Knowledge

Wind engineering

Source 📝

204: 39: 499: 511: 31: 20: 598:
are affected by wind shear. Vertical wind-speed profiles result in different wind speeds at the blades nearest to the ground level compared to those at the top of blade travel, and this, in turn, affects the turbine operation. The wind gradient can create a large bending moment in the shaft of a two
194:
was one of the most prominent contributors to the development of wind engineering. He is well known for developing the Alan Davenport wind-loading chain or in short "wind-loading chain" that describes how different components contribute to the final load calculated on the structure.
892:
and all other types of towers and chimneys. The wind load is the dominant load in the analysis of many tall buildings, so wind engineering is essential for their analysis and design. Again, wind load is a dominant load in the analysis and design of all long-span
324: 706: 76:
and studies the possible damage, inconvenience or benefits which may result from wind. In the field of engineering it includes strong winds, which may cause discomfort, as well as extreme winds, such as in a
573:
The vertical wind profile used in these studies varies according to the terrain in the vicinity of the buildings (which may differ by wind direction), and is often grouped in categories, such as:
203: 479:
to predict future extreme wind speeds. Wind speeds are generally calculated based on some regional design standard or standards. The design standards for building wind loads include:
475:
Typically, buildings are designed to resist a strong wind with a very long return period, such as 50 years or more. The design wind speed is determined from historical records using
221: 751: 808: 468: 841: 444: 414: 360: 599:
bladed turbine when the blades are vertical. The reduced wind gradient over water means shorter and less expensive wind turbine towers can be used in shallow seas.
865: 383: 771: 570:
techniques has increased. The pedestrian level wind speeds for a given exceedance probability are calculated to allow for regional wind speeds statistics.
1192: 586:
Terrain with numerous large, high (10 to 30 m high) and closely spaced obstructions, such as large city centres and well-developed industrial complexes
612: 555:
Through-flow, also known as a passage jet, in any passage through a building or small gap between two buildings due to pressure short-circuiting
187: 562:
For more complex geometries, pedestrian wind comfort studies are required. These can use an appropriately scaled model in a boundary-layer
38: 528:
A number of wind comfort and wind danger criteria were developed from 1971, based on different pedestrian activities, such as:
1170: 1277: 1252: 1227: 1133: 1106: 1058: 186:
Wind engineering as a separate discipline can be traced to the UK in the 1960s, when informal meetings were held at the
97:
it also includes low and moderate winds as these are relevant to electricity production and dispersion of contaminants.
580:
Water surfaces, open terrain, grassland with few, well-scattered obstructions having heights generally from 1.5 to 10 m
1014:
Cochran, Leighton; Derickson, Russ (April 2011). "A physical modeler's view of Computational Wind Engineering".
515: 927: 113: 190:, the Building Research Establishment, and elsewhere. The term "wind engineering" was first coined in 1970. 567: 133: 1159: 1148: 548:
Building geometries consisting of one and two rectangular buildings have a number of well-known effects:
867:= Hellman exponent (aka power law exponent or shear exponent) (~= 1/7 in neutral flow, but can be >1) 525:
led to concerns regarding the wind nuisance caused by these buildings to pedestrians in their vicinity.
319:{\displaystyle \ v_{z}=v_{g}\cdot \left({\frac {z}{z_{g}}}\right)^{\frac {1}{\alpha }},0<z<z_{g}} 1383: 583:
Terrain with numerous closely spaced obstructions 3 to 5 m high, such as areas of suburban housing
1362: 1323: 1298: 889: 577:
Exposed open terrain with few or no obstructions and water surfaces at serviceability wind speeds
1182:
AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings
717: 498: 777: 450: 191: 160: 57: 53: 1203: 906: 813: 419: 389: 335: 1181: 476: 164: 8: 885: 847: 603: 365: 178:
are known for their strong, sometimes swirly winds, which affect the playing conditions.
175: 121: 1160:
Pedestrian wind comfort around buildings: comparison of wind comfort criteria. Figure 6
991: 958: 756: 23: 1149:
Pedestrian wind comfort around buildings: comparison of wind comfort criteria. Table 3
545:
Other criteria classified a wind environment as completely unacceptable or dangerous.
