Knowledge

Wind wave model

Source 📝

251: 3915: 2367: 2420: 1431: 4803: 4824: 1068: 3904: 1439: 2403:
water than in shallow water. At low tide, some plates are dry, and wave growth has to start all over again. Close to the shore (beyond the Gat van Borssele), there's a tall salt marsh; at low tide, there are no waves there, at average tide, the wave height decreases to almost nothing at the dike, and at high tide, there's still a wave height of 1 m present. The measure of period shown in these graphs is the
4813: 276:. The waves are also separated by their direction of propagation. The model domain size can range from regional to the global ocean. Smaller domains can be nested within a global domain to provide higher resolution in a region of interest. The sea state evolves according to physical equations – based on a spectral representation of the conservation of 139:
relevant for the development of the sea state in two dimensions. The wave modeling project (WAM), an international effort, led to the refinement of modern wave modeling techniques during the decade 1984-1994. Improvements included two-way coupling between wind and waves, assimilation of satellite wave data, and medium-range operational forecasting.
20: 255:
France, around the island of Ouessant, which lies 20 km from the mainland. The bottom panel show the heights and directions of waves, computed with the numerical model WAVEWATCH III (R), using a triangular mesh with variable resolution. The strong currents south of Ouessant deflect the waves away from the measuring buoy at low tide.
154:, the study of wave growth garnered significant attention. The global nature of the war, encompassing battles in the Pacific, Atlantic, and Mediterranean seas, necessitated the execution of landing operations on enemy-held coasts. Safe landing was paramount, given that choppy waters posed the danger of capsizing 292:, and a source function which allows for wave energy to be augmented or diminished. The source function has at least three terms: wind forcing, nonlinear transfer, and dissipation by whitecapping. Wind data are typically provided from a separate atmospheric model from an operational weather forecasting center. 354:
interactions, sub-grid representations of unresolved islands, and dynamically updated ice coverage. Wind data is provided from the GDAS data assimilation system for the GFS weather model. Up to 2008, the model was limited to regions outside the surf zone where the waves are not strongly impacted by
2377:
The computation time for a calculation with SWAN is in the order of seconds. In one-dimensional mode, results are available from the input of a cross-sectional profile and wind information. In many cases, this can yield a sufficiently reliable value for the local wave spectrum, particularly when the
246:
can also be important, in particular in western boundary currents such as the Gulf Stream, Kuroshio or Agulhas current, or in coastal areas where tidal currents are strong. Waves are also affected by sea ice and icebergs, and all operational global wave models take at least the sea ice into account.
138:
First generation wave models did not consider nonlinear wave interactions. Second generation models, available by the early 1980s, parameterized these interactions. They included the “coupled hybrid” and “coupled discrete” formulations. Third generation models explicitly represent all the physics
2538:
Robert Montagne, The swell forecasting service in Morocco (In French), 1922, Annales Hydrographiques, pp. 157-186. This paper describes the use of the method published by Gain in the same journal (1918) which combines a classification of North Atlantic Storms with the use of observations in Azores
2402:
The calculation was made for low water, average water level, and high water. At high tide, the salt marsh is under water; at low tide, only the salt marsh is submerged (the tidal difference here is about 5 metres). At high tide, there is a constant increase in wave height, which is faster in deep
416:
Another model, CCHE2D-COAST is a processes-based integrated model which is capable of simulating coastal processes in different coasts with complex shorelines such as irregular wave deformation from offshore to onshore, nearshore currents induced by radiation stresses, wave set-up, wave set-down,
254:
This figures show an example of the effects of currents on the wave heights. This example is adapted from scientific paper published in the Journal of Physical Oceanography (vol. 42, December 2012). The top panels show the tidal currents at 3 AM and 11 AM on 28 October 2008, off the West coast of
2473:
from the ECMWF. Such resources permit the creation of monthly wave climatologies, and can track the variation of wave activity on interannual and multi-decadal time scales. During the northern hemisphere winter, the most intense wave activity is located in the central North Pacific south of the
2431:
occurs, or where the coastline is irregular, the one-dimensional method falls short, necessitating the use of a field model. Even in a relatively rectangular lake like Lake Garda, a two-dimensional calculation provides considerably more information, especially in its southern regions. The figure
238:
A wave model requires as initial conditions information describing the state of the sea. An analysis of the sea or ocean can be created through data assimilation, where observations such as buoy or satellite altimeter measurements are combined with a background guess from a previous forecast or
125:
During the 1950s and 1960s, much of the theoretical groundwork necessary for numerical descriptions of wave evolution was laid. For forecasting purposes, it was realized that the random nature of the sea state was best described by a spectral decomposition in which the energy of the waves was
1063:
When plotted against the dimensionless wind fetch, both dimensionless wave height and wave period tend to align linearly. However, this trend becomes notably more flattened for more extended dimensionless wind fetches. Various researchers have endeavoured to formulate equations capturing this
349:
are based on the WAVEWATCH III model. This system has a global domain of approximately 50 km resolution, with nested regional domains for the northern hemisphere oceanic basins at approximately 18 km and approximately 7 km resolution. Physics includes wave field refraction,
2244:
of 3.5 m and a period of roughly 7 s (assuming the storm persists for at least 4 hours). The Young and Verhagen formula, however, predicts a lower wave height of 2.6 m. This diminished result is attributed to the formula's calibration for shallow waters, whilst Lake Garda is notably deep.
130:
and swells. The first numerical model based on the spectral decomposition of the sea state was operated in 1956 by the French Weather Service, and focused on the North Atlantic. The 1970s saw the first operational, hemispheric wave model: the spectral wave ocean model (SWOM) at the
1775:
Integrating the water depth into the same chart was problematic as it introduced too many input parameters. Therefore, during the primary usage of nomograms, separate nomograms were crafted for distinct depths. The use of computers has resulted in reduced reliance on nomograms.
2435:
This case highlights another limitation of the one-dimensional approach: at certain points, the actual wave growth is less than predicted by the one-dimensional model. This discrepancy arises because the model assumes a broad wave field, which isn't the case for narrow lakes.
142:
Wind wave models are used in the context of a forecasting or hindcasting system. Differences in model results arise (with decreasing order of importance) from: differences in wind and sea ice forcing, differences in parameterizations of physical processes, the use of
2386:
As an example, a calculation of the wave growth in the Westerschelde has been made. For this example, the one-dimensional version of SWAN and the open-source user interface SwanOne were used. The wave height at the base of the sea dike near Goudorpe on
374:
was allowed to evolve freely (up to a cut-off frequency) with no constraints on the spectral shape. The model underwent a series of software updates from its inception in the late 1980s. The last official release is Cycle 4.5, maintained by the German
2115: 1892: 3029:
Janssen, P. A. E. M., J. D. Doyle, J. Bidlot, B. Hansen, L. Isaksen and P. Viterbo, 2002: "Impact and feedback of ocean waves on the atmosphere", in Advances in Fluid Mechanics, Atmosphere-Ocean Interactions, Vol. I, WITpress, Ed. W.Perrie., pp
225:. This work concluded that the 1973 Bretschneider formula was the most suitable. However, subsequent studies by Young and Verhagen in 1997 suggested that adjusting certain coefficients enhanced the formula's efficacy in shallow water regions. 2474:
Aleutians, and in the central North Atlantic south of Iceland. During the southern hemisphere winter, intense wave activity circumscribes the pole at around 50°S, with 5 m significant wave heights typical in the southern Indian Ocean.
3540: 2358:, and many institutions and companies have since developed their own user environments for SWAN. The program has become a global standard for such calculations, and can be used in both one-dimensional and two-dimensional modes. 208:, which underwent subsequent refinements and data integrations. The method, in due course, came to be popularly referred to as the SMB method, an acronym derived from its founders Sverdrup, Munk, and Charles L. Bretschneider. 1632: 2468:
A retrospective analysis, or reanalysis, combines all available observations with a physical model to describe the state of a system over a time period of decades. Wind waves are a part of both the NCEP Reanalysis and the
1520: 2444:
Comparison of the wave model forecasts with observations is essential for characterizing model deficiencies and identifying areas for improvement. In-situ observations are obtained from buoys, ships and oil platforms.
1150: 1220: 390:(IFS). The model currently comprises 36 frequency bins and 36 propagation directions at an average spatial resolution of 25 km. The model has been coupled to the atmospheric component of IFS since 1998. 315:
Wind waves also act to modify atmospheric properties through frictional drag of near-surface winds and heat fluxes. Two-way coupled models allow the wave activity to feed back upon the atmosphere. The
1722: 2986: 2548:
Gelci, R., H. CazalĂŠ, J. Vassal (1957) Sea state forecasting. The spectral method (In French), Bulletin d'information du ComitĂŠ d'OcĂŠanographie et d'Etude des CĂ´tes, Vol. 9 (1957), pp. 416-435.
2220: 242:
A more critical input is the "forcing" by wind fields: a time-varying map of wind speed and directions. The most common sources of errors in wave model results are the errors in the wind field.
1997: 500: 746: 2168: 1945: 674:
The constants in these formulas are deduced from empirical data. Factoring in water depth, wind fetch, and storm duration complicates the equations considerably. However, the application of
2240:
in Italy is a deep, elongated lake, measuring about 350 m in depth and spanning 45 km in length. With a wind speed of 25 m/s from the SSW, the Bretschneider and Wilson formulas suggest an H
1425: 1325: 931: 870: 809: 555: 1442:
Graph depicting the variation of significant wave height with dimensionless fetch based on the Young & Verhagen wave growth formula, set against a specific water depth and wind speed.
