widely used to generate an empirical formula because it readily yields excellent quantitative accuracy from homogeneous solid-state materials. Absolute quantification requires the use of certified (or independently verified) standard samples, and is generally more challenging, and less common.
990:
Conductive materials and most native oxides of conductors should never need charge referencing. Conductive materials should never be charge referenced unless the topmost layer of the sample has a thick non-conductive film. The charging effect, if needed, can also be compensated by providing suitable
622:
XPS detects only electrons that have actually escaped from the sample into the vacuum of the instrument. In order to escape from the sample, a photoelectron must travel through the sample. Photo-emitted electrons can undergo inelastic collisions, recombination, excitation of the sample, recapture or
495:
Wide-scan or survey spectrum of a somewhat dirty silicon wafer, showing all elements present. A survey spectrum is usually the starting point of most XPS analyses. It allows one to set up subsequent high-resolution XPS spectra acquisition. The inset shows a quantification table indicating the atomic
3042:
Three main factors enter the Gaussian broadening of the spectra: the experimental energy resolution, vibrational and inhomogeneous broadening. The first effect is caused by the non perfect monochromaticity of the photon beam -which results in a finite bandwidth- and by the limited resolving power
2368:
uses the approximation that the perturbation acts on the system for an infinite time. This approximation is valid when the time that the perturbation acts on the system is much larger than the time needed for the transition. It should be understood that this equation needs to be integrated with the
664:
The ability to produce chemical state information, i.e. the local bonding environment of an atomic species in question from the topmost few nanometers of the sample makes XPS a unique and valuable tool for understanding the chemistry of the surface. The local bonding environment is affected by the
986:
to each of the experimentally measured peaks. Since various hydrocarbon species appear on all air-exposed surfaces, the binding energy of the hydrocarbon C (1s) XPS peak is used to charge correct all energies obtained from non-conductive samples or conductors that have been deliberately insulated
978:
Charge referencing is needed when a sample suffers a charge induced shift of experimental binding energies to obtain meaningful binding energies from both wide-scan, high sensitivity (low energy resolution) survey spectra (0-1100 eV), and also narrow-scan, chemical state (high energy resolution)
549:
Detection limits may vary greatly with the cross section of the core state of interest and the background signal level. In general, photoelectron cross sections increase with atomic number. The background increases with the atomic number of the matrix constituents as well as the binding energy,
2281: 969:
Before beginning the process of peak identification, the analyst must determine if the binding energies of the unprocessed survey spectrum (0-1400 eV) have or have not been shifted due to a positive or negative surface charge. This is most often done by looking for two peaks that are due to the
613:
Typically ranging 1–20 minutes for a broad survey scan that measures the amount of all detectable elements, typically 1–15 minutes for high resolution scan that reveal chemical state differences (for a high signal/noise ratio for count area result often requires multiple sweeps of the region of
965:
The number of peaks produced by a single element varies from 1 to more than 20. Tables of binding energies that identify the shell and spin-orbit of each peak produced by a given element are included with modern XPS instruments, and can be found in various handbooks and websites. Because these
595:
Measured area depends on instrument design. The minimum analysis area ranges from 10 to 200 micrometres. Largest size for a monochromatic beam of X-rays is 1–5 mm. Non-monochromatic beams are 10–50 mm in diameter. Spectroscopic image resolution levels of 200 nm or below has been
587:, CO) and liquids (e.g., water, alcohol, solvents, etc.) that were initially trapped within or on the surface of the sample, the chemistry and morphology of the surface will continue to change until the surface achieves a steady state. This type of degradation is sometimes difficult to detect. 951:
One of the synchrotron facilities that allows XPS measurement is Max IV synchrotron in Lund, Sweden. The Hippie beam line of this facility also allows to perform in operando Ambient Pressure X-Ray Photoelectron Spectroscopy (AP-XPS9. This latter technique allows to measure samples in ambient
660:). The fact that the metallic silicon signal can be seen "through" the overlayer of oxidized Si indicates that the silicon oxide layer is relatively thin (2-3 nm). Attenuation of XPS signals from deeper layers by overlayers is often used in XPS to estimate layer thicknesses and depths. 1662: 1015:
versus the BE of one form of the pure element, or of a particular agreed-upon chemical state of that element. Component peaks derived from peak-fitting a raw chemical state spectrum can be assigned to the presence of different chemical states within the sampling volume of the
604:
Instruments accept small (mm range) and large samples (cm range), e.g. wafers. The limiting factor is the design of the sample holder, the sample transfer, and the size of the vacuum chamber. Large samples are laterally moved in x and y direction to analyze a larger area.
381:
can be thought of as an adjustable instrumental correction factor that accounts for the few eV of kinetic energy given up by the photoelectron as it gets emitted from the bulk and absorbed by the detector. It is a constant that rarely needs to be adjusted in practice.
3043:
of the analyzer. The vibrational component is produced by the excitation of low energy vibrational modes both in the initial and in the final state. Finally, inhomogeneous broadening can originate from the presence of unresolved core level components in the spectrum.
948:
photon can be selected yielding optimum photoionization cross-sections for probing a particular core level. The high photon flux, in addition, makes it possible to perform XPS experiments also from low density atomic species, such as molecular and atomic adsorbates.
614:
interest), 1–4 hours for a depth profile that measures 4–5 elements as a function of etched depth (this process time can vary the most as many factors will play a role). The time to complete a measurement is generally dependent on the brilliance of the X-ray source.
3037: 2600:
In a real photoemission experiment the ground state core electron BE cannot be directly probed, because the measured BE incorporates both initial state and final state effects, and the spectral linewidth is broadened owing to the finite core-hole lifetime
991:
low energy charges to the surface by the use of low-voltage (1-20 eV) electron beam from an electron flood gun, UV lights, low-voltage argon ion beam with low-voltage electron beam (1-10 eV), aperture masks, mesh screen with low-voltage electron beams, etc.
3056:
In a solid, inelastic scattering events also contribute to the photoemission process, generating electron-hole pairs which show up as an inelastic tail on the high BE side of the main photoemission peak. In fact this allows the calculation of electron
3346: 537:
Relative quantification involves comparisons between several samples in a set for which one or more analytes are varied while all other components (the sample matrix) are held constant. Quantitative accuracy depends on several parameters such as:
835:
magnetic shielding, an electron collection lens, an electron energy analyzer, an electron detector system, a sample introduction chamber, sample mounts, a sample stage with the ability to heat or cool the sample, and a set of stage manipulators.
2818: 430:, a magnetic field hemisphere (an electron kinetic energy analyzer), and photographic plates, to record broad bands of emitted electrons as a function of velocity, in effect recording the first XPS spectrum. Other researchers, including 2051: 302: 524:, etc. The number of detected electrons in each peak is directly related to the amount of element within the XPS sampling volume. To generate atomic percentage values, each raw XPS signal is corrected by dividing the intensity by a 646:= 1-2) appear at higher binding energies in the broad feature centered at 103.67 eV. The so-called metallic form of silicon, which resides below an upper layer of oxidized silicon, exhibits a set of doublet peaks at 100.30 eV (Si 2 2404: 1498: 3489: 583:= 3,483). These are the intrinsic X-ray line widths; the range of energies to which the sample is exposed depends on the quality and optimization of the X-ray monochromator. Because the vacuum removes various gases (e.g., O 1028:
Sample factors that affect the peak fitting are the number of physical defects within the analysis volume (from ion etching, or laser cleaning), and the very physical form of the sample (single crystal, polished, powder,
458:
photoemission experiments, which he referred to as Electron Spectroscopy for Chemical Analysis (ESCA). In cooperation with Siegbahn, a small group of engineers (Mike Kelly, Charles Bryson, Lavier Faye, Robert Chaney) at
3180:
is the axis perpendicular to the sample. In fact it is generally the case that the IMFP is only weakly material dependent, but rather strongly dependent on the photoelectron kinetic energy. Quantitatively we can relate
2120: 4122:
Dahl, Øystein; Sunding, Martin Fleissner; Killi, Veronica; Svenum, Ingeborg-Helene; Grandcolas, Mathieu; Andreassen, Magnus; Nilsen, Ola; Thøgersen, Annett; Jensen, Ingvild Julie Thue; Chatzitakis, Athanasios (2023).
635:
High-resolution spectrum of an oxidized silicon wafer in the energy range of the Si 2p signal. The raw data spectrum (red) is fitted with five components or chemical states, A through E. The more oxidized forms of Si
3884: 3636: 919:
energy resolution of a system using non-monochromatic X-rays. Non-monochromatic X-ray sources do not use any crystal to diffract the X-rays allowing all primary X-rays lines and the full range of high-energy
665:
formal oxidation state, the identity of its nearest-neighbor atoms, and its bonding hybridization to the nearest-neighbor or next-nearest-neighbor atoms. For example, while the nominal binding energy of the C
1835:{\displaystyle \left(\mathbf {\hat {p}} -{\frac {e}{c}}\mathbf {\hat {A}} \right)^{2}={\hat {p}}^{2}-2{\frac {e}{c}}\mathbf {\hat {A}} \cdot \mathbf {\hat {p}} +\left({\frac {e}{c}}\right)^{2}{\hat {A}}^{2}} 798:
Chemical state analysis of the surface of a silicon wafer reveals chemical shifts due to different formal oxidation states, such as: n-doped silicon and p-doped silicon (metallic silicon), silicon suboxide
5224: 62:. It is often applied to study chemical processes in the materials in their as-received state or after cleavage, scraping, exposure to heat, reactive gasses or solutions, ultraviolet light, or during 1873:
term in the Hamiltonian, we are disregarding possible photocurrent contributions. Such effects are generally negligible in the bulk, but may become important at the surface. The quadratic term in
966:
experimentally determined energies are characteristic of specific elements, they can be directly used to identify experimentally measured peaks of a material with unknown elemental composition.
2906: 1598: 454:(NaCl), revealing the potential of XPS. A few years later in 1967, Siegbahn published a comprehensive study of XPS, bringing instant recognition of the utility of XPS and also the first 683:
Chemical-state analysis is widely used for carbon. It reveals the presence or absence of the chemical states of carbon, in approximate order of increasing binding energy, as: carbide (-
3135: 1871: 1114: 2892: 2664: 5261: 1022:
Instrument design factors include linewidth and purity of X-rays used (monochromatic Al, non-monochromatic Mg, Synchrotron, Ag, Zr), as well as properties of the electron analyzer.
