Knowledge

White dwarf

Source 📝

343:
Cambridge, and I discussed. This piece of apparently routine work proved very fruitful – it led to the discovery that all the stars of very faint absolute magnitude were of spectral class M. In conversation on this subject (as I recall it), I asked Pickering about certain other faint stars, not on my list, mentioning in particular 40 Eridani B. Characteristically, he sent a note to the Observatory office and before long the answer came (I think from Mrs. Fleming) that the spectrum of this star was A. I knew enough about it, even in these paleozoic days, to realize at once that there was an extreme inconsistency between what we would then have called "possible" values of the surface brightness and density. I must have shown that I was not only puzzled but crestfallen, at this exception to what looked like a very pretty rule of stellar characteristics; but Pickering smiled upon me, and said: "It is just these exceptions that lead to an advance in our knowledge", and so the white dwarfs entered the realm of study!
3541: 3005:
the single-degenerate scenario, the accretion rate onto the white dwarf needs to be within a narrow range dependent on its mass so that the hydrogen burning on the surface of the white dwarf is stable. If the accretion rate is too low, novae on the surface of the white dwarf will blow away accreted material. If it’s too high, the white dwarf will expand and the white dwarf and companion star will be in a common envelope. This stops the growth of the white dwarf thus preventing it from reaching the Chandrasekhar limit and exploding. For the single-degenerate model its companion is expected to survive, but there is no strong evidence of such a star near Type Ia supernovae sites. In the double-degenerate scenario, white dwarfs need to be in very close binaries, otherwise their inspiral time is longer than the
3555: 15812: 1730: 2493: 2615: 3512: 2892: 3058:, it is slowed down in the denser environment. This slowed orbital speed is compensated with a decrease of the orbital distance between the red dwarf and the core of the red giant. The red dwarf spirals inwards towards the core and might merge with the core. If this does not happen and instead the common envelope is ejected, then the binary ends up in a close orbit, consisting of a white dwarf and a red dwarf. This type of binary is called a post-common envelope binary. The evolution of the PCEB continues as the two dwarf stars orbit closer and closer due to 2758:-Gaia proper motion. For GD 140 it is suspected to be a planet several times more massive than Jupiter and for LAWD 37 it is suspected to be a planet less massive than Jupiter. Additionally, WD 0141-675 was suspected to have a super-Jupiter with an orbital period of 33.65 days based on Gaia astrometry. This is remarkable because WD 0141-675 is polluted with metals and metal polluted white dwarfs have long be suspected to host giant planets that disturb the orbits of minor planets, causing the pollution. Both GD 140 and WD 0141 will be observed with 2585:, which is stronger for less massive white dwarfs. The Poynting–Robertson drag will also cause the dust to orbit closer and closer towards the white dwarf, until it will eventually sublimate and the disk will disappear. A debris disk will have a lifetime of around a few million years for white dwarfs hotter than 10,000 K. Colder white dwarfs can have disk-lifetimes of a few 10 million years, which is enough time to tidally disrupt a second rocky body and forming a second disk around a white dwarf, such as the two rings around 1941:
atmospheres. Those classified as DB, DC, DO, DZ, and cool DQ have helium-dominated atmospheres. Assuming that carbon and metals are not present, which spectral classification is seen depends on the effective temperature. Between approximately 100,000 K to 45,000 K, the spectrum will be classified DO, dominated by singly ionized helium. From 30,000 K to 12,000 K, the spectrum will be DB, showing neutral helium lines, and below about 12,000 K, the spectrum will be featureless and classified DC.
2501: 1963: 49: 1429: 2041: gauss (0.2 T to 100 kT). The large number of presently known magnetic white dwarfs is due to the fact that most white dwarfs are identified by low-resolution spectroscopy, which is able to reveal the presence of a magnetic field of 1 megagauss or more. Thus the basic identification process also sometimes results in discovery of magnetic fields. It has been estimated that at least 10% of white dwarfs have fields in excess of 1 million gauss (100 T). 15884: 15774: 14247: 13745: 437: 2416: 13735: 15848: 1910:, Jesse L. Greenstein and their coauthors in 1983 and has been subsequently revised several times. It classifies a spectrum by a symbol which consists of an initial D, a letter describing the primary feature of the spectrum followed by an optional sequence of letters describing secondary features of the spectrum (as shown in the adjacent table), and a temperature index number, computed by dividing 50,400 K by the 715:. If the star's distance is known, its absolute luminosity can also be estimated. From the absolute luminosity and distance, the star's surface area and its radius can be calculated. Reasoning of this sort led to the realization, puzzling to astronomers at the time, that due to their relatively high temperature and relatively low absolute luminosity, Sirius B and 40 Eridani B must be very dense. When 1520:. As a result, the interior of the white dwarf maintains an almost uniform temperature as it cools down, starting at approximately 10 K shortly after the formation of the white dwarf and reaching less than 10 K for the coolest known white dwarfs. An outer shell of non-degenerate matter sits on top of the degenerate core. The outermost layers, which have temperatures below 10 K, radiate roughly as a 1652: 15872: 14257: 15824: 2626: 1573: 15860: 1085:
created by the process of accretion onto white dwarfs. The significance of this finding is that there could be two types of supernovae, which could mean that the Chandrasekhar limit might not always apply in determining when a white dwarf goes supernova, given that two colliding white dwarfs could have a range of masses. This in turn would confuse efforts to use exploding white dwarfs as
15836: 15785: 661:; this is comparable to the Earth's radius of approximately 0.9% solar radius. A white dwarf, then, packs mass comparable to the Sun's into a volume that is typically a million times smaller than the Sun's; the average density of matter in a white dwarf must therefore be, very roughly, 1,000,000 times greater than the average density of the Sun, or approximately 10  2297:. Near the end of the period in which it undergoes fusion reactions, such a star will have a carbon–oxygen core which does not undergo fusion reactions, surrounded by an inner helium-burning shell and an outer hydrogen-burning shell. On the Hertzsprung–Russell diagram, it will be found on the asymptotic giant branch. It will then expel most of its outer material, creating a 2376:, that involve helium accretion by a white dwarf, have been proposed to be a channel for transformation of this type of stellar remnant. In this scenario, the carbon detonation produced in a Type Ia supernova is too weak to destroy the white dwarf, expelling just a small part of its mass as ejecta, but produces an asymmetric explosion that kicks the star, often known as a 1721:), often referred to as extremely low-mass white dwarfs (ELM WDs), are formed in binary systems. As a result of their hydrogen-rich envelopes, residual hydrogen burning via the CNO cycle may keep these white dwarfs hot on a long timescale. In addition, they remain in a bloated proto-white dwarf stage for up to 2 Gyr before they reach the cooling track. 2403: 3526: 1971:
accreted rocky planetesimals. The bulk composition of the accreted object can be measured from the strengths of the metal lines. For example, a 2015 study of the white dwarf Ton 345 concluded that its metal abundances were consistent with those of a differentiated, rocky planet whose mantle had been eroded by the host star's wind during its
1516:, because any absorption of a photon requires that an electron must transition to a higher empty state, which may not be possible as the energy of the photon may not be a match for the possible quantum states available to that electron, hence radiative heat transfer within a white dwarf is low; it does, however, have a high 2629: 2628: 2633: 2632: 2627: 1464:– at which the white dwarf can no longer be supported by electron degeneracy pressure. The graph on the right shows the result of such a computation. It shows how radius varies with mass for non-relativistic (blue curve) and relativistic (green curve) models of a white dwarf. Both models treat the white dwarf as a cold 423:. Despite these suspicions, the first non-classical white dwarf was not definitely identified until the 1930s. 18 white dwarfs had been discovered by 1939. Luyten and others continued to search for white dwarfs in the 1940s. By 1950, over a hundred were known, and by 1999, over 2,000 were known. Since then the 2634: 262:. Because the length of time it takes for a white dwarf to reach this state is calculated to be longer than the current age of the known universe (approximately 13.8 billion years), it is thought that no black dwarfs yet exist. The oldest known white dwarfs still radiate at temperatures of a few thousand 1644:(CIA) of hydrogen molecules colliding with helium atoms. This affects the optical red and infrared brightness of white dwarfs with a hydrogen or mixed hydrogen-helium atmosphere. This makes old white dwarfs with this kind of atmosphere bluer than the main cooling sequence. Hence these white dwarfs are called 2703:
is the first white dwarf observed with a disintegrating minor planet which transits the star. The disintegration of the planetesimal generates a debris cloud which passes in front of the star every 4.5 hours, causing a 5-minute-long fade in the star's optical brightness. The depth of the transit
2309:
If a star is massive enough, its core will eventually become sufficiently hot to fuse carbon to neon, and then to fuse neon to iron. Such a star will not become a white dwarf, because the mass of its central, non-fusing core, initially supported by electron degeneracy pressure, will eventually exceed
1612:
Most observed white dwarfs have relatively high surface temperatures, between 8,000 K and 40,000 K. A white dwarf, though, spends more of its lifetime at cooler temperatures than at hotter temperatures, so we should expect that there are more cool white dwarfs than hot white dwarfs. Once we
731:
We learn about the stars by receiving and interpreting the messages which their light brings to us. The message of the companion of Sirius when it was decoded ran: "I am composed of material 3,000 times denser than anything you have ever come across; a ton of my material would be a little nugget
375:
as double stars, the change of their motions would not surprise us; we should acknowledge them as necessary, and have only to investigate their amount by observation. But light is no real property of mass. The existence of numberless visible stars can prove nothing against the existence of numberless
3016:
Observations have failed to note signs of accretion leading up to Type Ia supernovae, and this is now thought to be because the star is first loaded up to above the Chandrasekhar limit while also being spun up to a very high rate by the same process. Once the accretion stops, the star gradually
1940:
White dwarfs whose primary spectral classification is DA have hydrogen-dominated atmospheres. They make up the majority, approximately 80%, of all observed white dwarfs. The next class in number is of DBs, approximately 16%. The hot, above 15,000 K, DQ class (roughly 0.1%) have carbon-dominated
3004:
is thought to be the more likely scenario. Predicted rates of white dwarf-white dwarf mergers are comparable to the rate of Type Ia supernovae and would explain the lack of hydrogen in the spectra of Type Ia supernovae. However, the main mechanism for Type Ia supernovae remains an open question. In
948:
supports a white dwarf against gravitational collapse. The pressure depends only on density and not on temperature. Degenerate matter is relatively compressible; this means that the density of a high-mass white dwarf is much greater than that of a low-mass white dwarf and that the radius of a white
2696:
dwarfs older than ~1 billion years or >7000 K with dusty infrared excess were not detected until the discovery of LSPM J0207+3331 in 2018, which has a cooling age of ~3 billion years. The white dwarf shows two dusty components that are being explained with two rings with different temperatures.
1617:
that hotter, more luminous white dwarfs are easier to observe, we do find that decreasing the temperature range examined results in finding more white dwarfs. This trend stops when we reach extremely cool white dwarfs; few white dwarfs are observed with surface temperatures below 4,000 K, and
1608:
atmosphere. After initially taking approximately 1.5 billion years to cool to a surface temperature of 7,140 K, cooling approximately 500 more kelvins to 6,590 K takes around 0.3 billion years, but the next two steps of around 500 kelvins (to 6,030 K and 5,550 K)
1457:
together with the equation of state can then be solved to find the structure of the white dwarf at equilibrium. In the non-relativistic case, we will still find that the radius is inversely proportional to the cube root of the mass. Relativistic corrections will alter the result so that the radius
2695:
of the white dwarf. The mechanism behind the pollution of white dwarfs in binaries was also explored as these systems are more likely to lack a major planet, but this idea cannot explain the presence of dust around single white dwarfs. While old white dwarfs show evidence of dust accretion, white
2662:
suggest the presence of a dust cloud, which may be caused by cometary collisions. It is possible that infalling material from this may cause X-ray emission from the central star. Similarly, observations made in 2004 indicated the presence of a dust cloud around the young (estimated to have formed
1701:
is released which provides a source of thermal energy that delays its cooling. Another possible mechanism that was suggested to explain the seeming delay in the cooling of some types of white dwarves is a solid–liquid distillation process: the crystals formed in the core are buoyant and float up,
1084:
produced by those galaxies are 30 to 50 times less than what is expected to be produced by type Ia supernovas of that galaxy as matter accretes on the white dwarf from its encircling companion. It has been concluded that no more than 5 percent of the supernovae in such galaxies could be
2009:
that existed in its progenitor star phase. A surface magnetic field of c. 100 gauss (0.01 T) in the progenitor star would thus become a surface magnetic field of c. 100·100 = 1 million gauss (100 T) once the star's radius had shrunk by a factor of 100. The first magnetic
1075:
New research indicates that many white dwarfs – at least in certain types of galaxies – may not approach that limit by way of accretion. It has been postulated that at least some of the white dwarfs that become supernovae attain the necessary mass by colliding with one another. It may be that in
2882:
surrounding the white dwarf, there are two ways a planet could end in a close orbit around stars of this kind: by surviving being engulfed by the star during its red giant phase, and then spiralling inward, or inward migration after the white dwarf has formed. The former case is implausible for
342:
I was visiting my friend and generous benefactor, Prof. Edward C. Pickering. With characteristic kindness, he had volunteered to have the spectra observed for all the stars – including comparison stars – which had been observed in the observations for stellar parallax which Hinks and I made at
2976:
as the mass approaches the Chandrasekhar limit. Because the white dwarf is supported against gravity by quantum degeneracy pressure instead of by thermal pressure, adding heat to the star's interior increases its temperature but not its pressure, so the white dwarf does not expand and cool in
1970:
Around 25–33% of white dwarfs have metal lines in their spectra, which is notable because any heavy elements in a white dwarf should sink into the star's interior in just a small fraction of the star's lifetime. The prevailing explanation for metal-rich white dwarfs is that they have recently
1592:
matter from a companion star or other source, its radiation comes from its stored heat, which is not replenished. White dwarfs have an extremely small surface area to radiate this heat from, so they cool gradually, remaining hot for a long time. As a white dwarf cools, its surface temperature
2910:
if it is able to take material from its companion fast enough to sustain fusion on its surface. On the other hand, phenomena in binary systems such as tidal interaction and star–disc interaction, moderated by magnetic fields or not, act on the rotation of accreting white dwarfs. In fact, the
1527:
The visible radiation emitted by white dwarfs varies over a wide color range, from the whitish-blue color of an O, B or A-type main sequence star to the yellow-orange of a late K or early M-type star. White dwarf effective surface temperatures extend from over 150,000 K to barely under
1794:), and it is also hot: a white dwarf with surface temperature between 8,000 K and 16,000 K will have a core temperature between approximately 5,000,000 K and 20,000,000 K. The white dwarf is kept from cooling very quickly only by its outer layers' opacity to radiation. 11438:
Wang, Ting-Gui; Jiang, Ning; Ge, Jian; Cutri, Roc M.; Jiang, Peng; Sheng, Zhengfeng; Zhou, Hongyan; Bauer, James; Mainzer, Amy; Wright, Edward L. (9 October 2019). "An On-going Mid-infrared Outburst in the White Dwarf 0145+234: Catching in Action of Tidal Disruption of an Exoasteroid?".
2631: 1757:
is thought to cause this purity by gravitationally separating the atmosphere so that heavy elements are below and the lighter above. This atmosphere, the only part of the white dwarf visible to us, is thought to be the top of an envelope which is a residue of the star's envelope in the
2635: 2463:; in these cases, the lifetime is estimated to be no more than 10 years. If protons do decay, the mass of a white dwarf will decrease very slowly with time as its nuclei decay, until it loses enough mass to become a nondegenerate lump of matter, and finally disappears completely. 2180:; in 1965 and 1966, and was observed to vary with a period of approximately 12.5 minutes. The reason for this period being longer than predicted is that the variability of HL Tau 76, like that of the other pulsating variable white dwarfs known, arises from non-radial 952:
The existence of a limiting mass that no white dwarf can exceed without collapsing to a neutron star is another consequence of being supported by electron degeneracy pressure. Such limiting masses were calculated for cases of an idealized, constant density star in 1929 by
11682:
During validation of epoch astrometry for Gaia DR4, an error was discovered, that had already had an impact on the Gaia DR3 non-single star results. We can conclude that the solutions for WD 0141-675 are false-positives as far as Gaia non-single star processing is
1503:
Rotating white dwarfs and the estimates of their diameter in terms of the angular velocity of rotation has been treated in the rigorous mathematical literature. The fine structure of the free boundary of white dwarfs has also been analysed mathematically rigorously.
2571:
A less common observable evidence is infrared excess due to a flat and optically thick debris disk, which is found in around 1–4% of white dwarfs. The first white dwarf with infrared excess was discovered by Zuckerman and Becklin in 1987 in the near-infrared around
2883:
low-mass bodies, as they are unlikely to survive being absorbed by their stars. In the latter case, the planets would have to expel so much orbital energy as heat, through tidal interactions with the white dwarf, that they would likely end as uninhabitable embers.
1706:
between the ionic species in the plasma mixture can release a similar or even greater amount of energy. This energy release was first confirmed in 2019 after the identification of a pile up in the cooling sequence of more than 15,000 white dwarfs observed with the
2592:
The least common observable evidence of planetary systems are detected major or minor planets. Only a handful of giant planets and a handful of minor planets are known around white dwarfs. It is a growing list with discoveries of around 6 exoplanets expected with
2257:, it will never become hot enough to ignite and fuse helium in its core. It is thought that, over a lifespan that considerably exceeds the age of the universe (c. 13.8 billion years), such a star will eventually burn all its hydrogen, for a while becoming a 258:, will lessen and redden with time. Over a very long time, a white dwarf will cool and its material will begin to crystallize, starting with the core. The star's low temperature means it will no longer emit significant heat or light, and it will become a cold 2576:
and later confirmed as a debris disk. White dwarfs hotter than 27,000 K sublimate all the dust formed by tidally disrupting a rocky body, preventing the formation of a debris disk. In colder white dwarfs, a rocky body might be tidally disrupted near the
3009:. It is also likely that instead of a Type Ia supernova, the merger of two white dwarfs will lead to core-collapse. As a white dwarf accretes material quickly, the core can ignite off-center which leads to gravitational instabilities which could create a 2404: 2405: 2265:
nuclei. Due to the very long time this process takes, it is not thought to be the origin of the observed helium white dwarfs. Rather, they are thought to be the product of mass loss in binary systems or mass loss due to a large planetary companion.
10620:
Mullally, Susan Elizabeth; Mullally, Fergal; Albert, Loic; Barclay, Thomas; Debes, John Henry; Kilic, Mukremin; Kuchner, Marc Jason; Quintana, Elisa V.; Reach, William (2021). "A Search for the Giant Planets that Drive White Dwarf Accretion".
3117:(or giant) and a white dwarf. The binary Sirius AB is probably the most famous example. White dwarfs can also exist as binaries or multiple star systems that only consist of white dwarfs. An example of a resolved triple white dwarf system is 2523:
absorption lines. 27–50% of white dwarfs show a spectrum polluted with metals, but these heavy elements settle out in the atmosphere of white dwarfs colder than 20,000 K. The most widely accepted hypothesis is that this pollution comes from
11339:
Vanderburg, Andrew; Johnson, John Asher; Rappaport, Saul; Bieryla, Allyson; Irwin, Jonathan; Lewis, John Arban; Kipping, David; Brown, Warren R.; Dufour, Patrick (22 October 2015). "A disintegrating minor planet transiting a white dwarf".
4734:
Eisenstein, Daniel J.; Liebert, James; Harris, Hugh C.; Kleinman, S. J.; Nitta, Atsuko; Silvestri, Nicole; et al. (2006). "A catalog of spectroscopically confirmed white dwarfs from the Sloan Digital Sky Survey, data release 4".
2911:(securely known) fastest-spinning white dwarfs are members of binary systems (the fastest one being the white dwarf in CTCV J2056-3014). A close binary system of two white dwarfs can lose angular momentum and radiate energy in the form of 1452:
which describes the relationship between density and pressure in the white dwarf material. If the density and pressure are both set equal to functions of the radius from the center of the star, the system of equations consisting of the
3540: 1789:
Although thin, these outer layers determine the thermal evolution of the white dwarf. The degenerate electrons in the bulk of a white dwarf conduct heat well. Most of a white dwarf's mass is therefore at almost the same temperature
1593:
decreases, the radiation which it emits reddens, and its luminosity decreases. Since the white dwarf has no energy sink other than radiation, it follows that its cooling slows with time. The rate of cooling has been estimated for a
12260: 11695:
Mullally, Susan E.; Debes, John; Cracraft, Misty; Mullally, Fergal; Poulsen, Sabrina; Albert, Loic; Thibault, Katherine; Reach, William T.; Hermes, J. J.; Barclay, Thomas; Kilic, Mukremin; Quintana, Elisa V. (24 January 2024).
1424: 2407: 13175:
Gates, Evalyn; Gyuk, Geza; Harris, Hugh C.; Subbarao, Mark; Anderson, Scott; Kleinman, S. J.; Liebert, James; Brewington, Howard; et al. (2004). "Discovery of New Ultracool White Dwarfs in the Sloan Digital Sky Survey".
7120:
Kanaan, A.; Nitta, A.; Winget, D. E.; Kepler, S. O.; Montgomery, M. H.; Metcalfe, T. S.; et al. (2005). "Whole Earth Telescope observations of BPM 37093: A seismological test of crystallization theory in white dwarfs".
11790:
Cheng, Sihao; Schlaufman, Kevin C.; Caiazzo, Ilaria (1 August 2024). "A Candidate Giant Planet Companion to the Massive, Young White Dwarf GALEX J071816.4+373139 Informs the Occurrence of Giant Planets Orbiting B Stars".
9634:
Jordan, George C. IV.; Perets, Hagai B.; Fisher, Robert T.; van Rossum, Daniel R. (2012). "Failed-detonation Supernovae: Subluminous Low-velocity Ia Supernovae and their Kicked Remnant White Dwarfs with Iron-rich Cores".
941:
Compression of a white dwarf will increase the number of electrons in a given volume. Applying the Pauli exclusion principle, this will increase the kinetic energy of the electrons, thereby increasing the pressure. This
11590:
Gaia Collaboration; Arenou, F.; Babusiaux, C.; Barstow, M. A.; Faigler, S.; Jorissen, A.; Kervella, P.; Mazeh, T.; Mowlavi, N.; Panuzzo, P.; Sahlmann, J.; Shahaf, S.; Sozzetti, A.; Bauchet, N.; Damerdji, Y. (2023).
2940:
systems can accrete material from a companion star, increasing both their mass and their density. As their mass approaches the Chandrasekhar limit, this could theoretically lead to either the explosive ignition of
354:
The white dwarf companion of Sirius, Sirius B, was next to be discovered. During the nineteenth century, positional measurements of some stars became precise enough to measure small changes in their location.
2784:(LAWD 83). If confirmed they would be the first directly imaged planets that likely formed from circumstellar disk material, representing a new population of directly imaged giant planets that are more similar to 1229: 1015:. (Near the beginning of the 20th century, there was reason to believe that stars were composed chiefly of heavy elements, so, in his 1931 paper, Chandrasekhar set the average molecular weight per electron, 692:
system, as is the case for Sirius B or 40 Eridani B, it is possible to estimate its mass from observations of the binary orbit. This was done for Sirius B by 1910, yielding a mass estimate of
2630: 2222:. These variables all exhibit small (1–30%) variations in light output, arising from a superposition of vibrational modes with periods of hundreds to thousands of seconds. Observation of these variations gives 920:, also introduced in 1926 to determine the statistical distribution of particles which satisfy the Pauli exclusion principle. At zero temperature, therefore, electrons can not all occupy the lowest-energy, or 3081:. These surface explosions can be repeated as long as the white dwarf's core remains intact. This weaker kind of repetitive cataclysmic phenomenon is called a (classical) nova. Astronomers have also observed 3076:
Before accretion of material pushes a white dwarf close to the Chandrasekhar limit, accreted hydrogen-rich material on the surface may ignite in a less destructive type of thermonuclear explosion powered by
12200:
Blinnikov, S. I.; Röpke, F. K.; Sorokina, E. I.; Gieseler, M.; Reinecke, M.; Travaglio, C.; Hillebrandt, W.; Stritzinger, M. (2006). "Theoretical light curves for deflagration models of type Ia supernova".
7538: 8755:
Lawrence, G. M.; Ostriker, J. P.; Hesser, J. E. (1967). "Ultrashort-Period Stellar Oscillations. I. Results from White Dwarfs, Old Novae, Central Stars of Planetary Nebulae, 3c 273, and Scorpius XR-1".