1779:
For deep water, the distinctions between the various formulas are subtle. However, for shallow water, the formula modified by Young & Verhagen proves more suitable. It's defined as:
1763: 987: 303:
The output of a wind wave model is a description of the wave spectra, with amplitudes associated with each frequency and propagation direction. Results are typically summarized by the
239:
climatology to create the best estimate of the ongoing conditions. In practice, many forecasting system rely only on the previous forecast, without any assimilation of observations.
211:
Between 1950 and 1980, various formulae were proposed. Given that two-dimensional field models had not been formulated during that time, studies were initiated in the Netherlands by
1667: 1555: 2008: 2395:, was calculated, with the wind coming from the SW at a speed of 25m/s (force 9 to 10). In the graph, this is from left to right. The dike is quite far from deep water, with a 1785: 295:
For intermediate water depths the effect of bottom friction should also be added. At ocean scales, the dissipation of swells - without breaking - is a very important term.
2935:
Komen, GJ and Cavaleri, L. and Donelan, M. and Hasselmann, K. and Hasselmann, S. and Janssen, P. et al, 1994: "Dynamics and Modelling of Ocean Waves", Cambridge, 534 pp
2591:
G.J. Komen, L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann and P.A.E.M. Janssen, 1994. Dynamics and Modelling of Ocean Waves. Cambridge University Press, 532p.
3326: 668: 639: 610: 118:
relationships between the present state of the sea, the expected wind conditions, the fetch/duration, and the direction of the wave propagation. Alternatively, the
1057: 1035: 1013: 581: 2323:
and WAM are not reliable in shallow water areas near the coast. To address this issue, the SWAN (Simulating WAves Nearshore) program was developed in 1993 by
2990: 321: 3501:"Evaluation of Contemporary Ocean Wave Models in Rare Extreme Events: The "Halloween Storm" of October 1991 and the "Storm of the Century" of March 1993" 1561: 3013: 1768:
During periods when programmable computers weren't commonly utilised, these formulas were cumbersome to use. Consequently, for practical applications,
317: 1772:
were developed which did away with dimensionless units, instead presenting wave heights in metres, storm duration in hours, and the wind fetch in km.
1452: 4543: 376: 4533: 3592: 2495: 126:
attributed to as many wave trains as necessary, each with a specific direction and period. This approach allowed to make combined forecasts of
1086: 1156: 221:(TAW - Technical Advisory Committee for Flood Defences) to discern the most appropriate formula to compute wave height at the base of a 3197: 3558: 2560: 4449: 2664: 1673: 54:. These simulations consider atmospheric wind forcing, nonlinear wave interactions, and frictional dissipation, and they output 4816: 3864: 3632: 2522: 3371: 2638: 307:, which is the average height of the one-third largest waves, and the period and propagation direction of the dominant wave. 4096: 2173: 3585: 178: 132: 3986: 1950: 446: 4691: 4118: 4006: 3077: 684: 3541:"Evaluation Of NCEP-NCAR Reanalysis Project Marine Surface Wind Products For A Long Term North Atlantic Wave Hindcast" 2121: 1898: 158:. Consequently, the precise forecasting of weather and wave conditions became essential, prompting the recruitment of 4538: 3809: 277: 1331: 1231: 1071:
Dimensionless wave height and period against the backdrop of the dimensionless fetch (data courtesy of Wilson, 1965)
3996: 3956: 2616: 876: 815: 752: 506: 4726: 3712: 1727: 186: 3525: 3500: 2971: 2946: 2896: 2871: 2802: 2777: 4849: 4806: 4399: 3578: 2324: 937: 678:
facilitates the identification of patterns for all these variables. The dimensionless parameters employed are:
410: 2643:
35th Summer Training Course Lecture Collection, Japan Society of Civil Engineers Coastal Engineering Committee
2335:
in the United States. Initially, the main focus of this development was on wave changes due to the effects of
3010: 370:
The wave model WAM was the first so-called third generation prognostic wave model where the two-dimensional
3854: 2523:"Thirty Years of Operational Ocean Wave Forecasting at Fleet Numerical Meteorology and Oceanography Center" 2110:{\displaystyle {\widehat {T}}=7.519\left(\tanh {A_{T}}\tanh {{B_{T}} \over {\tanh {A_{T}}}}\right)^{0.387}} 1637: 2503:
7th International Workshop on Wave Hindcasting and Forecasting October 21–25, 2002, Banff, Alberta, Canada
1887:{\displaystyle {\widehat {H}}=0.241\left(\tanh {A_{H}}\tanh {{B_{H}} \over {\tanh {A_{H}}}}\right)^{0.87}} 1525: 320:(ECMWF) coupled atmosphere-wave forecast system described below facilitates this through exchange of the 3914: 4051: 3475: 3402: 3257: 3189: 3115: 2729: 2423:
Calculation of wave growth (and decline) on Lake Garda due to strong wind (25 m/s) from the SSW (210°).
387: 147:
and associated methods, and the numerical techniques used to solve the wave energy evolution equation.
3556:"Forty-year European Re-Analysis of the Global Atmosphere; Ocean wave product validation and analysis" 2681: 4586: 3991: 3951: 3220:"The Growth of Fetch Limited Waves in Water of Finite Depth. Part 1. Total Energy and Peak Frequency" 3351: 2460:
Hindcasts of wave models during extreme conditions also serves as a useful test bed for the models.
4716: 4091: 4081: 4021: 3657: 3627: 2778:"Swell transformation across the continental shelf. part I: Attenuation and directional broadening" 2332: 198: 182: 102:, have led to the developments of wind wave models specifically designed for coastal applications. 4753: 4736: 4573: 4066: 3931: 3869: 3859: 3752: 3219: 3060: 406: 304: 205: 177:
embarked on wave prediction research. In the U.S., comprehensive studies were carried out at the
2817:
Ardhuin, F.; Chapron, B.; Collard, F. (2009). "Observation of swell dissipation across oceans".
4748: 4686: 4113: 3799: 675: 1446:
In the Netherlands, a formula devised by Groen & Dorrestein (1976) is also in common use:
4581: 4563: 4071: 3966: 3601: 3296: 2748: 2404: 3048: 2923: 2911: 2666:
North Atlantic Coast Wave Statistics: Hindcast by Bretschneider-Revised Sverdrup-Munk Method
2602: 2343:, and the like. The program was subsequently developed to include analysis of wave growth. 4854: 4768: 4601: 4304: 4161: 4026: 3737: 3555: 3512: 3152: 2958: 2883: 2836: 2789: 2355: 646: 617: 588: 429: 383: 273: 8: 4763: 4648: 4643: 4369: 4041: 4001: 3717: 3039:
Janssen, P. A. E. M., 2004: The interaction of ocean waves and wind, Cambridge, 300 pages
2557: 2392: 351: 99: 3516: 3156: 3078:"CCHE2D-Coast | the National Center for Computational Hydroscience and Engineering" 2962: 2887: 2840: 2793: 250: 4706: 4419: 4409: 4374: 4274: 4259: 4156: 3377: 3363: 3140: 2852: 2826: 1042: 1020: 998: 566: 421: 399: 194: 155: 3235: 4788: 4778: 4721: 4701: 4384: 4349: 4284: 4264: 4254: 4136: 3824: 3682: 3433:"Wave Hindcast in Enclosed Basins: Comparison among SWAN, STWAVE and CMS-Wave Models" 3381: 3367: 2703: 325: 144: 81: 19: 358:
The model can incorporate the effects of currents on waves from its early design by
80:
are extremely important for commercial interests on the high seas. For example, the
4743: 4711: 4681: 4490: 4475: 4344: 4279: 4171: 4086: 4016: 3941: 3722: 3692: 3622: 3617: 3520: 3454: 3444: 3359: 3231: 3160: 3101: 3070: 2966: 2891: 2856: 2844: 2797: 2693: 2351: 2297:
Young & Verhagen's formula, which typically applies to shallow waters, yields:
328:. This allows the atmosphere to respond to changes in the surface roughness as the 281: 1627:{\displaystyle {\widehat {T}}=2\pi \tanh \left(0.0345{\widehat {F}}\right)^{0.37}} 427: 122:
part of the state has been forecasted as early as 1920 using remote observations.
4548: 4444: 4394: 4359: 4319: 4211: 4181: 4031: 3981: 3849: 3782: 3707: 3667: 3562: 3259:
The Accuracy of the Young and Verhagen Formula for Waves in Water of Finite Depth
3017: 2872:"Modification of the Physics and Numerics in a Third-Generation Ocean Wave Model" 2564: 2371: 2328: 212: 2225:
Research by Bart demonstrated that, under Dutch conditions (for example, in the
1515:{\displaystyle {\widehat {H}}=0.24\tanh \left(0.015{\widehat {F}}\right)^{0.45}} 91:
For the specific case of predicting wind wave statistics on the ocean, the term
4658: 4653: 4558: 4553: 4389: 4329: 4324: 4056: 3946: 3767: 3702: 3677: 2388: 2366: 359: 265: 243: 51: 35: 3903: 4843: 4828: 4676: 4596: 4485: 4404: 4379: 4314: 4244: 4151: 4046: 3923: 3844: 3804: 3777: 3687: 3637: 3141:"Numerical Prediction of Ocean Waves in the North Atlantic for December 1959" 2707: 2527:
Symposium on the 50th Anniversary of Operational Numerical Weather Prediction
2419: 2347: 2336: 371: 289: 174: 159: 119: 3081: 1430: 4783: 4731: 4671: 4622: 4500: 4495: 4470: 4454: 4429: 4146: 4036: 3976: 3762: 3672: 3647: 2580: 2350:) and derives the significant wave height from this spectrum. SWAN lacks a 163: 151: 3301:
Proceedings International Symposium on Ocean Wave Measurement and Analysis
2354:
for easily creating input files and presenting the output. The program is
4773: 4505: 4434: 4299: 4239: 4206: 4196: 4191: 4076: 4011: 3971: 3961: 3936: 3819: 3792: 3772: 3732: 3697: 3459: 3430: 2848: 2749:"User manual and system documentation of WAVEWATCH III TM version 3.14 †" 2639:"On the Historical Development of the Mathematical Theory of Water Waves" 2346:
SWAN essentially calculates the energy of a wave field (in the form of a
190: 76: 63: 59: 3570: 3431:
Favaretto, C.; Martinelli, L.; Philipine Vigneron, E.; Ruol, P. (2022).