907:
widths (FWHM) between 0.4 and 0.6 eV for various elements and some compounds. For example, in a spectrum obtained for one minute at 20 eV pass energy using monochromated aluminum K
1011:
Chemical shift values depend on the degree of electron bond polarization between nearest-neighbor atoms. A specific chemical shift is the difference in BE values of one specific
3716: 4081:
Mårtensson, N.; Söderstrom, J.; Svensson, S.; Travnikova, O.; Patanen, M.; Miron, C.; Sæthre, L. J.; Børve, K. J.; Thomas, T. D.; Kas, J. J.; Vila, F. D.; Rehr, J. J. (2013).
3675: 3495:
so that surface and bulk plasmons can be easily distinguished from each other. Plasmon states in a solid are typically localized at the surface, and can strongly affect IMFP.
1966: 3214: 3413: 3206: 1932: 38:) is a surface-sensitive quantitative spectroscopic technique that measures the very topmost 200 atoms, 0.01 um, 10 nm of any surface. It belongs to the family of 1893: 1544: 3777: 1303: 1261: 1182: 3540: 2108: 2081: 1330: 3158: 2396: 4012:
ESCA atomic, molecular and solid state structure studies by means of electron spectroscopy : Presented to the Royal Society of S#ience of Uppsala, Dec. 3rd, 1965
2841: 2692: 2684: 1215: 3750: 2896:
The photoemission event leaves the atom in a highly excited core ionized state, from which it can decay radiatively (fluorescence) or non-radiatively (typically by
3427:
excitations are also observed. This can either be a final state effect caused by core hole decay, which generates quantized electron wave excitations in the solid (
2861: 2619: 2362: 2339: 2312: 1895:
can be instead safely neglected, since its contribution in a typical photoemission experiment is about one order of magnitude smaller than that of the first term .
1522: 1140: 939:
radiation facilities. Here, bunches of relativistic electrons kept in orbit inside a storage ring are accelerated through bending magnets or insertion devices like
379: 347: 4782: 1654: 85:(p < 10 Pa) conditions, although a current area of development is ambient-pressure XPS, in which samples are analyzed at pressures of a few tens of millibar. 3369: 3178: 1564: 238: 191:
and biological samples by freezing them in their hydrated state in an ultrapure environment, and allowing multilayers of ice to sublime away prior to analysis.
2590:{\displaystyle {\frac {d\omega }{dt}}\propto {\frac {2\pi }{\hbar }}|\langle \psi _{f}|{\hat {H}}'|\psi _{i}\rangle |^{2}\rho (E_{f})=|M_{fi}|^{2}\rho (E_{f})} 1974: 353:-like term for the specific surface of the material, which in real measurements includes a small correction by the instrument's work function because of the 1342: 3964:
Ray, S. and A.G. Shard, Quantitative Analysis of Adsorbed Proteins by X-ray Photoelectron Spectroscopy. Analytical Chemistry, 2011. 83(22): p. 8659-8666.
3445: 5278: 4455: 2276:{\displaystyle {\frac {d\omega }{dt}}\propto {\frac {2\pi }{\hbar }}|\langle \psi _{f}|{\hat {H}}'|\psi _{i}\rangle |^{2}\delta (E_{f}-E_{i}-h\nu )} 4422: 2900:
decay). Besides Lorentzian broadening, photoemission spectra are also affected by a Gaussian broadening, whose contribution can be expressed by
4396: 3785: 4125:"Interrogation of the Interfacial Energetics at a Tantalum Nitride/Electrolyte Heterojunction during Photoelectrochemical Water Splitting by 450:) developed several significant improvements in the equipment, and in 1954 recorded the first high-energy-resolution XPS spectrum of cleaved 4673: 4606: 4551: 4520: 467:
for Physics in 1981, to acknowledge his extensive efforts to develop XPS into a useful analytical tool. In parallel with Siegbahn's work,
3552: 4515: 878:
X-rays are normally produced by diffracting and focusing a beam of non-monochromatic X-rays off of a thin disc of natural, crystalline
5319: 4888: 4706: 4568: 3908: 3515:) experiment. The simplest way to account for vibrational effects is by multiplying the scattered single-photoelectron wave function 528:(RSF), and normalized over all of the elements detected. Since hydrogen is not detected, these atomic percentages exclude hydrogen. 5382: 5329: 4837: 4656: 815:). An example of this is seen in the figure "High-resolution spectrum of an oxidized silicon wafer in the energy range of the Si 2 54:
that can identify the elements that exist within a material (elemental composition) or are covering its surface, as well as their
5001: 4777: 4579: 4500: 4480: 5241: 4723: 4701: 4448: 3914: 2056:
In time-dependent perturbation theory, for an harmonic or constant perturbation, the transition rate between the initial state
840: 480: 1217:
is the kinetic energy of the photoelectron. If reference is taken with respect to the Fermi level (as it is typically done in
5256: 4789: 4711: 4368: 4238: 5339: 5334: 4646: 4591: 4541: 3938: 1898:
In first-order perturbation approach, the one-electron Hamiltonian can be split into two terms, an unperturbed Hamiltonian
4427: 575:= 3,457). If magnesium K-alpha X-rays are used, the intrinsic energy band has a FWHM of 0.36 eV, centered on 1,253.7 eV ( 5412: 5397: 5266: 434:, Rawlinson and Robinson, independently performed various experiments to sort out the details in the broad bands. After 4294: 3895: 886:. The resulting wavelength is 8.3386 angstroms (0.83386 nm) corresponding to a 1486.7 eV photon energy. Aluminum K 4046:
Turner, D. W.; Jobory, M. I. Al (1962). "Determination of Ionization Potentials by Photoelectron Energy Measurement".
3926: 3032:{\displaystyle I_{G}(E)={\frac {I_{0}}{\sigma {\sqrt {2}}}}\exp {\left(-{\frac {(E-E_{b})^{2}}{2\sigma ^{2}}}\right)}} 4873: 4625: 4441: 4387: 4269: 3945: 5293: 4878: 4407:, J.F.Moulder, W.F.Stickle, P.E.Sobol, and K.D.Bomben, published by Perkin-Elmer Corp., 1992, Eden Prairie, MN, USA 4033: 4893: 4863: 4794: 4728: 1569: 923:
X-rays (1–12 keV) to reach the surface. The ultimate energy resolution (FWHM) when using a non-monochromatic Mg K
5475: 5465: 4822: 4613: 4510: 3077: 1848: 1049: 3439:
of first-layer atoms, the plasma frequency of bulk and surface atoms are related by the following equation:
5344: 5309: 4967: 4620: 4525: 2868: 2627: 3752:
emitter. In the Debye model, the mean squared displacement is calculated in terms of the Debye temperature,
5407: 5377: 5236: 5209: 4754: 4601: 4490: 5387: 5354: 5324: 5288: 4994: 4910: 4749: 4718: 4651: 3932: 3431:), or it can be due to excitations induced by photoelectrons travelling from the emitter to the surface ( 4430:
Technique background information, useful analysis resources and monochromated XPS equipment description.
3680: 3341:{\displaystyle \lambda ({\text{nm}})=\left(E_{\text{kin}}\right)^{-2}+\left(E_{\text{kin}}\right)^{1/2}} 5433: 5273: 5161: 4900: 4842: 4691: 4563: 3920: 1218: 1005: 39: 3645: 4926: 4905: 4546: 3974:
Siegbahn, K.; Edvarson, K. I. Al (1956). "β-Ray spectroscopy in the precision range of 1 : 10".
3719: 2341:
are the eigenvalues of the unperturbed Hamiltonian in the initial and final state, respectively, and
463:
in the US, produced the first commercial monochromatic XPS instrument in 1969. Siegbahn received the
4668: 3374: 3184: 1901: 5470: 5100: 4332:
Monochromatic XPS Spectra, Database, Peak-fitted Spectra, Overlays, Software, and Application Notes
4256: 3059: 1876: 1527: 59: 4799: 4495: 3755: 3543: 1937: 1266: 1224: 1145: 672:
electron is 284.6 eV, subtle but reproducible shifts in the actual binding energy, the so-called
472: 225: 2813:{\displaystyle I_{L}(E)={\frac {I_{0}}{\pi }}{\frac {\Gamma /2}{(E-E_{b})^{2}+(\Gamma /2)^{2}}}} 2666:), the spectral function will have a Lorentzian shape, with a FWHM (Full Width at Half Maximum) 1019:
Peak shapes depend on instrument parameters, experimental parameters and sample characteristics.
5402: 5251: 4987: 4586: 4261: 3518: 2365: 2111: 2086: 2059: 1308: 505: 419: 358: 3143: 2372: 1184:
is the electron BE (binding energy with respect to the vacuum level) prior to ionization, and
5362: 5231: 5039: 4955: 4827: 4558: 4472: 4376:, 2nd edition, ed. M.P.Seah and D.Briggs, published by Wiley & Sons, 1992, Chichester, UK 2826: 2669: 1187: 940: 927:
source is 0.9–1.0 eV, which includes some contribution from spectrometer-induced broadening.
902:= 3457). For a well–optimized monochromator, the energy width of the monochromated aluminum K 538: 407: 183:, ion-modified materials and many others. Somewhat less routinely XPS is used to analyze the 3725: 935:
A breakthrough has been brought about in the last decades by the development of large scale
390: 5199: 5131: 5064: 4094: 4055: 3983: 3068: 2846: 2604: 2344: 2317: 2290: 1507: 1122: 411: 364: 332: 229: 51: 4419:
XPS Reference Information, Tables, 70,000 Monochromatic XPS Spectra, Databases, and Tables
297:{\displaystyle E_{\text{binding}}=E_{\text{photon}}-\left(E_{\text{kinetic}}+\phi \right)} 8: 5151: 5126: 5105: 4883: 4596: 4505: 4107: 4082: 3436: 847: 504:. Each element produces a set of characteristic XPS peaks. These peaks correspond to the 124: 4098: 4059: 3987: 2046:{\displaystyle {\hat {H}}'=-{\frac {e}{mc}}\mathbf {\hat {A}} \cdot \mathbf {\hat {p}} } 1603: 596:
achieved on latest imaging XPS instruments using synchrotron radiation as X-ray source.