2005:, was never generally accepted, and by the 1950s even Blackett felt it had been refuted. In the 1960s, it was proposed that white dwarfs might have magnetic fields due to conservation of total surface 1622:, has a surface temperature of approximately 3,050 K. The reason for this is that the Universe's age is finite; there has not been enough time for white dwarfs to cool below this temperature. The 239:— beyond which it cannot be supported by electron degeneracy pressure. A carbon–oxygen white dwarf that approaches this mass limit, typically by mass transfer from a companion star, may explode as a 3062:
and by releasing gravitational waves. The binary might evolve at some point into a cataclysmic variable, and therefore post-common envelope binaries are sometimes called pre-cataclysmic variables.
2691:
from their host planet could cause white dwarf pollution with dust. Either the liberation could cause asteroids to be scattered towards the white dwarf or the exomoon could be scattered into the
2245:. The composition of the white dwarf produced will depend on the initial mass of the star. Current galactic models suggest the Milky Way galaxy currently contains about ten billion white dwarfs. 254:
A white dwarf is very hot when it forms, but because it has no source of energy, it will gradually cool as it radiates its energy away. This means that its radiation, which initially has a high
10699:
Su, K. Y. L.; Chu, Y.-H.; Rieke, G. H.; Huggins, P. J.; Gruendl, R.; Napiwotzki, R.; Rauch, T.; Latter, W. B.; Volk, K. (2007). "A Debris Disk around the Central Star of the Helix Nebula?".
3992:
Spergel, D.N.; Bean, R.; DorĂ©, O.; Nolta, M.R.; Bennett, C.L.; Dunkley, J.; et al. (2007). "Wilkinson Microwave Anisotropy Probe (WMAP) three year results: Implications for cosmology".
3554: 2866:
of hypothetical Earth-like planets that could have migrated inward or formed there. As a white dwarf has a size similar to that of a planet, these kinds of transits would produce strong
2985:
flame consumes much of the white dwarf in a few seconds, causing a Type Ia supernova explosion that obliterates the star. In another possible mechanism for Type Ia supernovae, the
669:
per cubic centimetre. A typical white dwarf has a density of between 10 and 10 g/cm. White dwarfs are composed of one of the densest forms of matter known, surpassed only by other
9332: 8416:
Kepler, S.O.; Pelisoli, I.; Jordan, S.; Kleinman, S.J.; Koester, D.; Kuelebi, B.; Pecanha, V.; Castanhiera, B.G.; Nitta, A.; Costa, J.E.S.; Winget, D.E.; Kanaan, A.; Fraga, L. (2013).
12452:
GonzĂĄlez HernĂĄndez, J.I.; Ruiz-Lapuente, P.; Tabernero, H. M.; Montes, D.; Canal, R.; MĂ©ndez, J.; Bedin, L. R. (2012). "No surviving evolved companions of the progenitor of SN 1006".
2365:
exhibit abundances of neon, magnesium, and other intermediate-mass elements which appear to be only explicable by the accretion of material onto an oxygen–neon–magnesium white dwarf.
900:
limited by normal matter. Eddington wondered what would happen when this plasma cooled and the energy to keep the atoms ionized was no longer sufficient. This paradox was resolved by
218:
The material in a white dwarf no longer undergoes fusion reactions, so the star has no source of energy. As a result, it cannot support itself by the heat generated by fusion against
11991:
Di Stefano, R.; Nelson, L. A.; Lee, W.; Wood, T. H.; Rappaport, S. (1997). "Luminous Supersoft X-ray Sources as Type Ia Progenitors". In P. Ruiz-Lapuente; R. Canal; J. Isern (eds.).
11747:
Casewell, S. L.; Debes, J.; Dupuy, T. J.; Dufour, P.; Bonsor, A.; Rebassa-Mansergas, A.; Murillo-Ojeda, R.; French, J. R.; Xu, Siyi (èźžćČè‰ș); Martin, E.; Manjavacas, E. (8 April 2024).
7315:
Althaus, L. G.; GarcĂ­a-Berro, E.; Isern, J.; CĂłrsico, A. H.; Miller Bertolami, M. M. (January 2012). "New phase diagrams for dense carbon-oxygen mixtures and white dwarf evolution".
1922:
lines in its spectrum and an effective temperature of 15,000 K could be given the classification of DB3, or, if warranted by the precision of the temperature measurement, DB3.5.
1480:
These computations all assume that the white dwarf is non-rotating. If the white dwarf is rotating, the equation of hydrostatic equilibrium must be modified to take into account the
2671:
passing close to the white dwarf. Some estimations based on the metal content of the atmospheres of the white dwarfs consider that at least 15% of them may be orbited by planets or
6735:
Elms, Abbigail K.; Tremblay, Pier-Emmanuel; GĂ€nsicke, Boris T.; Koester, Detlev; Hollands, Mark A.; Gentile Fusillo, Nicola Pietro; Cunningham, Tim; Apps, Kevin (1 December 2022).
111:. There are currently thought to be eight white dwarfs among the hundred star systems nearest the Sun. The unusual faintness of white dwarfs was first recognized in 1910. The name 3093:
collapses onto the star, rather than through a release of energy due to fusion. In general, binary systems with a white dwarf accreting matter from a stellar companion are called
2762:
in cycle 2 with the aim to detect infrared excess caused by the planets. However, the planet candidate at WD 0141-675 was found to be a false positive caused by a software error.
15625: 10752:
Sion, Edward M.; Holberg, J.B.; Oswalt, Terry D.; McCook, George P.; Wasatonic, Richard (2009). "The White Dwarfs Within 20 Parsecs of the Sun: Kinematics and Statistics".
7427:
Blouin, Simon; Daligault, JĂ©rĂŽme; Saumon, Didier; BĂ©dard, Antoine; Brassard, Pierre (August 2020). "Toward precision cosmochronology: A new C/O phase diagram for white dwarfs".
12930:
Post-common-envelope binaries from SDSS – I. 101 white dwarf main-sequence binaries with multiple Sloan Digital Sky Survey spectroscopy: Post-common-envelope binaries from SDSS
6679:
Gates, E.; Gyuk, G.; Harris, H. C.; Subbarao, M.; Anderson, S.; Kleinman, S. J.; et al. (2004). "Discovery of New Ultracool White Dwarfs in the Sloan Digital Sky Survey".
8581:
Buckley, D.A.H.; Meintjes, P.J.; Potter, S.B.; Marsh, T.R.; GĂ€nsicke, B.T. (23 January 2017). "Polarimetric evidence of a white dwarf pulsar in the binary system AR Scorpii".
7036:
Metcalfe, T. S.; Montgomery, M. H.; Kanaan, A. (20 April 2004). "Testing White Dwarf Crystallization Theory with Asteroseismology of the Massive Pulsating DA Star BPM 37093".
10414:
Reach, William T.; Kuchner, Marc J.; Von Hippel, Ted; Burrows, Adam; Mullally, Fergal; Kilic, Mukremin; Winget, D. E. (2005). "The Dust Cloud around the White Dwarf G29-38".
2516:
is inherited from its progenitor star and may interact with the white dwarf in various ways. There are several indications that a white dwarf has a remnant planetary system.
2406: 1100:, a graph of stellar luminosity versus color or temperature. They should not be confused with low-luminosity objects at the low-mass end of the main sequence, such as the 11304: 2487: 2419:
Internal structures of white dwarfs. To the left is a newly formed white dwarf, in the center is a cooling and crystallizing white dwarf, and the right is a black dwarf.
12434: 8475:
Landstreet, J.D.; Bagnulo, S.; Valyavin, G.G.; Fossati, L.; Jordan, S.; Monin, D.; Wade, G.A. (2012). "On the incidence of weak magnetic fields in DA white dwarfs".
4108: 2815: 2643: 2214:
stars, with atmospheres dominated by helium, carbon, and oxygen. GW Vir stars are not, strictly speaking, white dwarfs, but are stars which are in a position on the
1274: 961:. This value was corrected by considering hydrostatic equilibrium for the density profile, and the presently known value of the limit was first published in 1931 by 2435:
escape into intergalactic space. White dwarfs should generally survive galactic dispersion, although an occasional collision between white dwarfs may produce a new
10846:
Debes, John H.; Walsh, Kevin J.; Stark, Christopher (24 February 2012). "The Link Between Planetary Systems, Dusty White Dwarfs, and Metal-Polluted White Dwarfs".
2301:, until only the carbon–oxygen core is left. This process is responsible for the carbon–oxygen white dwarfs which form the vast majority of observed white dwarfs. 2870:. Newer research casts some doubts on this idea, given that the close orbits of those hypothetical planets around their parent stars would subject them to strong 14156: 13720: 4554: 4511: 4421: 4375: 4329: 4202: 3785: 3635: 2715:
by the strong ultraviolet radiation of the hot white dwarf. Part of the evaporated material is being accreted in a gaseous disk around the white dwarf. The weak
2687:. Other suggested ideas of how white dwarfs are polluted with dust involve the scattering of asteroids by planets or via planet-planet scattering. Liberation of 1645: 7481: 3511: 3901:
Liebert, James; Bergeron, P.; Eisenstein, D.; Harris, H. C.; Kleinman, S. J.; Nitta, A.; Krzesinski, J. (2004). "A helium white dwarf of extremely low mass".
1995:
in 1947 as a consequence of a physical law he had proposed which stated that an uncharged, rotating body should generate a magnetic field proportional to its
11413: 1697:
had crystallized. Other work gives a crystallized mass fraction of between 32% and 82%. As a white dwarf core undergoes crystallization into a solid phase,
991:
is the average molecular weight per electron of the star. As the carbon-12 and oxygen-16 which predominantly compose a carbon–oxygen white dwarf both have
732:
that you could put in a matchbox." What reply can one make to such a message? The reply which most of us made in 1914 was — "Shut up. Don't talk nonsense."
12641: 1496:
in 1947, there is no limit to the mass for which it is possible for a model white dwarf to be in static equilibrium. Not all of these model stars will be
1334: 9420: 1546:
that of the Sun's. Hot white dwarfs, with surface temperatures in excess of 30,000 K, have been observed to be sources of soft (i.e., lower-energy)
9393: 3105:, both of which feature highly magnetic white dwarfs. Both fusion- and accretion-powered cataclysmic variables have been observed to be X-ray sources. 2679:, that would have survived the red giant phase of their star but losing their outer layers and, given those planetary remnants would likely be made of 4855: 4251: 3682: 2777: 1640:. No black dwarfs are thought to exist yet. At very low temperatures (<4000 K) white dwarfs with hydrogen in their atmosphere will be affected by 3133:
and brown dwarfs that orbit them, the white dwarfs are faint. This allows astronomers to study these brown dwarfs or exoplanets in more detail. The
3046:
A post-common envelope binary (PCEB) is a binary consisting of a white dwarf and a closely tidally-locked red dwarf (in other cases this might be a
11242:
Becklin, E. E.; Zuckerman, B.; Farihi, J. (10 February 2008). "Spitzer IRAC Observations of White Dwarfs. I. Warm Dust at Metal-Rich Degenerates".
10209:
Klein, Beth L.; Doyle, Alexandra E.; Zuckerman, B.; Dufour, P.; Blouin, Simon; Melis, Carl; Weinberger, Alycia J.; Young, Edward D. (1 June 2021).
2781: 719:
estimated the density of a number of visual binary stars in 1916, he found that 40 Eridani B had a density of over 25,000 times the
215:) white dwarf may form. Stars of very low mass will be unable to fuse helium; hence, a helium white dwarf may form by mass loss in binary systems. 2353:. Although a few white dwarfs have been identified which may be of this type, most evidence for the existence of such comes from the novae called 13710: 8657: 3623: 3118: 1524:. A white dwarf remains visible for a long time, as its tenuous outer atmosphere slowly radiates the thermal content of the degenerate interior. 10467:
Steckloff, Jordan K.; Debes, John; Steele, Amy; Johnson, Brandon; Adams, Elisabeth R.; Jacobson, Seth A.; Springmann, Alessondra (1 June 2021).
3840: 12696:
Giammichele, N.; Bergeron, P.; Dufour, P. (April 2012). "Know Your Neighborhood: A Detailed Model Atmosphere Analysis of Nearby White Dwarfs".
9322: 3028:
of 1572 was also a type Ia supernova, and its remnant has been detected. A close candidate to being a survivor of a type Ia supernova is
2964:, a carbon–oxygen white dwarf accretes mass and compresses its core by pulling mass from a companion non-degenerate star. It is believed that 5834: 9859: 9285:
Nelemans, G.; Tauris, T. M. (1998). "Formation of undermassive single white dwarfs and the influence of planets on late stellar evolution".
5280: 1693:
yielded a potential test of the crystallization theory, and in 2004, observations were made that suggested approximately 90% of the mass of
1648:. White dwarfs with hydrogen-poor atmospheres, such as WD J2147–4035, are less affected by CIA and therefore have a yellow to orange color. 5476: 1138: 9209:
Sarna, M. J.; Ergma, E.; Gerơkevitơ, J. (2001). "Helium core white dwarf evolution – including white dwarf companions to neutron stars".
3963: 2466:
A white dwarf can also be cannibalized or evaporated by a companion star, causing the white dwarf to lose so much mass that it becomes a
2423:
A white dwarf is stable once formed and will continue to cool almost indefinitely, eventually to become a black dwarf. Assuming that the
12674: 5677: 4961: 8832:
Nagel, T.; Werner, K. (2004). "Detection of non-radial g-mode pulsations in the newly discovered PG 1159 star HE 1429-1209".
4910:
Shipman, H.L. (1979). "Masses and radii of white-dwarf stars. III – Results for 110 hydrogen-rich and 28 helium-rich stars".
1776:
of the star's total mass, which, if the atmosphere is hydrogen-dominated, is overlain by a hydrogen-rich layer with mass approximately
5977: 1630:
found in this way is 8 billion years. A white dwarf will eventually, in many trillions of years, cool and become a non-radiating
1580:
B (center), its A-class companion IK Pegasi A (left) and the Sun (right). This white dwarf has a surface temperature of 35,500 K.
1488:. For a uniformly rotating white dwarf, the limiting mass increases only slightly. If the star is allowed to rotate nonuniformly, and 13224: 8275:
Ginzburg, V. L.; Zheleznyakov, V. V.; Zaitsev, V. V. (1969). "Coherent mechanisms of radio emission and magnetic models of pulsars".
1641: 9501:"Evolution of 8–10 solar mass stars toward electron capture supernovae. I – Formation of electron-degenerate O + NE + MG cores" 2902:
If a white dwarf is in a binary star system and is accreting matter from its companion, a variety of phenomena may occur, including
60:. Sirius B, which is a white dwarf, can be seen as a faint point of light to the lower left of the much brighter Sirius A. 13996: 11640: 9540:
Werner, K.; Rauch, T.; Barstow, M. A.; Kruk, J. W. (2004). "Chandra and FUSE spectroscopy of the hot bare stellar core H?1504+65".
9230: 7090: 2747: 2455:
between 10 and 10 years. If these theories are not valid, the proton might still decay by complicated nuclear reactions or through
7563:
Istrate, A. G.; Tauris, T. M.; Langer, N.; Antoniadis, J. (2014). "The timescale of low-mass proto-helium white dwarf evolution".
6181:
Saumon, Didier; Blouin, Simon; Tremblay, Pier-Emmanuel (November 2022). "Current challenges in the physics of white dwarf stars".
5023:
Liebert, James; Young, P. A.; Arnett, D.; Holberg, J. B.; Williams, K. A. (2005). "The age and progenitor mass of Sirius B".
2349:, provided that its core does not collapse, and provided that fusion does not proceed so violently as to blow apart the star in a 1906:
in 1941, and various classification schemes have been proposed and used since then. The system currently in use was introduced by
12513:
Krause, Oliver; et al. (2008). "Tycho Brahe's 1572 supernova as a standard type Ia as revealed by its light-echo spectrum".
7870:
Kepler, S. O.; Kleinman, S. J.; Nitta, A.; Koester, D.; Castanheira, B. G.; Giovannini, O.; Costa, A. F. M.; Althaus, L. (2007).
3590: 1120: 12125: 12098: 11401:
GĂ€nsicke, Boris T.; Schreiber, Matthias R.; Toloza, Odette; Gentile Fusillo, Nicola P.; Koester, Detlev; Manser, Christopher J.
10078:
Debes, John H.; Thévenot, Melina; Kuchner, Marc J.; Burgasser, Adam J.; Schneider, Adam C.; Meisner, Aaron M.; Gagné, Jonathan;
3967: 3085:, which have smaller, more frequent luminosity peaks than the classical novae. These are thought to be caused by the release of 13781: 9183: 6794:
Winget, D. E.; Hansen, C. J.; Liebert, James; Van Horn, H. M.; Fontaine, G.; Nather, R. E.; Kepler, S. O.; Lamb, D. Q. (1987).
3716: 2803:, which was discovered in 2009. This is seen as perhaps the first case of linking white dwarf pollution with the presence of a 2176:
with a period of around 10 seconds, but searches in the 1960s failed to observe this. The first variable white dwarf found was
363:(α Canis Minoris) were changing their positions periodically. In 1844 he predicted that both stars had unseen companions: 11312: 9929: 7990:
Xu, S.; Jura, M.; Koester, D.; Klein, B.; Zuckerman, B. (2013). "Discovery of Molecular Hydrogen in White Dwarf Atmospheres".
15657: 14220: 13420: 12866: 12018: 10669: 9899: 7739: 6858: 6537: 6351: 5737: 5451: 5323: 3756: 3525: 1677:– that is initially in a fluid state. It was theoretically predicted in the 1960s that at a late stage of cooling, it should 2394:
white dwarfs would be smaller than the carbon–oxygen kind of similar mass and would cool and crystallize faster than those.
1749:
dominated. The dominant element is usually at least 1,000 times more abundant than all other elements. As explained by
12438: 9805:
Seager, S.; Kuchner, M.; Hier-Majumder, C.; Militzer, B. (19 July 2007). "Mass-Radius Relationships for Solid Exoplanets".
5948: 2993:
in which carbon fusion is then ignited. In both cases, the white dwarfs are not expected to survive the Type Ia supernova.
10360:
Zuckerman, B.; Becklin, E. E. (1 November 1987). "Excess infrared radiation from a white dwarf—an orbiting brown dwarf?".
8679: 5914: 182:, it will leave behind a core, which is the remnant white dwarf. Usually, white dwarfs are composed of carbon and oxygen ( 12575: 9752:
Adams, Fred C.; Laughlin, Gregory (1997). "A dying universe: The long-term fate and evolution of astrophysical objects".
3712: 1448:
For a more accurate computation of the mass-radius relationship and limiting mass of a white dwarf, one must compute the
178:
K), an inert mass of carbon and oxygen will build up at its center. After such a star sheds its outer layers and forms a
8984:
Heger, A.; Fryer, C. L.; Woosley, S. E.; Langer, N.; Hartmann, D. H. (2003). "How Massive Single Stars End Their Life".
226:, causing it to be extremely dense. The physics of degeneracy yields a maximum mass for a non-rotating white dwarf, the 15632: 14951: 14230: 9951:
Koester, D.; GĂ€nsicke, B. T.; Farihi, J. (1 June 2014). "The frequency of planetary debris around young white dwarfs".
7480:
Tremblay, P.-E.; Fontaine, G.; Fusillo, N. P. G.; Dunlap, B. H.; GĂ€nsicke, B. T.; Hollands, M. H.; et al. (2019).
4993: 2766: 926:, state; some of them would have to occupy higher-energy states, forming a band of lowest-available energy states, the 9595:"On the interpretation and implications of nova abundances: An abundance of riches or an overabundance of enrichments" 7624: 12958: 4046:
Heger, A.; Fryer, C.L.; Woosley, S.E.; Langer, N.; Hartmann, D.H. (2003). "How massive single stars end their life".
3836: 2519:
The most common observable evidence of a remnant planetary system is pollution of the spectrum of a white dwarf with
2386:. The matter processed in the failed detonation is re-accreted by the white dwarf with the heaviest elements such as 2106: 786: 381: 17: 4957: 965:
in his paper "The Maximum Mass of Ideal White Dwarfs". For a non-rotating white dwarf, it is equal to approximately
8197:
Lovell, B. (1975). "Patrick Maynard Stuart Blackett, Baron Blackett, of Chelsea. 18 November 1897 – 13 July 1974".
7617:"First Giant Planet around White Dwarf Found – ESO observations indicate the Neptune-like exoplanet is evaporating" 6968:
Barrat, J. L.; Hansen, J. P.; Mochkovitch, R. (1988). "Crystallization of carbon-oxygen mixtures in white dwarfs".
15811: 11402: 5385:
Hoddeson, L. H.; Baym, G. (1980). "The Development of the Quantum Mechanical Electron Theory of Metals: 1900–28".
2675:, or at least their debris. Another suggested idea is that white dwarfs could be orbited by the stripped cores of 2492: 707:. Since hotter bodies radiate more energy than colder ones, a star's surface brightness can be estimated from its 15344: 14179: 13715: 13458: 11527:"Stellar and substellar companions from Gaia EDR3. Proper-motion anomaly and resolved common proper-motion pairs" 8528:
Liebert, James; Bergeron, P.; Holberg, J. B. (2003). "The True Incidence of Magnetism Among Field White Dwarfs".
2215: 2065: 1623: 1129:
The relationship between the mass and radius of low-mass white dwarfs can be estimated using the nonrelativistic
1097: 441: 411:, indicating that they could be suspected to be low-luminosity stars close to the Earth, and hence white dwarfs. 10644: 8087:
Wilson, D.J.; GĂ€nsicke, B.T.; Koester, D.; Toloza, O.; Pala, A. F.; Breedt, E.; Parsons, S.G. (11 August 2015).
4849:; Kleinman, S.J.; Nitta, A.; Koester, D.; Castanheira, B.G.; Giovannini, O.; Costa, A.F.M.; Althaus, L. (2007). 174:. If a red giant has insufficient mass to generate the core temperatures required to fuse carbon (around 1  15637: 15274: 15258: 14293: 14260: 12645: 10567:
Sanderson, Hannah; Bonsor, Amy; Mustill, Alexander J (1 June 2022). "The galactic population of white dwarfs".
3086: 2833:, has a temperature of about 400 Kelvin (127 °C; 260 °F) and is unresolved. The white dwarf has a mass of 1.29 12928:
Rebassa-Mansergas, A.; GĂ€nsicke, B. T.; RodrĂ­guez-Gil, P.; Schreiber, M. R.; Koester, D. (28 November 2007). "
9424: 1626:
can therefore be used to find the time when stars started to form in a region; an estimate for the age of our
15684: 15551: 14205: 14184: 12989:— Discusses how to find mass-radius relations and mass limits for white dwarfs using simple energy arguments. 9397: 9093:
Brown, J. M.; Kilic, M.; Brown, W. R.; Kenyon, S. J. (2011). "The binary fraction of low-mass white dwarfs".
4171: 2878:. Another suggested constraint to this idea is the origin of those planets. Leaving aside formation from the 1745:
typically shows that their emitted light comes from an atmosphere which is observed to be either hydrogen or
2443:. The subsequent lifetime of white dwarfs is thought to be on the order of the hypothetical lifetime of the 1305:
for the kinetic energy, it is non-relativistic. When the electron velocity in a white dwarf is close to the
15667: 15618: 15593: 14886: 13617: 13489: 13305: 12937: 12929: 8716:"Mapping the Instability Domains of GW Vir Stars in the Effective Temperature–Surface Gravity Diagram" 5212:
Celotti, A.; Miller, J.C.; Sciama, D.W. (1999). "Astrophysical evidence for the existence of black holes".
3059: 2850:
It has been proposed that white dwarfs with surface temperatures of less than 10,000 K could harbor a
2258: 1729: 944: 223: 39: 13244:
Dufour, P.; Liebert, James; Fontaine, G.; Behara, N. (2007). "White dwarf stars with carbon atmospheres".
7929:
Dufour, P.; Liebert, James; Fontaine, G.; Behara, N. (2007). "White dwarf stars with carbon atmospheres".
6874:
Bergeron, P.; Kilic, Mukremin; Blouin, Simon; BĂ©dard, A.; Leggett, S. K.; Brown, Warren R. (1 July 2022).
3867:
On possible oxygen / neon white dwarfs: H1504+65 and the white dwarf donors in ultracompact X-ray binaries
3674: 15608: 15588: 14174: 14017: 13682: 13677: 12580: 10084:"A 3 Gyr White Dwarf with Warm Dust Discovered via the Backyard Worlds: Planet 9 Citizen Science Project" 7840: 6239:
Sion, E. M.; Greenstein, J. L.; Landstreet, J. D.; Liebert, James; Shipman, H. L.; Wegner, G. A. (1983).
3041: 3024:
is thought to have been a type Ia supernova from a white dwarf, possibly the merger of two white dwarfs.