4591: 4439: 4414: 4309: 4289: 4216: 4201: 4186: 4176: 4141: 4061: 3881: 3876: 3839: 3834: 3829: 3727: 3164: 2776:
Ardhuin, F.; O'Reilly, W. C.; Herbers, T. H. C.; Jessen, P. F. (2003).
2609:
On the Historical Development of the Mathematical Theory of Water Waves
2428: 2396: 2340: 2237: 2226: 1067: 437: 285: 85: 66:, and propagation directions for regional seas or global oceans. Such 28: 4823: 3449: 3432: 3403:"A practical method for design of coastal structures in shallow water" 2698: 2381: 1145:{\displaystyle {\widehat {H}}=0.283\tanh(0.0125{\widehat {F}})^{0.42}} 4663: 4525: 4510: 4424: 4269: 4108: 4103: 3886: 3814: 3742: 3662: 3652: 3609: 2446: 2320: 405:
Regional wave predictions are also produced by universities, such as
269: 115: 111: 55: 43: 3281: 2945:
Hasselmann, S; Hasselmann, K; Janssen, P A E M; et al. (1988).
1215:{\displaystyle {\widehat {T}}=7.54\tanh(0.077{\widehat {F}})^{0.25}} 4758: 4480: 4339: 4231: 4221: 4166: 3642: 1769: 329: 127: 69: 2924:
User manual and system documentation of WAVEWATCH-III version 2.22
2831: 436:
For determining wave growth in deep waters subjected to prolonged
4627: 4617: 3787: 3757: 1434:
Wave growth chart based on the formulas by Groen & Dorrestein
2947:"The WAM model - A third generation ocean wave prediction model" 2944: 2775: 2493: 1438: 4334: 3747: 3499:
Cardone, V.; Jensen, R.; Resio, D.; Swail, V.; Cox, A. (1996).
2470: 2457:, can also be used to infer the characteristics of wind waves. 2450: 362:
in the 1990s, and is now extended for near shore applications.
47: 23:
NOAA WAVEWATCH III (R) 120-hour Forecast for the North Atlantic
3400: 4696: 4515: 4294: 4249: 2454: 222: 170: 193:
devised an avant-garde wave calculation methodology for the
4128: 3526:
10.1175/1520-0426(1996)013<0198:eocowm>2.0.co;2
3401:
Verhagen, H.J.; van Vledder, G.P.; Eslami Arab, S. (2008).
2972:
10.1175/1520-0485(1988)018<1775:twmtgo>2.0.co;2
2897:
10.1175/1520-0426(1996)013<0726:motpan>2.0.co;2
2803:
10.1175/1520-0485(2003)033<1921:statcs>2.0.co;2
2292: 346: 1717:{\displaystyle {\widehat {T}}=0.502{\widehat {F}}^{0.225}} 268:; the sea surface can be decomposed into waves of varying 3102:"Validation Test Report for the Navy Standard Surf Model" 3061:"Surf's Up: Professor Using Models To Predict Huge Waves" 3554:
Caires, S., A. Sterl, G. Burgers, and G. Komen, ERA-40,
84:
requires guidance for operational planning and tactical
3498: 2682:"Revisions in Wave Forecasting: Deep and Shallow Water" 2432:
below demonstrates the results of such a calculation.
382:
ECMWF has incorporated WAM into its deterministic and
3352:"Shallow water wave modelling in the nearshore (SWAN)" 2926:. NOAA / NWS / NCEP / MMAB Technical Note 222, 133 pp. 417:
sediment transport, and seabed morphological changes.
2816: 2756:
National Oceanographic and Atmospheric Administration
2496:"20 Years Of Operational Forecasting At Oceanweather" 2176: 2124: 2011: 1953: 1901: 1788: 1730: 1676: 1640: 1564: 1528: 1455: 1334: 1234: 1159: 1089: 1045: 1023: 1001: 940: 879: 818: 755: 687: 649: 620: 591: 569: 509: 449: 3477:
A reanalysis of the wave observations in Lake George
3020:, European Centre for Medium-Range Weather Forecasts 2551: 2248: 2215:{\displaystyle B_{T}=0.0005215{\widehat {F}}^{0.73}} 3294: 2581:"The Wave Modeling Group, a historical perspective" 2382:
Example: wave growth calculation in The Netherlands
2214: 2162: 2109: 1992:{\displaystyle B_{H}=0.00313{\widehat {F}}^{0.57}} 1991: 1939: 1886: 1757: 1716: 1661: 1626: 1549: 1514: 1419: 1319: 1214: 1144: 1051: 1029: 1007: 981: 925: 864: 803: 740: 662: 633: 604: 575: 549: 495:{\displaystyle {{gH_{s}} \over {u_{w}^{2}}}=0.283} 494: 318:European Centre for Medium-Range Weather Forecasts 204:This pioneering effort led to the creation of the 4544:North West Shelf Operational Oceanographic System 2489: 2487: 2275:Utilizing Wilson's formula, the predictions are: 1075: 741:{\displaystyle {\widehat {H}}={gH_{s}/u_{w}^{2}}} 4841: 3295:Holthuijsen, L.H.; Booij, N.; Ris, R.C. (1993). 2916: 2494:Cox, Andrew T. & Vincent J. Cardone (2002). 2163:{\displaystyle A_{T}=0.331{\widehat {d}}^{1.01}} 1940:{\displaystyle A_{H}=0.493{\widehat {d}}^{0.75}} 218:Technische Adviescommissie voor de Waterkeringen 4534:Deep-ocean Assessment and Reporting of Tsunamis 3407:International Conference on Coastal Engineering 3349: 3187: 2539:and Portugal to forecast the swells in Morocco. 2484: 1420:{\displaystyle {\widehat {T}}=1.37\{1-^{-5}\}} 1320:{\displaystyle {\widehat {H}}=0.30\{1-^{-2}\}} 3586: 3217: 2876:Journal of Atmospheric and Oceanic Technology 2679: 2314: 2270: 926:{\displaystyle {\widehat {F}}={gF/u_{w}^{2}}} 865:{\displaystyle {\widehat {d}}={gd/u_{w}^{2}}} 804:{\displaystyle {\widehat {T}}={gT_{s}/u_{w}}} 550:{\displaystyle {{gT_{s}} \over {u_{w}}}=7.54} 398:Wind wave forecasts are issued regionally by 3297:"A spectral wave model for the coastal zone" 3054: 3033: 1414: 1353: 1314: 1253: 345:The operational wave forecasting systems at 2727: 2414: 2361: 1758:{\displaystyle 10<{\widehat {F}}<400} 413:) to forecast waves in the Gulf of Mexico. 216: 3593: 3579: 3198:Royal Netherlands Meteorological Institute 3600: 3550: 3548: 3524: 3458: 3448: 2970: 2929: 2904: 2895: 2830: 2801: 2697: 2529:, 14–17 June 2004, University of Maryland 982:{\displaystyle {\widehat {t}}={gt/u_{w}}} 3183: 3181: 2418: 2365: 2293:Young & Verhagen Formula: Lake Garda 1437: 1429: 1066: 249: 197:and later refined this approach for the 27:For broader coverage of this topic, see 18: 3492: 3473: 3113: 3023: 2938: 2662: 2575: 2573: 2532: 2515: 409:’s use of the SWAN model (developed by 4842: 3865:one-dimensional Saint-Venant equations 3545: 3138: 3042: 2869: 2863: 2232: 105: 3574: 3178: 3004: 2585: 1662:{\displaystyle {\widehat {F}}>400} 4812: 3533: 3284:. TU Delft, fluid mechanics section. 3255: 3218:Young, I.R.; Verhagen, L.A. (1996). 3095: 2636: 2600: 2570: 1550:{\displaystyle {\widehat {F}}>10} 16:Numerical modelling of the sea state 3539:Cox, A., V. Cardone, and V. Swail, 2979: 420:Other wind wave models include the 228: 179:Scripps Institution of Oceanography 133:Fleet Numerical Oceanography Center 42:describes the effort to depict the 13: 4692:National Oceanographic Data Center 4119:World Ocean Circulation Experiment 4007:Global Ocean Data Analysis Project 3364:10.1016/b978-0-08-102927-5.00017-5 3188:Groen, P.; Dorrestein, R. (1976). 