1273: 1248: 1223: 1129: 1123: 1102: 1054: 996: 978: 937: 916: 881: 503: 125: 73: 159:
Wind engineering may be considered by structural engineers to be closely related to
1335: 1310: 1079: 1046: 1023: 986: 970: 510: 171: 1043:
Wind Science and Engineering: Origins, Developments, Fundamentals and Advancements
19: 1045:. Springer Tracts in Civil Engineering. Cham: Springer International Publishing. 65: 43: 1339: 1314: 1083: 1027: 30: 1204:
AS/NZS 1170.2:2011 Structural Design Actions Part 2 – Wind actions. Section 4.2
514:
Computer simulation of the airflow downwind of a hangar which caused damage to
211:
The design of buildings must account for wind loads, and these are affected by
105: 1354: 1074:
Isyumov, Nicholas (May 2012). "Alan G. Davenport's mark on wind engineering".
1050: 974: 215:. For engineering purposes, a power law wind-speed profile may be defined as: 1377: 982: 701:{\displaystyle \ v_{w}(h)=v_{ref}\cdot \left({\frac {h}{h_{ref}}}\right)^{a}} 94: 606:, wind speed variation with height is often approximated using a power law: 1000: 911: 894: 595: 522: 117: 552:
Corner streams, also known as corner jets, around the corners of buildings
921: 563: 129: 101: 90: 61: 1125:
Guidelines for Design of Low-Rise Buildings Subjected to Lateral Forces
212: 86: 1299:"50 years of Computational Wind Engineering: Past, present and future" 877: 109: 82: 876:
The knowledge of wind engineering is used to analyze and design all
1270:
Wind Turbine Operation in Electric Power Systems: Advanced Modeling
502:
Wind baffles being installed to mitigate wind danger issues at the
1366: 932: 78: 116:, and a number of specialist engineering disciplines, including 16:
Study of the effects of wind on natural and built environments
34:
Wind engineering covers the aerodynamic effects of buildings
957:
Hewitt, Sam; Margetts, Lee; Revell, Alistair (2017-04-18).
89:, which may cause widespread destruction. In the fields of 69: 1328:
Journal of Wind Engineering and Industrial Aerodynamics
1303:
Journal of Wind Engineering and Industrial Aerodynamics
1076:
Journal of Wind Engineering and Industrial Aerodynamics
1016:
Journal of Wind Engineering and Industrial Aerodynamics
149:
Effects of wind on the ventilation system in a building
143:
Wind impact on structures (buildings, bridges, towers)
850: 816: 780: 759: 720: 615: 453: 422: 392: 368: 338: 224: 956: 207:
Wind Tunnel Model of One Post Office Square, Boston
1220:Grid Integration of Wind Energy Conversion Systems 1193:Pedestrian Wind Environment Around Buildings. p112 859: 835: 802: 765: 745: 700: 462: 438: 408: 377: 354: 318: 1247:. Chichester: John Wiley & Sons. p. 30. 1222:. Chichester: John Wiley & Sons. p. 45. 1375: 1122:Gupta, Ajaya Kumar and Peter James Moss (1993). 1013: 963:Archives of Computational Methods in Engineering 810:= velocity of the wind at some reference height 139:Wind engineering involves, among other topics: 1365:from the original on 2021-12-15 – via 1324:"Wind engineering—Past, present and future" 198: 990: 1242: 1213: 1211: 558:Vortex shedding in the wake of buildings 509: 497: 202: 37: 29: 18: 1296: 1267: 1261: 1096: 1073: 1376: 1090: 1040: 888:, electricity transmission towers and 1321: 1217: 1208: 1171:Wind Effects On Pedestrians. Figure 3 1128:. Boca Raton: CRC Press. p. 49. 