2989:, two carbon–oxygen white dwarfs in a binary system merge, creating an object with mass greater than the 2614: 2582: 1702:
thereby displacing heavier liquid downward, thus causing a net release of gravitational energy. Chemical
1637: 1477:, has been set equal to 2. Radius is measured in standard solar radii and mass in standard solar masses. 1124: 14971: 14125: 12377: 11997:. NATO Science Series C: Mathematical and physical sciences. Vol. 486. Springer. pp. 148–149. 15914: 15909: 15802: 15672: 15603: 15573: 13971: 13774: 12749:
Delfosse, Xavier; et al. (April 1999). "New neighbours. I. 13 new companions to nearby M dwarfs".
2759: 2598: 2076:, resulting in what has been initially described as "magnetized matter" in research published in 2012. 962: 917: 73: 12320: 11462:"Stellar and substellar companions of nearby stars from Gaia DR2. Binarity from proper motion anomaly" 8637: 6514:. The Hubble Deep Field: Proceedings of the Space Telescope Science Institute Symposium. p. 252. 2891: 2858:
that would last upwards of 3 billion years. This is so close that any habitable planets would be
2310:
the largest possible mass supportable by degeneracy pressure. At this point the core of the star will
15679: 15556: 15533: 15115: 14564: 14559: 14554: 14549: 14544: 14539: 14189: 13703: 13607: 13413: 12036:"CTCV J2056-3014: An X-Ray-faint Intermediate Polar Harboring an Extremely Fast-spinning White Dwarf" 11041:
Bonsor, Amy; GĂ€nsicke, Boris T.; Veras, Dimitri; Villaver, Eva; Mustill, Alexander J. (21 May 2018).
8324: 8240:
Landstreet, John D. (1967). "Synchrotron radiation of neutrinos and its astrophysical significance".
5084: 5025: 4912: 4790: 3903: 3832: 3071: 2719:
as well as other lines in the spectrum of the white dwarf revealed the presence of the giant planet.
2528:
rocky bodies. The first observation of a metal-polluted white dwarf was by van Maanen in 1917 at the
1536:); this surface temperature range corresponds to a luminosity from over 100 times the Sun's to under 909: 662: 4788:
Kilic, M.; Allende Prieto, C.; Brown, Warren R.; Koester, D. (2007). "The lowest mass white dwarf".
2929:
The mass of an isolated, nonrotating white dwarf cannot exceed the Chandrasekhar limit of ~1.4 
14822: 14696: 14331: 13986: 13956: 13845: 13804: 12857:
Kawaler, S. D. (1997). "White Dwarf Stars". In Kawaler, S. D.; Novikov, I.; Srinivasan, G. (eds.).
7730:
Kawaler, S. D. (1997). "White Dwarf Stars". In Kawaler, S. D.; Novikov, I.; Srinivasan, G. (eds.).
5826: 5276: 5121: 4846: 4646: 4242: 2936:. This limit may increase if the white dwarf is rotating rapidly and nonuniformly. White dwarfs in 2683:, to attempt to detect them looking for the signatures of their interaction with the white dwarf's 2529: 2026:
light. It is thought to have a surface field of approximately 300 million gauss (30 kT).
1589: 1529: 1481: 1065: 736:
As Eddington pointed out in 1924, densities of this order implied that, according to the theory of
424: 392:
announced in 1915 that he had found the spectrum of Sirius B to be similar to that of Sirius.
356: 327: 12147:
Yoon, S.-C.; Langer, N. (2004). "Presupernova evolution of accreting white dwarfs with rotation".
6847:
The Moment of Creation: Big Bang Physics from Before the First Millisecond to the Present Universe
6001:"Stars, Distribution and Motions of, Note on equilibrium configurations for rotating white dwarfs" 3097:. As well as novae and dwarf novae, several other classes of these variables are known, including 2029:
Since 1970, magnetic fields have been discovered in well over 200 white dwarfs, ranging from
1080:
such collisions are the major source of supernovae. This hypothesis is based on the fact that the
15598: 15349: 15148: 15058: 15018: 15000: 14926: 14497: 14423: 13903: 13634: 12829:"Citizen Scientist Leads Discovery of 34 Ultracool Dwarf Binaries Using Archive at NSF's NOIRLab" 9869: 9357:
Woosley, S. E.; Heger, A.; Weaver, T. A. (2002). "The evolution and explosion of massive stars".
6343: 6128:
Chanillo, Sagun; Weiss, Georg S. (2012). "A remark on the geometry of uniformly rotating stars".
5266: 2907: 2823: 2655: 2315: 1972: 1759: 1326: 1277: 147: 10012:
Jura, M. (1 May 2008). "Pollution of Single White Dwarfs by Accretion of Many Small Asteroids".
5487: 1458:
becomes zero at a finite value of the mass. This is the limiting value of the mass – called the
388:
observed a previously unseen star close to Sirius, later identified as the predicted companion.
15924: 15759: 15739: 15511: 15506: 15404: 15299: 15248: 15053: 15043: 14716: 14514: 14482: 14373: 14356: 14250: 13835: 5563: 3629: 2973: 2965: 2334: 2311: 1930: 1919: 1285: 1036: 741: 448: 335: 219: 57: 2977:
response. Rather, the increased temperature accelerates the rate of the fusion reaction, in a
2373: 15919: 15613: 15583: 15578: 15568: 15496: 15284: 14450: 14225: 13881: 13767: 13748: 13667: 13511: 12670: 10751: 8363: 5669: 4948: 4293: 3678: 2467: 2085: 1911: 1032: 708: 403:, an isolated white dwarf. These three white dwarfs, the first discovered, are the so-called 14731: 12772: 12603: 12403: 12224: 12170: 11934:"On the orbits of low-mass companions to white dwarfs and the fates of the known exoplanets" 11552: 11526: 11487: 11461: 11177:"The critical binary star separation for a planetary system origin of white dwarf pollution" 9974: 9563: 9308: 8855: 8498: 8288: 7586: 7450: 7338: 7228: 7144: 6981: 5879: 5795: 2192:, stars, including HL Tau 76, with hydrogen-dominated atmospheres and the spectral type DA; 1259: 688:
White dwarfs were found to be extremely dense soon after their discovery. If a star is in a
15754: 15652: 15642: 15491: 15459: 15253: 15048: 15033: 14346: 14103: 14091: 13898: 13738: 13523: 13406: 13263: 13195: 13153: 13057: 13009: 12899: 12768: 12715: 12599: 12532: 12471: 12399: 12342: 12282: 12220: 12166: 12057: 11998: 11955: 11888: 11831: 11719: 11548: 11483: 11359: 11261: 11198: 11131: 11108:
GĂ€nsicke, Boris T.; Holman, Matthew J.; Veras, Dimitri; Payne, Matthew J. (21 March 2016).
11064: 10997: 10930: 10865: 10818: 10771: 10718: 10626: 10586: 10549: 10490: 10433: 10369: 10318: 10281: 10232: 10162: 10105: 10031: 9970: 9824: 9771: 9711: 9654: 9606: 9559: 9512: 9465: 9366: 9304: 9257: 9218: 9151: 9112: 9056: 9003: 8947: 8904: 8851: 8804: 8765: 8727: 8602: 8547: 8494: 8439: 8382: 8333: 8284: 8249: 8155: 8110: 8059: 8009: 7948: 7893: 7844: 7805: 7768: 7693: 7655: 7582: 7506: 7446: 7391: 7334: 7273: 7236: 7224: 7187: 7140: 7055: 7008: 6977: 6942: 6897: 6807: 6758: 6698: 6651: 6607: 6566: 6525: 6482: 6433: 6376: 6293: 6252: 6200: 6147: 6094: 6053: 6012: 5973: 5875: 5791: 5717: 5673: 5641: 5595: 5524: 5394: 5357: 5311: 5231: 5166: 5093: 5044: 4997: 4921: 4874: 4809: 4754: 4703: 4655: 4609: 4563: 4520: 4474: 4430: 4384: 4338: 4302: 4260: 4211: 4175: 4117: 4065: 4011: 3922: 3880: 3794: 3601: 3094: 3025: 2788:
in age and probably also in their atmosphere. Confirmation will be possible via the common
2448: 2338: 2290: 2023: 1517: 1497: 1454: 400: 380:
Bessel roughly estimated the period of the companion of Sirius to be about half a century;
323: 279: 171: 13228: 12034:
Lopes de Oliveira, R.; Bruch, A.; Rodrigues, C. V.; de Oliveira, A. S.; Mukai, K. (2020).
11698:"JWST Directly Images Giant Planet Candidates Around Two Metal-Polluted White Dwarf Stars" 11460:
Kervella, Pierre; Arenou, Frédéric; Mignard, François; Thévenin, Frédéric (1 March 2019).
10469:"How Sublimation Delays the Onset of Dusty Debris Disk Formation around White Dwarf Stars" 7251: 4417:"The mean parallax of early-type stars of determined proper motion and apparent magnitude" 1072:
explosion in which the white dwarf may be destroyed, before it reaches the limiting mass.
8: 15904: 15876: 15214: 15197: 14868: 14770: 14593: 14076: 14054: 13936: 13830: 13547: 13443: 10598: 9068: 8361:
Ferrario, Lilia; de Martino, Domtilla; Gaensicke, Boris (2015). "Magnetic white dwarfs".
4320: 4193: 3006: 2990: 2863: 2557: 1763: 1682: 1460: 1068:
mass from a neighboring star undergo a runaway nuclear fusion reaction, which leads to a
1041: 938:, meant that a white dwarf could cool to zero temperature and still possess high energy. 389: 359:
used position measurements to determine that the stars Sirius (α Canis Majoris) and
348: 267: 227: 116: 15354: 13267: 13199: 13157: 13061: 13013: 12903: 12719: 12536: 12475: 12411: 12346: 12286: 12061: 12002: 11959: 11892: 11835: 11812:
Agol, Eric (2011). "Transit Surveys for Earths in the Habitable Zones of White Dwarfs".
11723: 11363: 11265: 11202: 11135: 11068: 11001: 10934: 10869: 10822: 10775: 10722: 10630: 10590: 10553: 10494: 10437: 10373: 10322: 10285: 10236: 10166: 10109: 10035: 9828: 9775: 9715: 9658: 9610: 9516: 9469: 9370: 9261: 9222: 9155: 9116: 9060: 9007: 8951: 8908: 8885:
O'Brien, M. S. (2000). "The Extent and Cause of the Pre–White Dwarf Instability Strip".
8808: 8769: 8731: 8606: 8551: 8443: 8386: 8337: 8253: 8159: 8114: 8072: 8063: 8047: 8013: 7952: 7897: 7848: 7809: 7772: 7697: 7659: 7510: 7395: 7277: 7191: 7098: 7059: 7012: 6946: 6901: 6811: 6762: 6702: 6655: 6611: 6570: 6529: 6486: 6437: 6380: 6297: 6256: 6204: 6151: 6098: 6057: 6016: 5721: 5645: 5599: 5528: 5398: 5361: 5315: 5235: 5170: 5097: 5048: 5001: 4987: 4925: 4878: 4813: 4758: 4707: 4659: 4613: 4567: 4524: 4478: 4434: 4388: 4342: 4306: 4264: 4215: 4179: 4121: 4069: 4015: 3926: 3884: 3798: 3000:
was the favored mechanism for Type Ia supernovae, but now, because of observations, the
1550:. This enables the composition and structure of their atmospheres to be studied by soft 15864: 15852: 15749: 15710: 15662: 15647: 15561: 15501: 15424: 15334: 15304: 15294: 15238: 15160: 14851: 14487: 14286: 14120: 14098: 13946: 13888: 13622: 13518: 13287: 13253: 13211: 13185: 13121: 13095: 13025: 12889: 12758: 12731: 12705: 12623: 12589: 12556: 12522: 12495: 12461: 12389: 12332: 12272: 12236: 12210: 12182: 12156: 12075: 12047: 11973: 11945: 11909: 11878: 11866: 11847: 11821: 11792: 11760: 11709: 11665: 11622: 11604: 11572: 11538: 11507: 11473: 11440: 11383: 11349: 11285: 11251: 11224: 11188: 11157: 11121: 11090: 11054: 11023: 10987: 10956: 10920: 10889: 10855: 10787: 10783: 10761: 10734: 10708: 10602: 10576: 10521: 10480: 10468: 10449: 10423: 10393: 10342: 10308: 10258: 10222: 10188: 10131: 10095: 10055: 10043: 10021: 9994: 9960: 9840: 9814: 9787: 9761: 9729: 9701: 9670: 9644: 9575: 9549: 9481: 9455: 9446:
Schaffner-Bielich, JĂŒrgen (2005). "Strange quark matter in stars: A general overview".
9294: 9102: 9072: 9046: 9019: 8993: 8963: 8920: 8894: 8867: 8841: 8618: 8592: 8563: 8537: 8510: 8484: 8457: 8429: 8398: 8372: 8300: 8222: 8214: 8179: 8128: 8100: 8025: 7999: 7972: 7938: 7911: 7883: 7833: 7709: 7598: 7572: 7530: 7496: 7462: 7436: 7409: 7381: 7350: 7324: 7263: 7156: 7130: 7071: 7045: 6887: 6850: 6748: 6714: 6688: 6515: 6451: 6423: 6392: 6216: 6190: 6163: 6137: 6110: 5891: 5865: 5807: 5781: 5743: 5707: 5540: 5483: 5418: 5410: 5247: 5243: 5221: 5189: 5154: 5125: 5060: 5034: 4892: 4864: 4825: 4799: 4770: 4744: 4366: 4143: 4135: 4081: 4055: 4027: 4001: 3938: 3912: 3870: 3171: 3114: 3102: 2937: 2912: 2896: 2460: 2383: 1948: 1944: 1107:, whose cores are supported in part by thermal pressure, or the even lower-temperature 737: 611: 396: 385: 331: 285: 13021: 12966: 11843: 10877: 10299:
Farihi, J. (1 April 2016). "Circumstellar debris and pollution at white dwarf stars".
9666: 8959: 8021: 7370:"22 Ne Phase Separation as a Solution to the Ultramassive White Dwarf Cooling Anomaly" 1325:
is the speed of light, and it can be shown that there is no stable equilibrium in the
48: 15700: 15125: 15098: 15078: 14878: 14662: 14650: 14477: 14457: 14411: 14393: 14361: 14210: 14049: 13976: 13651: 13484: 13453: 13279: 13113: 13029: 12972: 12954: 12917: 12862: 12735: 12727: 12627: 12615: 12548: 12487: 12415: 12358: 12298: 12121: 12094: 12079: 12014: 11977: 11914: 11851: 11626: 11576: 11564: 11511: 11499: 11375: 11277: 11216: 11149: 11082: 11027: 11015: 10960: 10948: 10893: 10881: 10791: 10606: 10526: 10508: 10453: 10385: 10346: 10334: 10262: 10250: 10192: 10180: 10135: 10123: 10047: 9998: 9986: 9724: 9689: 9674: 9485: 9477: 9270: 9245: 9124: 8967: 8924: 8402: 8304: 8171: 8089:"The composition of a disrupted extrasolar planetesimal at SDSS J0845+2257 (Ton 345)" 8029: 7964: 7906: 7871: 7852: 7735: 7713: 7705: 7522: 7466: 7413: 7354: 7297: 7289: 7075: 6915: 6854: 6776: 6533: 6446: 6411: 6396: 6347: 6220: 5856:
Chabrier, G.; Baraffe, I. (2000). "Theory of low-Mass stars and substellar objects".
5733: 5702:
Canal, R.; Gutierrez, J. (1997). "The Possible White Dwarf-Neutron Star Connection".
5544: 5422: 5319: 5194: 5135: 5005: 4887: 4850: 4147: 3942: 3752: 3595: 2969: 2949: 2924: 2875: 2855: 2819: 2804: 2799:
system is polluted with calcium from rocky material. The white dwarf is orbited by a
2594: 2440: 2235: 1992: 1937:
The symbols "?" and ":" may also be used if the correct classification is uncertain.
1681:
into a solid state, starting at its center. The crystal structure is thought to be a
1656: 1619: 1449: 1077: 1069: 934: 905: 255: 244: 240: 123: 93: 15185: 13125: 12240: 11289: 11228: 11161: 10738: 10059: 9791: 9733: 9187: 9076: 9023: 8622: 8514: 8461: 8226: 8132: 7915: 7602: 7534: 6555:"The Chemical Evolution of Cool White Dwarfs and the Age of the Local Galactic Disk" 6455: 5895: 5811: 5251: 4896: 4829: 4774: 4085: 3959: 3708: 1983:
Magnetic fields in white dwarfs with a strength at the surface of c. 1 million
1766:. The envelope is believed to consist of a helium-rich layer with mass no more than 1419:{\displaystyle M_{\rm {limit}}\approx N^{2}\left({\frac {\hbar c}{G}}\right)^{3/2}.} 15828: 15528: 15481: 15431: 15419: 15397: 15392: 15319: 15279: 15226: 15008: 14931: 14906: 14800: 14721: 14445: 14406: 14022: 13924: 13698: 13291: 13271: 13215: 13203: 13161: 13109: 13105: 13065: 13017: 12907: 12723: 12607: 12560: 12540: 12499: 12479: 12407: 12350: 12290: 12228: 12186: 12174: 12065: 12006: 11963: 11904: 11896: 11839: 11770: 11727: 11614: 11556: 11491: 11387: 11367: 11269: 11206: 11139: 11094: 11072: 11005: 10938: 10873: 10826: 10779: 10726: 10594: 10516: 10498: 10441: 10397: 10377: 10326: 10240: 10170: 10113: 10039: 9978: 9921: 9844: 9832: 9779: 9719: 9662: 9614: 9579: 9567: 9520: 9473: 9374: 9265: 9226: 9159: 9120: 9064: 9011: 8955: 8912: 8871: 8859: 8812: 8773: 8735: 8647: 8642: 8610: 8583: 8567: 8555: 8502: 8447: 8390: 8341: 8292: 8257: 8206: 8183: 8163: 8118: 8067: 8017: 7976: 7956: 7901: 7813: 7776: 7701: 7590: 7514: 7482:"Core crystallization and pile-up in the cooling sequence of evolving white dwarfs" 7454: 7399: 7342: 7281: 7232: 7195: 7160: 7148: 7063: 7016: 6950: 6905: 6825: 6815: 6766: 6718: 6706: 6659: 6615: 6574: 6490: 6441: 6384: 6301: 6260: 6208: 6155: 6114: 6102: 6061: 6020: 5887: 5883: 5803: 5799: 5747: 5725: 5649: 5603: 5532: 5512: 5402: 5365: 5239: 5184: 5174: 5101: 5064: 5052: 4929: 4882: 4817: 4762: 4711: 4663: 4617: 4571: 4528: 4482: 4438: 4392: 4346: 4268: 4219: 4125: 4099: 4073: 4031: 4019: 3930: 3802: 3617: 3547:
Artist's impression of an evolving white dwarf and millisecond pulsar binary system
3195: 3050:
instead of a red dwarf). These binaries form when the red dwarf is engulfed in the
2712: 2586: 2549: 2513: 2298: 2223: 2218:
between the asymptotic giant branch and the white dwarf region. They may be called
1996: 1686: 1666: 1614: 1513: 1049: 958: 954: 896:. There is therefore no obstacle to placing nuclei closer than normally allowed by 885: 802: 724: 712: 420: 319: 179: 12980: 12611: 11867:"Habitable Planets Around White and Brown Dwarfs: The Perils of a Cooling Primary" 11618: 11560: 11495: 10677: 9982: 9891: 8863: 8506: 7594: 7458: 7346: 6212: 6167: 5443: 2811:
are being disrupted by the brown dwarf, causing the pollution of the white dwarf.
2060:
The magnetic fields in a white dwarf may allow for the existence of a new type of
1933:
lines which also had hydrogen features could be given the classification of DBAP3.
1329:. In particular, this analysis yields the maximum mass of a white dwarf, which is 15715: 15518: 15387: 15231: 15202: 15143: 15138: 15013: 14741: 14706: 14640: 14586: 14581: 14526: 14336: 13941: 13931: 13893: 13552: 12232: 12178: 12010: 10278:
Recognition of the First Observational Evidence of an Extrasolar Planetary System
9864: 9571: 7152: 6082: 5970: 5131: 3746: 3562: 3138: 3134: 3055: 2978: 2744:
is the first and only transiting major planet around a white dwarf (as of 2022).
2561: 2544:
and magnesium in its atmosphere, but van Maanen misclassified it as the faintest
2500: 2470:. The resultant object, orbiting the former companion, now host star, could be a 2456: 2121: 2001: 1754: 1551: 1101: 1086: 590: 32: 12354: 11749:"PHL 5038AB: Is the brown dwarf causing pollution of its white dwarf host star?" 10330: 5936: 5729: 419:
when he examined this class of stars in 1922; the term was later popularized by
15888: 15816: 15777: 15543: 15382: 15209: 15180: 15155: 15088: 14777: 14645: 14531: 14433: 14323: 14313: 13961: 13951: 13602: 12828: 12807: 12786: 12070: 12035: 11732: 11697: 10503: 10245: 10210: 10118: 10083: 10079: 9378: 8687: 7404: 7369: 7285: 7176:"Asteroseismology of the Crystallized ZZ Ceti Star BPM 37093: A Different View" 6910: 6875: 6339: 5910: 5772:
Hillebrandt, W.; Niemeyer, J. C. (2000). "Type IA supernova explosion models".
3090: 3078: 2942: 2879: 2859: 2851: 2708: 2684: 2509: 2436: 2172:
Early calculations suggested that there might be white dwarfs whose luminosity
1926: 1907: 1750: 1734: 1670: 1485: 1306: 897: 889: 597: 13991: 12451: 11175:
Rebassa-Mansergas, Alberto; Xu (èźžćČè‰ș), Siyi; Veras, Dimitri (21 January 2018).
10804: 9783: 8652: 8394: 7518: 6495: 6470: 6159: 6025: 6000: 5155:"The Relativity Displacement of the Spectral Lines in the Companion of Sirius" 4273: 4246: 1962: 15898: 15729: 15523: 15486: 15454: 15329: 15038: 14861: 14832: 14810: 14428: 14401: 14378: 14279: 14151: 14146: 14115: 13876: 13861: 13641: 13585: 13557: 13463: 12921: 12619: 12419: 12362: 12302: 11990: 11568: 11503: 11281: 11220: 11153: 11086: 11019: 10976:"Eccentric planets and stellar evolution as a cause of polluted white dwarfs" 10952: 10885: 10512: 10389: 10338: 10254: 10184: 10127: 10051: 9990: 9327: 8261: 7293: 6919: 6780: 6771: 6736: 5654: 5629: 5370: 5345: 4637: 4622: 4597: 4502: 4458: 4412: 3704: 2982: 2789: 2475: 2471: 2173: 2073: 2061: 2006: 1703: 1627: 1512:
The degenerate matter that makes up the bulk of a white dwarf has a very low
1253: 1008:
equal to 2 for such a star, leading to the commonly quoted value of 1.4 
996: 992: 913: 881: 831: 546: 412: 408: 384:
computed an orbit for it in 1851. It was not until 31 January 1862 that
309: 293: 151: 12951:
Black holes, white dwarfs, and neutron stars: the physics of compact objects
12912: 12877: 11775: 11748: 11211: 11176: 11144: 11109: 10943: 10908: 8686:. Association Française des Observateurs d'Etoiles Variables. Archived from 8614: 8146:
Blackett, P. M. S. (1947). "The Magnetic Field of Massive Rotating Bodies".
8123: 8088: 7021: 6997:"The Status of White Dwarf Asteroseismology and a Glimpse of the Road Ahead" 6996: 1741:
Although most white dwarfs are thought to be composed of carbon and oxygen,
1532:, luminosity increases with increasing surface temperature (proportional to 876:
Such densities are possible because white dwarf material is not composed of
716: 15840: 15789: 15464: 15414: 15409: 15309: 15192: 15175: 15133: 15103: 15093: 15028: 14911: 14856: 14837: 14817: 14795: 14787: 14630: 14623: 14462: 14383: 14366: 14027: 14001: 13871: 13866: 13790: 13672: 13646: 13629: 13580: 13530: 13496: 13448: 13283: 13117: 12552: 12491: 11968: 11933: 11918: 11379: 11077: 11042: 11010: 10975: 10530: 10211:"Discovery of Beryllium in White Dwarfs Polluted by Planetesimal Accretion" 8452: 8417: 8210: 8175: 7968: 7616: 7526: 7301: 6737:"Spectral analysis of ultra-cool white dwarfs polluted by planetary debris" 6640:"The Cool White Dwarf Luminosity Function and the Age of the Galactic Disk" 6471:"On the theory of white dwarf stars. I. The energy sources of white dwarfs" 5406: 5271: 5198: 4130: 4103: 4045: 3612: 3606: 3439: 3282: 3098: 3010: 2808: 2785: 2741: 2723: 2700: 2692: 2676: 2659: 2578: 2537: 2452: 2323: 2202: 2181: 1988: 1984: 1966:
Elements discovered in the atmosphere of white dwarfs colder than 25,000 K.