315:
is the binding energy (BE) of the electron measured relative to the chemical potential,
5392: 5171: 5136: 5069: 4931: 4868: 4847: 4663: 4641: 4574: 4485: 3354: 3163: 1549: 551: 422:
1921). Two years after Einstein's publication, in 1907, P.D. Innes experimented with a
168: 112: 101: 3995: 3507:, can broaden the core level components and attenuate the interference patterns in an 1493:{\displaystyle i\hbar {\frac {\partial \psi }{\partial t}}=\left\psi ={\hat {H}}\psi } 1043:
When a photoemission event takes place, the following energy conservation rule holds:
423: 5440: 5372: 5367: 5194: 5166: 5059: 4832: 4759: 4733: 4383: 4364: 4290: 4265: 4234: 4220: 4016: 828: 555: 476: 105: 82: 1263:
must be replaced by the sum of the binding energy (BE) relative to the Fermi level,
224:= 1486.7 eV), and because the emitted electrons' kinetic energies are measured, the 5156: 5034: 4226: 4150: 4140: 4102: 4063: 3991: 3484:{\displaystyle \omega _{\text{surface}}={\frac {\omega _{\text{bulk}}}{\sqrt {2}}}} 677: 500:
A typical XPS spectrum is a plot of the number of electrons detected at a specific
63: 4363:, J.F.Watts, J.Wolstenholme, published by Wiley & Sons, 2003, Chichester, UK, 558:) for practical analyses, but lower limits may be achieved in many circumstances. 108:(ppm) are achievable with long collection times and concentration at top surface. 5428: 5283: 5146: 5110: 5029: 4382:, ed. M.P.Seah and D.Briggs, published by Wiley & Sons, 1983, Chichester, UK 468: 460: 451: 427: 415: 354: 97: 4357:, ed. J.T.Grant and D.Briggs, published by IM Publications, 2003, Chichester, UK 4343:
Handbooks of Monochromatic XPS Spectra - Fully Annotated, PDF of Volumes 1 and 2
4194: 3677:
is the squared magnitude of the wave vector variation caused by scattering, and
2624:
Assuming an exponential decay probability for the core hole in the time domain (
858:
In laboratory systems, either 10–30 mm beam diameter non-monochromatic Al K
1012: 920: 501: 88:
When laboratory X-ray sources are used, XPS easily detects all elements except
70: 55: 4230: 5459: 5204: 4351:, B.V.Crist, published by XPS International LLC, 2004, Mountain View, CA, USA 4345:, B.V.Crist, published by XPS International LLC, 2005, Mountain View, CA, USA 4225:. Advanced Texts in Physics. Berlin, Heidelberg: Springer Berlin Heidelberg. 4145: 4020: 431: 350: 24: 213:
Because the energy of an X-ray with particular wavelength is known (for Al K
5246: 5141: 5054: 5044: 4464: 4124: 883: 439: 435: 5095: 936: 464: 398: 116: 4380:
Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy
4374:
Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy
4310: 4155: 3879:{\displaystyle {\bar {U_{j}^{2}}}(T)=9\hbar ^{2}T^{2}/mk_{B}\Theta _{D}} 1656:), so that the expression in brackets in the Hamiltonian simplifies to: 329:
is the kinetic energy of the electron as measured by the instrument and
5219: 5085: 867: 455: 4080: 4067: 496:
species, their atomic percentages and characteristic binding energies.
4010: 944: 156: 5090: 4083:"On the relation between X-ray Photoelectron Spectroscopy and XAFS" 832: 188: 128: 89: 74: 43: 3631:{\displaystyle W_{j}=\exp {(-\Delta k_{j}^{2}{\bar {U_{j}^{2}}})}} 3046: 827:
The main components of an XPS system are the source of X-rays, an
5214: 3424: 1566:
is the unperturbed potential of the solid. In the Coulomb gauge (
443: 184: 172: 136: 120: 4979: 228:
of each of the emitted electrons can be determined by using the
5049: 4433: 4034:
Electron Spectroscopy for Atoms, Molecules and Condensed Matter
3504: 1025:
Settings of the electron analyzer (e.g. pass energy, step size)
879: 447: 93: 4355:
Surface Analysis by Auger and X-ray Photoelectron Spectroscopy
4338: 1600:), the vector potential commutes with the momentum operator ( 202: 5024: 5010: 4417: 4335: 160: 144: 140: 132: 47: 4260:(Rev. ed.). Addison-Wesley Publishing Company. p.  3371:
is the mean atomic diameter as calculated by the density so
1968:, which describes the effects of the electromagnetic field: 394:
An inside view of an old-type, non-monochromatic XPS system.
180: 164: 152: 19: 3718:
is the temperature-dependent one-dimensional vibrational
1546:
is the vector potential of the electromagnetic field and
176: 148: 69:
Chemical states are inferred from the measurement of the
839:
The most prevalent electron spectrometer for XPS is the
631: 4247: 4170: 491: 4121: 891: 531: 46:
are obtained by irradiating a material with a beam of
3788: 3758: 3728: 3683: 3648: 3555: 3521: 3448: 3415:. The above formula was developed by Seah and Dench. 3377: 3357: 3217: 3187: 3166: 3146: 3080: 2909: 2871: 2849: 2829: 2695: 2672: 2630: 2607: 2407: 2375: 2347: 2320: 2293: 2123: 2089: 2062: 1977: 1940: 1904: 1879: 1851: 1665: 1606: 1572: 1552: 1530: 1510: 1345: 1311: 1269: 1227: 1190: 1148: 1125: 1052: 626: 367: 335: 241: 4400: 3503:
Temperature-dependent atomic lattice vibrations, or
4349:
Handbooks of Monochromatic XPS Spectra, Volumes 1-5
4361:An Introduction to Surface Analysis by XPS and AES 4129:Ambient Pressure X-ray Photoelectron Spectroscopy" 3878: 3771: 3744: 3710: 3669: 3630: 3534: 3483: 3407: 3363: 3340: 3200: 3172: 3152: 3129: 3031: 2886: 2855: 2835: 2812: 2678: 2658: 2613: 2589: 2390: 2356: 2333: 2306: 2275: 2102: 2075: 2045: 1960: 1926: 1887: 1865: 1834: 1648: 1592: 1558: 1538: 1516: 1492: 1324: 1297: 1255: 1209: 1176: 1134: 1108: 373: 341: 296: 77:. XPS requires high vacuum (residual gas pressure 2037: 2022: 1779: 1764: 1703: 1678: 1631: 1616: 1432: 1407: 5457: 3973: 973: 483:(UPS) for molecular species using helium lamps. 3047:Theory of core level photoemission of electrons 1038: 322:is the energy of the X-ray photons being used, 4397:International Organization for Standardization 561: 402:Example of an X-ray Photoelectron Spectrometer 4995: 4449: 874:monochromatised radiation. Monochromatic Al K 866:anode radiation is used, or a focused 20-500 4521:Vibrational spectroscopy of linear molecules 4405:Handbook of X-ray Photoelectron Spectroscopy 4284: 4195:"Handbook of The Elements and Native Oxides" 4045: 2501: 2451: 2217: 2167: 982:Charge referencing is performed by adding a 3423:In some cases, energy loss features due to 3051: 1593:{\displaystyle \nabla \cdot \mathbf {A} =0} 680:), provide the chemical state information. 5002: 4988: 4516:Nuclear resonance vibrational spectroscopy 4456: 4442: 2863:are linked by the indeterminacy relation: 508:of the electrons within the atoms, e.g., 1 4889:Inelastic electron tunneling spectroscopy 4569:Resonance-enhanced multiphoton ionization 4154: 4144: 4106: 3927:Zero electron kinetic energy spectroscopy 3909:Angle-resolved photoemission spectroscopy 3130:{\displaystyle I(z)=I_{0}e^{-z/\lambda }} 1866:{\displaystyle \nabla \cdot \mathbf {A} } 1109:{\displaystyle h\nu =|E_{b}^{v}|+E_{kin}} 4657:Extended X-ray absorption fine structure 4289:. Oxford Chemistry Primers. p. 27. 4008: 930: 630: 490: 397: 389: 201: 18: 4253: 2887:{\displaystyle \Gamma \tau \geq \hbar } 2823:From the theory of Fourier transforms, 2659:{\displaystyle \propto \exp {-t/\tau }} 853: 414:, which was later explained in 1905 by 5458: 4393:Surface Chemical Analysis — Vocabulary 4218: 3915:Ultraviolet photoelectron spectroscopy 3498: 1336:an electromagnetic field is given by: 1033: 960: 617: 481:ultraviolet photoelectron spectroscopy 361:equation. The work function-like term 206:XPS physics - the photoelectric effect 4983: 4437: 4087:Journal of Physics: Conference Series 599: 410:discovered but could not explain the 4962: 4285:Attard, Gary; Barnes, Colin (1998). 