2746: 2253:Based on Bretschneider's formula: 583:= gravitational acceleration (m/s) 98:Other applications, in particular 14: 4866: 4539:Global Sea Level Observing System 2987:"Entwicklungen KSD WAM Cycle 4.5" 2912:"WAVEWATCH III Model Description" 2378:wind path crosses shallow areas. 2249:Bretschneider Formula: Lake Garda 310: 259: 114:were created manually based upon 46:and predict the evolution of the 4822: 4811: 4802: 4801: 3997:Geochemical Ocean Sections Study 3913: 3902: 2951:Journal of Physical Oceanography 2652:– via TU Delft Repository. 2617:Japan Society of Civil Engineers 2521:Wittmann, Paul and Mike Clancy, 2427:In situations where significant 2319:Global wind wave models such as 264:The sea state is described as a 4727:Ocean thermal energy conversion 4450:Vine–Matthews–Morley hypothesis 3467: 3424: 3394: 3343: 3319: 3288: 3274: 3249: 3211: 3132: 3107: 2810: 2769: 2740: 2721: 2686:Coastal Engineering Proceedings 2673: 2656: 428:The formulae of Bretschneider, 393: 3358:, Elsevier, pp. 391–419, 2630: 2594: 2542: 2449:data from satellites, such as 2325:Delft University of Technology 1402: 1362: 1302: 1262: 1203: 1184: 1133: 1114: 1076:Common Formulas for Deep Water 411:Delft University of Technology 288:(by bathymetry and currents), 1: 3236:10.1016/S0378-3839(96)00006-3 3049:"Operational Model Forecasts" 2730:"Methods for wave prediction" 2477: 2463: 2439: 2229:), this formula is reliable. 641:= significant wave period (s) 612:= significant wave height (m) 377:Helmholtz Zentrum, Geesthacht 3987:El NiĂąo–Southern Oscillation 3957:Craik–Leibovich vortex force 3713:Luke's variational principle 3350:Guisado-Pintado, E. (2020), 2680:Bretschneider, C.L. (2011). 1080:Bretschneider (1952, 1977): 440:, the basic formula set is: 424:Standard Surf Model (NSSM). 340: 7: 3145:German Hydrographic Journal 2669:. U.S. Beach Erosion Board. 384:ensemble forecasting system 335: 10: 4871: 4052:Ocean dynamical thermostat 3900: 3356:Sandy Beach Morphodynamics 2728:Holthuijsen, L.H. (1980). 2315:Shallow and coastal waters 2271:Wilson Formula: Lake Garda 432:, and Young & Verhagen 388:Integrated Forecast System 26: 4797: 4636: 4610: 4587:Ocean acoustic tomography 4572: 4524: 4463: 4400:Mohorovičić discontinuity 4358: 4230: 4127: 3992:General circulation model 3922: 3628:Benjamin–Feir instability 3608: 3505:J. Atmos. Oceanic Technol 298: 169:During this period, both 4717:Ocean surface topography 4092:Thermohaline circulation 4082:Subsurface ocean current 4022:Hydrothermal circulation 3855:Wave–current interaction 3633:Boussinesq approximation 2736:. Rijkswaterstaat - TAW. 2415:Two-dimensional approach 2362:One-dimensional approach 2333:Office of Naval Research 2327:, in collaboration with 407:Texas A&M University 233: 199:Office of Naval Research 185:. Under the guidance of 183:University of California 166:by the warring nations. 93:ocean surface wave model 4754:Sea surface temperature 4737:Outline of oceanography 3932:Atmospheric circulation 3870:shallow water equations 3860:Waves and shallow water 3753:Significant wave height 3104:, US Naval Research Lab 2307:Predicted wave period: 2301:Predicted wave height: 2285:Predicted wave period: 2279:Predicted wave height: 2263:Predicted wave period: 2257:Predicted wave height: 305:significant wave height 272:using the principle of 206:significant wave method 110:Early forecasts of the 4749:Sea surface microlayer 4114:Wind generated current 3114:Battjes, J.A. (1982). 3011:"The Ocean Wave Model" 2615:(in Japanese). Tokyo: 2424: 2374: 2216: 2164: 2111: 1993: 1941: 1888: 1759: 1718: 1663: 1628: 1551: 1516: 1443: 1435: 1421: 1321: 1216: 1146: 1072: 1053: 1031: 1009: 983: 927: 866: 805: 742: 664: 635: 606: 577: 551: 496: 365: 256: 217: 24: 4850:Physical oceanography 4582:Deep scattering layer 4564:World Geodetic System 4072:Princeton Ocean Model 3952:Coriolis–Stokes force 3602:Physical oceanography 3139:Wilson, B.W. (1965). 2870:Bender, L.C. (1996). 2422: 2369: 2217: 2165: 2112: 1994: 1942: 1889: 1760: 1719: 1664: 1629: 1552: 1517: 1441: 1433: 1422: 1322: 1217: 1147: 1070: 1054: 1032: 1010: 984: 928: 867: 806: 743: 665: 663:{\displaystyle u_{w}} 636: 634:{\displaystyle T_{s}} 607: 605:{\displaystyle H_{s}} 578: 552: 497: 332:builds up or decays. 326:sea surface roughness 253: 22: 4602:Underwater acoustics 4162:Perigean spring tide 4027:Langmuir circulation 3738:Rossby-gravity waves 3474:Breugem, A. (2003). 3051:, Environment Canada 2849:10.1029/2008GL037030 2663:Saville, T. (1954). 2174: 2122: 2009: 1951: 1899: 1786: 1728: 1674: 1638: 1562: 1526: 1453: 1332: 1232: 1157: 1087: 1064:observed behaviour. 1059:= storm duration (s) 1043: 1021: 999: 938: 877: 816: 753: 685: 676:dimensionless values 647: 618: 589: 567: 507: 447: 181:affiliated with the 150:In the aftermath of 52:numerical techniques 50:of wind waves using 4764:Science On a Sphere 4370:Convergent boundary 4042:Modular Ocean Model 4002:Geostrophic current 3718:Mild-slope equation 3517:1996JAtOT..13..198C 3224:Coastal Engineering 3157:1965DeHyZ..18..114W 2963:1988JPO....18.1775W 2888:1996JAtOT..13..726B 2841:2009GeoRL..36.6607A 2794:2003JPO....33.1921A 2393:Westerscheldetunnel 2391:, just west of the 2370:Wave growth in the 2233:Example: Lake Garda 921: 860: 736: 482: 324:which controls the 106:Historical overview 100:coastal engineering 4420:Seafloor spreading 4410:Outer trench swell 4375:Divergent boundary 4275:Continental margin 4260:Carbonate platform 4157:Lunitidal interval 3561:2007-02-07 at the 3194:Knmi Publicatie 11 3165:10.1007/BF02333333 3016:2008-06-03 at the 2819:Geophys. Res. Lett 2567:, Oceanweather Inc 2563:2001-11-21 at the 2425: 2375: 2212: 2160: 2107: 1989: 1937: 1884: 1755: 1714: 1659: 1624: 1547: 1512: 1444: 1436: 1417: 1317: 1212: 1142: 1073: 1049: 1027: 1005: 979: 923: 907: 862: 846: 801: 738: 722: 670:= wind speed (m/s) 660: 631: 602: 573: 547: 492: 468: 400:Environment Canada 352:nonlinear resonant 322:Charnock parameter 257: 195:United States Navy 40:wind wave modeling 25: 4837: 4836: 4829:Oceans portal 4789:World Ocean Atlas 4779:Underwater glider 4722:Ocean temperature 4385:Hydrothermal vent 4350:Submarine volcano 4285:Continental shelf 4265:Coastal geography 4255:Bathymetric chart 4137:Amphidromic point 3825:Wave nonlinearity 3683:Infragravity wave 3450:10.3390/w14071087 3373:978-0-08-102927-5 3256:Bart, L. (2013). 2957:(12): 1775–1810. 2782:J. Phys. Oceanogr 2747:Tolman, Hendrik. 2699:10.9753/icce.v6.3 2637:Goda, Y. (1999). 2601:Goda, Y. (1999). 