1903: 1742: 1566: 1555: 1061: 922: 901: 674: 670: 658: 583: 511: 504: 497: 490: 483: 476: 469: 462: 455: 315: 305: 297: 131: 100:; no fusion takes place in a white dwarf. The nearest known white dwarf is 69: 13381: 13367: 13353: 13339: 13325: 13311: 12576:"Deep and fast Solar System flybys: The controversial case of WD 0810-353" 12033: 11900: 5179: 1902:
The first attempt to classify white dwarf spectra appears to have been by
1428: 1245:
is the number of electrons per unit mass (dependent only on composition),
629:
Although white dwarfs are known with estimated masses as low as 0.17 
15705: 15377: 15369: 15359: 15339: 15314: 15243: 15165: 14921: 14896: 14891: 14765: 14726: 14674: 14669: 14341: 14071: 14037: 13966: 13612: 13540: 13479: 13190: 13100: 12763: 12215: 12161: 11525:
Kervella, Pierre; Arenou, Frédéric; Thévenin, Frédéric (1 January 2022).
11043:"Unstable low-mass planetary systems as drivers of white dwarf pollution" 10713: 10428: 9766: 9706: 9554: 9460: 9299: 8998: 8899: 8846: 8542: 7888: 7135: 7050: 6693: 6520: 6428: 5870: 5786: 5712: 5706:. Astrophysics and Space Science Library. Vol. 214. pp. 49–55. 5473: 5226: 5039: 4869: 4804: 4749: 4060: 4006: 3917: 3875: 3584: 3578: 3470: 3047: 3029: 2871: 2800: 2735: 2731: 2545: 2525: 2520: 2378: 2200:, stars, with helium-dominated atmospheres and the spectral type DB; and 2019: 2018:) which was identified by James Kemp, John Swedlund, John Landstreet and 1929:, an effective temperature of 17,000 K, and a spectrum dominated by 1698: 1678: 1632: 1585: 1108: 689: 518: 334:
discovered that, despite being a dim star, 40 Eridani B was of
301: 259: 108: 13275: 12544: 12483: 11589: 11371: 10909:"Detectable close-in planets around white dwarfs through late unpacking" 9231:
10.1002/1521-3994(200112)322:5/6<405::AID-ASNA405>3.0.CO;2-6
7960: 7646:
Schatzman, E. (1945). "Théorie du débit d'énergie des naines blanches".
6830: 6334:
Fontaine, G.; Wesemael, F. (2001). "White dwarfs". In Murdin, P. (ed.).
4989:
Preliminary General Catalogue of 6188 stars for the epoch 1900
2730:
data. The brightening is not seen before 2018. It is interpreted as the
2052:
in which the compact object is a white dwarf instead of a neutron star.
1954:) has been detected in spectra of the atmospheres of some white dwarfs. 657:. The estimated radii of observed white dwarfs are typically 0.8–2% the 15289: 14986: 14959: 14936: 14916: 14901: 14753: 14657: 14635: 14613: 14608: 14472: 14215: 14130: 14110: 14081: 14032: 13981: 13592: 13535: 12878:"New white dwarf stars in the Sloan Digital Sky Survey Data Release 10" 8296: 6388: 6106: 5536: 5414: 3376: 3344: 3313: 3181: 3162: 3082: 2915:, causing their mutual orbit to steadily shrink until the stars merge. 2834: 2796: 2751: 2439:
star or a super-Chandrasekhar mass white dwarf which will explode in a
2415: 2319: 2254: 2253:
If the mass of a main-sequence star is lower than approximately half a
2069: 2045: 1791: 1663: 1521: 1493: 1468:
in hydrostatic equilibrium. The average molecular weight per electron,
1093: 682: 678: 604: 576: 562: 289: 231: 191: 187: 135: 89: 15883: 12573: 10280:. 19Th European Workshop on White Dwarfs. Vol. 493. p. 291. 8218: 7796:
Luyten, W. J. (1952). "The Spectra and Luminosities of White Dwarfs".
5630:"The highly collapsed configurations of a stellar mass (Second paper)" 4139: 3869:. 14th European Workshop on White Dwarfs. Vol. 334. p. 165. 2663:
from its AGB progenitor about 500 million years ago) white dwarf
1636:
in approximate thermal equilibrium with its surroundings and with the
347:
The spectral type of 40 Eridani B was officially described in 1914 by
15476: 15324: 15108: 15073: 15068: 15063: 15023: 14976: 14966: 14760: 14736: 14711: 14618: 14569: 14502: 14492: 14467: 14440: 14416: 14351: 14061: 14044: 13597: 12695: 10381: 9423:. lecture notes, Physics 213. University of Sheffield. Archived from 9396:. lecture notes, Physics 213. University of Sheffield. Archived from 8167: 5307: 4507:"Additional note on faint early-type stars with large proper motions" 3865:
Werner, K.; Hammer, N.J.; Nagel, T.; Rauch, T.; Dreizler, S. (2005).
3130: 3051: 2755: 2533: 2350: 2346: 2177: 1694: 1577: 1489: 1465: 1224:{\displaystyle R\approx {\frac {N^{5/3}\hbar ^{2}}{2m_{e}GM^{1/3}}},} 1130: 1104: 1039:
for this and other work in 1983. The limiting mass is now called the
928: 569: 532: 312: 204: 155: 139: 27:
Type of stellar remnant composed mostly of electron-degenerate matter
12294: 11992: 9037:
Napiwotzki, Ralf (2009). "The galactic population of white dwarfs".
8318:
Kemp, J.C.; Swedlund, J.B.; Landstreet, J.D.; Angel, J.R.P. (1970).
5974:"The Structure, Stability, and Dynamics of Self-Gravitating Systems" 3113:
Other non-pre-supernova binaries include binaries that consist of a
2814:
In 2024 a planet candidate was found around the massive white dwarf
2261:, and end its evolution as a helium white dwarf composed chiefly of 436: 15469: 15170: 14844: 14603: 14576: 14066: 13825: 13506: 13207: 13166: 13141: 13070: 13045: 12594: 12119: 12092: 12052: 11797: 11765: 11714: 11609: 11543: 11478: 11445: 11354: 11273: 11193: 11126: 11059: 10831: 10806: 10730: 10485: 10445: 10313: 10227: 10175: 10150: 10100: 9836: 9619: 9594: 9525: 9500: 9246:"The formation of helium white dwarfs in close binary systems – II" 9164: 9139: 9015: 8916: 8817: 8792: 8777: 8740: 8715: 8597: 8559: 8377: 8346: 8319: 8105: 7817: 7781: 7756: 7684:
Koester, D.; Chanmugam, G. (1990). "Physics of white dwarf stars".
7501: 7441: 7386: 7268: 7200: 7175: 7067: 6954: 6933:
van Horn, H. M. (January 1968). "Crystallization of White Dwarfs".
6892: 6820: 6795: 6753: 6710: 6664: 6639: 6620: 6595: 6579: 6554: 6367:
Heise, J. (1985). "X-ray emission from isolated hot white dwarfs".
6306: 6281: 6265: 6240: 6195: 6066: 6041: 5608: 5583: 5106: 5079: 5056: 4933: 4821: 4766: 4716: 4691: 4668: 4641: 4576: 4549: 4533: 4506: 4487: 4462: 4443: 4416: 4397: 4370: 4351: 4324: 4224: 4197: 4077: 4023: 3934: 3807: 3780: 3638: â€“ Chronological list of developments in knowledge and records 3532: 3408: 3129:
around white dwarfs. While stars are bright and often outshine the
3122: 3017:
slows until the spin is no longer enough to prevent the explosion.
2672: 2556:
in white dwarfs is thought to come from nitrogen-ice of extrasolar
2553: 2424: 2262: 1674: 1605: 1569:. This process has more effect on hotter and younger white dwarfs. 1562: 1053: 893: 555: 539: 266:, which establishes an observational limit on the maximum possible 143: 102: 13258: 12953:, Stuart L. Shapiro and Saul A. Teukolsky, New York: Wiley, 1983. 12894: 12710: 12527: 12466: 12394: 12337: 12277: 11950: 11883: 11826: 11400: 11256: 10992: 10925: 10860: 10766: 10581: 10026: 9965: 9819: 9804: 9649: 9107: 9051: 8489: 8434: 8004: 7943: 7577: 7329: 6142: 4598:"On the relation between the masses and luminosities of the stars" 2948:
There are two models that might explain the progenitor systems of
2341:. Such a star may leave a remnant white dwarf composed chiefly of 338: A, or white. In 1939, Russell looked back on the discovery: 199:), the core temperature will be sufficient to fuse carbon but not 15744: 15219: 14981: 14748: 14701: 14684: 14679: 14598: 13919: 12644:. fact sheet. Imagine the Universe!. NASA Goddard. Archived from 11338: 7368:
Blouin, Simon; Daligault, JĂ©rĂŽme; Saumon, Didier (1 April 2021).
3250: 3021: 2867: 2727: 2716: 2688: 2573: 2565: 2541: 1057: 753: 360: 248: 175: 77: 13140:
Provencal, J. L.; Shipman, H. L.; Hog, Erik; Thejll, P. (1998).
13086:
Gibson, B. K.; Flynn, C (2001). "White Dwarfs and Dark Matter".
8474: 6876:"On the Nature of Ultracool White Dwarfs: Not so Cool after All" 5139: 5009: 2293:, but it will never become sufficiently hot to fuse carbon into 1651: 744:. This was confirmed when Adams measured this redshift in 1925. 15734: 15722: 14941: 14827: 13809: 13759: 13501: 12574:
de la Fuente Marcos, RaĂșl; de la Fuente Marcos, Carlos (2022).
12376:
Maoz, Dan; Mannucci, Filippo; Nelemans, Gijs (18 August 2014).
8938:
Winget, D. E. (1998). "Asteroseismology of white dwarf stars".
7856: 7314: 6796:"An independent method for determining the age of the universe" 6282:"WD 0346+246: A Very Low Luminosity, Cool Degenerate in Taurus" 6238: 5944: 4787: 4733: 4463:"Note on some faint early-type stars with large proper motions" 4247:"On the variations of the proper motions of Procyon and Sirius" 3900: 3218: 2664: 2444: 2428: 2427:
continues to expand, it is thought that in 10 to 10 years, the
2342: 2286: 2282: 2238:
for main-sequence stars with masses from about 0.07 to 10 
2140: 2049: 2011: 1746: 1594: 793: 700:, which compares well with a more modern estimate of 1.00  407:. Eventually, many faint white stars were found which had high 263: 167: 163: 159: 53: 13398: 13000:
Winget, D.E. (1998). "Asteroseismology of white dwarf stars".
12378:"Observational Clues to the Progenitors of Type Ia Supernovae" 12261:"Type-Ia Supernova Rates and the Progenitor Problem: A Review" 12199: 12095:"Astronomers Discover Merging Star Systems that Might Explode" 11174: 7215:
Hansen, B. M. S.; Liebert, James (2003). "Cool White Dwarfs".
2274:
If the mass of a main-sequence star is between 0.5 and 8 
1572: 13142:"Testing the White Dwarf Mass-Radius Relation with Hipparcos" 11694: 11459: 10645:"The MIRI survey for Exoplanets Orbiting White-dwarfs (MEOW)" 10619: 10413: 10077: 7562: 7479: 2754:
are suspected to have giant exoplanets due to anomaly in the
2680: 2668: 2184:
pulsations. Known types of pulsating white dwarf include the
1547: 1081: 1048:
If a white dwarf were to exceed the Chandrasekhar limit, and
666: 107:
at 8.6 light years, the smaller component of the Sirius
85: 12875: 9633: 8418:"Magnetic white dwarf stars in the Sloan Digital Sky Survey" 8415: 8320:"Discovery of circularly polarized light from a white dwarf" 5515:(1929). "Über die Grenzdichte der Materie und der Energie". 3632: â€“ Classification of stars based on spectral properties 2895:
The merger process of two co-orbiting white dwarfs produces
2765:
A JWST survey of four metal polluted white dwarfs found two
2281:, its core will become sufficiently hot to fuse helium into 15083: 14302: 13575: 13243: 12808:"Cosmic 'Spider' Found to Be Source of Powerful Gamma-Rays" 12748: 11040: 10805:
Li, Jianke; Ferrario, Lilia; Wickramasinghe, Dayal (1998).
10466: 8360: 8317: 8274: 8086: 7928: 7426: 6793: 6734: 6241:"A proposed new white dwarf spectral classification system" 3620: â€“ Type of emission nebula created by dying red giants 2903: 2488:
List of exoplanets and planetary debris around white dwarfs
2432: 2387: 2362: 2294: 877: 200: 127: 97: 31:"Degenerate dwarf" redirects here. Not to be confused with 15835: 15784: 12093:
Aguilar, David A.; Pulliam, Christine (16 November 2010).
9892:"Hubble finds dead stars "polluted" with planetary debris" 8580: 7869: 6596:"A Catalogue of Spectroscopically Identified White Dwarfs" 5827:"From the Clash of White Dwarfs, the Birth of a Supernova" 4845: 15449: 13139: 12981:"Estimating Stellar Parameters from Energy Equipartition" 11669: 10208: 6873: 6409: 5444:"Estimating Stellar Parameters from Energy Equipartition" 5022: 4109:
Philosophical Transactions of the Royal Society of London
3207: 723:'s, which was so high that he called it "impossible". As 720: 186:). If the mass of the progenitor is between 7 and 9  154:
of low or medium mass ends, such a star will expand to a
81: 14271: 11746: 11107: 9137: 7252:"Buoyant crystals halt the cooling of white dwarf stars" 7035: 6412:"A two-stream formalism for the convective Urca process" 4692:"A catalog of spectroscopically identified white dwarfs" 3778: 2945:
in the white dwarf or its collapse into a neutron star.
14157:
Timeline of white dwarfs, neutron stars, and supernovae
13721:
Timeline of white dwarfs, neutron stars, and supernovae
13174: 13050:
Publications of the Astronomical Society of the Pacific
10907:
Veras, Dimitri; GĂ€nsicke, Boris T. (21 February 2015).
10155:
Publications of the Astronomical Society of the Pacific
9688:
Panei, J. A.; Althaus, L. G.; Benvenuto, O. G. (2000).
8983: 8713: 7761:
Publications of the Astronomical Society of the Pacific
7119: 6967: 6678: 4555:
Publications of the Astronomical Society of the Pacific
4512:
Publications of the Astronomical Society of the Pacific
4467:
Publications of the Astronomical Society of the Pacific
4422:
Publications of the Astronomical Society of the Pacific
4376:
Publications of the Astronomical Society of the Pacific
4330:
Publications of the Astronomical Society of the Pacific
4291:
Flammarion, Camille (1877). "The companion of Sirius".
4203:
Publications of the Astronomical Society of the Pacific
4168:
How degenerate stars came to be known as 'white dwarfs'
3786:
Publications of the Astronomical Society of the Pacific
3636:
Timeline of white dwarfs, neutron stars, and supernovae
2667:, which may have been created by tidal disruption of a 2234:
White dwarfs are thought to represent the end point of
2044:
The highly magnetized white dwarf in the binary system
643:, the mass distribution is strongly peaked at 0.6  13043: 12120:
Aguilar, David A.; Pulliam, Christine (13 July 2011).
11789: 11524: 11241: 11110:"Liberating exomoons in white dwarf planetary systems" 10566: 9922:"Comet falling into white dwarf (artist's impression)" 9539: 9138:
Laughlin, G.; Bodenheimer, P.; Adams, Fred C. (1997).
8754: 8527: 6410:
Lesaffre, P.; Podsiadlowski, Ph.; Tout, C. A. (2005).
3864: 3587: â€“ Type of substellar object larger than a planet 2795:
In 2024 it was discovered that the white dwarf in the
1762:
phase and may also contain material accreted from the
1291:
Since this analysis uses the non-relativistic formula
1060:, and it would collapse into a denser object called a 15800: 12845: 12265:
Publications of the Astronomical Society of Australia
11984: 9950: 9687: 9092: 7367: 7250:
Antoine, BĂ©dard; Simon, Blouin; Sihao, Cheng (2024).
6280:
Hambly, N. C.; Smartt, S. J.; Hodgkin, S. T. (1997).
5561:
Stoner, C. (1930). "The Equilibrium of Dense Stars".
2874:
that could render them uninhabitable by triggering a
1880:
Magnetic white dwarf without detectable polarization
1337: 1262: 1141: 12787:"Rocky Exoplanets Are Even Stranger Than We Thought" 12375: 10974:
Frewen, S. F. N.; Hansen, B. M. S. (11 April 2014).
9798: 9323:"Planet diet helps white dwarfs stay young and trim" 9208: 8199:
Biographical Memoirs of Fellows of the Royal Society
6180: 3991: 2504:
Comet falling into white dwarf (artist's impression)
2326:. Some main-sequence stars, of perhaps 8 to 10  2022:
in 1970 to host a magnetic field by its emission of
427:
has found over 9,000 white dwarfs, mostly new.