3939:Energy-dispersive X-ray spectroscopy 3418: 3067:). This can be modeled based on the 870:diameter beam single wavelength Al K 952:conditions, rather than in vacuum. 894:of 0.43 eV, centered at 1486.7 eV ( 544: 532:Quantitative accuracy and precision 13: 4325: 3901: 3896:List of materials analysis methods 3867: 3760: 3711:{\displaystyle {\bar {U_{j}^{2}}}} 3649: 3582: 2872: 2830: 2786: 2738: 2673: 1934:, plus an interaction Hamiltonian 1852: 1573: 1363: 1355: 1313: 955: 822: 695:), methylene/methyl/hydrocarbon (- 627:Chemical states and chemical shift 14: 5487: 5009: 4874:Deep-level transient spectroscopy 4626:Saturated absorption spectroscopy 4411: 4036:, Nobel Lecture, December 8, 1981 3946:Photoelectron emission microscopy 2881: 2441: 2157: 1349: 892:full width at half maximum (FWHM) 357:. This equation is essentially a 111:XPS is routinely used to analyze 4961: 4950: 4949: 4879:Dual-polarization interferometry 4463: 3670:{\displaystyle \Delta k_{j}^{2}} 2034: 2019: 1881: 1859: 1776: 1761: 1700: 1675: 1628: 1613: 1580: 1532: 1429: 1404: 1305:, and the sample work function, 608: 590: 197: 32:X-ray photoelectron spectroscopy 4894:Scanning tunneling spectroscopy 4869:Circular dichroism spectroscopy 4864:Acoustic resonance spectroscopy 4303: 4278: 4212: 4048:The Journal of Chemical Physics 3509:X-ray photoelectron diffraction 1524:is the electron wave function, 994: 970:presence of carbon and oxygen. 841:hemispherical electron analyzer 4823:Fourier-transform spectroscopy 4511:Vibrational circular dichroism 4187: 4163: 4115: 4108:10.1088/1742-6596/430/1/012131 4074: 4039: 4027: 4002: 3967: 3958: 3819: 3813: 3807: 3702: 3624: 3618: 3576: 3408:{\displaystyle a=\rho ^{-1/3}} 3302: 3278: 3244: 3235: 3229: 3221: 3201:{\displaystyle E_{\text{kin}}} 3090: 3084: 2996: 2976: 2926: 2920: 2798: 2783: 2771: 2751: 2712: 2706: 2584: 2571: 2558: 2539: 2532: 2519: 2506: 2487: 2476: 2465: 2447: 2385: 2379: 2270: 2235: 2222: 2203: 2192: 2181: 2163: 1985: 1948: 1927:{\displaystyle {\hat {H}}_{0}} 1912: 1820: 1730: 1637: 1607: 1481: 1458: 1291: 1271: 1249: 1229: 1170: 1150: 1083: 1063: 803:O), silicon monoxide (SiO), Si 486: 73:and the number of the ejected 1: 4621:Cavity ring-down spectroscopy 4526:Thermal infrared spectroscopy 3996:10.1016/S0029-5582(56)80022-9 3951: 974:Charge referencing insulators 846:Electrons are detected using 42:in which electron population 4755:Inelastic neutron scattering 4399:(ISO), TC/201, Switzerland, 1888:{\displaystyle \mathbf {A} } 1539:{\displaystyle \mathbf {A} } 1039:Quantum mechanical treatment 783:-), and trifluorocarbon (-CH 763:), monofluoro-hydrocarbon (- 40:photoemission spectroscopies 7: 4816:Data collection, processing 4692:Photoelectron/photoemission 3933:Auger electron spectroscopy 3889: 3772:{\displaystyle \Theta _{D}} 1961:{\displaystyle {\hat {H}}'} 1298:{\displaystyle |E_{b}^{F}|} 1256:{\displaystyle |E_{b}^{v}|} 1177:{\displaystyle |E_{b}^{v}|} 771:-), difluoro-hydrocarbon (- 562:Degradation during analysis 526:relative sensitivity factor 187:forms of materials such as 10: 5494: 5274:X-Ray Fluorescence Imaging 5162:Anomalous X-ray scattering 4901:Photoacoustic spectroscopy 4843:Time-resolved spectroscopy 4222:Photoelectron Spectroscopy 4015:. Almqvist & Wiksell. 3921:Photoemission spectroscopy 1219:photoelectron spectroscopy 1006:full width at half maximum 811:, and silicon dioxide (SiO 442:and his research group in 385: 5421: 5353: 5302: 5187: 5180: 5119: 5078: 5017: 4945: 4927:Astronomical spectroscopy 4919: 4906:Photothermal spectroscopy 4856: 4815: 4808: 4770: 4742: 4684: 4634: 4534: 4471: 4395:, ISO 18115 : 2001, 4311:"XPS: The Mean Free Path" 4231:10.1007/978-3-662-09280-4 3720:mean squared displacement 3535:{\displaystyle \phi _{j}} 2103:{\displaystyle \psi _{f}} 2076:{\displaystyle \psi _{i}} 1845:Actually, neglecting the 1325:{\displaystyle \Phi _{0}} 890:X-rays have an intrinsic 5101:Synchrotron light source 4257:Modern Quantum Mechanics 4200:. XPS International, Inc 4146:10.1021/acscatal.3c02423 3153:{\displaystyle \lambda } 3060:inelastic mean free path 3052:Inelastic mean free path 2391:{\displaystyle \rho (E)} 984:Charge Correction Factor 884:<1010> orientation 5120:Interaction with matter 5079:Sources and instruments 4911:Pump–probe spectroscopy 4800:Ferromagnetic resonance 4592:Laser-induced breakdown 4219:Hüfner, Stefan (2003). 2836:{\displaystyle \Gamma } 2679:{\displaystyle \Gamma } 1210:{\displaystyle E_{kin}} 473:Imperial College London 226:electron binding energy 16:Spectroscopic technique 5252:Diffraction tomography 4607:Glow-discharge optical 4587:Raman optical activity 4501:Rotational–vibrational 4009:Siegbahn, Kai (1967). 3880: 3773: 3746: 3745:{\displaystyle j^{th}} 3712: 3671: 3632: 3536: 3485: 3435:). Due to the reduced 3409: 3365: 3342: 3202: 3174: 3154: 3131: 3033: 2888: 2857: 2837: 2814: 2680: 2660: 2615: 2591: 2392: 2364:is the photon energy. 2358: 2335: 2308: 2277: 2104: 2077: 2047: 1962: 1928: 1889: 1867: 1836: 1650: 1594: 1560: 1540: 1518: 1494: 1326: 1299: 1257: 1211: 1178: 1142:is the photon energy, 1136: 1110: 795:), to name but a few. 661: 506:electron configuration 497: 420:Nobel Prize in Physics 403: 395: 375: 359:conservation of energy 343: 298: 210: 50:. XPS is based on the 28: 23:Basic components of a 5476:Electron spectroscopy 5466:Emission spectroscopy 5363:X-ray crystallography 5232:Soft x-ray microscopy 5200:Panoramic radiography 5040:Synchrotron radiation 4828:Hyperspectral imaging 4424:Short Overview on XPS 3881: 3774: 3747: 3713: 3672: 3633: 3537: 3486: 3410: 3366: 3343: 3203: 3175: 3155: 3132: 3034: 2889: 2858: 2856:{\displaystyle \tau } 2838: 2815: 2681: 2661: 2616: 2614:{\displaystyle \tau } 2592: 2393: 2359: 2357:{\displaystyle h\nu } 2336: 2334:{\displaystyle E_{f}} 2309: 2307:{\displaystyle E_{i}} 2278: 2105: 2078: 2048: 1963: 1929: 1890: 1868: 1837: 1651: 1595: 1561: 1541: 1519: 1517:{\displaystyle \psi } 1495: 1327: 1300: 1258: 1212: 1179: 1137: 1135:{\displaystyle h\nu } 1111: 931:Synchrotron based XPS 751:=O), organic ester (- 634: 539:signal-to-noise ratio 494: 408:Heinrich Rudolf Hertz 401: 393: 376: 374:{\displaystyle \phi } 344: 342:{\displaystyle \phi } 299: 205: 22: 5132:Photoelectric effect 5065:Characteristic X-ray 4580:Coherent anti-Stokes 4535:UV–Vis–NIR "Optical" 4254:Sakurai, J. (1995). 4171:"X-Ray Data Booklet" 3786: 3756: 3726: 3681: 3646: 3553: 3519: 3446: 3375: 3355: 3215: 3185: 3164: 3144: 3078: 2907: 2869: 2847: 2827: 2693: 2670: 2628: 2605: 2405: 2373: 2345: 2318: 2291: 2121: 2087: 2083:and the final state 2060: 1975: 1938: 1902: 1877: 1849: 1663: 1604: 1570: 1550: 1528: 1508: 1343: 1309: 1267: 1225: 1188: 1146: 1123: 1050: 854:Laboratory based XPS 848:electron multipliers 831:(UHV) chamber with 653:) and 99.69 eV (Si 2 412:photoelectric effect 365: 333: 239: 230:photoelectric effect 52:photoelectric effect 5152:Photodisintegration 5127:Rayleigh scattering 5106:Free-electron laser 4884:Hadron spectroscopy 4674:Conversion electron 4635:X-ray and Gamma ray 4542:Ultraviolet–visible 4139:(17): 11762–11770. 