2579:Komen, Gerbrand, 2399:in front of it. 2203: 2151: 2094: 2021: 1980: 1928: 1871: 1798: 1746: 1705: 1686: 1650: 1610: 1574: 1538: 1498: 1465: 1384: 1344: 1284: 1244: 1199: 1169: 1129: 1099: 1052:{\displaystyle t} 1030:{\displaystyle F} 1015:= water depth (m) 1008:{\displaystyle d} 950: 889: 828: 765: 697: 576:{\displaystyle g} 539: 484: 280:– which include: 145:data assimilation 82:shipping industry 4862: 4827: 4826: 4815: 4814: 4805: 4804: 4744:Pelagic sediment 4682:Marine pollution 4476:Deep ocean water 4345:Submarine canyon 4280:Continental rise 4172:Rule of twelfths 4087:Sverdrup balance 4017:Humboldt Current 3942:Boundary current 3917: 3906: 3723:Radiation stress 3693:Iribarren number 3668:Equatorial waves 3623:Ballantine scale 3618:Airy wave theory 3595: 3588: 3581: 3572: 3571: 3565: 3552: 3543: 3537: 3531: 3530: 3528: 3496: 3490: 3489: 3487: 3485: 3471: 3465: 3464: 3462: 3452: 3428: 3422: 3421: 3419: 3417: 3398: 3392: 3391: 3390: 3388: 3347: 3341: 3340: 3338: 3337: 3323: 3317: 3316: 3314: 3312: 3292: 3286: 3285: 3278: 3272: 3271: 3269: 3267: 3253: 3247: 3246: 3244: 3242: 3215: 3209: 3208: 3206: 3204: 3185: 3176: 3175: 3173: 3171: 3136: 3130: 3129: 3127: 3125: 3111: 3105: 3099: 3093: 3092: 3090: 3089: 3080:. Archived from 3074: 3068: 3058: 3052: 3046: 3040: 3037: 3031: 3027: 3021: 3008: 3002: 3001: 2999: 2998: 2989:. Archived from 2983: 2977: 2976: 2974: 2942: 2936: 2933: 2927: 2920: 2914: 2908: 2902: 2901: 2899: 2867: 2861: 2860: 2834: 2814: 2808: 2807: 2805: 2788:(9): 1921–1939. 2773: 2767: 2766: 2764: 2762: 2753: 2744: 2738: 2737: 2725: 2719: 2718: 2716: 2714: 2701: 2677: 2671: 2670: 2660: 2654: 2653: 2651: 2649: 2634: 2628: 2627: 2625: 2623: 2614: 2598: 2592: 2589: 2583: 2577: 2568: 2555: 2549: 2546: 2540: 2536: 2530: 2519: 2513: 2512: 2510: 2509: 2500: 2491: 2221: 2219: 2218: 2213: 2211: 2210: 2205: 2204: 2196: 2186: 2185: 2169: 2167: 2166: 2161: 2159: 2158: 2153: 2152: 2144: 2134: 2133: 2116: 2114: 2113: 2108: 2106: 2105: 2100: 2096: 2095: 2093: 2092: 2091: 2090: 2073: 2072: 2071: 2061: 2053: 2052: 2051: 2023: 2022: 2014: 1998: 1996: 1995: 1990: 1988: 1987: 1982: 1981: 1973: 1963: 1962: 1946: 1944: 1943: 1938: 1936: 1935: 1930: 1929: 1921: 1911: 1910: 1893: 1891: 1890: 1885: 1883: 1882: 1877: 1873: 1872: 1870: 1869: 1868: 1867: 1850: 1849: 1848: 1838: 1830: 1829: 1828: 1800: 1799: 1791: 1764: 1762: 1761: 1756: 1748: 1747: 1739: 1723: 1721: 1720: 1715: 1713: 1712: 1707: 1706: 1698: 1688: 1687: 1679: 1668: 1666: 1665: 1660: 1652: 1651: 1643: 1633: 1631: 1630: 1625: 1623: 1622: 1617: 1613: 1612: 1611: 1603: 1576: 1575: 1567: 1556: 1554: 1553: 1548: 1540: 1539: 1531: 1521: 1519: 1518: 1513: 1511: 1510: 1505: 1501: 1500: 1499: 1491: 1467: 1466: 1458: 1426: 1424: 1423: 1418: 1413: 1412: 1400: 1399: 1395: 1386: 1385: 1377: 1346: 1345: 1337: 1326: 1324: 1323: 1318: 1313: 1312: 1300: 1299: 1295: 1286: 1285: 1277: 1246: 1245: 1237: 1221: 1219: 1218: 1213: 1211: 1210: 1201: 1200: 1192: 1171: 1170: 1162: 1151: 1149: 1148: 1143: 1141: 1140: 1131: 1130: 1122: 1101: 1100: 1092: 1058: 1056: 1055: 1050: 1037:= wind fetch (m) 1036: 1034: 1033: 1028: 1014: 1012: 1011: 1006: 988: 986: 985: 980: 978: 977: 976: 967: 952: 951: 943: 932: 930: 929: 924: 922: 920: 915: 906: 891: 890: 882: 871: 869: 868: 863: 861: 859: 854: 845: 830: 829: 821: 810: 808: 807: 802: 800: 799: 798: 789: 784: 783: 767: 766: 758: 747: 745: 744: 739: 737: 735: 730: 721: 716: 715: 699: 698: 690: 669: 667: 666: 661: 659: 658: 640: 638: 637: 632: 630: 629: 611: 609: 608: 603: 601: 600: 582: 580: 579: 574: 556: 554: 553: 548: 540: 538: 537: 536: 526: 525: 524: 511: 501: 499: 498: 493: 485: 483: 481: 476: 466: 465: 464: 451: 386:., known as the 355:shallow depths. 282:wave propagation 229:General strategy 220: 4870: 4869: 4865: 4864: 4863: 4861: 4860: 4859: 4840: 4839: 4838: 4833: 4821: 4793: 4632: 4606: 4568: 4549:Sea-level curve 4520: 4459: 4445:Transform fault 4395:Mid-ocean ridge 4361: 4354: 4320:Oceanic plateau 4226: 4212:Tidal resonance 4182:Theory of tides 4123: 4032:Longshore drift 3982:Ekman transport 3918: 3912: 3911: 3910: 3909: 3908: 3907: 3898: 3850:Wave turbulence 3783:Trochoidal wave 3708:Longshore drift 3604: 3599: 3569: 3568: 3563:Wayback Machine 3553: 3546: 3538: 3534: 3497: 3493: 3483: 3481: 3472: 3468: 3429: 3425: 3415: 3413: 3399: 3395: 3386: 3384: 3374: 3348: 3344: 3335: 3333: 3325: 3324: 3320: 3310: 3308: 3293: 3289: 3282:"SWAN homepage" 3280: 3279: 3275: 3265: 3263: 3254: 3250: 3240: 3238: 3216: 3212: 3202: 3200: 3186: 3179: 3169: 3167: 3137: 3133: 3123: 3121: 3112: 3108: 3100: 3096: 3087: 3085: 3076: 3075: 3071: 3067:, Feb. 23, 2005 3059: 3055: 3047: 3043: 3038: 3034: 3028: 3024: 3018:Wayback Machine 3009: 3005: 2996: 2994: 2985: 2984: 2980: 2943: 2939: 2934: 2930: 2922:Tolman, 2002g: 2921: 2917: 2910:Tolman, H. L., 2909: 2905: 2868: 2864: 2815: 2811: 2774: 2770: 2760: 2758: 2751: 2745: 2741: 2726: 2722: 2712: 2710: 2678: 2674: 2661: 2657: 2647: 2645: 2635: 2631: 2621: 2619: 2612: 2599: 2595: 2590: 2586: 2578: 2571: 2565:Wayback Machine 2558:"Wave Modeling" 2556: 2552: 2547: 2543: 2537: 2533: 2520: 2516: 2507: 2505: 2498: 2492: 2485: 2480: 2466: 2442: 2417: 2410: 2405:spectral period 2384: 2372:Western Scheldt 2364: 2329:Rijkswaterstaat 2317: 2295: 2273: 2251: 2243: 2235: 2206: 2195: 2194: 2193: 2181: 2177: 2175: 2172: 2171: 2154: 2143: 2142: 2141: 2129: 2125: 2123: 2120: 2119: 2101: 2086: 2082: 2081: 2074: 2067: 2063: 2062: 2060: 2047: 2043: 2042: 2035: 2031: 2030: 2013: 2012: 2010: 2007: 2006: 1983: 1972: 1971: 1970: 1958: 1954: 1952: 1949: 1948: 1931: 1920: 1919: 1918: 1906: 1902: 1900: 1897: 1896: 1878: 1863: 1859: 1858: 1851: 1844: 1840: 1839: 1837: 1824: 1820: 1819: 1812: 1808: 1807: 1790: 1789: 1787: 1784: 1783: 1738: 1737: 1729: 1726: 1725: 1708: 1697: 1696: 1695: 1678: 1677: 1675: 1672: 1671: 1642: 1641: 1639: 1636: 1635: 1618: 1602: 1601: 1597: 1593: 1592: 1566: 1565: 1563: 1560: 1559: 1530: 1529: 1527: 1524: 1523: 1506: 1490: 1489: 1485: 1481: 1480: 1457: 1456: 1454: 1451: 1450: 1405: 1401: 1391: 1387: 1376: 1375: 1374: 1336: 1335: 1333: 1330: 1329: 1305: 1301: 1291: 1287: 1276: 1275: 1274: 1236: 1235: 1233: 1230: 1229: 1225:Wilson (1965): 1206: 1202: 1191: 1190: 1161: 1160: 1158: 1155: 1154: 1136: 1132: 1121: 1120: 1091: 1090: 1088: 1085: 1084: 1078: 1044: 1041: 1040: 1022: 1019: 1018: 1000: 997: 996: 972: 968: 963: 956: 942: 941: 939: 936: 935: 916: 911: 902: 895: 881: 880: 878: 875: 874: 855: 850: 841: 834: 820: 819: 817: 814: 813: 794: 790: 785: 779: 775: 771: 757: 756: 754: 751: 750: 731: 726: 717: 