8714:Quirion, P.-O.; Fontaine, G.; Brassard, P. (2007). 6637: 6552: 6279: 6039: 5771: 5211: 4038: 3108: 2654:Infrared spectroscopic observations made by NASA's 2564:material and the beryllium is thought to come from 2158:Atmosphere mostly C, He and O; may be divided into 13222: 9860:"Scientists Discover a Diamond as Big as a Planet" 9448:Journal of Physics G: Nuclear and Particle Physics 9356: 7989: 7832: 6638:Leggett, S. K.; Ruiz, M. T.; Bergeron, P. (1998). 6553:Bergeron, P.; Ruiz, M. T.; Leggett, S. K. (1997). 6042:"Rapidly Rotating Stars. II. Massive White Dwarfs" 5941:Standards for Astronomical Catalogues, Version 2.0 2738:, the first time such an event has been observed. 2496:Artist's impression of debris around a white dwarf 1872:Magnetic white dwarf with detectable polarization 1714:Low-mass helium white dwarfs (mass < 0.20  1418: 1268: 1223: 1096:and therefore occupy a strip at the bottom of the 12934:Monthly Notices of the Royal Astronomical Society 12882:Monthly Notices of the Royal Astronomical Society 11938:Monthly Notices of the Royal Astronomical Society 11181:Monthly Notices of the Royal Astronomical Society 11114:Monthly Notices of the Royal Astronomical Society 11047:Monthly Notices of the Royal Astronomical Society 10980:Monthly Notices of the Royal Astronomical Society 10913:Monthly Notices of the Royal Astronomical Society 10698: 9694:Monthly Notices of the Royal Astronomical Society 9445: 9250:Monthly Notices of the Royal Astronomical Society 8422:Monthly Notices of the Royal Astronomical Society 8093:Monthly Notices of the Royal Astronomical Society 7876:Monthly Notices of the Royal Astronomical Society 7249: 6741:Monthly Notices of the Royal Astronomical Society 6475:Monthly Notices of the Royal Astronomical Society 6416:Monthly Notices of the Royal Astronomical Society 6005:Monthly Notices of the Royal Astronomical Society 5634:Monthly Notices of the Royal Astronomical Society 5350:Monthly Notices of the Royal Astronomical Society 5304:Relativity: an introduction to space-time physics 4856:Monthly Notices of the Royal Astronomical Society 4602:Monthly Notices of the Royal Astronomical Society 4252:Monthly Notices of the Royal Astronomical Society 3960:"Cosmic weight loss: The lowest mass white dwarf" 3779:Fontaine, G.; Brassard, P.; Bergeron, P. (2001). 3774: 3772: 3770: 3768: 3744: 3675:"Extreme stars: White dwarfs & neutron stars" 3518:Illustration of rocky debris around a white dwarf 2304: 1125:Neutron star § Gravity and equation of state 15896: 12435:"Don't slow down white dwarf, you might explode" 12432: 11437: 11403:"Accretion of a giant planet onto a white dwarf" 10359: 9851: 9243: 7683: 7173: 6333: 2390:falling to its core where it accumulates. These 2318:which will leave behind a remnant neutron star, 2269: 1609:take first 0.4 and then 1.1 billion years. 650:, and the majority lie between 0.5 and 0.7  13046:"Magnetism in Isolated and Binary White Dwarfs" 13044:Wickramasinghe, D. T.; Ferrario, Lilia (2000). 12437:. Discovery Communications, LLC. Archived from 12124:. Harvard-Smithsonian Center for Astrophysics. 12097:. Harvard-Smithsonian Center for Astrophysics. 11931: 10845: 9352: 9350: 5855: 5159:Proceedings of the National Academy of Sciences 4174:meeting 207. Vol. 207. p. 1503. 3624:Robust associations of massive baryonic objects 2726:shows brightening in the mid-infrared, seen in 2560:, the lithium is thought to come from accreted 2532:and is now recognized as the first evidence of 1655:The white dwarf cooling sequence seen by ESA's 1432:Radius–mass relations for a model white dwarf. 904:in 1926 by an application of the newly devised 415:appears to have been the first to use the term 12445: 12113: 12086: 9284: 6234: 6232: 6230: 5701: 4685: 4683: 4681: 4679: 3781:"The potential of white dwarf cosmochronology" 3765: 3598: â€“ Type of dense exotic matter in physics 3035: 2226:evidence about the interiors of white dwarfs. 870:Critical density of an Earth-mass black hole. 14287: 13775: 13414: 12968:White dwarf stars and the Chandrasekhar limit 12671:"Introduction to Cataclysmic Variables (CVs)" 10906: 9751: 9088: 9086: 8052:Annual Review of Earth and Planetary Sciences 7214: 6127: 5767: 5765: 5763: 5761: 5759: 5757: 5627: 5581: 4286: 4284: 3896: 3894: 3833:"Late stages of evolution for low-mass stars" 3531:Cocoon of a new white dwarf in the centre of 3126: 138:. This includes over 97% of the stars in the 12876:Kepler, S. O.; et al. (February 2015). 12258: 11864: 10973: 10204: 10202: 9347: 8684:Centre deDonnĂ©es astronomiques de Strasbourg 6867: 5384: 4591: 4589: 4587: 3125:data. One interesting field is the study of 2854:at a distance of c. 0.005 to 0.02  2842:and is probably an oxygen-neon white dwarf. 1835:He II lines, accompanied by He I or H lines 1052:did not take place, the pressure exerted by 1024:, equal to 2.5, giving a limit of 0.91  841:Does not depend strongly on size of nucleus 430: 318:. The pair 40 Eridani B/C was discovered by 284:The first white dwarf discovered was in the 13085: 12506: 12382:Annual Review of Astronomy and Astrophysics 9592: 8884: 8831: 8720:The Astrophysical Journal Supplement Series 8709: 8707: 8705: 7872:"White dwarf mass distribution in the SDSS" 7217:Annual Review of Astronomy and Astrophysics 6730: 6728: 6600:The Astrophysical Journal Supplement Series 6559:The Astrophysical Journal Supplement Series 6512:White Dwarf Stars and the Hubble Deep Field 6227: 5858:Annual Review of Astronomy and Astrophysics 5774:Annual Review of Astronomy and Astrophysics 5697: 5695: 5623: 5621: 5619: 4851:"White dwarf mass distribution in the SDSS" 4737:The Astrophysical Journal Supplement Series 4696:The Astrophysical Journal Supplement Series 4690:McCook, George P.; Sion, Edward M. (1999). 4676: 4237: 4235: 3994:The Astrophysical Journal Supplement Series 3964:Harvard-Smithsonian Center for Astrophysics 3740: 3738: 3736: 3734: 2481: 2248: 2117: 1114: 770:Critical density of a black hole of around 14294: 14280: 13782: 13768: 13734: 13421: 13407: 13341:The Helix Nebula from La Silla Observatory 12259:Maoz, D.; Mannucci, F. (18 January 2012). 12146: 12122:"Evolved Stars Locked in Fatalistic Dance" 11305:"Zombie Star Caught Feasting on Asteroids" 10151:"Two Faint Stars with Large Proper Motion" 10148: 9813:(2) (published November 2007): 1279–1297. 9681: 9181: 9083: 9036: 8239: 7830: 7725: 7723: 7679: 7677: 7675: 7673: 7671: 7669: 7088: 6593: 6336:Encyclopedia of Astronomy and Astrophysics 6083:"On diameters of uniformly rotating stars" 6080: 5754: 5438: 5436: 5434: 5432: 5387:Proceedings of the Royal Society of London 4689: 4371:"Two faint stars with large proper motion" 4365: 4290: 4281: 4161: 4159: 4157: 3891: 3054:phase. As the red dwarf orbits inside the 2091: 1999:. This putative law, sometimes called the 1957: 1662:White dwarf core material is a completely 1492:is neglected, then, as was pointed out by 13257: 13189: 13165: 13099: 13069: 12911: 12893: 12762: 12709: 12665: 12663: 12593: 12567: 12526: 12465: 12393: 12336: 12276: 12214: 12160: 12069: 12051: 11967: 11949: 11908: 11882: 11825: 11796: 11774: 11764: 11731: 11713: 11608: 11542: 11477: 11444: 11394: 11353: 11255: 11210: 11192: 11143: 11125: 11076: 11058: 11009: 10991: 10942: 10924: 10859: 10830: 10765: 10712: 10580: 10520: 10502: 10484: 10427: 10312: 10275: 10244: 10226: 10199: 10174: 10117: 10099: 10025: 9964: 9818: 9765: 9723: 9705: 9690:"The evolution of iron-core white dwarfs" 9648: 9627: 9618: 9553: 9524: 9459: 9298: 9269: 9244:Benvenuto, O. G.; De Vito, M. A. (2005). 9163: 9106: 9050: 8997: 8898: 8845: 8816: 8739: 8651: 8596: 8541: 8488: 8451: 8433: 8376: 8345: 8122: 8104: 8071: 8045: 8003: 7942: 7905: 7887: 7780: 7645: 7576: 7500: 7440: 7403: 7385: 7328: 7267: 7199: 7134: 7049: 7020: 6909: 6891: 6829: 6819: 6770: 6752: 6692: 6663: 6633: 6631: 6619: 6578: 6519: 6494: 6445: 6427: 6305: 6264: 6194: 6141: 6065: 6040:Ostriker, J. P.; Bodenheimer, P. (1968). 6024: 5869: 5785: 5711: 5653: 5607: 5556: 5554: 5369: 5339: 5337: 5335: 5295: 5225: 5188: 5178: 5120: 5105: 5038: 4886: 4868: 4841: 4839: 4803: 4748: 4729: 4727: 4715: 4667: 4621: 4595: 4584: 4575: 4532: 4486: 4442: 4396: 4350: 4325:"The spectrum of the companion of Sirius" 4272: 4223: 4129: 4059: 4005: 3916: 3874: 3806: 2906:and Type Ia supernovae. It may also be a 2886: 2826:. The candidate has a mass of around 3.6 2447:, known to be at least 10–10 years. Some 1724: 740:, the light from Sirius B should be 122:White dwarfs are thought to be the final 13369:A Nearby Supernova in Spiral Galaxy M100 11303:Lemonick, Michael D. (21 October 2015). 11302: 9857: 9747: 9745: 9743: 9418: 9391: 8702: 8145: 8046:Jura, M.; Young, E.D. (1 January 2014). 7167: 6932: 6725: 5692: 5616: 5584:"The Maximum Mass of Ideal White Dwarfs" 5575: 5511: 4950:Exotic Phases of Matter in Compact Stars 4232: 4098: 3731: 3609: â€“ Collapsed core of a massive star 3065: 2890: 2581:and forced into a circular orbit by the 2499: 2491: 2414: 2401: 1961: 1728: 1650: 1571: 1507: 1427: 1309:, the kinetic energy formula approaches 47: 12964: 12856: 12318: 9593:Livio, Mario; Truran, James W. (1994). 8979: 8977: 8790: 7729: 7720: 7666: 6509: 6329: 6327: 6325: 6323: 6321: 6319: 6317: 5824: 5429: 5205: 5016: 4909: 4198:"An A-type star of very low luminosity" 4165: 4154: 3672: 1685:lattice. In 1995 it was suggested that 1056:would no longer be able to balance the 949:dwarf decreases as its mass increases. 912:, no two electrons can occupy the same 292:, which contains the relatively bright 56: A and Sirius B taken by the 14: 15897: 13227:. Villanova University. Archived from 12999: 12660: 12634: 12512: 12319:Wang, Bo; Han, Zhanwen (1 June 2012). 12314: 12312: 12254: 12252: 12250: 11334: 11332: 11330: 10409: 10407: 10298: 10073: 10071: 10069: 9498: 9177: 9175: 8937: 8635: 8196: 7795: 7754: 7237:10.1146/annurev.astro.41.081401.155117 7089:Whitehouse, David (16 February 2004). 6994: 6844: 6628: 6468: 6087:Communications in Mathematical Physics 5911:"The Hertzsprung-Russell (HR) diagram" 5560: 5551: 5343: 5332: 5080:"The densities of visual binary stars" 4946: 4836: 4724: 4636: 4547: 4501: 4457: 4411: 4241: 3860: 3858: 3709:"The one hundred nearest star systems" 3668: 3666: 3664: 3662: 3660: 3658: 3656: 3654: 3652: 932:. This state of the electrons, called 300:, orbited at a distance by the closer 84:'s, while its volume is comparable to 14275: 13763: 13402: 13334:(photograph). NASA. 31 December 2009. 13320:(photograph). NASA. 21 February 2010. 13313:NGC 2440: Cocoon of a New White Dwarf 10569:Journal of Physics: Conference Series 10546:Planetary Systems Around White Dwarfs 10543: 9932:from the original on 15 February 2017 9740: 8041: 8039: 7983: 6366: 6081:Chanillo, Sagun; Li, Yan Yan (1994). 5998: 5837:from the original on 25 February 2010 5301: 5152: 4319: 4192: 3987: 3985: 3954: 3952: 3843:from the original on 4 September 2017 3826: 3824: 3822: 3820: 3818: 3719:from the original on 12 November 2007 3703: 3677:(Lecture notes). Astronomy 162. 3626: â€“ Proposed type of star cluster 2918: 2411:Artist's concept of white dwarf aging 2368: 1576:A comparison between the white dwarf 1528:4,000 K. In accordance with the 14256: 13002:Journal of Physics: Condensed Matter 12938:doi:10.1111/j.1365-2966.2007.12288.x 12698:The Astrophysical Journal Supplement 12677:from the original on 6 February 2012 11932:Nordhaus, J.; Spiegel, D.S. (2013). 11811: 11419:from the original on 4 December 2019 10011: 9858:Lemonick, Michael (26 August 2011). 9412: 9385: 8974: 8940:Journal of Physics: Condensed Matter 7627:from the original on 4 December 2019 7082: 6314: 6273: 5929: 5077: 4985: 3830: 3751:. North-Holland Publishing Company. 3591:Chandrasekhar's white dwarf equation 2322:, or possibly a more exotic form of 2048:was identified in 2016 as the first 1618:one of the coolest so far observed, 1121:Chandrasekhar's white dwarf equation 12412:10.1146/annurev-astro-082812-141031 12321:"Progenitors of type Ia supernovae" 12309: 12247: 11865:Barnes, Rory; Heller, RenĂ© (2011). 11431: 11327: 10537: 10404: 10082:; Rees, Jon M. (19 February 2019). 10066: 9172: 8073:10.1146/annurev-earth-060313-054740 7174:Brassard, P.; Fontaine, G. (2005). 6594:McCook, G. P.; Sion, E. M. (1999). 5969: 5917:from the original on 31 August 2009 4967:from the original on 15 August 2011 3855: 3835:. Lecture notes, Physics 230. 3713:Research Consortium on Nearby Stars 3649: 3581: â€“ Theoretical stellar remnant 3150:White Dwarfs within 25 Light Years 2807:. It is thought that the orbits of 2769:candidates with masses of 1–7  2337:, may be insufficiently massive to 2333:, although sufficiently massive to 1859:Unclear or unclassifiable spectrum 251:is thought to be a famous example. 24: 13355:IC 4406: A Seemingly Square Nebula 12846:External links and further reading 10676:. 13 February 2007. Archived from 10149:van Maanen, A. (1 December 1917). 9421:"The evolution of high-mass stars" 9335:from the original on 20 April 2010 9331:. No. 2639. 18 January 2008. 8793:"A New Short-Period Blue Variable" 8638:"Stars draw atoms closer together" 8036: 7091:"Diamond star thrills astronomers" 5477:"Lecture 12 – Degeneracy pressure" 4994:Carnegie Institution of Washington 3982: 3970:from the original on 22 April 2007 3949: 3815: 3685:from the original on 31 March 2012 2981:process that feeds on itself. The 2066:perpendicular paramagnetic bonding 1356: 1353: 1350: 1347: 1344: 25: 15936: 13376:(photograph). NASA. 7 March 2006. 13362:(photograph). NASA. 27 July 2008. 13348:(photograph). NASA. 3 March 2009. 13223:McCook, G.P.; Sion, E.M. (eds.). 12433:O'Neill, Ian (6 September 2011). 12128:from the original on 15 July 2011 12101:from the original on 9 April 2011 12040:The Astrophysical Journal Letters 11814:The Astrophysical Journal Letters 11702:The Astrophysical Journal Letters 10670:"Comet clash kicks up dusty haze" 10544:Veras, Dimitri (1 October 2021). 9637:The Astrophysical Journal Letters 9394:"The evolution of low-mass stars" 8660:from the original on 20 July 2012 7544:from the original on 23 July 2019 7374:The Astrophysical Journal Letters 6130:Journal of Differential Equations 5980:from the original on 27 June 2010 5908: 5670:"The Nobel Prize in Physics 1983" 3837:Rochester Institute of Technology 2780:(LP 852-7) and the other around 2601:are expected to be <4 and 4–8. 2335:fuse carbon to neon and magnesium 2143:absorption lines in its spectrum 2055: 2010:white dwarf to be discovered was 1978: 15882: 15870: 15858: 15846: 15834: 15822: 15810: 15783: 15773: 15772: 14255: 14246: 14245: 13997:Tolman–Oppenheimer–Volkoff limit 13789: 13744: 13743: 13733: 13390:(photograph). NASA. 1 June 2005. 12821: 12800: 12779: 12742: 12689: 12426: 12369: 12193: 12140: 12027: 11925: 11858: 11805: 11783: 11740: 11688: 11658: 11633: 11583: 11518: 11453: 11296: 11235: 11168: 11101: 11034: 10967: 10900: 10839: 10798: 10745: 10692: 10662: 10637: 10613: 10560: 10460: 10353: 10292: 10269: 10142: 10005: 9944: 9914: 9902:from the original on 9 June 2013 9884: 9725:10.1046/j.1365-8711.2000.03236.x 9586: 9533: 9492: 9439: 9315: 9278: 9271:10.1111/j.1365-2966.2005.09315.x 9237: 9202: 9131: 9030: 8931: 8878: 8825: 8784: 8748: 8672: 8629: 8574: 8521: 8468: 8409: 8354: 8311: 8268: 8233: 8190: 8139: 7907:10.1111/j.1365-2966.2006.11388.x 6447:10.1111/j.1365-2966.2004.08428.x 5825:Overbye, D. (22 February 2010). 5482:. Lecture notes, Astronomy 211. 5472: 5454:from the original on 22 May 2012 5283:from the original on 6 July 2009 5264: 4888:10.1111/j.1365-2966.2006.11388.x 3553: 3539: 3524: 3510: 3109:Other non-pre-supernova binaries 2624: 2613: 1690: 1588:in 1952, unless the white dwarf 1556:extreme ultraviolet observations 435: 230:— approximately 1.44 times 80:: its mass is comparable to the 14180:Fermi Gamma-ray Space Telescope 13716:White dwarf luminosity function 13428: 8080: 7922: 7863: 7824: 7789: 7748: 7639: 7609: 7556: 7473: 7420: 7361: 7308: 7243: 7208: 7113: 7029: 6988: 6961: 6926: 6838: 6787: 6672: 6587: 6546: 6503: 6462: 6403: 6360: 6174: 6121: 6074: 6033: 5992: 5963: 5951:from the original on 8 May 2017 5902: 5849: 5818: 5680:from the original on 6 May 2007 5662: 5505: 5466: 5378: 5258: 5146: 5114: 5071: 4979: 4940: 4903: 4781: 4630: 4541: 4495: 4451: 4405: 4359: 4313: 4186: 4092: 2845: 2097:Types of pulsating white dwarf 1925:A white dwarf with a polarized 1803:Primary and secondary features 1624:white dwarf luminosity function 1241:is the total mass of the star, 1133:equation of state, which gives 203:, in which case an oxygen–neon– 130:is not high enough to become a 13110:10.1126/science.292.5525.2211a 10599:10.1088/1742-6596/172/1/012004 9140:"The End of the Main Sequence" 9069:10.1088/1742-6596/172/1/012004 8636:Merali, Zeeya (19 July 2012). 8277:Astrophysics and Space Science 7686:Reports on Progress in Physics 5888:10.1146/annurev.astro.38.1.337 5804:10.1146/annurev.astro.38.1.191 4958:LuleĂ„ University of Technology 3697: 3087:gravitational potential energy 2536:in astronomy. The white dwarf 2305:Stars with medium to high mass 2139:DB spectral type, having only 2079: 1827:Continuous spectrum; no lines 13: 1: 15685:Timeline of stellar astronomy 14206:X-ray pulsar-based navigation 14185:Compton Gamma Ray Observatory 10811:Astrophysical Journal Letters 10807:"Planets around White Dwarfs" 10276:Zuckerman, B. (1 June 2015). 8640:. Nature News & Comment. 6213:10.1016/j.physrep.2022.09.001 4642:"The search for white dwarfs" 4172:American Astronomical Society 3643: 2968:heating of the core leads to 2641: 2270:Stars with low to medium mass 1064:. Carbon–oxygen white dwarfs 1035:, Chandrasekhar received the 709:effective surface temperature 322:on 31 January 1783. In 1910, 13388:Astronomy Picture of the Day 13374:Astronomy Picture of the Day 13360:Astronomy Picture of the Day 13346:Astronomy Picture of the Day 13332:Astronomy Picture of the Day 13318:Astronomy Picture of the Day 13306:Astronomy Picture of the Day 12673:. fact sheet. NASA Goddard. 12581:Astronomy & Astrophysics 12011:10.1007/978-94-011-5710-0_10 11597:Astronomy & Astrophysics 10784:10.1088/0004-6256/138/6/1681 10044:10.1088/0004-6256/135/5/1785 7757:"List of Known White Dwarfs" 7429:Astronomy & Astrophysics 7317:Astronomy & Astrophysics 5244:10.1088/0264-9381/16/12A/301 3565:with a companion white dwarf 2862:. The goal is to search for 2607:Exoplanet orbits WD 1856+534 2361:novae. The spectra of these 2229: 2206:, sometimes subdivided into 945:electron degeneracy pressure 273: 224:electron degeneracy pressure 40:White dwarf (disambiguation) 7: 15345:Hertzsprung–Russell diagram 14175:Rossi X-ray Timing Explorer 14018:Gamma-ray burst progenitors 13683:Quasi-periodic oscillations 13459:Hertzsprung–Russell diagram 13022:10.1088/0953-8984/10/49/014 12612:10.1051/0004-6361/202245020 12355:10.1016/j.newar.2012.04.001 11844:10.1088/2041-8205/731/2/L31 11619:10.1051/0004-6361/202243782 11561:10.1051/0004-6361/202142146 11496:10.1051/0004-6361/201834371 10878:10.1088/0004-637X/747/2/148 10331:10.1016/j.newar.2016.03.001 9983:10.1051/0004-6361/201423691 9667:10.1088/2041-8205/761/2/L23 8960:10.1088/0953-8984/10/49/014 8864:10.1051/0004-6361:200400079 8507:10.1051/0004-6361/201219829 8048:"Extrasolar Cosmochemistry" 8022:10.1088/2041-8205/766/2/L18 7841:University of Chicago Press 7595:10.1051/0004-6361/201424681 7459:10.1051/0004-6361/202038879 7347:10.1051/0004-6361/201117902 5730:10.1007/978-94-011-5542-7_7 4104:"Catalogue of Double Stars" 3571: 3042:Post common envelope binary 3036:Post-common envelope binary 2699:The metal-rich white dwarf 2658:of the central star of the 2216:Hertzsprung–Russell diagram 1798:White dwarf spectral types 1733:Artist's impression of the 1642:collision induced absoption 1638:cosmic background radiation 1098:Hertzsprung–Russell diagram 908:. Since electrons obey the 884:, but rather consists of a 443:Hertzsprung–Russell diagram 222:, but is supported only by 10: 15941: 15259:Kelvin–Helmholtz mechanism 14231:Most massive neutron stars 13972:Quasi-periodic oscillation 13678:Electron-degenerate matter 13225:"White Dwarf Catalogue WD" 12751:Astronomy and Astrophysics 12728:10.1088/0067-0049/199/2/29 12233:10.1051/0004-6361:20054594 12203:Astronomy and Astrophysics 12179:10.1051/0004-6361:20035822 12149:Astronomy and Astrophysics 11531:Astronomy and Astrophysics 11466:Astronomy and Astrophysics 9953:Astronomy and Astrophysics 9572:10.1051/0004-6361:20047154 9542:Astronomy and Astrophysics 9478:10.1088/0954-3899/31/6/004 9379:10.1103/RevModPhys.74.1015 9287:Astronomy and Astrophysics 9125:10.1088/0004-637X/730/2/67 8834:Astronomy and Astrophysics 8477:Astronomy and Astrophysics 7831:Greenstein, J. L. (1960). 