4099:2013JPhCS.430a2131M 4060:1962JChPh..37.3007T 3988:1956NucPh...1..137S 3806: 3701: 3666: 3617: 3599: 3544:Debye–Waller factor 3499:Vibrational effects 3437:coordination number 2366:Fermi's Golden Rule 2112:Fermi's Golden Rule 1289: 1247: 1168: 1081: 1034:Theoretical aspects 961:Peak identification 618:Surface sensitivity 113:inorganic compounds 5393:X-ray reflectivity 5172:X-ray fluorescence 5137:Compton scattering 5070:High-energy X-rays 4932:Force spectroscopy 4857:Measured phenomena 4848:Video spectroscopy 4552:Cold vapour atomic 3876: 3792: 3769: 3742: 3708: 3687: 3667: 3652: 3628: 3603: 3585: 3532: 3481: 3433:extrinsic plasmons 3429:intrinsic plasmons 3405: 3361: 3338: 3198: 3170: 3150: 3127: 3029: 2884: 2853: 2833: 2810: 2676: 2656: 2611: 2587: 2388: 2369:density of states 2354: 2331: 2304: 2273: 2100: 2073: 2043: 1958: 1924: 1885: 1863: 1832: 1649:{\displaystyle =0} 1646: 1590: 1556: 1536: 1514: 1490: 1322: 1295: 1275: 1253: 1233: 1207: 1174: 1154: 1132: 1106: 1067: 755:OOR), carbonate (- 662: 600:Sample size limits 498: 404: 396: 371: 339: 294: 211: 102:parts per thousand 29: 5453: 5452: 5449: 5448: 5441:X-ray lithography 5373:Backscatter X-ray 5368:X-ray diffraction 5195:X-ray radiography 5167:X-ray diffraction 5060:Siegbahn notation 4977: 4976: 4941: 4940: 4833:Spectrophotometry 4760:Neutron spin echo 4734:Beta spectroscopy 4647:Energy-dispersive 4428:Monochromated XPS 4369:978-0-470-84713-8 4240:978-3-642-07520-9 4068:10.1063/1.1733134 3810: 3705: 3621: 3479: 3478: 3471: 3456: 3419:Plasmonic effects 3364:{\displaystyle a} 3317: 3259: 3227: 3195: 3173:{\displaystyle z} 3021: 2956: 2953: 2808: 2733: 2479: 2444: 2426: 2195: 2160: 2142: 2040: 2025: 2014: 1988: 1951: 1915: 1823: 1801: 1782: 1767: 1756: 1733: 1706: 1695: 1681: 1634: 1619: 1559:{\displaystyle V} 1484: 1461: 1435: 1424: 1410: 1393: 1370: 829:ultra-high vacuum 552:part per thousand 477:Oxford University 355:contact potential 280: 262: 249: 171:, bio-materials, 106:parts per million 83:ultra-high vacuum 5483: 5279:X-ray holography 5185: 5184: 5157:Radiation damage 5004: 4997: 4990: 4981: 4980: 4965: 4964: 4953: 4952: 4813: 4812: 4724:phenomenological 4473:Vibrational (IR) 4458: 4451: 4444: 4435: 4434: 4319: 4318: 4307: 4301: 4300: 4282: 4276: 4275: 4251: 4245: 4244: 4216: 4210: 4209: 4207: 4205: 4199: 4191: 4185: 4184: 4182: 4181: 4167: 4161: 4160: 4158: 4148: 4119: 4113: 4112: 4110: 4078: 4072: 4071: 4043: 4037: 4031: 4025: 4024: 4006: 4000: 3999: 3971: 3965: 3962: 3941:, (EDX or EDXRF) 3885: 3883: 3882: 3877: 3875: 3874: 3865: 3864: 3852: 3847: 3846: 3837: 3836: 3812: 3811: 3805: 3800: 3791: 3778: 3776: 3775: 3770: 3768: 3767: 3751: 3749: 3748: 3743: 3741: 3740: 3717: 3715: 3714: 3709: 3707: 3706: 3700: 3695: 3686: 3676: 3674: 3673: 3668: 3665: 3660: 3637: 3635: 3634: 3629: 3627: 3623: 3622: 3616: 3611: 3602: 3598: 3593: 3565: 3564: 3541: 3539: 3538: 3533: 3531: 3530: 3490: 3488: 3487: 3482: 3480: 3474: 3473: 3472: 3469: 3463: 3458: 3457: 3454: 3414: 3412: 3411: 3406: 3404: 3403: 3399: 3370: 3368: 3367: 3362: 3347: 3345: 3344: 3339: 3337: 3336: 3332: 3323: 3319: 3318: 3315: 3301: 3300: 3296: 3274: 3273: 3265: 3261: 3260: 3257: 3228: 3225: 3207: 3205: 3204: 3199: 3197: 3196: 3193: 3179: 3177: 3176: 3171: 3160:is the IMFP and 3159: 3157: 3156: 3151: 3136: 3134: 3133: 3128: 3126: 3125: 3121: 3105: 3104: 3069:Beer–Lambert law 3038: 3036: 3035: 3030: 3028: 3027: 3023: 3022: 3020: 3019: 3018: 3005: 3004: 3003: 2994: 2993: 2974: 2957: 2955: 2954: 2949: 2943: 2942: 2933: 2919: 2918: 2893: 2891: 2890: 2885: 2862: 2860: 2859: 2854: 2842: 2840: 2839: 2834: 2819: 2817: 2816: 2811: 2809: 2807: 2806: 2805: 2793: 2779: 2778: 2769: 2768: 2749: 2745: 2736: 2734: 2729: 2728: 2719: 2705: 2704: 2685: 2683: 2682: 2677: 2665: 2663: 2662: 2657: 2655: 2651: 2620: 2618: 2617: 2612: 2596: 2594: 2593: 2588: 2583: 2582: 2567: 2566: 2561: 2555: 2554: 2542: 2531: 2530: 2515: 2514: 2509: 2500: 2499: 2490: 2485: 2481: 2480: 2472: 2468: 2463: 2462: 2450: 2445: 2440: 2432: 2427: 2425: 2417: 2409: 2397: 2395: 2394: 2389: 2363: 2361: 2360: 2355: 2340: 2338: 2337: 2332: 2330: 2329: 2313: 2311: 2310: 2305: 2303: 2302: 2282: 2280: 2279: 2274: 2260: 2259: 2247: 2246: 2231: 2230: 2225: 2216: 2215: 2206: 2201: 2197: 2196: 2188: 2184: 2179: 2178: 2166: 2161: 2156: 2148: 2143: 2141: 2133: 2125: 2110:is expressed by 2109: 2107: 2106: 2101: 2099: 2098: 2082: 2080: 2079: 2074: 2072: 2071: 2052: 2050: 2049: 2044: 2042: 2041: 2033: 2027: 2026: 2018: 2015: 2013: 2002: 1994: 1990: 1989: 1981: 1967: 1965: 1964: 1959: 1957: 1953: 1952: 1944: 1933: 1931: 1930: 1925: 1923: 1922: 1917: 1916: 1908: 1894: 1892: 1891: 1886: 1884: 1872: 1870: 1869: 1864: 1862: 1841: 1839: 1838: 1833: 1831: 1830: 1825: 1824: 1816: 1812: 1811: 1806: 1802: 1794: 1784: 1783: 1775: 1769: 1768: 1760: 1757: 1749: 1741: 1740: 1735: 1734: 1726: 1719: 1718: 1713: 1709: 1708: 1707: 1699: 1696: 1688: 1683: 1682: 1674: 1655: 1653: 1652: 1647: 1636: 1635: 1627: 1621: 1620: 1612: 1599: 1597: 1596: 1591: 1583: 1565: 1563: 1562: 1557: 1545: 1543: 1542: 1537: 1535: 1523: 1521: 1520: 1515: 1499: 1497: 1496: 1491: 1486: 1485: 1477: 1468: 1464: 1463: 1462: 1454: 1448: 1447: 1442: 1438: 1437: 1436: 1428: 1425: 1417: 1412: 1411: 1403: 1394: 1392: 1381: 1371: 1369: 1361: 1353: 1331: 1329: 1328: 1323: 1321: 1320: 1304: 1302: 1301: 1296: 1294: 1288: 1283: 1274: 1262: 1260: 1259: 1254: 1252: 1246: 1241: 1232: 1216: 1214: 1213: 1208: 1206: 1205: 1183: 1181: 1180: 1175: 1173: 1167: 1162: 1153: 1141: 1139: 1138: 1133: 1115: 1113: 1112: 1107: 1105: 1104: 1086: 1080: 1075: 1066: 911:X-rays, the Ag 3 678:NMR spectroscopy 545:Detection limits 380: 378: 377: 372: 348: 346: 345: 340: 303: 301: 300: 295: 293: 289: 282: 281: 278: 264: 263: 260: 251: 250: 247: 169:medical implants 64:ion implantation 60:ion-beam etching 5493: 5492: 5486: 5485: 5484: 5482: 5481: 5480: 5471:Surface science 5456: 5455: 5454: 5445: 5429:X-ray astronomy 5417: 5349: 5298: 5284:X-ray telescope 5176: 5147:Photoionization 5115: 5111:X-ray nanoprobe 5074: 5030:Absorption edge 5018:Characteristics 5013: 5008: 4978: 4973: 4937: 4915: 4852: 4804: 4766: 4738: 4680: 4630: 4530: 4491:Resonance Raman 4467: 4462: 4414: 4328: 4326:Further reading 4323: 4322: 4309: 4308: 4304: 4297: 4283: 4279: 4272: 4252: 4248: 4241: 4217: 4213: 4203: 4201: 4197: 4193: 4192: 4188: 4179: 4177: 4169: 4168: 4164: 4120: 4116: 4079: 4075: 4044: 4040: 4032: 4028: 4007: 4003: 3976:Nuclear Physics 3972: 3968: 3963: 3959: 3954: 3904: 3902:Related methods 3892: 3870: 3866: 3860: 3856: 3848: 3842: 3838: 3832: 3828: 3801: 3796: 3790: 3789: 3787: 3784: 3783: 3763: 3759: 3757: 3754: 3753: 3733: 3729: 3727: 3724: 3723: 3696: 3691: 3685: 3684: 3682: 3679: 3678: 3661: 3656: 3647: 3644: 3643: 3612: 3607: 3601: 3600: 3594: 3589: 3575: 3560: 3556: 3554: 3551: 3550: 3526: 3522: 3520: 3517: 3516: 3501: 3468: 3464: 3462: 3453: 3449: 3447: 3444: 3443: 3421: 3395: 3388: 3384: 3376: 3373: 3372: 3356: 3353: 3352: 3328: 3324: 3314: 3310: 3306: 3305: 3292: 3288: 3284: 3266: 3256: 3252: 3248: 3247: 3224: 3216: 3213: 3212: 3192: 3188: 3186: 3183: 3182: 3165: 3162: 3161: 3145: 3142: 3141: 3117: 