1121: 26:of wind speed contours around a house 1115: 416:= gradient wind at gradient height 13: 1355:"How Tall Buildings Tame the Wind" 1290: 535:Sitting for a short period of time 14: 1395: 1347: 753:= velocity of the wind at height 532:Sitting for a long period of time 1272:. Berlin: Springer. p. 17. 1101:. New York: Wiley. p. 272. 590: 1236: 1197: 1186: 1175: 871: 493: 1164: 1153: 1142: 1067: 1034: 1007: 959:"Building a Digital Wind Farm" 950: 740: 734: 635: 629: 516:Ameristar Charters Flight 9363 362:= speed of the wind at height 114:geographic information systems 1: 943: 928:World Wind Energy Association 170:Some sports stadiums such as 128:, atmospheric boundary layer 68:that analyzes the effects of 42:Damaged wind turbines due to 568:computational fluid dynamics 566:, or more recently, use of 188:National Physical Laboratory 155:Air pollution near buildings 152:Wind climate for wind energy 134:computational fluid dynamics 100:Wind engineering draws upon 7: 1340:10.1016/j.jweia.2007.01.011 1315:10.1016/j.jweia.2014.03.008 1084:10.1016/j.jweia.2012.02.007 1028:10.1016/j.jweia.2011.01.015 900: 146:Wind comfort near buildings 10: 1400: 1268:Lubosny, Zbigniew (2003). 746:{\displaystyle \ v_{w}(h)} 181: 1243:Harrison, Robert (2001). 1218:Heier, Siegfried (2005). 1097:Crawley, Stanley (1993). 1051:10.1007/978-3-030-18815-3 1041:Solari, Giovanni (2019). 975:10.1007/s11831-017-9222-7 803:{\displaystyle \ v_{ref}} 470:= exponential coefficient 463:{\displaystyle \ \alpha } 124:. The tools used include 890:telecommunication towers 604:wind turbine engineering 521:The advent of high-rise 836:{\displaystyle h_{ref}} 506:skyscraper in Leeds, UK 483:AS 1170.2 for Australia 439:{\displaystyle \ z_{g}} 409:{\displaystyle \ v_{g}} 355:{\displaystyle \ v_{z}} 199:Wind loads on buildings 72:in the natural and the 1361:. September 12, 2018. 1297:Blocken, Bert (2014). 861: 837: 804: 767: 747: 702: 518: 507: 486:EN 1991-1-4 for Europe 464: 440: 410: 379: 356: 320: 208: 192:Alan Garnett Davenport 161:earthquake engineering 58:structural engineering 54:mechanical engineering 46: 35: 27: 907:Hurricane engineering 862: 838: 805: 768: 748: 703: 513: 501: 465: 441: 411: 380: 357: 321: 206: 41: 33: 22: 1322:Baker, C.J. (2007). 886:cable-stayed bridges 848: 814: 778: 757: 718: 613: 477:extreme value theory 451: 420: 390: 366: 336: 222: 165:explosion protection 1245:Large Wind Turbines 860:{\displaystyle \ a} 378:{\displaystyle \ z} 176:Arthur Ashe Stadium 122:structural dynamics 1078:. 104–106: 12–24. 882:suspension bridges 857: 833: 800: 763: 743: 698: 519: 508: 460: 436: 406: 375: 352: 316: 209: 126:atmospheric models 47: 36: 28: 24:Flow visualization 1334:(9–11): 843–870. 