7706:10.1088/0034-4885/53/7/001 7565:Astronomy and Astrophysics 7286:10.1038/s41586-024-07102-y 7153:10.1051/0004-6361:20041125 7123:Astronomy and Astrophysics 6970:Astronomy and Astrophysics 5628:Chandrasekhar, S. (1935). 5582:Chandrasekhar, S. (1931). 5267:"Nuclear Size and Density" 3745:Evry L. Schatzman (1958). 3503: 3144: 3069: 3039: 2922: 2485: 2089: 2083: 1786:of the star's total mass. 1561:White dwarfs also radiate 1484:arising from working in a 1118: 1089:in determining distances. 963:Subrahmanyan Chandrasekhar 742:gravitationally redshifted 277: 74:electron-degenerate matter 29: 15768: 15693: 15542: 15440: 15368: 15267: 15124: 14999: 14877: 14786: 14522: 14513: 14392: 14322: 14309: 14301: 14241: 14198: 14190:Chandra X-ray Observatory 14165: 14139: 14010: 13912: 13854: 13818: 13797: 13729: 13691: 13660: 13608:Cataclysmic variable star 13566: 13472: 13436: 13327:Dust and the Helix Nebula 13178:The Astrophysical Journal 13146:The Astrophysical Journal 11244:The Astrophysical Journal 10848:The Astrophysical Journal 10701:The Astrophysical Journal 10473:The Astrophysical Journal 10416:The Astrophysical Journal 10215:The Astrophysical Journal 10088:The Astrophysical Journal 9807:The Astrophysical Journal 9784:10.1103/RevModPhys.69.337 9754:Reviews of Modern Physics 9599:The Astrophysical Journal 9505:The Astrophysical Journal 9359:Reviews of Modern Physics 9211:Astronomische Nachrichten 9144:The Astrophysical Journal 9095:The Astrophysical Journal 8986:The Astrophysical Journal 8887:The Astrophysical Journal 8797:The Astrophysical Journal 8758:The Astrophysical Journal 8653:10.1038/nature.2012.11045 8395:10.1007/s11214-015-0152-0 8325:The Astrophysical Journal 7992:The Astrophysical Journal 7798:The Astrophysical Journal 7519:10.1038/s41586-018-0791-x 7180:The Astrophysical Journal 7038:The Astrophysical Journal 6935:The Astrophysical Journal 6880:The Astrophysical Journal 6800:The Astrophysical Journal 6681:The Astrophysical Journal 6644:The Astrophysical Journal 6286:The Astrophysical Journal 6245:The Astrophysical Journal 6160:10.1016/j.jde.2012.04.011 6046:The Astrophysical Journal 5588:The Astrophysical Journal 5085:The Astrophysical Journal 5026:The Astrophysical Journal 4913:The Astrophysical Journal 4791:The Astrophysical Journal 4596:Eddington, A. S. (1924). 3904:The Astrophysical Journal 3127:remnant planetary systems 3072:Cataclysmic variable star 2767:directly imaged exoplanet 2314:and it will explode in a 1863: 1802: 910:Pauli exclusion principle 636:and as high as 1.33  434: 431:Composition and structure 15638:With multiple exoplanets 13957:Neutron-star oscillation 13846:Rotating radio transient 12071:10.3847/2041-8213/aba618 11994:Thermonuclear Supernovae 11733:10.3847/2041-8213/ad2348 11309:National Geographic News 10754:The Astronomical Journal 10504:10.3847/2041-8213/abfd39 10246:10.3847/1538-4357/abe40b 10119:10.3847/2041-8213/ab0426 10014:The Astronomical Journal 9896:ESA/Hubble Press Release 8530:The Astronomical Journal 8262:10.1103/PhysRev.153.1372 7405:10.3847/2041-8213/abf14b 6911:10.3847/1538-4357/ac76c7 5277:Georgia State University 5012:– via Archive.org. 4647:The Astronomical Journal 2530:Mount Wilson Observatory 2482:Debris disks and planets 2431:will evaporate as their 2249:Stars with very low mass 1918:A white dwarf with only 1864:Secondary features only 1482:centrifugal pseudo-force 1115:Mass–radius relationship 425:Sloan Digital Sky Survey 328:Edward Charles Pickering 88:'s. A white dwarf's low 76:. A white dwarf is very 14424:Asymptotic giant branch 13635:Super soft X-ray source 13383:White Dwarf Star Spiral 12773:1999A&A...344..897D 12642:"Cataclysmic Variables" 12604:2022A&A...668A..14D 12404:2014ARA&A..52..107M 12225:2006A&A...453..229B 12171:2004A&A...419..623Y 11666:"Gaia DR3 known issues" 11553:2022A&A...657A...7K 11488:2019A&A...623A..72K 9975:2014A&A...566A..34K 9564:2004A&A...421.1169W 9309:1998A&A...335L..85N 9184:"Stars Beyond Maturity" 8856:2004A&A...426L..45N 8791:Landolt, A. U. (1968). 8615:10.1038/s41550-016-0029 8499:2012A&A...545A..30L 8289:1969Ap&SS...4..464G 7648:Annales d'Astrophysique 7587:2014A&A...571L...3I 7451:2020A&A...640L..11B 7339:2012A&A...537A..33A 7229:2003ARA&A..41..465H 7145:2005A&A...432..219K 7022:10.1515/astro-1995-0209 6982:1988A&A...199L..15B 6510:Kawaler, S. D. (1998). 6496:10.1093/mnras/112.6.583 6344:Nature Publishing Group 6026:10.1093/mnras/107.2.231 5880:2000ARA&A..38..337C 5796:2000ARA&A..38..191H 4274:10.1093/mnras/6.11.136a 4166:Holberg, J. B. (2005). 3137:around the white dwarf 3002:double-degenerate model 2998:single-degenerate model 2987:double-degenerate model 2962:single-degenerate model 2958:double-degenerate model 2954:single-degenerate model 2908:super-soft x-ray source 2656:Spitzer Space Telescope 2583:Poynting–Robertson drag 2397: 2316:core-collapse supernova 2120:, having only hydrogen 1973:asymptotic giant branch 1958:Metal-rich white dwarfs 1888:Emission lines present 1753:in the 1940s, the high 1327:ultrarelativistic limit 1278:reduced Planck constant 764:Supermassive black hole 727:put it later, in 1927: 243:via a process known as 15760:Tidal disruption event 15249:Circumstellar envelope 14483:Luminous blue variable 14211:Tempo software program 12965:Gentile, Dave (1995). 12936:. 382 (4): 1377–1393. 10623:JWST Proposal. Cycle 1 10080:Faherty, Jacqueline K. 9926:www.spacetelescope.org 8211:10.1098/rsbm.1975.0001 7755:Kuiper, G. P. (1941). 6995:Winget, D. E. (1995). 6845:Trefil, J. S. (2004). 6772:10.1093/mnras/stac2908 5655:10.1093/mnras/95.3.207 5564:Philosophical Magazine 5517:Zeitschrift fĂŒr Physik 5407:10.1098/rspa.1980.0051 5371:10.1093/mnras/87.2.114 5344:Fowler, R. H. (1926). 4623:10.1093/mnras/84.5.308 4550:"Comet c 1922 (Baade)" 4131:10.1098/rstl.1785.0006 3630:Stellar classification 3020:The historical bright 2899: 2887:Binary stars and novae 2816:GALEX J071816.4+373139 2505: 2497: 2449:grand unified theories 2420: 2412: 2382:, to high speeds of a 1967: 1738: 1725:Atmosphere and spectra 1691:pulsating white dwarfs 1659: 1581: 1445: 1420: 1286:gravitational constant 1270: 1269:{\displaystyle \hbar } 1225: 1092:White dwarfs have low 918:Fermi–Dirac statistics 734: 405:classical white dwarfs 378: 345: 220:gravitational collapse 158:during which it fuses 61: 58:Hubble Space Telescope 15285:Effective temperature 14226:List of neutron stars 14221:The Magnificent Seven 12913:10.1093/mnras/stu2388 12325:New Astronomy Reviews 11901:10.1089/ast.2012.0867 11776:10.1093/mnras/stae974 11212:10.1093/mnras/stx2141 11145:10.1093/mnras/stv2966 10944:10.1093/mnras/stu2475 10301:New Astronomy Reviews 9041:. Conference Series. 8364:Space Science Reviews 8124:10.1093/mnras/stv1201 6369:Space Science Reviews 5302:Adams, Steve (1997). 5180:10.1073/pnas.11.7.382 5153:Adams, W. S. (1925). 4956:(Licentiate thesis). 4548:Aitken, R.G. (1922). 4294:Astronomical Register 4048:Astrophysical Journal 3679:Ohio State University 3141:is one such example. 3095:cataclysmic variables 3066:Cataclysmic variables 2894: 2548:based on the calcium 2503: 2495: 2468:planetary mass object 2457:quantum gravitational 2418: 2410: 2092:Cataclysmic variables 2086:Pulsating white dwarf 1965: 1912:effective temperature 1851:Carbon lines present 1732: 1654: 1646:IR-faint white dwarfs 1575: 1508:Radiation and cooling 1431: 1421: 1271: 1226: 1033:William Alfred Fowler 916:, and they must obey 729: 367:If we were to regard 365: 340: 51: 15755:Planet-hosting stars 15633:With resolved images 15604:Historical brightest 15534:Photometric-standard 15460:Solar radio emission 15254:Eddington luminosity 15034:Triple-alpha process 14972:Thorne–ƻytkow object 14347:Young stellar object 14126:Thorne–ƻytkow object 11969:10.1093/mnras/stt569 11078:10.1093/mnras/sty446 11011:10.1093/mnras/stu097 8453:10.1093/mnras/sts522 5674:The Nobel Foundation 5493:on 25 September 2007 3673:Johnson, J. (2007). 3602:List of white dwarfs 2776:. One orbits around 2704:is highly variable. 2459:processes involving 2291:triple-alpha process 2024:circularly polarized 1991:) were predicted by 1597:white dwarf of 0.59 1584:As was explained by 1530:Stefan–Boltzmann law 1518:thermal conductivity 1455:hydrostatic equation 1335: 1260: 1139: 995:equal to half their 711:, and that from its 681:(hypothetical), and 324:Henry Norris Russell 280:List of white dwarfs 172:triple-alpha process 70:stellar core remnant 38:For other uses, see 15579:Highest temperature 15350:Color–color diagram 15215:Protoplanetary disk 15019:Proton–proton chain 14697:Chemically peculiar 14077:Neutron star merger 13937:Chandrasekhar limit 13904:Hulse–Taylor pulsar 13831:Soft gamma repeater 13548:Extreme helium star 13444:Chandrasekhar limit 13276:10.1038/nature06318 13268:2007Natur.450..522D 13200:2004ApJ...612L.129G 13158:1998ApJ...494..759P 13062:2000PASP..112..873W 13014:1998JPCM...1011247W 13008:(49): 11247–11261. 12971:(Master's thesis). 12904:2015MNRAS.446.4078K 12720:2012ApJS..199...29G 12545:10.1038/nature07608 12537:2008Natur.456..617K 12484:10.1038/nature11447 12476:2012Natur.489..533G 12441:on 24 January 2012. 12347:2012NewAR..56..122W 12287:2012PASA...29..447M 12062:2020ApJ...898L..40L 12003:1997ASIC..486..147D 11960:2013MNRAS.432..500N 11893:2013AsBio..13..279B 11836:2011ApJ...731L..31A 11724:2024ApJ...962L..32M 11372:10.1038/nature15527 11364:2015Natur.526..546V 11266:2008ApJ...674..431F 11203:2018MNRAS.473.2871V 11136:2016MNRAS.457..217P 11069:2018MNRAS.476.3939M 11002:2014MNRAS.439.2442F 10935:2015MNRAS.447.1049V 10870:2012ApJ...747..148D 10823:1998ApJ...503L.151L 10776:2009AJ....138.1681S 10723:2007ApJ...657L..41S 10680:on 16 February 2007 10631:2021jwst.prop.1911M 10591:2009JPhCS.172a2004N 10554:2021orel.bookE...1V 10495:2021ApJ...913L..31S 10438:2005ApJ...635L.161R 10374:1987Natur.330..138Z 10323:2016NewAR..71....9F 10286:2015ASPC..493..291Z 10237:2021ApJ...914...61K 10167:1917PASP...29..258V 10110:2019ApJ...872L..25D 10036:2008AJ....135.1785J 9829:2007ApJ...669.1279S 9776:1997RvMP...69..337A 9716:2000MNRAS.312..531P 9659:2012ApJ...761L..23J 9611:1994ApJ...425..797L 9517:1984ApJ...277..791N 9499:Nomoto, K. (1984). 9470:2005JPhG...31S.651S 9371:2002RvMP...74.1015W 9262:2005MNRAS.362..891B 9223:2001AN....322..405S 9156:1997ApJ...482..420L 9117:2011ApJ...730...67B 9061:2009JPhCS.172a2004N 9008:2003ApJ...591..288H 8952:1998JPCM...1011247W 8946:(49): 11247–11261. 8909:2000ApJ...532.1078O 8809:1968ApJ...153..151L 8770:1967ApJ...148L.161L 8732:2007ApJS..171..219Q 8680:"ZZ Ceti variables" 8607:2017NatAs...1E..29B 8552:2003AJ....125..348L 8444:2013MNRAS.429.2934K 8387:2015SSRv..191..111F 8338:1970ApJ...161L..77K 8254:1967PhRv..153.1372L 8160:1947Natur.159..658B 8115:2015MNRAS.451.3237W 8064:2014AREPS..42...45J 8014:2013ApJ...766L..18X 7961:10.1038/nature06318 7953:2007Natur.450..522D 7898:2007MNRAS.375.1315K 7849:1960stat.book.....G 7835:Stellar atmospheres 7810:1952ApJ...116..283L 7773:1941PASP...53..248K 7698:1990RPPh...53..837K 7660:1945AnAp....8..143S 7511:2019Natur.565..202T 7396:2021ApJ...911L...5B 7278:2024Natur.627..286B 7192:2005ApJ...622..572B 7060:2004ApJ...605L.133M 7013:1995BaltA...4..129W 6947:1968ApJ...151..227V 6902:2022ApJ...934...36B 6812:1987ApJ...315L..77W 6763:2022MNRAS.517.4557E 6703:2004ApJ...612L.129G 6656:1998ApJ...497..294L 6612:1999ApJS..121....1M 6571:1997ApJS..108..339B 6530:1998hdf..symp..252K 6487:1952MNRAS.112..583M 6469:Mestel, L. (1952). 6438:2005MNRAS.356..131L 6381:1985SSRv...40...79H 6298:1997ApJ...489L.157H 6257:1983ApJ...269..253S 6205:2022PhR...988....1S 6152:2012JDE...253..553C 6099:1994CMaPh.166..417C 6058:1968ApJ...151.1089O 6017:1947MNRAS.107..231H 5722:1997ASSL..214...49C 5646:1935MNRAS..95..207C 5600:1931ApJ....74...81C 5529:1929ZPhy...56..851A 5399:1980RSPSA.371....8H 5362:1926MNRAS..87..114F 5316:1997rist.book.....A 5306:. London; Bristol: 5236:1999CQGra..16A...3C 5214:Class. Quantum Grav 5171:1925PNAS...11..382A 5098:1916ApJ....44..292O 5049:2005ApJ...630L..69L 5002:1910pgcs.book.....B 4947:Sandin, F. (2005). 4926:1979ApJ...228..240S 4879:2007MNRAS.375.1315K 4814:2007ApJ...660.1451K 4759:2006ApJS..167...40E 4708:1999ApJS..121....1M 4660:1950AJ.....55...86L 4614:1924MNRAS..84..308E 4568:1922PASP...34..353A 4525:1922PASP...34..132L 4479:1922PASP...34...54L 4435:1922PASP...34..156L 4389:1917PASP...29..258V 4367:van Maanen, A. 4343:1915PASP...27..236A 4307:1877AReg...15..186F 4265:1844MNRAS...6R.136B 4216:1914PASP...26..198A 4180:2005AAS...20720501H 4122:1785RSPT...75...40H 4070:2003ApJ...591..288H 4016:2007ApJS..170..377S 3927:2004ApJ...606L.147L 3885:2005ASPC..334..165W 3799:2001PASP..113..409F 3561:Illustration of an 3151: 3103:intermediate polars 3007:age of the universe 2991:Chandrasekhar limit 2913:gravitational waves 2897:gravitational waves 2786:solar system giants 2597:. Exoplanets with 2558:Kuiper Belt objects 2461:virtual black holes 2374:Type Iax supernovae 2224:asteroseismological 2098: 1799: 1764:interstellar medium 1687:asteroseismological 1683:body-centered cubic 1461:Chandrasekhar limit 1078:elliptical galaxies 1042:Chandrasekhar limit 809:The core of the Sun 304:of the white dwarf 268:age of the universe 228:Chandrasekhar limit 170:in its core by the 117:Willem Jacob Luyten 72:composed mostly of 15584:Lowest temperature 15335:Photometric system 15305:Absolute magnitude 15239:Circumstellar dust 14852:Stellar black hole 14488:Stellar population 14374:Herbig–Haro object 14121:Pulsar wind nebula 14099:Stellar black hole 13623:Intermediate polar 13519:Stellar black hole 11315:on 24 October 2015 9427:on 7 November 2012 9400:on 7 November 2012 9039:Journal of Physics 8690:on 5 February 2007 8297:10.1007/BF00651351 7101:on 5 February 2007 6851:Dover Publications 6389:10.1007/BF00212870 6107:10.1007/BF02112323 5999:Hoyle, F. (1947). 5831:The New York Times 5537:10.1007/BF01340146 5523:(11–12): 851–856. 5484:Cornell University 3707:(1 January 2009). 3213:Objects in system 3149: 3121:, discovered with 3115:main sequence star 2950:Type Ia supernovae 2919:Type Ia supernovae 2900: 2792:method with JWST. 2506: 2498: 2421: 2413: 2384:hypervelocity star 2369:Type Iax supernova 2096: 1968: 1797: 1739: 1660: 1582: 1446: 1416: 1266: 1221: 999:, one should take 738:general relativity 397:Adriaan van Maanen 386:Alvan Graham Clark 332:Williamina Fleming 286:triple star system 152:main-sequence star 124:evolutionary state 62: 15915:Stellar phenomena 15910:Stellar evolution 15798: 15797: 15701:Substellar object 15680:Planetary nebulae 15099:Luminous red nova 15009:Deuterium burning 14995: 14994: 14478:Instability strip 14458:Wolf-Rayet nebula 14412:Horizontal branch 14357:Pre-main-sequence 14269: 14268: 14050:Supernova remnant 13840:Ultra-long period 13757: 13756: 13652:Carbon detonation 13485:Type Ia supernova 13454:Stellar evolution 13231:on 24 August 2007 12973:DePaul University 12868:978-3-540-61520-0 12521:(7222): 617–619. 12460:(7417): 533–536. 12020:978-0-7923-4359-2 11595:Data Release 3". 11348:(7574): 546–549. 10368:(6144): 138–140. 9872:on 24 August 2013 7741:978-3-540-61520-0 7495:(7738): 202–205. 7262:(8003): 286–288. 6860:978-0-486-43813-9 6539:978-0-521-63097-9 6353:978-0-333-75088-9 5739:978-94-010-6334-0 5346:"On dense matter" 5325:978-0-7484-0621-0 5078:Öpik, E. (1916). 4986:Boss, L. (1910). 3966:. 17 April 2007. 3962:(Press release). 3758:978-0-598-58212-6 3596:Degenerate matter 3501: 3500: 3089:when part of the 3026:Tycho's Supernova 2925:Type Ia supernova 2876:greenhouse effect 2818:with the help of 2805:substellar object 2707:The giant planet 2644:NASA; video; 2:10 2636: 2526:tidally disrupted 2441:Type Ia supernova 2408: 2236:stellar evolution 2170: 2169: 2068:, in addition to 1993:P. M. S. Blackett 1900: 1899: 1450:equation of state 1393: 1216: 1070:Type Ia supernova 1050:nuclear reactions 1031:.) Together with 906:quantum mechanics 898:electron orbitals 874: 873: 846:Neutron star core 659:radius of the Sun 401:van Maanen's Star 256:color temperature 245:carbon detonation 241:type Ia supernova 18:White dwarf stars 16:(Redirected from 15932: 15887: 15886: 15875: 15874: 15873: 15863: 15862: 15861: 15851: 15850: 15849: 15839: 15838: 15827: 15826: 15825: 15815: 15814: 15806: 15790:Stars portal 15788: 15787: 15776: 15775: 15432:Planetary system 15355:Strömgren sphere 15227:Asteroseismology 14948:Black hole star 14520: 14519: 14446:Planetary nebula 14407:Red-giant branch 14296: 14289: 14282: 14273: 14272: 14259: 14258: 14249: 14248: 14023:Asteroseismology 13925:Fast radio burst 13784: 13777: 13770: 13761: 13760: 13747: 13746: 13737: 13736: 13699:Planetary nebula 13423: 13416: 13409: 13400: 13399: 13391: 13377: 13363: 13349: 13335: 13321: 13295: 13261: 13240: 13238: 13236: 13219: 13193: 13191:astro-ph/0405566 13171: 13169: 13129: 13103: 13101:astro-ph/0104255 13075: 13073: 13056:(773): 873–924. 13033: 12988: 12976: 12925: 12915: 12897: 12888:(4): 4078–4087. 12872: 12859:Stellar remnants 12840: 12839: 12837: 12835: 12825: 12819: 12818: 12816: 12814: 12804: 12798: 12797: 12795: 12793: 12783: 12777: 12776: 12766: 12764:astro-ph/9812008 12746: 12740: 12739: 12713: 12693: 12687: 12686: 12684: 12682: 12667: 12658: 12657: 12655: 12653: 12638: 12632: 12631: 12597: 12571: 12565: 12564: 12530: 12510: 12504: 12503: 12469: 12449: 12443: 12442: 12430: 12424: 12423: 12397: 12373: 12367: 12366: 12340: 12316: 12307: 12306: 12280: 12256: 12245: 12244: 12218: 12216:astro-ph/0603036 12197: 12191: 12190: 12164: 12162:astro-ph/0402287 12144: 12138: 12137: 12135: 12133: 12117: 12111: 12110: 12108: 12106: 12090: 12084: 12083: 12073: 12055: 12031: 12025: 12024: 11988: 11982: 11981: 11971: 11953: 11929: 11923: 11922: 11912: 11886: 11862: 11856: 11855: 11829: 11809: 11803: 11802: 11800: 11787: 11781: 11780: 11778: 11768: 11759:(3): 3302–3309. 11744: 11738: 11737: 11735: 11717: 11692: 11686: 11685: 11679: 11677: 11662: 11656: 11655: 11653: 11651: 11637: 11631: 11630: 11612: 11587: 11581: 11580: 11546: 11522: 11516: 11515: 11481: 11457: 11451: 11450: 11448: 11435: 11429: 11428: 11426: 11424: 11418: 11407: 11398: 11392: 11391: 11357: 11336: 11325: 11324: 11322: 11320: 11311:. Archived from 11300: 11294: 11293: 11259: 11239: 11233: 11232: 11214: 11196: 11187:(3): 2871–2880. 11172: 11166: 11165: 11147: 11129: 11105: 11099: 11098: 11080: 11062: 11053:(3): 3939–3955. 11038: 11032: 11031: 11013: 10995: 10986:(3): 2442–2458. 10971: 10965: 10964: 10946: 10928: 10919:(2): 1049–1058. 10904: 10898: 10897: 10863: 10843: 10837: 10836: 10834: 10802: 10796: 10795: 10769: 10760:(6): 1681–1689. 