3110: 3106: 3100: 3096: 3079: 3076: 3075: 3071:, which states 3054: 3049: 3014: 3010: 3006: 2999: 2995: 2989: 2985: 2975: 2973: 2969: 2965: 2964: 2948: 2944: 2938: 2934: 2932: 2914: 2910: 2908: 2905: 2904: 2870: 2867: 2866: 2848: 2845: 2844: 2828: 2825: 2824: 2801: 2797: 2789: 2774: 2770: 2764: 2760: 2750: 2741: 2737: 2735: 2724: 2720: 2718: 2700: 2696: 2694: 2691: 2690: 2671: 2668: 2667: 2647: 2640: 2629: 2626: 2625: 2606: 2603: 2602: 2578: 2574: 2562: 2557: 2556: 2547: 2543: 2538: 2526: 2522: 2510: 2505: 2504: 2495: 2491: 2486: 2471: 2470: 2469: 2464: 2458: 2454: 2446: 2433: 2431: 2418: 2410: 2408: 2406: 2403: 2402: 2374: 2371: 2370: 2346: 2343: 2342: 2325: 2321: 2319: 2316: 2315: 2298: 2294: 2292: 2289: 2288: 2255: 2251: 2242: 2238: 2226: 2221: 2220: 2211: 2207: 2202: 2187: 2186: 2185: 2180: 2174: 2170: 2162: 2149: 2147: 2134: 2126: 2124: 2122: 2119: 2118: 2094: 2090: 2088: 2085: 2084: 2067: 2063: 2061: 2058: 2057: 2032: 2031: 2017: 2016: 2006: 2001: 1980: 1979: 1978: 1976: 1973: 1972: 1943: 1942: 1941: 1939: 1936: 1935: 1918: 1907: 1906: 1905: 1903: 1900: 1899: 1880: 1878: 1875: 1874: 1858: 1850: 1847: 1846: 1826: 1815: 1814: 1813: 1807: 1793: 1789: 1788: 1774: 1773: 1759: 1758: 1748: 1736: 1725: 1724: 1723: 1714: 1698: 1697: 1687: 1673: 1672: 1671: 1667: 1666: 1664: 1661: 1660: 1626: 1625: 1611: 1610: 1605: 1602: 1601: 1579: 1571: 1568: 1567: 1551: 1548: 1547: 1531: 1529: 1526: 1525: 1509: 1506: 1505: 1476: 1475: 1453: 1452: 1443: 1427: 1426: 1416: 1402: 1401: 1400: 1396: 1395: 1385: 1380: 1379: 1375: 1362: 1354: 1352: 1344: 1341: 1340: 1316: 1312: 1310: 1307: 1306: 1290: 1284: 1279: 1270: 1268: 1265: 1264: 1248: 1242: 1237: 1228: 1226: 1223: 1222: 1195: 1191: 1189: 1186: 1185: 1169: 1163: 1158: 1149: 1147: 1144: 1143: 1124: 1121: 1120: 1094: 1090: 1082: 1076: 1071: 1062: 1051: 1048: 1047: 1041: 1036: 997: 976: 963: 958: 956:Data processing 933: 926: 917: 910: 905: 889: 877: 873: 865: 861: 856: 825: 823:Instrumentation 814: 810: 806: 802: 794: 786: 782: 778: 770: 762: 747:-OH), ketone (- 742: 738: 722: 718: 710: 702: 694: 687:), silane (-Si- 671: 659: 652: 640: 629: 620: 611: 602: 593: 586: 564: 547: 534: 489: 461:Hewlett-Packard 452:sodium chloride 428:Helmholtz coils 416:Albert Einstein 388: 366: 363: 362: 334: 331: 330: 328: 321: 314: 277: 273: 272: 268: 259: 255: 246: 242: 240: 237: 236: 223: 216: 200: 194: 155:, plant parts, 98:detection limit 17: 12: 11: 5: 5491: 5490: 5479: 5478: 5473: 5468: 5451: 5450: 5447: 5446: 5444: 5443: 5438: 5437: 5436: 5425: 5423: 5419: 5418: 5416: 5415: 5410: 5405: 5400: 5395: 5390: 5385: 5380: 5375: 5370: 5365: 5359: 5357: 5351: 5350: 5348: 5347: 5342: 5337: 5332: 5327: 5322: 5317: 5312: 5306: 5304: 5300: 5299: 5297: 5296: 5291: 5286: 5281: 5276: 5271: 5270: 5269: 5264: 5259: 5249: 5244: 5239: 5234: 5229: 5228: 5227: 5222: 5212: 5207: 5202: 5197: 5191: 5189: 5182: 5178: 5177: 5175: 5174: 5169: 5164: 5159: 5154: 5149: 5144: 5139: 5134: 5129: 5123: 5121: 5117: 5116: 5114: 5113: 5108: 5103: 5098: 5093: 5088: 5082: 5080: 5076: 5075: 5073: 5072: 5067: 5062: 5057: 5052: 5047: 5042: 5037: 5032: 5027: 5021: 5019: 5015: 5014: 5007: 5006: 4999: 4992: 4984: 4975: 4974: 4972: 4971: 4959: 4946: 4943: 4942: 4939: 4938: 4936: 4935: 4929: 4923: 4921: 4917: 4916: 4914: 4913: 4908: 4903: 4898: 4897: 4896: 4886: 4881: 4876: 4871: 4866: 4860: 4858: 4854: 4853: 4851: 4850: 4845: 4840: 4835: 4830: 4825: 4819: 4817: 4810: 4806: 4805: 4803: 4802: 4797: 4792: 4787: 4786: 4785: 4774: 4772: 4768: 4767: 4765: 4764: 4763: 4762: 4752: 4746: 4744: 4740: 4739: 4737: 4736: 4731: 4726: 4721: 4716: 4715: 4714: 4709: 4707:Angle-resolved 4704: 4699: 4688: 4686: 4682: 4681: 4679: 4678: 4677: 4676: 4666: 4661: 4660: 4659: 4654: 4649: 4638: 4636: 4632: 4631: 4629: 4628: 4623: 4618: 4617: 4616: 4611: 4610: 4609: 4594: 4589: 4584: 4583: 4582: 4572: 4566: 4561: 4556: 4555: 4554: 4544: 4538: 4536: 4532: 4531: 4529: 4528: 4523: 4518: 4513: 4508: 4503: 4498: 4493: 4488: 4483: 4477: 4475: 4469: 4468: 4461: 4460: 4453: 4446: 4438: 4432: 4431: 4425: 4420: 4413: 4412:External links 4410: 4409: 4408: 4402: 4390: 4377: 4371: 4358: 4352: 4346: 4340: 4327: 4324: 4321: 4320: 4302: 4296:978-0198556862 4295: 4277: 4270: 4246: 4239: 4211: 4186: 4162: 4114: 4073: 4038: 4026: 4001: 3982:(8): 137–159. 3966: 3956: 3955: 3953: 3950: 3949: 3948: 3942: 3935: 3929: 3923: 3917: 3911: 3903: 3900: 3899: 3898: 3891: 3888: 3887: 3886: 3873: 3869: 3863: 3859: 3855: 3851: 3845: 3841: 3835: 3831: 3827: 3824: 3821: 3818: 3815: 3809: 3804: 3799: 3795: 3766: 3762: 3739: 3736: 3732: 3704: 3699: 3694: 3690: 3664: 3659: 3655: 3651: 3640: 3639: 3626: 3620: 3615: 3610: 3606: 3597: 3592: 3588: 3584: 3581: 3578: 3574: 3571: 3568: 3563: 3559: 3529: 3525: 3500: 3497: 3493: 3492: 3477: 3467: 3461: 3452: 3420: 3417: 3402: 3398: 3394: 3391: 3387: 3383: 3380: 3360: 3349: 3348: 3335: 3331: 3327: 3322: 3313: 3309: 3304: 3299: 3295: 3291: 3287: 3283: 3280: 3277: 3272: 3269: 3264: 3255: 3251: 3246: 3243: 3240: 3237: 3234: 3231: 3223: 3220: 3191: 3169: 3149: 3138: 3137: 3124: 3120: 3116: 3113: 3109: 3103: 3099: 3095: 3092: 3089: 3086: 3083: 3053: 3050: 3048: 3045: 3040: 3039: 3026: 3017: 3013: 3009: 3002: 2998: 2992: 2988: 2984: 2981: 2978: 2972: 2968: 2963: 2960: 2952: 2947: 2941: 2937: 2931: 2928: 2925: 2922: 2917: 2913: 2883: 2880: 2877: 2874: 2852: 2832: 2821: 2820: 2804: 2800: 2796: 2792: 2788: 2785: 2782: 2777: 2773: 2767: 2763: 2759: 2756: 2753: 2748: 2744: 2740: 2732: 2727: 2723: 2717: 2714: 2711: 2708: 2703: 2699: 2675: 2654: 2650: 2646: 2643: 2639: 2636: 2633: 2610: 2598: 2597: 2586: 2581: 2577: 2573: 2570: 2565: 2560: 2553: 2550: 2546: 2541: 2537: 2534: 2529: 2525: 2521: 2518: 2513: 2508: 2503: 2498: 2494: 2489: 2484: 2478: 2475: 2467: 2461: 2457: 2453: 2449: 2443: 2439: 2436: 2430: 2424: 2421: 2416: 2413: 2387: 2384: 2381: 2378: 2353: 2350: 2328: 2324: 2301: 2297: 2285: 2284: 2272: 2269: 2266: 2263: 2258: 2254: 2250: 2245: 2241: 2237: 2234: 2229: 2224: 2219: 2214: 2210: 2205: 2200: 2194: 2191: 2183: 2177: 2173: 2169: 2165: 2159: 2155: 2152: 2146: 2140: 2137: 2132: 2129: 2097: 2093: 2070: 2066: 2054: 2053: 2039: 2036: 2030: 2024: 2021: 2012: 2009: 2005: 2000: 1997: 1993: 1987: 1984: 1956: 1950: 1947: 1921: 1914: 1911: 1883: 1861: 1857: 1854: 1843: 1842: 1829: 1822: 1819: 1810: 1805: 1800: 1797: 1792: 1787: 1781: 1778: 1772: 1766: 1763: 1755: 1752: 1747: 1744: 1739: 1732: 1729: 1722: 1717: 1712: 1705: 1702: 1694: 1691: 1686: 1680: 1677: 1670: 1645: 1642: 1639: 1633: 1630: 1624: 1618: 1615: 1609: 1589: 1586: 1582: 1578: 1575: 1555: 1534: 1513: 1502: 1501: 1489: 1483: 1480: 1474: 1471: 1467: 1460: 1457: 1451: 1446: 1441: 1434: 1431: 1423: 1420: 1415: 1409: 1406: 1399: 1391: 1388: 1384: 1378: 1374: 1368: 1365: 1360: 1357: 1351: 1348: 1319: 1315: 1293: 1287: 1282: 1278: 1273: 1251: 1245: 1240: 1236: 1231: 1204: 1201: 1198: 1194: 1172: 1166: 1161: 1157: 1152: 1131: 1128: 1117: 1116: 1103: 1100: 1097: 1093: 1089: 1085: 1079: 1074: 1070: 1065: 1061: 1058: 1055: 1040: 1037: 1035: 1032: 1031: 1030: 1026: 1023: 1020: 1017: 1013:chemical state 1009: 996: 993: 975: 972: 962: 959: 957: 954: 932: 929: 924: 921:Bremsstrahlung 915: 908: 903: 887: 875: 871: 863: 859: 855: 852: 824: 821: 812: 808: 804: 800: 792: 784: 780: 776: 768: 760: 740: 736: 