711: 707: 703: 689: 688: 686: 683: 682: 654: 650: 648: 645: 644: 625: 621: 619: 616: 615: 596: 592: 590: 587: 586: 568: 565: 564: 532: 528: 527: 520: 516: 512: 510: 508: 505: 504: 477: 472: 467: 460: 456: 452: 450: 448: 445: 444: 434: 396: 368: 343: 338: 313: 301: 262: 236: 231: 213:Rijkswaterstaat 108: 32: 17: 12: 11: 5: 4868: 4858: 4857: 4852: 4835: 4834: 4832: 4831: 4819: 4809: 4798: 4795: 4794: 4792: 4791: 4786: 4781: 4776: 4771: 4769:Stratification 4766: 4761: 4756: 4751: 4746: 4741: 4740: 4739: 4729: 4724: 4719: 4714: 4709: 4704: 4699: 4694: 4689: 4684: 4679: 4674: 4669: 4661: 4659:Color of water 4656: 4654:Benthic lander 4651: 4646: 4640: 4638: 4634: 4633: 4631: 4630: 4625: 4620: 4614: 4612: 4608: 4607: 4605: 4604: 4599: 4594: 4589: 4584: 4578: 4576: 4570: 4569: 4567: 4566: 4561: 4559:Sea level rise 4556: 4554:Sea level drop 4551: 4546: 4541: 4536: 4530: 4528: 4522: 4521: 4519: 4518: 4513: 4508: 4503: 4498: 4493: 4488: 4483: 4478: 4473: 4467: 4465: 4461: 4460: 4458: 4457: 4452: 4447: 4442: 4437: 4432: 4427: 4422: 4417: 4412: 4407: 4402: 4397: 4392: 4390:Marine geology 4387: 4382: 4377: 4372: 4366: 4364: 4356: 4355: 4353: 4352: 4347: 4342: 4337: 4332: 4330:Passive margin 4327: 4325:Oceanic trench 4322: 4317: 4312: 4307: 4302: 4297: 4292: 4287: 4282: 4277: 4272: 4267: 4262: 4257: 4252: 4247: 4242: 4236: 4234: 4228: 4227: 4225: 4224: 4219: 4214: 4209: 4204: 4199: 4194: 4189: 4184: 4179: 4174: 4169: 4164: 4159: 4154: 4149: 4144: 4139: 4133: 4131: 4125: 4124: 4122: 4121: 4116: 4111: 4106: 4101: 4100: 4099: 4089: 4084: 4079: 4074: 4069: 4064: 4059: 4057:Ocean dynamics 4054: 4049: 4044: 4039: 4034: 4029: 4024: 4019: 4014: 4009: 4004: 3999: 3994: 3989: 3984: 3979: 3974: 3969: 3964: 3959: 3954: 3949: 3947:Coriolis force 3944: 3939: 3934: 3928: 3926: 3920: 3919: 3901: 3899: 3897: 3896: 3895: 3894: 3884: 3879: 3874: 3873: 3872: 3867: 3857: 3852: 3847: 3842: 3837: 3832: 3827: 3822: 3817: 3812: 3807: 3802: 3797: 3796: 3795: 3785: 3780: 3775: 3770: 3768:Stokes problem 3765: 3760: 3755: 3750: 3745: 3740: 3735: 3730: 3725: 3720: 3715: 3710: 3705: 3703:Kinematic wave 3700: 3695: 3690: 3685: 3680: 3675: 3670: 3665: 3660: 3655: 3650: 3645: 3640: 3635: 3630: 3625: 3620: 3614: 3612: 3606: 3605: 3598: 3597: 3590: 3583: 3575: 3567: 3566: 3544: 3532: 3511:(1): 198–230. 3491: 3466: 3423: 3393: 3372: 3342: 3318: 3287: 3273: 3248: 3230:(1–2): 47–78. 3210: 3177: 3151:(3): 114–130. 3131: 3106: 3094: 3069: 3053: 3041: 3032: 3022: 3003: 2978: 2937: 2928: 2915: 2903: 2882:(3): 726–750. 2862: 2809: 2768: 2739: 2720: 2672: 2655: 2629: 2593: 2584: 2569: 2550: 2541: 2531: 2514: 2482: 2481: 2479: 2476: 2465: 2462: 2441: 2438: 2416: 2413: 2408: 2389:South Beveland 2383: 2380: 2363: 2360: 2352:user interface 2316: 2313: 2312: 2311: 2305: 2294: 2291: 2290: 2289: 2283: 2272: 2269: 2268: 2267: 2261: 2250: 2247: 2241: 2234: 2231: 2223: 2222: 2209: 2202: 2199: 2192: 2189: 2184: 2180: 2157: 2150: 2147: 2140: 2137: 2132: 2128: 2117: 2104: 2099: 2089: 2085: 2080: 2077: 2070: 2066: 2059: 2056: 2050: 2046: 2041: 2038: 2034: 2029: 2026: 2020: 2017: 2000: 1999: 1986: 1979: 1976: 1969: 1966: 1961: 1957: 1934: 1927: 1924: 1917: 1914: 1909: 1905: 1894: 1881: 1876: 1866: 1862: 1857: 1854: 1847: 1843: 1836: 1833: 1827: 1823: 1818: 1815: 1811: 1806: 1803: 1797: 1794: 1766: 1765: 1754: 1751: 1745: 1742: 1736: 1733: 1711: 1704: 1701: 1694: 1691: 1685: 1682: 1669: 1658: 1655: 1649: 1646: 1621: 1616: 1609: 1606: 1600: 1596: 1591: 1588: 1585: 1582: 1579: 1573: 1570: 1557: 1546: 1543: 1537: 1534: 1509: 1504: 1497: 1494: 1488: 1484: 1479: 1476: 1473: 1470: 1464: 1461: 1428: 1427: 1416: 1411: 1408: 1404: 1398: 1394: 1390: 1383: 1380: 1373: 1370: 1367: 1364: 1361: 1358: 1355: 1352: 1349: 1343: 1340: 1327: 1316: 1311: 1308: 1304: 1298: 1294: 1290: 1283: 1280: 1273: 1270: 1267: 1264: 1261: 1258: 1255: 1252: 1249: 1243: 1240: 1223: 1222: 1209: 1205: 1198: 1195: 1189: 1186: 1183: 1180: 1177: 1174: 1168: 1165: 1152: 1139: 1135: 1128: 1125: 1119: 1116: 1113: 1110: 1107: 1104: 1098: 1095: 1077: 1074: 1061: 1060: 1048: 1038: 1026: 1016: 1004: 990: 989: 975: 971: 966: 962: 959: 955: 949: 946: 933: 919: 914: 910: 905: 901: 898: 894: 888: 885: 872: 858: 853: 849: 844: 840: 837: 833: 827: 824: 811: 797: 793: 788: 782: 778: 774: 770: 764: 761: 748: 734: 729: 725: 720: 714: 710: 706: 702: 696: 693: 672: 671: 657: 653: 642: 628: 624: 613: 599: 595: 584: 572: 558: 557: 546: 543: 535: 531: 523: 519: 515: 502: 491: 488: 480: 475: 471: 463: 459: 455: 433: 426: 395: 392: 367: 364: 360:Hendrik Tolman 342: 339: 337: 334: 312: 311:Coupled models 309: 300: 297: 261: 260:Representation 258: 244:Ocean currents 235: 232: 230: 227: 187:Harald Svedrup 164:oceanographers 160:meteorologists 107: 104: 36:fluid dynamics 15: 9: 6: 4: 3: 2: 4867: 4856: 4853: 4851: 4848: 4847: 4845: 4830: 4825: 4820: 4818: 4810: 4808: 4800: 4799: 4796: 4790: 4787: 4785: 4782: 4780: 4777: 4775: 4772: 4770: 4767: 4765: 4762: 4760: 4757: 4755: 4752: 4750: 4747: 4745: 4742: 4738: 4735: 4734: 4733: 4730: 4728: 4725: 4723: 4720: 4718: 4715: 4713: 4710: 4708: 4705: 4703: 4700: 4698: 4695: 4693: 4690: 4688: 4685: 4683: 4680: 4678: 4677:Marine energy 4675: 4673: 4670: 4668: 4667: 4662: 4660: 4657: 4655: 4652: 4650: 4647: 4645: 4644:Acidification 4642: 4641: 4639: 4635: 4629: 4626: 4624: 4621: 4619: 4616: 4615: 4613: 4609: 4603: 4600: 4598: 4597:SOFAR channel 4595: 4593: 4590: 4588: 4585: 4583: 4580: 4579: 4577: 4575: 4571: 4565: 4562: 4560: 4557: 4555: 4552: 4550: 4547: 4545: 4542: 4540: 4537: 4535: 4532: 4531: 4529: 4527: 4523: 4517: 4514: 4512: 4509: 4507: 4504: 4502: 4499: 4497: 4494: 4492: 4489: 4487: 4484: 4482: 4479: 4477: 4474: 4472: 4469: 4468: 4466: 4462: 4456: 4453: 4451: 4448: 4446: 4443: 4441: 4438: 4436: 4433: 4431: 4428: 4426: 4423: 4421: 4418: 4416: 4413: 4411: 4408: 4406: 4405:Oceanic crust 4403: 4401: 4398: 4396: 4393: 4391: 4388: 4386: 4383: 4381: 4380:Fracture zone 4378: 4376: 4373: 4371: 4368: 4367: 4365: 4363: 4357: 4351: 4348: 4346: 4343: 4341: 4338: 4336: 4333: 4331: 4328: 4326: 4323: 4321: 4318: 4316: 4315:Oceanic basin 4313: 4311: 4308: 4306: 4303: 4301: 4298: 4296: 4293: 4291: 4288: 4286: 4283: 4281: 4278: 4276: 4273: 4271: 4268: 4266: 4263: 4261: 4258: 4256: 4253: 4251: 4248: 4246: 4245:Abyssal plain 4243: 4241: 4238: 4237: 4235: 4233: 4229: 4223: 4220: 4218: 4215: 4213: 4210: 4208: 4205: 4203: 4200: 4198: 4195: 4193: 4190: 4188: 4185: 4183: 4180: 4178: 4175: 4173: 4170: 4168: 4165: 4163: 4160: 4158: 4155: 4153: 4152:Internal