10749: 10743: 10742: 10716: 10714:astro-ph/0702296 10696: 10690: 10689: 10687: 10685: 10666: 10660: 10659: 10657: 10655: 10641: 10635: 10634: 10617: 10611: 10610: 10584: 10564: 10558: 10557: 10541: 10535: 10534: 10524: 10506: 10488: 10464: 10458: 10457: 10431: 10429:astro-ph/0511358 10411: 10402: 10401: 10382:10.1038/330138a0 10357: 10351: 10350: 10316: 10296: 10290: 10289: 10273: 10267: 10266: 10248: 10230: 10206: 10197: 10196: 10178: 10146: 10140: 10139: 10121: 10103: 10075: 10064: 10063: 10029: 10020:(5): 1785–1792. 10009: 10003: 10002: 9968: 9948: 9942: 9941: 9939: 9937: 9918: 9912: 9911: 9909: 9907: 9888: 9882: 9881: 9879: 9877: 9868:. Archived from 9855: 9849: 9848: 9822: 9802: 9796: 9795: 9769: 9767:astro-ph/9701131 9749: 9738: 9737: 9727: 9709: 9707:astro-ph/9911371 9685: 9679: 9678: 9652: 9631: 9625: 9624: 9622: 9590: 9584: 9583: 9557: 9555:astro-ph/0404325 9548:(3): 1169–1183. 9537: 9531: 9530: 9528: 9496: 9490: 9489: 9463: 9461:astro-ph/0412215 9454:(6): S651–S657. 9443: 9437: 9436: 9434: 9432: 9416: 9410: 9409: 9407: 9405: 9389: 9383: 9382: 9365:(4): 1015–1071. 9354: 9345: 9344: 9342: 9340: 9319: 9313: 9312: 9302: 9300:astro-ph/9806011 9282: 9276: 9275: 9273: 9241: 9235: 9234: 9217:(5–6): 405–410. 9206: 9200: 9199: 9197: 9195: 9186:. Archived from 9182:Jeffery, Simon. 9179: 9170: 9169: 9167: 9135: 9129: 9128: 9110: 9090: 9081: 9080: 9054: 9034: 9028: 9027: 9001: 8999:astro-ph/0212469 8981: 8972: 8971: 8935: 8929: 8928: 8902: 8900:astro-ph/9910495 8893:(2): 1078–1088. 8882: 8876: 8875: 8849: 8847:astro-ph/0409243 8829: 8823: 8822: 8820: 8788: 8782: 8781: 8752: 8746: 8745: 8743: 8711: 8700: 8699: 8697: 8695: 8676: 8670: 8669: 8667: 8665: 8655: 8633: 8627: 8626: 8600: 8584:Nature Astronomy 8578: 8572: 8571: 8545: 8543:astro-ph/0210319 8525: 8519: 8518: 8492: 8472: 8466: 8465: 8455: 8437: 8428:(4): 2934–2944. 8413: 8407: 8406: 8380: 8371:(1–4): 111–169. 8358: 8352: 8351: 8349: 8315: 8309: 8308: 8272: 8266: 8265: 8248:(5): 1372–1377. 8237: 8231: 8230: 8194: 8188: 8187: 8168:10.1038/159658a0 8154:(4046): 658–66. 8143: 8137: 8136: 8126: 8108: 8099:(3): 3237–3248. 8084: 8078: 8077: 8075: 8043: 8034: 8033: 8007: 7987: 7981: 7980: 7946: 7926: 7920: 7919: 7909: 7891: 7889:astro-ph/0612277 7882:(4): 1315–1324. 7867: 7861: 7860: 7838: 7828: 7822: 7821: 7793: 7787: 7786: 7784: 7752: 7746: 7745: 7732:Stellar remnants 7727: 7718: 7717: 7681: 7664: 7663: 7643: 7637: 7636: 7634: 7632: 7613: 7607: 7606: 7580: 7560: 7554: 7553: 7551: 7549: 7543: 7504: 7486: 7477: 7471: 7470: 7444: 7424: 7418: 7417: 7407: 7389: 7365: 7359: 7358: 7332: 7312: 7306: 7305: 7271: 7247: 7241: 7240: 7212: 7206: 7205: 7203: 7171: 7165: 7164: 7138: 7136:astro-ph/0411199 7117: 7111: 7110: 7108: 7106: 7097:. Archived from 7086: 7080: 7079: 7053: 7051:astro-ph/0402046 7044:(2): L133–L136. 7033: 7027: 7026: 7024: 7001:Baltic Astronomy 6992: 6986: 6985: 6965: 6959: 6958: 6930: 6924: 6923: 6913: 6895: 6871: 6865: 6864: 6842: 6836: 6835: 6833: 6823: 6791: 6785: 6784: 6774: 6756: 6747:(3): 4557–4574. 6732: 6723: 6722: 6696: 6694:astro-ph/0405566 6676: 6670: 6669: 6667: 6635: 6626: 6625: 6623: 6591: 6585: 6584: 6582: 6550: 6544: 6543: 6523: 6521:astro-ph/9802217 6507: 6501: 6500: 6498: 6466: 6460: 6459: 6449: 6431: 6429:astro-ph/0411016 6407: 6401: 6400: 6364: 6358: 6357: 6331: 6312: 6311: 6309: 6277: 6271: 6270: 6268: 6236: 6225: 6224: 6198: 6178: 6172: 6171: 6145: 6125: 6119: 6118: 6078: 6072: 6071: 6069: 6037: 6031: 6030: 6028: 5996: 5990: 5989: 5987: 5985: 5967: 5961: 5960: 5958: 5956: 5933: 5927: 5926: 5924: 5922: 5906: 5900: 5899: 5873: 5871:astro-ph/0006383 5853: 5847: 5846: 5844: 5842: 5822: 5816: 5815: 5789: 5787:astro-ph/0006305 5769: 5752: 5751: 5715: 5713:astro-ph/9701225 5699: 5690: 5689: 5687: 5685: 5666: 5660: 5659: 5657: 5625: 5614: 5613: 5611: 5579: 5573: 5572: 5558: 5549: 5548: 5509: 5503: 5502: 5500: 5498: 5492: 5486:. Archived from 5481: 5470: 5464: 5463: 5461: 5459: 5440: 5427: 5426: 5382: 5376: 5375: 5373: 5341: 5330: 5329: 5299: 5293: 5292: 5290: 5288: 5262: 5256: 5255: 5229: 5227:astro-ph/9912186 5209: 5203: 5202: 5192: 5182: 5150: 5144: 5143: 5118: 5112: 5111: 5109: 5075: 5069: 5068: 5042: 5040:astro-ph/0507523 5020: 5014: 5013: 4983: 4977: 4976: 4974: 4972: 4966: 4955: 4944: 4938: 4937: 4907: 4901: 4900: 4890: 4872: 4870:astro-ph/0612277 4863:(4): 1315–1324. 4843: 4834: 4833: 4807: 4805:astro-ph/0611498 4798:(2): 1451–1461. 4785: 4779: 4778: 4752: 4750:astro-ph/0606700 4731: 4722: 4721: 4719: 4687: 4674: 4673: 4671: 4634: 4628: 4627: 4625: 4593: 4582: 4581: 4579: 4545: 4539: 4538: 4536: 4499: 4493: 4492: 4490: 4455: 4449: 4448: 4446: 4409: 4403: 4402: 4400: 4363: 4357: 4356: 4354: 4317: 4311: 4310: 4288: 4279: 4278: 4276: 4239: 4230: 4229: 4227: 4190: 4184: 4183: 4163: 4152: 4151: 4133: 4096: 4090: 4089: 4063: 4061:astro-ph/0212469 4042: 4036: 4035: 4009: 4007:astro-ph/0603449 3989: 3980: 3979: 3977: 3975: 3956: 3947: 3946: 3920: 3918:astro-ph/0404291 3898: 3889: 3888: 3878: 3876:astro-ph/0410690 3862: 3853: 3852: 3850: 3848: 3828: 3813: 3812: 3810: 3793:(782): 409–435. 3776: 3763: 3762: 3742: 3729: 3728: 3726: 3724: 3701: 3695: 3694: 3692: 3690: 3670: 3618:Planetary nebula 3557: 3543: 3528: 3514: 3152: 3148: 3060:magnetic braking 2732:tidal disruption 2722:The white dwarf 2638: 2637: 2617: 2514:planetary system 2508:A white dwarf's 2409: 2299:planetary nebula 2220:pre-white dwarfs 2124:in its spectrum 2122:absorption lines 2099: 2095: 2040: 2036: 2034: 2017: 1997:angular momentum 1811:H lines present 1800: 1796: 1785: 1784: 1780: 1775: 1774: 1770: 1689:observations of 1615:selection effect 1545: 1544: 1540: 1476: 1440: 1425: 1423: 1422: 1417: 1412: 1411: 1407: 1398: 1394: 1389: 1381: 1374: 1373: 1361: 1360: 1359: 1324: 1318: 1304: 1283: 1275: 1273: 1272: 1267: 1251: 1244: 1240: 1236: 1230: 1228: 1227: 1222: 1217: 1215: 1214: 1213: 1209: 1193: 1192: 1179: 1178: 1177: 1168: 1167: 1163: 1149: 1087:standard candles 1058:force of gravity 1023: 1007: 990: 981: 959:Edmund C. Stoner 955:Wilhelm Anderson 867: 862:Small black hole 855: 851: 838: 824: 803:room temperature 773: 747: 746: 725:Arthur Eddington 624: 607: 600: 593: 586: 579: 572: 565: 558: 551: 542: 535: 528: 521: 514: 507: 500: 493: 486: 479: 472: 465: 458: 451: 444: 439: 421:Arthur Eddington 357:Friedrich Bessel 320:William Herschel 180:planetary nebula 106: 43: 36: 21: 15940: 15939: 15935: 15934: 15933: 15931: 15930: 15929: 15895: 15894: 15893: 15881: 15871: 15869: 15859: 15857: 15847: 15845: 15833: 15823: 15821: 15809: 15801: 15799: 15794: 15782: 15764: 15689: 15658:Milky Way novae 15594:Smallest volume 15538: 15519:Radial velocity 15442: 15436: 15388:Common envelope 15364: 15263: 15232:Helioseismology 15203:Bipolar outflow 15144:Microturbulence 15139:Convection zone 15120: 15014:Lithium burning 15001:Nucleosynthesis 14991: 14873: 14782: 14509: 14388: 14337:Molecular cloud 14318: 14305: 14300: 14270: 14265: 14237: 14194: 14167: 14161: 14135: 14006: 13942:Gamma-ray burst 13932:Bondi accretion 13908: 13850: 13836:Anomalous X-ray 13814: 13793: 13788: 13758: 13753: 13725: 13687: 13656: 13568: 13562: 13553:Subdwarf B star 13468: 13432: 13427: 13380: 13366: 13352: 13338: 13324: 13310: 13252:(7169): 522–4. 13234: 13232: 13094:(5525): 2211a. 13038:Magnetic field 12985:sciencebits.com 12979: 12869: 12848: 12843: 12833: 12831: 12827: 12826: 12822: 12812: 12810: 12806: 12805: 12801: 12791: 12789: 12785: 12784: 12780: 12747: 12743: 12694: 12690: 12680: 12678: 12669: 12668: 12661: 12651: 12649: 12640: 12639: 12635: 12572: 12568: 12511: 12507: 12450: 12446: 12431: 12427: 12374: 12370: 12317: 12310: 12295:10.1071/AS11052 12257: 12248: 12198: 12194: 12145: 12141: 12131: 12129: 12118: 12114: 12104: 12102: 12091: 12087: 12032: 12028: 12021: 11989: 11985: 11930: 11926: 11863: 11859: 11810: 11806: 11788: 11784: 11745: 11741: 11693: 11689: 11675: 11673: 11664: 11663: 11659: 11649: 11647: 11639: 11638: 11634: 11588: 11584: 11523: 11519: 11458: 11454: 11436: 11432: 11422: 11420: 11416: 11405: 11399: 11395: 11337: 11328: 11318: 11316: 11301: 11297: 11240: 11236: 11173: 11169: 11106: 11102: 11039: 11035: 10972: 10968: 10905: 10901: 10844: 10840: 10803: 10799: 10750: 10746: 10697: 10693: 10683: 10681: 10668: 10667: 10663: 10653: 10651: 10643: 10642: 10638: 10618: 10614: 10565: 10561: 10542: 10538: 10465: 10461: 10412: 10405: 10358: 10354: 10297: 10293: 10274: 10270: 10207: 10200: 10147: 10143: 10076: 10067: 10010: 10006: 9949: 9945: 9935: 9933: 9920: 9919: 9915: 9905: 9903: 9890: 9889: 9885: 9875: 9873: 9856: 9852: 9803: 9799: 9750: 9741: 9686: 9682: 9632: 9628: 9591: 9587: 9538: 9534: 9497: 9493: 9444: 9440: 9430: 9428: 9417: 9413: 9403: 9401: 9390: 9386: 9355: 9348: 9338: 9336: 9321: 9320: 9316: 9283: 9279: 9242: 9238: 9207: 9203: 9193: 9191: 9190:on 4 April 2015 9180: 9173: 9136: 9132: 9091: 9084: 9035: 9031: 8982: 8975: 8936: 8932: 8883: 8879: 8830: 8826: 8789: 8785: 8753: 8749: 8712: 8703: 8693: 8691: 8678: 8677: 8673: 8663: 8661: 8634: 8630: 8579: 8575: 8526: 8522: 8473: 8469: 8414: 8410: 8359: 8355: 8316: 8312: 8273: 8269: 8242:Physical Review 8238: 8234: 8195: 8191: 8144: 8140: 8085: 8081: 8044: 8037: 7988: 7984: 7937:(7169): 522–4. 7927: 7923: 7868: 7864: 7829: 7825: 7794: 7790: 7753: 7749: 7742: 7728: 7721: 7682: 7667: 7644: 7640: 7630: 7628: 7615: 7614: 7610: 7561: 7557: 7547: 7545: 7541: 7484: 7478: 7474: 7425: 7421: 7366: 7362: 7313: 7309: 7248: 7244: 7213: 7209: 7172: 7168: 7118: 7114: 7104: 7102: 7087: 7083: 7034: 7030: 6993: 6989: 6966: 6962: 6931: 6927: 6872: 6868: 6861: 6843: 6839: 6792: 6788: 6733: 6726: 6677: 6673: 6636: 6629: 6592: 6588: 6551: 6547: 6540: 6508: 6504: 6467: 6463: 6408: 6404: 6365: 6361: 6354: 6332: 6315: 6278: 6274: 6237: 6228: 6183:Physics Reports 6179: 6175: 6126: 6122: 6079: 6075: 6038: 6034: 5997: 5993: 5983: 5981: 5968: 5964: 5954: 5952: 5937:"Basic symbols" 5935: 5934: 5930: 5920: 5918: 5907: 5903: 5854: 5850: 5840: 5838: 5823: 5819: 5770: 5755: 5740: 5700: 5693: 5683: 5681: 5668: 5667: 5663: 5626: 5617: 5580: 5576: 5559: 5552: 5510: 5506: 5496: 5494: 5490: 5479: 5471: 5467: 5457: 5455: 5442: 5441: 5430: 5383: 5379: 5342: 5333: 5326: 5310:. p. 240. 5300: 5296: 5286: 5284: 5263: 5259: 5220:(12A): A3–A21. 5210: 5206: 5151: 5147: 5132:Clarendon Press 5127:Stars and Atoms 5122:Eddington, A.S. 5119: 5115: 5076: 5072: 5021: 5017: 4984: 4980: 4970: 4968: 4964: 4953: 4945: 4941: 4908: 4904: 4844: 4837: 4786: 4782: 4732: 4725: 4688: 4677: 4635: 4631: 4594: 4585: 4546: 4542: 4500: 4496: 4456: 4452: 4410: 4406: 4364: 4360: 4318: 4314: 4289: 4282: 4259:(11): 136–141. 4240: 4233: 4191: 4187: 4164: 4155: 4097: 4093: 4043: 4039: 3990: 3983: 3973: 3971: 3958: 3957: 3950: 3899: 3892: 3863: 3856: 3846: 3844: 3829: 3816: 3777: 3766: 3759: 3743: 3732: 3722: 3720: 3702: 3698: 3688: 3686: 3671: 3650: 3646: 3641: 3574: 3567: 3566: 3563:ultracool dwarf 3558: 3549: 3548: 3544: 3535: 3529: 3520: 3519: 3515: 3506: 3201: 3198: 3193: 3187: 3184: 3179: 3173: 3147: 3135:sub-brown dwarf 3111: 3079:hydrogen fusion 3074: 3068: 3056:common envelope 3044: 3038: 2935: 2932: 2927: 2921: 2889: 2848: 2840: 2837: 2832: 2829: 2775: 2772: 2652: 2651: 2650: 2649: 2648: 2647: 2639: 2625: 2620: 2619: 2618: 2609: 2608: 2587:LSPM J0207+3331 2490: 2484: 2453:proton lifetime 2402: 2400: 2371: 2332: 2329: 2307: 2280: 2277: 2272: 2251: 2244: 2241: 2232: 2094: 2088: 2082: 2058: 2038: 2032: 2030: 2015: 2014:(also known as 2002:Blackett effect 1981: 1960: 1952: 1914:. For example: 1782: 1778: 1777: 1772: 1768: 1767: 1755:surface gravity 1727: 1720: 1717: 1669:– a mixture of 1613:adjust for the 1603: 1600: 1542: 1538: 1537: 1510: 1475: 1469: 1444: 1441:is denoted as M 1439: 1433: 1426: 1403: 1399: 1382: 1380: 1376: 1375: 1369: 1365: 1343: 1342: 1338: 1336: 1333: 1332: 1320: 1310: 1292: 1281: 1261: 1258: 1257: 1250: 1246: 1242: 1238: 1237:is the radius, 1234: 1231: 1205: 1201: 1197: 1188: 1184: 1180: 1173: 1169: 1159: 1155: 1151: 1150: 1148: 1140: 1137: 1136: 1127: 1117: 1102:hydrogen-fusing 1030: 1027: 1022: 1016: 1014: 1011: 1006: 1000: 989: 983: 980: 973: 970: 966: 957:and in 1930 by 865: 853: 849: 836: 822: 771: 706: 703: 699: 696: 656: 653: 649: 646: 642: 639: 635: 632: 627: 626: 622: 618: 616: 614: 612: 609: 605: 602: 598: 595: 591: 588: 584: 581: 577: 574: 570: 567: 563: 560: 556: 553: 549: 547: 544: 540: 537: 533: 530: 526: 523: 519: 516: 512: 509: 505: 502: 498: 495: 491: 488: 484: 481: 477: 474: 470: 467: 463: 460: 456: 453: 449: 446: 442: 433: 376:invisible ones. 282: 276: 237: 234: 197: 194: 126:of stars whose 101: 92:comes from the 44: 37: 33:Degenerate star 30: 28: 23: 22: 15: 12: 11: 5: 15938: 15928: 15927: 15922: 15917: 15912: 15907: 15892: 15891: 15879: 15867: 15855: 15843: 15831: 15819: 15796: 15795: 15793: 15792: 15780: 15769: 15766: 15765: 15763: 15762: 15757: 15752: 15747: 15742: 15737: 15732: 15727: 15726: 15725: 15720: 15719: 15718: 15713: 15697: 15695: 15691: 15690: 15688: 15687: 15682: 15677: 15676: 15675: 15670: 15660: 15655: 15650: 15645: 15640: 15635: 15630: 15629: 15628: 15623: 15622: 15621: 15611: 15606: 15601: 15596: 15591: 15589:Largest volume 15586: 15581: 15576: 15566: 15565: 15564: 15559: 15548: 15546: 15540: 15539: 15537: 15536: 15531: 15526: 15521: 15516: 15515: 15514: 15509: 15504: 15494: 15489: 15484: 15479: 15474: 15473: 15472: 15467: 15462: 15457: 15446: 15444: 15438: 15437: 15435: 15434: 15429: 15428: 15427: 15422: 15417: 15407: 15402: 15401: 15400: 15395: 15390: 15385: 15374: 15372: 15366: 15365: 15363: 15362: 15357: 15352: 15347: 15342: 15337: 15332: 15327: 15322: 15317: 15312: 15307: 15302: 15300:Magnetic field 15297: 15292: 15287: 15282: 15277: 15271: 15269: 15265: 15264: 15262: 15261: 15256: 15251: 15246: 15241: 15236: 15235: 15234: 15224: 15223: 15222: 15217: 15210:Accretion disk 15207: 15206: 15205: 15200: 15190: 15189: 15188: 15186:AlfvĂ©n surface 15183: 15181:Stellar corona 15178: 15173: 15168: 15158: 15156:Radiation zone 15153: 15152: 15151: 15146: 15136: 15130: 15128: 15122: 15121: 15119: 15118: 15113: 15112: 15111: 15106: 15101: 15096: 15091: 15081: 15076: 15071: 15066: 15061: 15056: 15051: 15046: 15041: 15036: 15031: 15026: 15021: 15016: 15011: 15005: 15003: 14997: 14996: 14993: 14992: 14990: 14989: 14984: 14979: 14974: 14969: 14964: 14963: 14962: 14957: 14954: 14946: 14945: 14944: 14939: 14934: 14929: 14924: 14919: 14914: 14909: 14904: 14894: 14889: 14883: 14881: 14875: 14874: 14872: 14871: 14866: 14865: 14864: 14854: 14849: 14848: 14847: 14842: 14841: 14840: 14835: 14825: 14815: 14814: 14813: 14803: 14798: 14792: 14790: 14784: 14783: 14781: 14780: 14778:Blue straggler 14775: 14774: 14773: 14763: 14758: 14757: 14756: 14746: 14745: 14744: 14739: 14734: 14729: 14724: 14719: 14714: 14709: 14704: 14694: 14689: 14688: 14687: 14682: 14677: 14667: 14666: 14665: 14655: 14654: 14653: 14648: 14643: 14633: 14628: 14627: 14626: 14621: 14616: 14606: 14601: 14596: 14591: 14590: 14589: 14584: 14574: 14573: 14572: 14567: 14562: 14557: 14552: 14547: 14542: 14536:Main sequence 14534: 14529: 14523: 14517: 14515:Classification 14511: 14510: 14508: 14507: 14506: 14505: 14500: 14490: 14485: 14480: 14475: 14470: 14465: 14460: 14455: 14454: 14453: 14451:Protoplanetary 14443: 14438: 14437: 14436: 14431: 14421: 14420: 14419: 14409: 14404: 14398: 14396: 14390: 14389: 14387: 14386: 14381: 14376: 14371: 14370: 14369: 14364: 14359: 14354: 14344: 14339: 14334: 14328: 14326: 14320: 14319: 14317: 14316: 14310: 14307: 14306: 14299: 14298: 14291: 14284: 14276: 14267: 14266: 14264: 14263: 14253: 14242: 14239: 14238: 14236: 14235: 14234: 14233: 14223: 14218: 14213: 14208: 14202: 14200: 14196: 14195: 14193: 14192: 14187: 14182: 14177: 14171: 14169: 14163: 14162: 14160: 14159: 14154: 14149: 14143: 14141: 14137: 14136: 14134: 14133: 14128: 14123: 14118: 14113: 14108: 14107: 14106: 14096: 14095: 14094: 14084: 14079: 14074: 14069: 14064: 14059: 14058: 14057: 14052: 14042: 14041: 14040: 14035: 14025: 14020: 14014: 14012: 14008: 14007: 14005: 14004: 13999: 13994: 13989: 13984: 13979: 13974: 13969: 13964: 13959: 13954: 13952:Neutron matter 13949: 13944: 13939: 13934: 13929: 13928: 13927: 13916: 13914: 13910: 13909: 13907: 13906: 13901: 13896: 13891: 13886: 13885: 13884: 13879: 13874: 13864: 13858: 13856: 13855:Binary pulsars 13852: 13851: 13849: 13848: 13843: 13842: 13841: 13838: 13833: 13822: 13820: 13819:Single pulsars 13816: 13815: 13813: 13812: 13807: 13801: 13799: 13795: 13794: 13787: 13786: 13779: 13772: 13764: 13755: 13754: 13752: 13751: 13741: 13730: 13727: 13726: 13724: 13723: 13718: 13713: 13708: 13707: 13706: 13695: 13693: 13689: 13688: 13686: 13685: 13680: 13675: 13670: 13664: 13662: 13658: 13657: 13655: 13654: 13649: 13644: 13639: 13638: 13637: 13627: 13626: 13625: 13620: 13615: 13605: 13603:Symbiotic nova 13600: 13595: 13590: 13589: 13588: 13583: 13572: 13570: 13564: 13563: 13561: 13560: 13555: 13550: 13545: 13544: 13543: 13538: 13528: 13527: 13526: 13516: 13515: 13514: 13509: 13504: 13494: 13493: 13492: 13482: 13476: 13474: 13470: 13469: 13467: 13466: 13461: 13456: 13451: 13446: 13440: 13438: 13434: 13433: 13426: 13425: 13418: 13411: 13403: 13395: 13394: 13393: 13392: 13378: 13364: 13350: 13336: 13322: 13297: 13296: 13241: 13220: 13208:10.1086/424568 13172: 13167:10.1086/305238 13152:(2): 759–767. 13134:Observational 13131: 13130: 13077: 13076: 13071:10.1086/316593 13035: 13034: 12991: 12990: 12977: 12962: 12942: 12941: 12926: 12873: 12867: 12847: 12844: 12842: 12841: 12820: 12799: 12778: 12741: 12688: 12659: 12648:on 9 July 2007 12633: 12566: 12505: 12444: 12425: 12388:(1): 107–170. 12368: 12331:(4): 122–141. 12308: 12271:(4): 447–465. 12246: 12209:(1): 229–240. 12192: 12155:(2): 623–644. 12139: 12112: 12085: 12026: 12019: 11983: 11944:(1): 500–505. 11924: 11877:(3): 279–291. 11857: 11804: 11782: 11739: 11687: 11657: 11632: 11582: 11517: 11452: 11430: 11393: 11326: 11295: 11274:10.1086/521715 11250:(1): 431–446. 11234: 11167: 11120:(1): 217–231. 11100: 11033: 10966: 10899: 10838: 10832:10.1086/311546 10797: 10744: 10731:10.1086/513018 10691: 10661: 10636: 10612: 10559: 10536: 10459: 10446:10.1086/499561 10403: 10352: 10291: 10268: 10198: 10176:10.1086/122654 10141: 10065: 10004: 9943: 9913: 9883: 9850: 9837:10.1086/521346 9797: 9760:(2): 337–372. 9739: 9700:(3): 531–539. 9680: 9626: 9620:10.1086/174024 9585: 9532: 9526:10.1086/161749 9491: 9438: 9419:Dhillon, Vik. 9411: 9392:Dhillon, Vik. 9384: 9346: 9314: 9277: 9256:(3): 891–905. 9236: 9201: 9171: 9165:10.1086/304125 9150:(1): 420–432. 9130: 9082: 9029: 9016:10.1086/375341 8992:(1): 288–300. 8973: 8930: 8917:10.1086/308613 8877: 8824: 8818:10.1086/149645 8783: 8778:10.1086/180037 8747: 8741:10.1086/513870 8726:(1): 219–248. 8701: 8671: 8628: 8573: 8560:10.1086/345573 8536:(1): 348–353. 8520: 8467: 8408: 8353: 8347:10.1086/180574 8310: 8283:(4): 464–504. 8267: 8232: 8189: 8138: 8079: 8035: 7982: 7921: 7862: 7823: 7818:10.1086/145612 7788: 7782:10.1086/125335 7747: 7740: 7719: 7692:(7): 837–915. 7665: 7638: 7608: 7555: 7472: 7419: 7360: 7307: 7242: 7207: 7201:10.1086/428116 7186:(1): 572–576. 7166: 7129:(1): 219–224. 7112: 7081: 7068:10.1086/420884 7028: 6987: 6960: 6955:10.1086/149432 6925: 6866: 6859: 6837: 6821:10.1086/184864 6786: 6724: 6711:10.1086/424568 6671: 6665:10.1086/305463 6650:(1): 294–302. 6627: 6621:10.1086/313186 6586: 6580:10.1086/312955 6565:(1): 339–387. 6545: 6538: 6502: 6481:(6): 583–597. 6461: 6422:(1): 131–144. 6402: 6375:(1–2): 79–90. 6359: 6352: 6340:IOP Publishing 6313: 6307:10.1086/316797 6272: 6266:10.1086/161036 6226: 6173: 6120: 6073: 6067:10.1086/149507 6032: 6011:(2): 231–236. 5991: 5971:Tohline, J. E. 5962: 5928: 5901: 5848: 5817: 5753: 5738: 5691: 5661: 5640:(3): 207–225. 5615: 5609:10.1086/143324 5574: 5550: 5504: 5465: 5428: 5393:(1744): 8–23. 5377: 5356:(2): 114–122. 5331: 5324: 5294: 5257: 5204: 5165:(7): 382–387. 5145: 5113: 5107:10.1086/142296 5070: 5057:10.1086/462419 5015: 4978: 4939: 4934:10.1086/156841 4902: 4835: 4822:10.1086/514327 4780: 4767:10.1086/507110 4723: 4717:10.1086/313186 4675: 4669:10.1086/106358 4629: 4608:(5): 308–333. 