720: 716: 708: 700: 692: 676:(analogous to 674:chemical shift 666: 657: 650: 638: 628: 625: 619: 616: 610: 607: 601: 598: 592: 589: 584: 563: 560: 546: 543: 533: 530: 502:binding energy 488: 485: 475:(and later at 387: 384: 370: 338: 326: 319: 312: 306: 305: 292: 288: 285: 276: 271: 267: 258: 254: 245: 221: 214: 199: 196: 71:kinetic energy 56:chemical state 15: 9: 6: 4: 3: 2: 5489: 5488: 5477: 5474: 5472: 5469: 5467: 5464: 5463: 5461: 5442: 5439: 5435: 5432: 5431: 5430: 5427: 5426: 5424: 5420: 5414: 5411: 5409: 5406: 5404: 5401: 5399: 5396: 5394: 5391: 5389: 5386: 5384: 5381: 5379: 5376: 5374: 5371: 5369: 5366: 5364: 5361: 5360: 5358: 5356: 5352: 5346: 5343: 5341: 5338: 5336: 5333: 5331: 5328: 5326: 5323: 5321: 5318: 5316: 5313: 5311: 5308: 5307: 5305: 5301: 5295: 5292: 5290: 5287: 5285: 5282: 5280: 5277: 5275: 5272: 5268: 5265: 5263: 5260: 5258: 5255: 5254: 5253: 5250: 5248: 5245: 5243: 5240: 5238: 5235: 5233: 5230: 5226: 5223: 5221: 5218: 5217: 5216: 5213: 5211: 5208: 5206: 5205:Tomosynthesis 5203: 5201: 5198: 5196: 5193: 5192: 5190: 5186: 5183: 5179: 5173: 5170: 5168: 5165: 5163: 5160: 5158: 5155: 5153: 5150: 5148: 5145: 5143: 5140: 5138: 5135: 5133: 5130: 5128: 5125: 5124: 5122: 5118: 5112: 5109: 5107: 5104: 5102: 5099: 5097: 5094: 5092: 5089: 5087: 5084: 5083: 5081: 5077: 5071: 5068: 5066: 5063: 5061: 5058: 5056: 5053: 5051: 5048: 5046: 5043: 5041: 5038: 5036: 5035:Moseley's law 5033: 5031: 5028: 5026: 5023: 5022: 5020: 5016: 5012: 5011:X-ray science 5005: 5000: 4998: 4993: 4991: 4986: 4985: 4982: 4970: 4969: 4960: 4958: 4957: 4948: 4947: 4944: 4933: 4930: 4928: 4925: 4924: 4922: 4918: 4912: 4909: 4907: 4904: 4902: 4899: 4895: 4892: 4891: 4890: 4887: 4885: 4882: 4880: 4877: 4875: 4872: 4870: 4867: 4865: 4862: 4861: 4859: 4855: 4849: 4846: 4844: 4841: 4839: 4836: 4834: 4831: 4829: 4826: 4824: 4821: 4820: 4818: 4814: 4811: 4807: 4801: 4798: 4796: 4793: 4791: 4788: 4784: 4781: 4780: 4779: 4776: 4775: 4773: 4769: 4761: 4758: 4757: 4756: 4753: 4751: 4748: 4747: 4745: 4741: 4735: 4732: 4730: 4727: 4725: 4722: 4720: 4717: 4713: 4710: 4708: 4705: 4703: 4700: 4698: 4695: 4694: 4693: 4690: 4689: 4687: 4683: 4675: 4672: 4671: 4670: 4667: 4665: 4662: 4658: 4655: 4653: 4650: 4648: 4645: 4644: 4643: 4640: 4639: 4637: 4633: 4627: 4624: 4622: 4619: 4615: 4612: 4608: 4605: 4604: 4603: 4600: 4599: 4598: 4595: 4593: 4590: 4588: 4585: 4581: 4578: 4577: 4576: 4573: 4570: 4567: 4565: 4564:Near-infrared 4562: 4560: 4557: 4553: 4550: 4549: 4548: 4545: 4543: 4540: 4539: 4537: 4533: 4527: 4524: 4522: 4519: 4517: 4514: 4512: 4509: 4507: 4504: 4502: 4499: 4497: 4494: 4492: 4489: 4487: 4484: 4482: 4479: 4478: 4476: 4474: 4470: 4466: 4459: 4454: 4452: 4447: 4445: 4440: 4439: 4436: 4429: 4426: 4423: 4421: 4418: 4416: 4415: 4406: 4403: 4401: 4398: 4394: 4391: 4389: 4388:0-471-26279-X 4385: 4381: 4378: 4375: 4372: 4370: 4366: 4362: 4359: 4356: 4353: 4350: 4347: 4344: 4341: 4339: 4336: 4333: 4330: 4329: 4316: 4315:lasurface.com 4312: 4306: 4298: 4292: 4288: 4281: 4273: 4271:0-201-53929-2 4267: 4263: 4259: 4258: 4250: 4242: 4236: 4232: 4228: 4224: 4223: 4215: 4196: 4190: 4176: 4172: 4166: 4157: 4152: 4147: 4142: 4138: 4134: 4133:ACS Catalysis 4130: 4128: 4118: 4109: 4104: 4100: 4096: 4093:(1): 012131. 4092: 4088: 4084: 4077: 4069: 4065: 4061: 4057: 4053: 4049: 4042: 4035: 4030: 4022: 4018: 4014: 4013: 4005: 3997: 3993: 3989: 3985: 3981: 3977: 3970: 3961: 3957: 3947: 3943: 3940: 3936: 3934: 3930: 3928: 3924: 3922: 3918: 3916: 3912: 3910: 3906: 3905: 3897: 3894: 3893: 3871: 3861: 3857: 3853: 3849: 3843: 3839: 3833: 3829: 3825: 3822: 3816: 3802: 3797: 3793: 3782: 3781: 3780: 3764: 3737: 3734: 3730: 3721: 3697: 3692: 3688: 3662: 3657: 3653: 3613: 3608: 3604: 3595: 3590: 3586: 3579: 3572: 3569: 3566: 3561: 3557: 3549: 3548: 3547: 3545: 3527: 3523: 3514: 3510: 3506: 3496: 3475: 3465: 3459: 3450: 3442: 3441: 3440: 3438: 3434: 3430: 3426: 3416: 3400: 3396: 3392: 3389: 3385: 3381: 3378: 3358: 3333: 3329: 3325: 3320: 3311: 3307: 3297: 3293: 3289: 3285: 3281: 3275: 3270: 3267: 3262: 3253: 3249: 3241: 3238: 3232: 3218: 3211: 3210: 3209: 3189: 3167: 3147: 3122: 3118: 3114: 3111: 3107: 3101: 3097: 3093: 3087: 3081: 3074: 3073: 3072: 3070: 3066: 3062: 3061: 3044: 3024: 3015: 3011: 3007: 3000: 2990: 2986: 2982: 2979: 2970: 2966: 2961: 2958: 2950: 2945: 2939: 2935: 2929: 2923: 2915: 2911: 2903: 2902: 2901: 2899: 2894: 2878: 2875: 2864: 2850: 2802: 2794: 2790: 2780: 2775: 2765: 2761: 2757: 2754: 2746: 2742: 2730: 2725: 2721: 2715: 2709: 2701: 2697: 2689: 2688: 2687: 2652: 2648: 2644: 2641: 2637: 2634: 2631: 2622: 2608: 2579: 2575: 2568: 2563: 2551: 2548: 2544: 2535: 2527: 2523: 2516: 2511: 2496: 2492: 2482: 2473: 2459: 2455: 2437: 2434: 2428: 2422: 2419: 2414: 2411: 2401: 2400: 2399: 2398:which gives: 2382: 2376: 2367: 2351: 2348: 2326: 2322: 2299: 2295: 2267: 2264: 2261: 2256: 2252: 2248: 2243: 2239: 2232: 2227: 2212: 2208: 2198: 2189: 2175: 2171: 2153: 2150: 2144: 2138: 2135: 2130: 2127: 2117: 2116: 2115: 2113: 2095: 2091: 2068: 2064: 2028: 2010: 2007: 2003: 1998: 1995: 1991: 1982: 1971: 1970: 1969: 1954: 1945: 1919: 1909: 1896: 1855: 1827: 1817: 1808: 1803: 1798: 1795: 1790: 1785: 1770: 1753: 1750: 1745: 1742: 1737: 1727: 1720: 1715: 1710: 1692: 1689: 1684: 1668: 1659: 1658: 1657: 1643: 1640: 1622: 1587: 1584: 1576: 1553: 1511: 1487: 1478: 1472: 1469: 1465: 1455: 1449: 1444: 1439: 1421: 1418: 1413: 1397: 1389: 1386: 1382: 1376: 1372: 1366: 1358: 1346: 1339: 1338: 1337: 1333: 1317: 1285: 1280: 1276: 1243: 1238: 1234: 1220: 1202: 1199: 1196: 1192: 1164: 1159: 1155: 1129: 1126: 1101: 1098: 1095: 1091: 1087: 1077: 1072: 1068: 1059: 1056: 1053: 1046: 1045: 1044: 1027: 1024: 1021: 1018: 1014: 1010: 1007: 1003: 1002: 1001: 992: 988: 985: 980: 971: 967: 953: 949: 946: 942: 938: 928: 922: 914: 901: 897: 893: 885: 881: 869: 851: 849: 844: 842: 837: 834: 830: 820: 818: 796: 790: 774: 766: 758: 754: 750: 746: 743:), alcohol (- 734: 731:H-), amine (- 730: 726: 714: 706: 698: 690: 686: 681: 679: 675: 670: 656: 649: 645: 641: 633: 624: 615: 609:Analysis time 606: 597: 591:Measured area 588: 582: 578: 574: 570: 559: 557: 553: 542: 540: 529: 527: 523: 519: 515: 511: 507: 503: 493: 484: 482: 478: 474: 470: 466: 462: 457: 453: 449: 445: 441: 437: 433: 432:Henry Moseley 429: 425: 421: 417: 413: 409: 400: 392: 383: 368: 360: 356: 352: 351:work function 336: 325: 318: 311: 290: 286: 283: 274: 269: 265: 256: 252: 243: 235: 234: 233: 231: 227: 220: 209: 204: 198:Basic physics 195: 192: 190: 186: 182: 178: 174: 170: 166: 162: 158: 154: 150: 146: 142: 138: 134: 130: 126: 122: 118: 114: 109: 107: 103: 99: 95: 91: 86: 84: 80: 76: 72: 67: 65: 61: 57: 53: 49: 45: 41: 37: 33: 26: 25:monochromatic 21: 5314: 5303:Spectroscopy 5247:Ptychography 5181:Applications 5142:Auger effect 5045:Water window 4966: 4954: 4934:(a misnomer) 4920:Applications 4838:Time-stretch 4729:paramagnetic 4696: 4547:Fluorescence 4465:Spectroscopy 4404: 4392: 4379: 4373: 4360: 4354: 4348: 4342: 4331: 4314: 4305: 4286: 4280: 4255: 4249: 4221: 4214: 4202:. Retrieved 4189: 4178:. Retrieved 4174: 4165: 4156:10852/107512 4136: 4132: 4126: 4117: 4090: 4086: 4076: 4054:(12): 3007. 