tide 4150: 4148: 4145: 4143: 4140: 4138: 4135: 4134: 4132: 4130: 4126: 4120: 4117: 4115: 4112: 4110: 4107: 4105: 4102: 4098: 4095: 4094: 4093: 4090: 4088: 4085: 4083: 4080: 4078: 4075: 4073: 4070: 4068: 4065: 4063: 4060: 4058: 4055: 4053: 4050: 4048: 4047:Ocean current 4045: 4043: 4040: 4038: 4035: 4033: 4030: 4028: 4025: 4023: 4020: 4018: 4015: 4013: 4010: 4008: 4005: 4003: 4000: 3998: 3995: 3993: 3990: 3988: 3985: 3983: 3980: 3978: 3975: 3973: 3970: 3968: 3965: 3963: 3960: 3958: 3955: 3953: 3950: 3948: 3945: 3943: 3940: 3938: 3935: 3933: 3930: 3929: 3927: 3925: 3921: 3916: 3905: 3893: 3890: 3889: 3888: 3885: 3883: 3880: 3878: 3875: 3871: 3868: 3866: 3863: 3862: 3861: 3858: 3856: 3853: 3851: 3848: 3846: 3845:Wave shoaling 3843: 3841: 3838: 3836: 3833: 3831: 3828: 3826: 3823: 3821: 3818: 3816: 3813: 3811: 3808: 3806: 3805:Ursell number 3803: 3801: 3798: 3794: 3791: 3790: 3789: 3786: 3784: 3781: 3779: 3776: 3774: 3771: 3769: 3766: 3764: 3761: 3759: 3756: 3754: 3751: 3749: 3746: 3744: 3741: 3739: 3736: 3734: 3731: 3729: 3726: 3724: 3721: 3719: 3716: 3714: 3711: 3709: 3706: 3704: 3701: 3699: 3696: 3694: 3691: 3689: 3688:Internal wave 3686: 3684: 3681: 3679: 3676: 3674: 3671: 3669: 3666: 3664: 3661: 3659: 3656: 3654: 3651: 3649: 3646: 3644: 3641: 3639: 3638:Breaking wave 3636: 3634: 3631: 3629: 3626: 3624: 3621: 3619: 3616: 3615: 3613: 3611: 3607: 3603: 3596: 3591: 3589: 3584: 3582: 3577: 3576: 3573: 3564: 3560: 3557: 3551: 3549: 3542: 3536: 3527: 3522: 3518: 3514: 3510: 3506: 3502: 3495: 3479: 3478: 3470: 3461: 3460:11577/3439620 3456: 3451: 3446: 3442: 3438: 3434: 3427: 3412: 3408: 3404: 3397: 3383: 3379: 3375: 3369: 3365: 3361: 3357: 3353: 3346: 3332: 3328: 3322: 3306: 3302: 3298: 3291: 3283: 3277: 3261: 3260: 3252: 3237: 3233: 3229: 3225: 3221: 3214: 3199: 3195: 3191: 3184: 3182: 3166: 3162: 3158: 3154: 3150: 3146: 3142: 3135: 3119: 3118: 3110: 3103: 3098: 3084:on 2016-03-04 3083: 3079: 3073: 3066: 3062: 3057: 3050: 3045: 3036: 3026: 3019: 3015: 3012: 3007: 2993:on 2013-08-23 2992: 2988: 2982: 2973: 2968: 2964: 2960: 2956: 2952: 2948: 2941: 2932: 2925: 2919: 2913: 2907: 2898: 2893: 2889: 2885: 2881: 2877: 2873: 2866: 2858: 2854: 2850: 2846: 2842: 2838: 2833: 2828: 2825:(6): L06607. 2824: 2820: 2813: 2804: 2799: 2795: 2791: 2787: 2783: 2779: 2772: 2757: 2750: 2743: 2735: 2731: 2724: 2709: 2705: 2700: 2695: 2691: 2687: 2683: 2676: 2668: 2667: 2659: 2644: 2640: 2633: 2618: 2610: 2606: 2605: 2597: 2588: 2582: 2576: 2574: 2566: 2562: 2559: 2554: 2545: 2535: 2528: 2524: 2518: 2504: 2497: 2490: 2488: 2483: 2475: 2472: 2461: 2458: 2456: 2452: 2448: 2437: 2433: 2430: 2421: 2412: 2406: 2400: 2398: 2394: 2390: 2379: 2373: 2368: 2359: 2357: 2353: 2349: 2348:wave spectrum 2344: 2342: 2338: 2334: 2330: 2326: 2322: 2310: 2306: 2304: 2300: 2299: 2298: 2288: 2284: 2282: 2278: 2277: 2276: 2266: 2262: 2260: 2256: 2255: 2254: 2246: 2239: 2230: 2228: 2207: 2200: 2197: 2190: 2187: 2182: 2178: 2155: 2148: 2145: 2138: 2135: 2130: 2126: 2118: 2102: 2097: 2087: 2083: 2078: 2075: 2068: 2064: 2057: 2054: 2048: 2044: 2039: 2036: 2032: 2027: 2024: 2018: 2015: 2005: 2004: 2003: 1984: 1977: 1974: 1967: 1964: 1959: 1955: 1932: 1925: 1922: 1915: 1912: 1907: 1903: 1895: 1879: 1874: 1864: 1860: 1855: 1852: 1845: 1841: 1834: 1831: 1825: 1821: 1816: 1813: 1809: 1804: 1801: 1795: 1792: 1782: 1781: 1780: 1777: 1773: 1771: 1752: 1749: 1743: 1740: 1734: 1731: 1709: 1702: 1699: 1692: 1689: 1683: 1680: 1670: 1656: 1653: 1647: 1644: 1619: 1614: 1607: 1604: 1598: 1594: 1589: 1586: 1583: 1580: 1577: 1571: 1568: 1558: 1544: 1541: 1535: 1532: 1507: 1502: 1495: 1492: 1486: 1482: 1477: 1474: 1471: 1468: 1462: 1459: 1449: 1448: 1447: 1440: 1432: 1409: 1406: 1396: 1392: 1388: 1381: 1378: 1371: 1368: 1365: 1359: 1356: 1350: 1347: 1341: 1338: 1328: 1309: 1306: 1296: 1292: 1288: 1281: 1278: 1271: 1268: 1265: 1259: 1256: 1250: 1247: 1241: 1238: 1228: 1227: 1226: 1207: 1196: 1193: 1187: 1181: 1178: 1175: 1172: 1166: 1163: 1153: 1137: 1126: 1123: 1117: 1111: 1108: 1105: 1102: 1096: 1093: 1083: 1082: 1081: 1069: 1065: 1046: 1039: 1024: 1017: 1002: 995: 994: 993: 973: 969: 964: 960: 957: 953: 947: 944: 934: 917: 912: 908: 903: 899: 896: 892: 886: 883: 873: 856: 851: 847: 842: 838: 835: 831: 825: 822: 812: 795: 791: 786: 780: 776: 772: 768: 762: 759: 749: 732: 727: 723: 718: 712: 708: 704: 700: 694: 691: 681: 680: 679: 677: 655: 651: 643: 626: 622: 614: 597: 593: 585: 570: 563: 562: 561: 544: 541: 533: 529: 521: 517: 513: 503: 489: 486: 478: 473: 469: 461: 457: 453: 443: 442: 441: 439: 431: 425: 423: 418: 414: 412: 408: 403: 401: 391: 389: 385: 380: 378: 373: 372:wave spectrum 363: 361: 356: 353: 348: 333: 331: 327: 323: 319: 308: 306: 296: 293: 291: 287: 284:/ advection, 283: 279: 275: 274:superposition 271: 267: 252: 248: 245: 240: 226: 224: 219: 214: 209: 207: 202: 200: 196: 192: 188: 184: 180: 176: 175:United States 172: 167: 165: 161: 157: 156:landing craft 153: 148: 146: 140: 136: 134: 129: 123: 121: 117: 113: 103: 101: 96: 94: 89: 87: 83: 79: 78: 72: 71: 65: 61: 57: 53: 49: 45: 41: 37: 30: 21: 4784:Water column 4732:Oceanography 4707:Observations 4702:Explorations 4672:Marginal sea 4665: 4623:OSTM/Jason-2 4455:Volcanic arc 4430:Slab suction 4147:Head of tide 4037:Loop Current 3977:Ekman spiral 3891: 3763:Stokes drift 3673:Gravity wave 3648:Cnoidal wave 3535: 3508: 3504: 3494: 3482:. Retrieved 3476: 3469: 3440: 3436: 3426: 3414:. Retrieved 3410: 3406: 3396: 3385:, retrieved 3355: 3345: 3334:. Retrieved 3330: 3321: 3309:. Retrieved 3304: 3300: 3290: 3276: 3264:. Retrieved 3258: 3251: 3239:. Retrieved 3227: 3223: 3213: 3201:. Retrieved 3193: 3168:. Retrieved 3148: 3144: 3134: 3122:. Retrieved 3116: 3109: 3097: 3086:. Retrieved 3082:the original 3072: 3065:ScienceDaily 3064: 3056: 3044: 3035: 3025: 3006: 2995:. Retrieved 2991:the original 2981: 2954: 2950: 2940: 2931: 2918: 2906: 2879: 2875: 2865: 2822: 2818: 2812: 2785: 2781: 2771: 2759:. Retrieved 2755: 2742: 2733: 2723: 2711:. Retrieved 2689: 2685: 2675: 2665: 2658: 2646:. Retrieved 2642: 2632: 2620:. Retrieved 2608: 2604:「波動問題」の歴史的変遷 2603: 2596: 2587: 2553: 2544: 2534: 2526: 2517: 2506:. Retrieved 2502: 2467: 2459: 2443: 2434: 2426: 2401: 2385: 2376: 2345: 2318: 2309:6.89 seconds 2308: 2302: 2296: 2287:7.01 seconds 2286: 2280: 2274: 2265:7.02 seconds 2264: 2258: 2252: 2236: 2224: 2001: 1778: 1774: 1767: 1445: 1224: 1079: 1062: 991: 673: 559: 435: 419: 415: 404: 397: 394:Other models 381: 369: 357: 344: 314: 302: 294: 263: 241: 237: 210: 203: 168: 152:World War II 149: 141: 137: 124: 109: 97: 92: 90: 74: 67: 60:wave heights 39: 33: 4855:Water waves 4774:Thermocline 4491:Mesopelagic 4464:Ocean zones 4435:Slab window 4300:Hydrography 4240:Abyssal fan 4207:Tidal range 4197:Tidal power 4192:Tidal force 4077:Rip current 4012:Gulf Stream 3972:Ekman layer 3962:Downwelling 3937:Baroclinity 3924:Circulation 3820:Wave height 3810:Wave action 3793:megatsunami 3773:Stokes wave 3733:Rossby wave 3698:Kelvin wave 3678:Green's law 3443:(7): 1087. 