1279:978-3-540-40340-1 1254:978-0-471-49456-0 1229:978-0-470-86899-7 1135:978-0-8493-8969-6 1108:978-0-471-84298-9 1060:978-3-030-18814-6 938:Alan G. Davenport 917:Vibration control 880:buildings, cable- 853: 783: 766:{\displaystyle h} 723: 686: 618: 504:Bridgewater Place 456: 425: 395: 371: 341: 288: 274: 227: 74:built environment 1391: 1384:Wind engineering 1370: 1343: 1318: 1284: 1283: 1265: 1259: 1258: 1240: 1234: 1233: 1215: 1206: 1201: 1195: 1190: 1184: 1179: 1173: 1168: 1162: 1157: 1151: 1146: 1140: 1139: 1119: 1113: 1112: 1094: 1088: 1087: 1071: 1065: 1064: 1038: 1032: 1031: 1011: 1005: 1004: 994: 954: 866: 864: 863: 858: 851: 842: 840: 839: 834: 832: 831: 809: 807: 806: 801: 799: 798: 781: 772: 770: 769: 764: 752: 750: 749: 744: 733: 732: 721: 707: 705: 704: 699: 697: 696: 691: 687: 685: 684: 666: 656: 655: 628: 627: 616: 469: 467: 466: 461: 454: 445: 443: 442: 437: 435: 434: 423: 415: 413: 412: 407: 405: 404: 393: 384: 382: 381: 376: 369: 361: 359: 358: 353: 351: 350: 339: 325: 323: 322: 317: 315: 314: 290: 289: 281: 279: 275: 273: 272: 260: 250: 249: 237: 236: 225: 172:Candlestick Park 50:Wind engineering 1399: 1398: 1394: 1393: 1392: 1390: 1389: 1388: 1374: 1373: 1353: 1350: 1293: 1291:Further reading 1288: 1287: 1280: 1266: 1262: 1255: 1241: 1237: 1230: 1216: 1209: 1202: 1198: 1191: 1187: 1180: 1176: 1169: 1165: 1158: 1154: 1147: 1143: 1136: 1120: 1116: 1109: 1099:Steel Buildings 1095: 1091: 1072: 1068: 1061: 1039: 1035: 1012: 1008: 955: 951: 946: 903: 874: 849: 846: 845: 821: 817: 815: 812: 811: 788: 784: 779: 776: 775: 758: 755: 754: 728: 724: 719: 716: 715: 692: 674: 670: 665: 661: 660: 645: 641: 623: 619: 614: 611: 610: 593: 496: 474: 452: 449: 448: 430: 426: 421: 418: 417: 400: 396: 391: 388: 387: 367: 364: 363: 346: 342: 337: 334: 333: 310: 306: 280: 268: 264: 259: 255: 254: 245: 241: 232: 228: 223: 220: 219: 201: 184: 66:applied physics 52:is a subset of 44:hurricane Maria 17: 12: 11: 5: 1397: 1387: 1386: 1372: 1371: 1349: 1348:External links 1346: 1345: 1344: 1319: 1292: 1289: 1286: 1285: 1278: 1260: 1253: 1235: 1228: 1207: 1196: 1185: 1174: 1163: 1152: 1141: 1134: 1114: 1107: 1089: 1066: 1059: 1033: 1022:(4): 139–153. 1006: 969:(4): 879–899. 948: 947: 945: 942: 941: 940: 935: 930: 925: 919: 914: 909: 902: 899: 873: 870: 869: 868: 856: 843: 830: 827: 824: 820: 797: 794: 791: 787: 773: 762: 742: 739: 736: 731: 727: 709: 708: 695: 690: 683: 680: 677: 673: 669: 664: 659: 654: 651: 648: 644: 640: 637: 634: 631: 626: 622: 592: 589: 588: 587: 584: 581: 578: 560: 559: 556: 553: 543: 542: 539: 536: 533: 495: 492: 491: 490: 489:NBC for Canada 487: 484: 472: 471: 459: 446: 433: 429: 403: 399: 385: 374: 349: 345: 327: 326: 313: 309: 305: 302: 299: 296: 293: 287: 284: 278: 271: 267: 263: 258: 253: 248: 244: 240: 235: 231: 200: 197: 183: 180: 157: 156: 153: 150: 147: 144: 106:fluid dynamics 15: 9: 6: 4: 3: 2: 1396: 1385: 1382: 1381: 1379: 1368: 1364: 1360: 1356: 1352: 1351: 1341: 1337: 1333: 1329: 1325: 1320: 1316: 1312: 1308: 1304: 1300: 1295: 1294: 1281: 1275: 1271: 1264: 1256: 1250: 1246: 1239: 1231: 1225: 1221: 1214: 1212: 1205: 1200: 1194: 1189: 1183: 1178: 1172: 1167: 1161: 1156: 1150: 1145: 1137: 1131: 1127: 1126: 1118: 1110: 1104: 1100: 1093: 1085: 1081: 1077: 1070: 1062: 1056: 1052: 1048: 1044: 1037: 1029: 1025: 1021: 1017: 1010: 1002: 998: 993: 988: 984: 980: 976: 972: 968: 964: 960: 953: 949: 939: 936: 934: 931: 929: 926: 923: 920: 918: 915: 913: 910: 908: 905: 904: 898: 896: 895:cable