4051: 4047: 4041: 4029: 4011: 4004: 3979: 3975: 3969: 3960: 3641: 3512: 3508: 3502: 3494: 3432: 3428: 3422: 3350: 3139: 3064: 3058: 3055: 3041: 2897: 2895: 2865: 2822: 2623: 2599: 2286: 2055: 1897: 1844: 1503: 1334: 1118: 1042: 998: 995:Peak-fitting 989: 983: 981: 977: 968: 964: 950: 934: 912: 899: 895: 857: 845: 838: 826: 816: 797: 788: 772: 764: 756: 752: 748: 744: 732: 728: 724: 712: 704: 696: 688: 684: 682: 673: 668: 663: 654: 647: 643: 637: 621: 612: 603: 594: 580: 576: 572: 568: 565: 548: 535: 525: 521: 517: 513: 509: 499: 479:) developed 469:David Turner 440:Kai Siegbahn 405: 323: 316: 309: 307: 218: 212: 207: 193: 117:metal alloys 110: 87: 81:~ 10 Pa) or 78: 68: 35: 31: 30: 5096:Synchrotron 4506:Vibrational 4175:xdb.lbl.gov 3208:to IMFP by 937:synchrotron 487:Measurement 465:Nobel Prize 104:range, but 27:XPS system. 5460:Categories 5355:Scattering 5220:Helical CT 5086:X-ray tube 4712:Two-photon 4614:absorption 4496:Rotational 4204:8 December 4180:2020-06-20 3952:References 2686:given by: 945:undulators 868:micrometer 456:hard X-ray 232:equation, 175:, viscous 100:is in the 4790:Terahertz 4771:Radiowave 4669:Mössbauer 4021:310539900 3868:Θ 3830:ℏ 3808:¯ 3761:Θ 3703:¯ 3650:Δ 3619:¯ 3583:Δ 3580:− 3573:⁡ 3524:ϕ 3466:ω 3451:ω 3390:− 3386:ρ 3268:− 3219:λ 3148:λ 3123:λ 3112:− 3012:σ 2983:− 2971:− 2962:⁡ 2946:σ 2882:ℏ 2879:≥ 2876:τ 2873:Γ 2851:τ 2831:Γ 2787:Γ 2758:− 2739:Γ 2731:π 2674:Γ 2653:τ 2642:− 2638:⁡ 2632:∝ 2609:τ 2569:ρ 2517:ρ 2502:⟩ 2493:ψ 2477:^ 2456:ψ 2452:⟨ 2442:ℏ 2438:π 2429:∝ 2415:ω 2377:ρ 2352:ν 2268:ν 2262:− 2249:− 2233:δ 2218:⟩ 2209:ψ 2193:^ 2172:ψ 2168:⟨ 2158:ℏ 2154:π 2145:∝ 2131:ω 2092:ψ 2065:ψ 2038:^ 2029:⋅ 2023:^ 1999:− 1986:^ 1949:^ 1913:^ 1856:⋅ 1853:∇ 1821:^ 1780:^ 1771:⋅ 1765:^ 1743:− 1731:^ 1704:^ 1685:− 1679:^ 1632:^ 1617:^ 1577:⋅ 1574:∇ 1512:ψ 1488:ψ 1482:^ 1470:ψ 1459:^ 1433:^ 1414:− 1408:^ 1364:∂ 1359:ψ 1356:∂ 1350:ℏ 1314:Φ 1130:ν 1057:ν 1029:corroded) 819:signal". 406:In 1887, 369:ϕ 337:ϕ 287:ϕ 266:− 189:hydrogels 129:catalysts 75:electrons 5091:Betatron 4956:Category 4685:Electron 4652:Emission 4602:emission 4559:Vibronic 4287:Surfaces 4127:Operando 3890:See also 2483:′ 2199:′ 1992:′ 1955:′ 941:wigglers 833:mu-metal 723:-, and - 217:X-rays, 185:hydrated 173:coatings 137:ceramics 125:elements 121:polymers 90:hydrogen 5434:History 5188:Imaging 4968:Commons 4795:ESR/EPR 4743:Nucleon 4571:(REMPI) 4095:Bibcode 4056:Bibcode 3984:Bibcode 3907:ARPES, 3722:of the 3542:by the 3505:phonons 3455:surface 3425:plasmon 1016:sample. 882:with a 862:or Mg K 554:= 1000 444:Uppsala 424:Röntgen 386:History 327:kinetic 313:binding 279:kinetic 248:binding 157:make-up 133:glasses 44:spectra 5422:Others 5383:GISAXS 5055:L-edge 5050:K-edge 4809:Others 4597:Atomic 4386:  4367:  4293:  4268:  4237:  4019:  3944:PEEM, 3925:ZEKE, 3779:, as: 3642:where 3351:where 3140:where 2287:where 1504:where 1119:where 880:quartz 448:Sweden 426:tube, 320:photon 308:where 261:photon 222:photon 145:papers 141:paints 96:. The 94:helium 48:X-rays 5413:EDXRD 5335:XANES 5330:EXAFS 5320:ARPES 5267:3DXRD 5025:X-ray 4750:Alpha 4719:Auger 4697:X-ray 4664:Gamma 4642:X-ray 4575:Raman 4486:Raman 4481:FT-IR 4198:(PDF) 3937:EDS, 3931:AES, 3919:PES, 3913:UPS, 2898:Auger 767:FH-CH 349:is a 181:glues 165:bones 161:teeth 153:woods 5398:RIXS 5388:WAXS 5378:SAXS 5289:DFXM 5257:XDCT 5242:STXM 5237:XPCI 5225:XACT 4384:ISBN 4365:ISBN 4337:and 4291:ISBN 4266:ISBN 4235:ISBN 4206:2012 4017:OCLC 3470:bulk 3282:0.41 3065:IMFP 2843:and 2314:and 1004:The 943:and 711:-, 636:(SiO 436:WWII 177:oils 149:inks 92:and 5403:XRS 5345:XFH 5340:EDS 5325:AES 5315:XPS 5310:XAS 5294:DXA 5262:DCT 5210:CDI 4778:NMR 4262:332 4227:doi 4151:hdl 4141:doi 4103:doi 4091:430 4064:doi 3992:doi 3570:exp 3513:XPD 3316:kin 3258:kin 3239:538 3194:kin 2959:exp 2635:exp 2621:). 916:5/2 799:(Si 779:-CH 739:-NH 719:-CH 658:3/2 651:1/2 556:ppm 520:, 3 516:, 2 512:, 2 471:at 36:XPS 5462:: 5408:XS 5215:CT 4783:2D 4702:UV 4334:, 4313:. 4264:. 4233:. 4173:. 4149:. 4137:13 4135:. 4131:. 4101:. 4089:. 4085:. 4062:. 4052:37 4050:. 3990:. 3978:. 3546:: 3226:nm 2114:: 1332:. 1221:) 898:/Δ 727:H= 642:, 579:/Δ 571:/Δ 438:, 179:, 167:, 163:, 159:, 151:, 147:, 143:, 139:, 135:, 131:, 127:, 123:, 119:, 115:, 66:. 5003:e 4996:t 4989:v 4457:e 4450:t 4443:v 4317:. 4299:. 4274:. 4243:. 4229:: 4208:. 4183:. 4159:. 4153:: 4143:: 4111:. 4105:: 4097:: 4070:. 4066:: 4058:: 4023:. 3998:. 3994:: 3986:: 3980:1 3872:D 3862:B 3858:k 3854:m 3850:/ 3844:2 3840:T 3834:2 3826:9 3823:= 3820:) 3817:T 3814:( 3803:2 3798:j 3794:U 3765:D 3738:h 3735:t 3731:j 3698:2 3693:j 3689:U 3663:2 3658:j 3654:k 3638:, 3625:) 3614:2 3609:j 3605:U 3596:2 3591:j 3587:k 3577:( 3567:= 3562:j 3558:W 3528:j 3511:( 3491:, 3476:2 3460:= 3401:3 3397:/ 3393:1 3382:= 3379:a 3359:a 3334:2 3330:/ 3326:1 3321:) 3312:E 3308:( 3303:] 3298:2 3294:/ 3290:3 3286:a 3279:[ 3276:+ 3271:2 3263:) 3254:E 3250:( 3245:] 3242:a 3236:[ 3233:= 3230:) 3222:( 3190:E 3168:z 3119:/ 3115:z 3108:e 3102:0 3098:I 3094:= 3091:) 3088:z 3085:( 3082:I 3063:( 3025:) 3016:2 3008:2 3001:2 2997:) 2991:b 2987:E 2980:E 2977:( 2967:( 2951:2 2940:0 2936:I 2930:= 2927:) 2924:E 2921:( 2916:G 2912:I 2803:2 2799:) 2795:2 2791:/ 2784:( 2781:+ 2776:2 2772:) 2766:b 2762:E 2755:E 2752:( 2747:2 2743:/ 2726:0 2722:I 2716:= 2713:) 2710:E 2707:( 2702:L 2698:I 2649:/ 2645:t 2601:( 2585:) 2580:f 2576:E 2572:( 2564:2 2559:| 2552:i 2549:f 2545:M 2540:| 2536:= 2533:) 2528:f 2524:E 2520:( 2512:2 2507:| 2497:i 2488:| 2474:H 2466:| 2460:f 2448:| 2435:2 2423:t 2420:d 2412:d 2386:) 2383:E 2380:( 2349:h 2327:f 2323:E 2300:i 2296:E 2283:, 2271:) 2265:h 2257:i 2253:E 2244:f 2240:E 2236:( 2228:2 2223:| 2213:i 2204:| 2190:H 2182:| 2176:f 2164:| 2151:2 2139:t 2136:d 2128:d 2096:f 2069:i 2035:p 2020:A 2011:c 2008:m 2004:e 1996:= 1983:H 1946:H 1920:0 1910:H 1882:A 1860:A 1828:2 1818:A 1809:2 1804:) 1799:c 1796:e 1791:( 1786:+ 1777:p 1762:A 1754:c 1751:e 1746:2 1738:2 1728:p 1721:= 1716:2 1711:) 1701:A 1693:c 1690:e 1676:p 1669:( 1644:0 1641:= 1638:] 1629:A 1623:, 1614:p 1608:[ 1588:0 1585:= 1581:A 1554:V 1533:A 1500:, 1479:H 1473:= 1466:] 1456:V 1450:+ 1445:2 1440:) 1430:A 1422:c 1419:e 1405:p 1398:( 1390:m 1387:2 1383:1 1377:[ 1373:= 1367:t 1347:i 1318:0 1292:| 1286:F 1281:b 1277:E 1272:| 1250:| 1244:v 1239:b 1235:E 1230:| 1203:n 1200:i 1197:k 1193:E 1171:| 1165:v 1160:b 1156:E 1151:| 1127:h 1102:n 1099:i 1096:k 1092:E 1088:+ 1084:| 1078:v 1073:b 1069:E 1064:| 1060:= 1054:h 925:α 913:d 909:α 904:α 900:E 896:E 888:α 876:α 872:α 864:α 860:α 817:p 813:2 809:3 807:O 805:2 801:2 793:3 791:F 789:C 787:- 785:2 781:2 777:2 775:F 773:C 769:2 765:C 761:3 759:O 757:C 753:C 749:C 745:C 741:2 737:2 735:H 733:C 729:C 725:C 721:2 717:3 715:H 713:C 709:2 707:H 705:C 703:- 701:2 699:H 697:C 693:3 691:H 689:C 685:C 669:s 667:1 655:p 648:p 644:x 639:x 585:2 581:E 577:E 573:E 569:E 522:s 518:p 514:s 510:s 446:( 418:( 324:E 317:E 310:E 304:, 291:) 284:+ 275:E 270:( 257:E 253:= 244:E 219:E 215:α 208:. 79:p 34:(

Index


monochromatic
photoemission spectroscopies
spectra
X-rays
photoelectric effect
chemical state
ion-beam etching
ion implantation
kinetic energy
electrons
ultra-high vacuum
hydrogen
helium
detection limit
parts per thousand
parts per million
inorganic compounds
metal alloys
polymers
elements
catalysts
glasses
ceramics
paints
papers
inks
woods
make-up
teeth

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.