3190:"Sea Waves" 2356:open-source 2303:2.63 meters 2281:3.56 meters 2259:3.54 meters 278:wave action 270:frequencies 191:Walter Munk 58:describing 4844:Categories 4712:Reanalysis 4611:Satellites 4592:Sofar bomb 4440:Subduction 4415:Ridge push 4310:Ocean bank 4290:Contourite 4217:Tide gauge 4202:Tidal race 4187:Tidal bore 4177:Slack tide 4142:Earth tide 4062:Ocean gyre 3882:Wind setup 3877:Wind fetch 3840:Wave setup 3835:Wave radar 3830:Wave power 3728:Rogue wave 3658:Dispersion 3480:. TU Delft 3336:2023-08-27 3262:. TU Delft 3120:. TU Delft 3117:Wind Waves 3088:2015-06-01 2997:2012-03-22 2508:2008-11-21 2478:References 2464:Reanalyses 2440:Validation 2429:refraction 2397:salt marsh 2341:refraction 2238:Lake Garda 2227:IJsselmeer 286:refraction 88:purposes. 86:seakeeping 56:statistics 29:Wind waves 4574:Acoustics 4526:Sea level 4425:Slab pull 4362:tectonics 4270:Cold seep 4232:Landforms 4109:Whirlpool 4104:Upwelling 3887:Wind wave 3815:Wave base 3743:Sea state 3663:Edge wave 3653:Cross sea 3484:11 August 3416:11 August 3387:27 August 3382:219883066 3311:11 August 3307:: 630–641 3266:10 August 3241:10 August 3203:10 August 3170:10 August 3124:10 August 2832:0809.2497 2713:11 August 2708:2156-1028 2648:27 August 2622:27 August 2447:Altimetry 2321:WAVEWATCH 2201:^ 2191:0.0005215 2149:^ 2079:⁡ 2058:⁡ 2040:⁡ 2019:^ 1978:^ 1926:^ 1856:⁡ 1835:⁡ 1817:⁡ 1796:^ 1770:nomograms 1744:^ 1703:^ 1684:^ 1648:^ 1608:^ 1590:⁡ 1584:π 1572:^ 1536:^ 1496:^ 1478:⁡ 1463:^ 1407:− 1382:^ 1360:− 1342:^ 1307:− 1282:^ 1260:− 1242:^ 1197:^ 1182:⁡ 1167:^ 1127:^ 1112:⁡ 1097:^ 948:^ 887:^ 826:^ 763:^ 695:^ 422:U.S. Navy 341:WAVEWATCH 128:wind seas 116:empirical 112:sea state 95:is used. 77:forecasts 70:hindcasts 44:sea state 4807:Category 4759:Seawater 4486:Littoral 4481:Deep sea 4340:Seamount 4222:Tideline 4167:Rip tide 4097:shutdown 4067:Overflow 3800:Undertow 3643:Clapotis 3559:Archived 3331:TU Delft 3014:Archived 2761:22 March 2692:(6): 3. 2561:Archived 2337:breaking 2331:and the 336:Examples 330:wind sea 290:shoaling 266:spectrum 215:and the 173:and the 4817:Commons 4687:Mooring 4637:Related 4628:Jason-3 4618:Jason-1 4501:Pelagic 4496:Oceanic 4471:Benthic 3788:Tsunami 3758:Soliton 3513:Bibcode 3153:Bibcode 3030:155-197 2959:Bibcode 2884:Bibcode 2857:6470677 2837:Bibcode 2790:Bibcode 1968:0.00313 992:Where: 560:Where: 64:periods 4506:Photic 4335:Seabed 3748:Seiche 3380:  3370:  3327:"SWAN" 2855:  2734:P80-01 2706:  2611:] 2471:ERA-40 2451:GEOSAT 1599:0.0345 1118:0.0125 430:Wilson 299:Output 48:energy 4697:Ocean 4666:Alvin 4516:Swash 4360:Plate 4305:Knoll 4295:Guyot 4250:Atoll 4129:Tides 3892:model 3778:Swell 3610:Waves 3437:Water 3378:S2CID 2853:S2CID 2827:arXiv 2752:(PDF) 2613:(PDF) 2607:[ 2499:(PDF) 2455:TOPEX 2409:m-1,0 2139:0.331 2103:0.387 2028:7.519 1916:0.493 1805:0.241 1710:0.225 1693:0.502 1487:0.015 1372:0.008 1272:0.004 1188:0.077 1106:0.283 490:0.283 438:fetch 234:Input 171:Japan 120:swell 75:wave 68:wave 4664:DSV 4649:Argo 4511:Surf 3967:Eddy 3486:2023 3418:2023 3389:2023 3368:ISBN 3313:2023 3268:2023 3243:2023 3205:2023 3172:2023 3126:2023 2763:2022 2715:2023 2704:ISSN 2650:2023 2624:2023 2453:and 2208:0.73 2170:and 2156:1.01 2076:tanh 2055:tanh 2037:tanh 2002:and 1985:0.57 1947:and 1933:0.75 1880:0.87 1853:tanh 1832:tanh 1814:tanh 1750:< 1735:< 1724:for 1654:> 1634:for 1620:0.37 1587:tanh 1542:> 1522:for 1508:0.45 1475:tanh 1472:0.24 1351:1.37 1251:0.30 1208:0.25 1179:tanh 1176:7.54 1138:0.42 1109:tanh 545:7.54 347:NOAA 223:dike 162:and 73:and 3521:doi 3455:hdl 3445:doi 3360:doi 3232:doi 3161:doi 2967:doi 2892:doi 2845:doi 2798:doi 2694:doi 2411:). 1753:400 1657:400 366:WAM 34:In 4846:: 3547:^ 3519:. 3509:13 3507:. 3503:. 3453:. 3441:14 3439:. 3435:. 3411:31 3409:. 3405:. 3376:, 3366:, 3354:, 3329:. 3303:. 3299:. 3228:29 3226:. 3222:. 3196:. 3192:. 3180:^ 3159:. 3149:18 3147:. 3143:. 3063:, 2965:. 2955:18 2953:. 2949:. 2890:. 2880:13 2878:. 2874:. 2851:. 2843:. 2835:. 2823:36 2821:. 2796:. 2786:33 2784:. 2780:. 2754:. 2732:. 2702:. 2688:. 2684:. 2641:. 2572:^ 2525:, 2501:. 2486:^ 2407:(T 2339:, 1732:10 1545:10 402:. 379:. 201:. 189:, 135:. 62:, 38:, 3594:e 3587:t 3580:v 3529:. 3523:: 3515:: 3488:. 3463:. 3457:: 3447:: 3420:. 3362:: 3339:. 3315:. 3305:2 3270:. 3245:. 3234:: 3207:. 3174:. 3163:: 3155:: 3128:. 3091:. 3000:. 2975:. 2969:: 2961:: 2900:. 2894:: 2886:: 2859:. 2847:: 2839:: 2829:: 2806:. 2800:: 2792:: 2765:. 2717:. 2696:: 2690:1 2626:. 2511:. 2242:s 2198:F 2188:= 2183:T 2179:B 2146:d 2136:= 2131:T 2127:A 2098:) 2088:T 2084:A 2069:T 2065:B 2049:T 2045:A 2033:( 2025:= 2016:T 1975:F 1965:= 1960:H 1956:B 1923:d 1913:= 1908:H 1904:A 1875:) 1865:H 1861:A 1846:H 1842:B 1826:H 1822:A 1810:( 1802:= 1793:H 1741:F 1700:F 1690:= 1681:T 1645:F 1615:) 1605:F 1595:( 1581:2 1578:= 1569:T 1533:F 1503:) 1493:F 1483:( 1469:= 1460:H 1415:} 1410:5 1403:] 1397:3 1393:/ 1389:1 1379:F 1369:+ 1366:1 1363:[ 1357:1 1354:{ 1348:= 1339:T 1315:} 1310:2 1303:] 1297:2 1293:/ 1289:1 1279:F 1269:+ 1266:1 1263:[ 1257:1 1254:{ 1248:= 1239:H 1204:) 1194:F 1185:( 1173:= 1164:T 1134:) 1124:F 1115:( 1103:= 1094:H 1047:t 1025:F 1003:d 974:w 970:u 965:/ 961:t 958:g 954:= 945:t 918:2 913:w 909:u 904:/ 900:F 897:g 893:= 884:F 857:2 852:w 848:u 843:/ 839:d 836:g 832:= 823:d 796:w 792:u 787:/ 781:s 777:T 773:g 769:= 760:T 733:2 728:w 724:u 719:/ 713:s 709:H 705:g 701:= 692:H 656:w 652:u 627:s 623:T 598:s 594:H 571:g 542:= 534:w 530:u 522:s 518:T 514:g 487:= 479:2 474:w 470:u 462:s 458:H 454:g 31:.

Index


Wind waves
fluid dynamics
sea state
energy
numerical techniques
statistics
wave heights
periods
hindcasts
forecasts
shipping industry
seakeeping
coastal engineering
sea state
empirical
swell
wind seas
Fleet Numerical Oceanography Center
data assimilation
World War II
landing craft
meteorologists
oceanographers
Japan
United States
Scripps Institution of Oceanography
University of California
Harald Svedrup
Walter Munk

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