bridges 891: 887: 883: 879: 854: 844: 828: 825: 822: 818: 795: 792: 789: 785: 774: 760: 737: 729: 725: 714: 713: 712: 693: 688: 681: 678: 675: 671: 667: 662: 657: 652: 649: 646: 642: 638: 632: 624: 620: 609: 608: 607: 605: 600: 597: 596:Wind turbines 591:Wind turbines 585: 582: 579: 576: 575: 574: 571: 569: 565: 557: 554: 551: 550: 549: 546: 540: 537: 534: 531: 530: 529: 526: 524: 517: 512: 505: 500: 488: 485: 482: 481: 480: 478: 457: 447: 431: 427: 401: 397: 386: 372: 347: 343: 332: 331: 330: 311: 307: 303: 300: 297: 294: 291: 285: 282: 276: 269: 265: 261: 256: 251: 246: 242: 238: 233: 229: 218: 217: 216: 214: 205: 196: 193: 189: 179: 177: 173: 168: 166: 162: 154: 151: 148: 145: 142: 141: 140: 137: 135: 131: 127: 123: 119: 115: 111: 107: 103: 98: 96: 95:air pollution 92: 88: 84: 80: 75: 71: 67: 63: 59: 55: 51: 45: 40: 32: 25: 21: 1358: 1331: 1327: 1306: 1302: 1269: 1263: 1244: 1238: 1219: 1199: 1188: 1177: 1166: 1155: 1144: 1124: 1117: 1098: 1092: 1075: 1069: 1042: 1036: 1019: 1015: 1009: 966: 962: 952: 912:John Twidell 875: 872:Significance 710: 601: 594: 572: 561: 547: 544: 541:Walking fast 527: 523:tower blocks 520: 494:Wind comfort 473: 328: 210: 185: 169: 158: 138: 130:wind tunnels 118:aerodynamics 99: 49: 48: 922:Wind tunnel 564:wind tunnel 102:meteorology 91:wind energy 87:heavy storm 62:meteorology 1309:: 69–102. 944:References 213:wind shear 983:1134-3060 878:high-rise 658:⋅ 538:Strolling 458:α 286:α 252:⋅ 110:mechanics 83:hurricane 1378:Category 1363:Archived 1001:30443152 901:See also 136:models. 1367:YouTube 1359:The B1M 992:6209038 933:Damping 924:testing 711:where: 329:where: 182:History 79:tornado 1276:  1251:  1226:  1132:  1105:  1057:  999:  989:  981:  852:  782:  722:  617:  455:  424:  394:  370:  340:  226:  132:, and 64:, and 1274:ISBN 1249:ISBN 1224:ISBN 1130:ISBN 1103:ISBN 1055:ISBN 997:PMID 979:ISSN 884:and 602:For 304:< 298:< 174:and 163:and 120:and 93:and 70:wind 1336:doi 1311:doi 1307:129 1080:doi 1047:doi 1024:doi 987:PMC 971:doi 85:or 1380:: 1357:. 1332:95 1330:. 1326:. 1305:. 1301:. 1210:^ 1053:. 1020:99 1018:. 995:. 985:. 977:. 967:25 965:. 961:. 897:. 167:. 112:, 108:, 104:, 81:, 60:, 56:, 1369:. 1342:. 1338:: 1317:. 1313:: 1282:. 1257:. 1232:. 1138:. 1111:. 1086:. 1082:: 1063:. 1049:: 1030:. 1026:: 1003:. 973:: 855:a 829:f 826:e 823:r 819:h 796:f 793:e 790:r 786:v 761:h 741:) 738:h 735:( 730:w 726:v 694:a 689:) 682:f 679:e 676:r 672:h 668:h 663:( 653:f 650:e 647:r 643:v 639:= 636:) 633:h 630:( 625:w 621:v 432:g 428:z 402:g 398:v 373:z 348:z 344:v 312:g 308:z 301:z 295:0 292:, 283:1 277:) 270:g 266:z 262:z 257:( 247:g 243:v 239:= 234:z 230:v

Index


Flow visualization


hurricane Maria
mechanical engineering
structural engineering
meteorology
applied physics
wind
built environment
tornado
hurricane
heavy storm
wind energy
air pollution
meteorology
fluid dynamics
mechanics
geographic information systems
aerodynamics
structural dynamics
atmospheric models
wind tunnels
computational fluid dynamics
earthquake engineering
explosion protection
Candlestick Park
Arthur Ashe Stadium
National Physical Laboratory

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.