4583: 4577:10.1086/123244 4540: 4534:10.1086/123168 4494: 4488:10.1086/123146 4450: 4444:10.1086/123176 4404: 4398:10.1086/122654 4358: 4352:10.1086/122440 4312: 4280: 4231: 4225:10.1086/122337 4185: 4153: 4091: 4078:10.1086/375341 4054:(1): 288–300. 4037: 4024:10.1086/513700 4000:(2): 377–408. 3981: 3948: 3935:10.1086/421462 3890: 3854: 3814: 3808:10.1086/319535 3764: 3757: 3730: 3696: 3647: 3645: 3642: 3640: 3639: 3633: 3627: 3621: 3615: 3610: 3604: 3599: 3593: 3588: 3582: 3575: 3573: 3570: 3569: 3568: 3560: 3559: 3552: 3550: 3546: 3545: 3538: 3536: 3530: 3523: 3521: 3517: 3516: 3509: 3505: 3502: 3499: 3498: 3495: 3492: 3489: 3486: 3483: 3480: 3477: 3474: 3467: 3466: 3463: 3460: 3457: 3454: 3451: 3448: 3445: 3442: 3436: 3435: 3432: 3429: 3426: 3423: 3420: 3417: 3414: 3411: 3405: 3404: 3401: 3398: 3395: 3392: 3389: 3386: 3383: 3380: 3373: 3372: 3369: 3366: 3363: 3360: 3357: 3354: 3351: 3348: 3341: 3340: 3337: 3334: 3331: 3328: 3325: 3322: 3319: 3316: 3310: 3309: 3306: 3303: 3300: 3297: 3294: 3291: 3288: 3285: 3279: 3278: 3275: 3272: 3269: 3266: 3263: 3260: 3257: 3254: 3247: 3246: 3243: 3240: 3237: 3234: 3231: 3228: 3225: 3222: 3215: 3214: 3211: 3204: 3199: 3196: 3190: 3185: 3182: 3176: 3169: 3166: 3159: 3156: 3146: 3143: 3110: 3107: 3091:accretion disc 3070:Main article: 3067: 3064: 3040:Main article: 3037: 3034: 2933: 2930: 2923:Main article: 2920: 2917: 2888: 2885: 2880:accretion disk 2860:tidally locked 2852:habitable zone 2847: 2844: 2838: 2835: 2830: 2827: 2773: 2770: 2709:WD J0914+1914b 2685:magnetic field 2640: 2623: 2622: 2621: 2612: 2611: 2610: 2606: 2605: 2604: 2603: 2550:H- and K-lines 2483: 2480: 2476:diamond planet 2399: 2396: 2370: 2367: 2330: 2327: 2306: 2303: 2278: 2275: 2271: 2268: 2250: 2247: 2242: 2239: 2231: 2228: 2168: 2167: 2156: 2145: 2144: 2137: 2126: 2125: 2114: 2084:Main article: 2081: 2078: 2074:covalent bonds 2057: 2056:Chemical bonds 2054: 1980: 1979:Magnetic field 1977: 1959: 1956: 1950: 1935: 1934: 1927:magnetic field 1923: 1908:Edward M. Sion 1898: 1897: 1894: 1890: 1889: 1886: 1882: 1881: 1878: 1874: 1873: 1870: 1866: 1865: 1861: 1860: 1857: 1853: 1852: 1849: 1845: 1844: 1841: 1837: 1836: 1833: 1829: 1828: 1825: 1821: 1820: 1817: 1813: 1812: 1809: 1805: 1804: 1726: 1723: 1718: 1715: 1601: 1598: 1509: 1506: 1486:rotating frame 1473: 1442: 1437: 1415: 1410: 1406: 1402: 1397: 1392: 1388: 1385: 1379: 1372: 1368: 1364: 1358: 1355: 1352: 1349: 1346: 1341: 1331: 1307:speed of light 1265: 1248: 1220: 1212: 1208: 1204: 1200: 1196: 1191: 1187: 1183: 1176: 1172: 1166: 1162: 1158: 1154: 1147: 1144: 1135: 1116: 1113: 1028: 1025: 1020: 1012: 1009: 1004: 993:atomic numbers 987: 978: 971: 968: 882:chemical bonds 872: 871: 868: 863: 859: 858: 856: 847: 843: 842: 839: 834: 828: 827: 825: 820: 816: 815: 813: 810: 806: 805: 799: 796: 790: 789: 783: 780: 776: 775: 774:solar masses. 768: 765: 761: 760: 757: 751: 704: 701: 697: 694: 654: 651: 647: 644: 640: 637: 633: 630: 620: 610: 603: 599:Red supergiant 596: 589: 582: 575: 568: 561: 554: 545: 538: 531: 524: 517: 510: 503: 496: 489: 482: 475: 468: 461: 454: 447: 440: 432: 429: 275: 272: 235: 232: 195: 192: 184:CO white dwarf 115:was coined by 98:thermal energy 26: 9: 6: 4: 3: 2: 15937: 15926: 15925:Exotic matter 15923: 15921: 15918: 15916: 15913: 15911: 15908: 15906: 15903: 15902: 15900: 15890: 15885: 15880: 15878: 15868: 15866: 15856: 15854: 15844: 15842: 15837: 15832: 15830: 15820: 15818: 15813: 15808: 15807: 15804: 15791: 15786: 15781: 15779: 15771: 15770: 15767: 15761: 15758: 15756: 15753: 15751: 15750:Intergalactic 15748: 15746: 15743: 15741: 15738: 15736: 15733: 15731: 15730:Galactic year 15728: 15724: 15721: 15717: 15714: 15712: 15709: 15708: 15707: 15704: 15703: 15702: 15699: 15698: 15696: 15692: 15686: 15683: 15681: 15678: 15674: 15671: 15669: 15666: 15665: 15664: 15661: 15659: 15656: 15654: 15651: 15649: 15646: 15644: 15641: 15639: 15636: 15634: 15631: 15627: 15624: 15620: 15617: 15616: 15615: 15612: 15610: 15609:Most luminous 15607: 15605: 15602: 15600: 15597: 15595: 15592: 15590: 15587: 15585: 15582: 15580: 15577: 15575: 15572: 15571: 15570: 15567: 15563: 15560: 15558: 15555: 15554: 15553: 15550: 15549: 15547: 15545: 15541: 15535: 15532: 15530: 15527: 15525: 15524:Proper motion 15522: 15520: 15517: 15513: 15510: 15508: 15505: 15503: 15500: 15499: 15498: 15495: 15493: 15490: 15488: 15487:Constellation 15485: 15483: 15480: 15478: 15475: 15471: 15468: 15466: 15463: 15461: 15458: 15456: 15455:Solar eclipse 15453: 15452: 15451: 15448: 15447: 15445: 15441:Earth-centric 15439: 15433: 15430: 15426: 15423: 15421: 15418: 15416: 15413: 15412: 15411: 15408: 15406: 15403: 15399: 15396: 15394: 15391: 15389: 15386: 15384: 15381: 15380: 15379: 15376: 15375: 15373: 15371: 15367: 15361: 15358: 15356: 15353: 15351: 15348: 15346: 15343: 15341: 15338: 15336: 15333: 15331: 15328: 15326: 15323: 15321: 15318: 15316: 15313: 15311: 15308: 15306: 15303: 15301: 15298: 15296: 15293: 15291: 15288: 15286: 15283: 15281: 15278: 15276: 15273: 15272: 15270: 15266: 15260: 15257: 15255: 15252: 15250: 15247: 15245: 15242: 15240: 15237: 15233: 15230: 15229: 15228: 15225: 15221: 15218: 15216: 15213: 15212: 15211: 15208: 15204: 15201: 15199: 15196: 15195: 15194: 15191: 15187: 15184: 15182: 15179: 15177: 15174: 15172: 15169: 15167: 15164: 15163: 15162: 15159: 15157: 15154: 15150: 15147: 15145: 15142: 15141: 15140: 15137: 15135: 15132: 15131: 15129: 15127: 15123: 15117: 15114: 15110: 15107: 15105: 15102: 15100: 15097: 15095: 15092: 15090: 15087: 15086: 15085: 15082: 15080: 15077: 15075: 15072: 15070: 15067: 15065: 15062: 15060: 15057: 15055: 15052: 15050: 15047: 15045: 15042: 15040: 15039:Alpha process 15037: 15035: 15032: 15030: 15027: 15025: 15022: 15020: 15017: 15015: 15012: 15010: 15007: 15006: 15004: 15002: 14998: 14988: 14985: 14983: 14980: 14978: 14975: 14973: 14970: 14968: 14965: 14961: 14958: 14955: 14953: 14950: 14949: 14947: 14943: 14940: 14938: 14935: 14933: 14930: 14928: 14925: 14923: 14920: 14918: 14915: 14913: 14910: 14908: 14905: 14903: 14900: 14899: 14898: 14895: 14893: 14890: 14888: 14885: 14884: 14882: 14880: 14876: 14870: 14867: 14863: 14860: 14859: 14858: 14855: 14853: 14850: 14846: 14843: 14839: 14836: 14834: 14831: 14830: 14829: 14826: 14824: 14821: 14820: 14819: 14816: 14812: 14811:Helium planet 14809: 14808: 14807: 14804: 14802: 14801:Parker's star 14799: 14797: 14794: 14793: 14791: 14789: 14785: 14779: 14776: 14772: 14769: 14768: 14767: 14764: 14762: 14759: 14755: 14752: 14751: 14750: 14747: 14743: 14740: 14738: 14735: 14733: 14732:Lambda Boötis 14730: 14728: 14725: 14723: 14720: 14718: 14715: 14713: 14710: 14708: 14705: 14703: 14700: 14699: 14698: 14695: 14693: 14690: 14686: 14683: 14681: 14678: 14676: 14673: 14672: 14671: 14668: 14664: 14661: 14660: 14659: 14656: 14652: 14649: 14647: 14644: 14642: 14639: 14638: 14637: 14634: 14632: 14629: 14625: 14622: 14620: 14617: 14615: 14612: 14611: 14610: 14607: 14605: 14602: 14600: 14597: 14595: 14592: 14588: 14585: 14583: 14580: 14579: 14578: 14575: 14571: 14568: 14566: 14563: 14561: 14558: 14556: 14553: 14551: 14548: 14546: 14543: 14541: 14538: 14537: 14535: 14533: 14530: 14528: 14525: 14524: 14521: 14518: 14516: 14512: 14504: 14501: 14499: 14498:Superluminous 14496: 14495: 14494: 14491: 14489: 14486: 14484: 14481: 14479: 14476: 14474: 14471: 14469: 14466: 14464: 14461: 14459: 14456: 14452: 14449: 14448: 14447: 14444: 14442: 14439: 14435: 14432: 14430: 14427: 14426: 14425: 14422: 14418: 14415: 14414: 14413: 14410: 14408: 14405: 14403: 14402:Main sequence 14400: 14399: 14397: 14395: 14391: 14385: 14382: 14380: 14379:Hayashi track 14377: 14375: 14372: 14368: 14365: 14363: 14360: 14358: 14355: 14353: 14350: 14349: 14348: 14345: 14343: 14340: 14338: 14335: 14333: 14330: 14329: 14327: 14325: 14321: 14315: 14312: 14311: 14308: 14304: 14297: 14292: 14290: 14285: 14283: 14278: 14277: 14274: 14262: 14254: 14252: 14244: 14243: 14240: 14232: 14229: 14228: 14227: 14224: 14222: 14219: 14217: 14214: 14212: 14209: 14207: 14204: 14203: 14201: 14197: 14191: 14188: 14186: 14183: 14181: 14178: 14176: 14173: 14172: 14170: 14168:investigation 14164: 14158: 14155: 14153: 14152:Centaurus X-3 14150: 14148: 14145: 14144: 14142: 14138: 14132: 14129: 14127: 14124: 14122: 14119: 14117: 14116:Pulsar planet 14114: 14112: 14109: 14105: 14104:Related links 14102: 14101: 14100: 14097: 14093: 14092:Related links 14090: 14089: 14088: 14085: 14083: 14080: 14078: 14075: 14073: 14070: 14068: 14065: 14063: 14060: 14056: 14055:Related links 14053: 14051: 14048: 14047: 14046: 14043: 14039: 14036: 14034: 14031: 14030: 14029: 14026: 14024: 14021: 14019: 14016: 14015: 14013: 14009: 14003: 14000: 13998: 13995: 13993: 13990: 13988: 13985: 13983: 13980: 13978: 13975: 13973: 13970: 13968: 13965: 13963: 13960: 13958: 13955: 13953: 13950: 13948: 13945: 13943: 13940: 13938: 13935: 13933: 13930: 13926: 13923: 13922: 13921: 13918: 13917: 13915: 13911: 13905: 13902: 13900: 13897: 13895: 13892: 13890: 13887: 13883: 13880: 13878: 13877:X-ray burster 13875: 13873: 13870: 13869: 13868: 13865: 13863: 13860: 13859: 13857: 13853: 13847: 13844: 13839: 13837: 13834: 13832: 13829: 13828: 13827: 13824: 13823: 13821: 13817: 13811: 13808: 13806: 13803: 13802: 13800: 13796: 13792: 13785: 13780: 13778: 13773: 13771: 13766: 13765: 13762: 13750: 13742: 13740: 13732: 13731: 13728: 13722: 13719: 13717: 13714: 13712: 13709: 13705: 13702: 13701: 13700: 13697: 13696: 13694: 13690: 13684: 13681: 13679: 13676: 13674: 13671: 13669: 13666: 13665: 13663: 13659: 13653: 13650: 13648: 13645: 13643: 13642:Binary pulsar 13640: 13636: 13633: 13632: 13631: 13628: 13624: 13621: 13619: 13616: 13614: 13611: 13610: 13609: 13606: 13604: 13601: 13599: 13596: 13594: 13591: 13587: 13584: 13582: 13579: 13578: 13577: 13574: 13573: 13571: 13565: 13559: 13558:Helium planet 13556: 13554: 13551: 13549: 13546: 13542: 13539: 13537: 13534: 13533: 13532: 13529: 13525: 13524:Related links 13522: 13521: 13520: 13517: 13513: 13512:Related links 13510: 13508: 13505: 13503: 13500: 13499: 13498: 13495: 13491: 13488: 13487: 13486: 13483: 13481: 13478: 13477: 13475: 13471: 13465: 13464:Mira variable 13462: 13460: 13457: 13455: 13452: 13450: 13447: 13445: 13442: 13441: 13439: 13435: 13431: 13424: 13419: 13417: 13412: 13410: 13405: 13404: 13401: 13397: 13389: 13385: 13384: 13379: 13375: 13371: 13370: 13365: 13361: 13357: 13356: 13351: 13347: 13343: 13342: 13337: 13333: 13329: 13328: 13323: 13319: 13315: 13314: 13309: 13308: 13307: 13304: 13303: 13302: 13301: 13293: 13289: 13285: 13281: 13277: 13273: 13269: 13265: 13260: 13255: 13251: 13247: 13242: 13230: 13226: 13221: 13217: 13213: 13209: 13205: 13201: 13197: 13192: 13187: 13183: 13179: 13173: 13168: 13163: 13159: 13155: 13151: 13147: 13143: 13138: 13137: 13136: 13135: 13127: 13123: 13119: 13115: 13111: 13107: 13102: 13097: 13093: 13089: 13084: 13083: 13082: 13081: 13072: 13067: 13063: 13059: 13055: 13051: 13047: 13042: 13041: 13040: 13039: 13031: 13027: 13023: 13019: 13015: 13011: 13007: 13003: 12998: 12997: 12996: 12995: 12986: 12982: 12978: 12974: 12970: 12969: 12963: 12960: 12959:0-471-87317-9 12956: 12952: 12949: 12948: 12947: 12946: 12939: 12935: 12931: 12927: 12923: 12919: 12914: 12909: 12905: 12901: 12896: 12891: 12887: 12883: 12879: 12874: 12870: 12864: 12860: 12855: 12854: 12853: 12852: 12830: 12824: 12809: 12803: 12788: 12782: 12774: 12770: 12765: 12760: 12756: 12752: 12745: 12737: 12733: 12729: 12725: 12721: 12717: 12712: 12707: 12703: 12699: 12692: 12676: 12672: 12666: 12664: 12647: 12643: 12637: 12629: 12625: 12621: 12617: 12613: 12609: 12605: 12601: 12596: 12591: 12587: 12583: 12582: 12577: 12570: 12562: 12558: 12554: 12550: 12546: 12542: 12538: 12534: 12529: 12524: 12520: 12516: 12509: 12501: 12497: 12493: 12489: 12485: 12481: 12477: 12473: 12468: 12463: 12459: 12455: 12448: 12440: 12436: 12429: 12421: 12417: 12413: 12409: 12405: 12401: 12396: 12391: 12387: 12383: 12379: 12372: 12364: 12360: 12356: 12352: 12348: 12344: 12339: 12334: 12330: 12326: 12322: 12315: 12313: 12304: 12300: 12296: 12292: 12288: 12284: 12279: 12274: 12270: 12266: 12262: 12255: 12253: 12251: 12242: 12238: 12234: 12230: 12226: 12222: 12217: 12212: 12208: 12204: 12196: 12188: 12184: 12180: 12176: 12172: 12168: 12163: 12158: 12154: 12150: 12143: 12127: 12123: 12116: 12100: 12096: 12089: 12081: 12077: 12072: 12067: 12063: 12059: 12054: 12049: 12045: 12041: 12037: 12030: 12022: 12016: 12012: 12008: 12004: 12000: 11996: 11995: 11987: 11979: 11975: 11970: 11965: 11961: 11957: 11952: 11947: 11943: 11939: 11935: 11928: 11920: 11916: 11911: 11906: 11902: 11898: 11894: 11890: 11885: 11880: 11876: 11872: 11868: 11861: 11853: 11849: 11845: 11841: 11837: 11833: 11828: 11823: 11819: 11815: 11808: 11799: 11794: 11786: 11777: 11772: 11767: 11762: 11758: 11754: 11750: 11743: 11734: 11729: 11725: 11721: 11716: 11711: 11707: 11703: 11699: 11691: 11684: 11671: 11667: 11661: 11646: 11642: 11636: 11628: 11624: 11620: 11616: 11611: 11606: 11602: 11598: 11594: 11586: 11578: 11574: 11570: 11566: 11562: 11558: 11554: 11550: 11545: 11540: 11536: 11532: 11528: 11521: 11513: 11509: 11505: 11501: 11497: 11493: 11489: 11485: 11480: 11475: 11471: 11467: 11463: 11456: 11447: 11442: 11434: 11415: 11411: 11404: 11397: 11389: 11385: 11381: 11377: 11373: 11369: 11365: 11361: 11356: 11351: 11347: 11343: 11335: 11333: 11331: 11314: 11310: 11306: 11299: 11291: 11287: 11283: 11279: 11275: 11271: 11267: 11263: 11258: 11253: 11249: 11245: 11238: 11230: 11226: 11222: 11218: 11213: 11208: 11204: 11200: 11195: 11190: 11186: 11182: 11178: 11171: 11163: 11159: 11155: 11151: 11146: 11141: 11137: 11133: 11128: 11123: 11119: 11115: 11111: 11104: 11096: 11092: 11088: 11084: 11079: 11074: 11070: 11066: 11061: 11056: 11052: 11048: 11044: 11037: 11029: 11025: 11021: 11017: 11012: 11007: 11003: 10999: 10994: 10989: 10985: 10981: 10977: 10970: 10962: 10958: 10954: 10950: 10945: 10940: 10936: 10932: 10927: 10922: 10918: 10914: 10910: 10903: 10895: 10891: 10887: 10883: 10879: 10875: 10871: 10867: 10862: 10857: 10853: 10849: 10842: 10833: 10828: 10824: 10820: 10816: 10812: 10808: 10801: 10793: 10789: 10785: 10781: 10777: 10773: 10768: 10763: 10759: 10755: 10748: 10740: 10736: 10732: 10728: 10724: 10720: 10715: 10710: 10706: 10702: 10695: 10679: 10675: 10671: 10665: 10650: 10646: 10640: 10632: 10628: 10624: 10616: 10608: 10604: 10600: 10596: 10592: 10588: 10583: 10578: 10575:(1): 012004. 10574: 10570: 10563: 10555: 10551: 10547: 10540: 10532: 10528: 10523: 10518: 10514: 10510: 10505: 10500: 10496: 10492: 10487: 10482: 10478: 10474: 10470: 10463: 10455: 10451: 10447: 10443: 10439: 10435: 10430: 10425: 10421: 10417: 10410: 10408: 10399: 10395: 10391: 10387: 10383: 10379: 10375: 10371: 10367: 10363: 10356: 10348: 10344: 10340: 10336: 10332: 10328: 10324: 10320: 10315: 10310: 10306: 10302: 10295: 10287: 10283: 10279: 10272: 10264: 10260: 10256: 10252: 10247: 10242: 10238: 10234: 10229: 10224: 10220: 10216: 10212: 10205: 10203: 10194: 10190: 10186: 10182: 10177: 10172: 10168: 10164: 10160: 10156: 10152: 10145: 10137: 10133: 10129: 10125: 10120: 10115: 10111: 10107: 10102: 10097: 10093: 10089: 10085: 10081: 10074: 10072: 10070: 10061: 10057: 10053: 10049: 10045: 10041: 10037: 10033: 10028: 10023: 10019: 10015: 10008: 10000: 9996: 9992: 9988: 9984: 9980: 9976: 9972: 9967: 9962: 9958: 9954: 9947: 9931: 9927: 9923: 9917: 9901: 9897: 9893: 9887: 9871: 9867: 9866: 9865:Time Magazine 9861: 9854: 9846: 9842: 9838: 9834: 9830: 9826: 9821: 9816: 9812: 9808: 9801: 9793: 9789: 9785: 9781: 9777: 9773: 9768: 9763: 9759: 9755: 9748: 9746: 9744: 9735: 9731: 9726: 9721: 9717: 9713: 9708: 9703: 9699: 9695: 9691: 9684: 9676: 9672: 9668: 9664: 9660: 9656: 9651: 9646: 9642: 9638: 9630: 9621: 9616: 9612: 9608: 9604: 9600: 9596: 9589: 9581: 9577: 9573: 9569: 9565: 9561: 9556: 9551: 9547: 9543: 9536: 9527: 9522: 9518: 9514: 9510: 9506: 9502: 9495: 9487: 9483: 9479: 9475: 9471: 9467: 9462: 9457: 9453: 9449: 9442: 9426: 9422: 9415: 9399: 9395: 9388: 9380: 9376: 9372: 9368: 9364: 9360: 9353: 9351: 9334: 9330: 9329: 9328:New Scientist 9324: 9318: 9310: 9306: 9301: 9296: 9292: 9288: 9281: 9272: 9267: 9263: 9259: 9255: 9251: 9247: 9240: 9232: 9228: 9224: 9220: 9216: 9212: 9205: 9189: 9185: 9178: 9176: 9166: 9161: 9157: 9153: 9149: 9145: 9141: 9134: 9126: 9122: 9118: 9114: 9109: 9104: 9100: 9096: 9089: 9087: 9078: 9074: 9070: 9066: 9062: 9058: 9053: 9048: 9045:(1): 012004. 9044: 9040: 9033: 9025: 9021: 9017: 9013: 9009: 9005: 9000: 8995: 8991: 8987: 8980: 8978: 8969: 8965: 8961: 8957: 8953: 8949: 8945: 8941: 8934: 8926: 8922: 8918: 8914: 8910: 8906: 8901: 8896: 8892: 8888: 8881: 8873: 8869: 8865: 8861: 8857: 8853: 8848: 8843: 8839: 8835: 8828: 8819: 8814: 8810: 8806: 8802: 8798: 8794: 8787: 8779: 8775: 8771: 8767: 8763: 8759: 8751: 8742: 8737: 8733: 8729: 8725: 8721: 8717: 8710: 8708: 8706: 8689: 8685: 8681: 8675: 8659: 8654: 8649: 8645: 8644: 8639: 8632: 8624: 8620: 8616: 8612: 8608: 8604: 8599: 8594: 8590: 8586: 8585: 8577: 8569: 8565: 8561: 8557: 8553: 8549: 8544: 8539: 8535: 8531: 8524: 8516: 8512: 8508: 8504: 8500: 8496: 8491: 8486: 8482: 8478: 8471: 8463: 8459: 8454: 8449: 8445: 8441: 8436: 8431: 8427: 8423: 8419: 8412: 8404: 8400: 8396: 8392: 8388: 8384: 8379: 8374: 8370: 8366: 8365: 8357: 8348: 8343: 8339: 8335: 8331: 8327: 8326: 8321: 8314: 8306: 8302: 8298: 8294: 8290: 8286: 8282: 8278: 8271: 8263: 8259: 8255: 8251: 8247: 8243: 8236: 8228: 8224: 8220: 8216: 8212: 8208: 8204: 8200: 8193: 8185: 8181: 8177: 8173: 8169: 8165: 8161: 8157: 8153: 8149: 8142: 8134: 8130: 8125: 8120: 8116: 8112: 8107: 8102: 8098: 8094: 8090: 8083: 8074: 8069: 8065: 8061: 8057: 8053: 8049: 8042: 8040: 8031: 8027: 8023: 8019: 8015: 8011: 8006: 8001: 7997: 7993: 7986: 7978: 7974: 7970: 7966: 7962: 7958: 7954: 7950: 7945: 7940: 7936: 7932: 7925: 7917: 7913: 7908: 7903: 7899: 7895: 7890: 7885: 7881: 7877: 7873: 7866: 7858: 7854: 7850: 7846: 7842: 7837: 7836: 7827: 7819: 7815: 7811: 7807: 7803: 7799: 7792: 7783: 7778: 7774: 7770: 7766: 7762: 7758: 7751: 7743: 7737: 7733: 7726: 7724: 7715: 7711: 7707: 7703: 7699: 7695: 7691: 7687: 7680: 7678: 7676: 7674: 7672: 7670: 7661: 7657: 7653: 7649: 7642: 7626: 7622: 7618: 7612: 7604: 7600: 7596: 7592: 7588: 7584: 7579: 7574: 7570: 7566: 7559: 7540: 7536: 7532: 7528: 7524: 7520: 7516: 7512: 7508: 7503: 7498: 7494: 7490: 7483: 7476: 7468: 7464: 7460: 7456: 7452: 7448: 7443: 7438: 7434: 7430: 7423: 7415: 7411: 7406: 7401: 7397: 7393: 7388: 7383: 7379: 7375: 7371: 7364: 7356: 7352: 7348: 7344: 7340: 7336: 7331: 7326: 7322: 7318: 7311: 7303: 7299: 7295: 7291: 7287: 7283: 7279: 7275: 7270: 7265: 7261: 7257: 7253: 7246: 7238: 7234: 7230: 7226: 7222: 7218: 7211: 7202: 7197: 7193: 7189: 7185: 7181: 7177: 7170: 7162: 7158: 7154: 7150: 7146: 7142: 7137: 7132: 7128: 7124: 7116: 7100: 7096: 7092: 7085: 7077: 7073: 7069: 7065: 7061: 7057: 7052: 7047: 7043: 7039: 7032: 7023: 7018: 7014: 7010: 7006: 7002: 6998: 6991: 6983: 6979: 6975: 6971: 6964: 6956: 6952: 6948: 6944: 6940: 6936: 6929: 6921: 6917: 6912: 6907: 6903: 6899: 6894: 6889: 6885: 6881: 6877: 6870: 6862: 6856: 6852: 6848: 6841: 6832: 6827: 6822: 6817: 6813: 6809: 6805: 6801: 6797: 6790: 6782: 6778: 6773: 6768: 6764: 6760: 6755: 6750: 6746: 6742: 6738: 6731: 6729: 6720: 6716: 6712: 6708: 6704: 6700: 6695: 6690: 6686: 6682: 6675: 6666: 6661: 6657: 6653: 6649: 6645: 6641: 6634: 6632: 6622: 6617: 6613: 6609: 6605: 6601: 6597: 6590: 6581: 6576: 6572: 6568: 6564: 6560: 6556: 6549: 6541: 6535: 6531: 6527: 6522: 6517: 6513: 6506: 6497: 6492: 6488: 6484: 6480: 6476: 6472: 6465: 6457: 6453: 6448: 6443: 6439: 6435: 6430: 6425: 6421: 6417: 6413: 6406: 6398: 6394: 6390: 6386: 6382: 6378: 6374: 6370: 6363: 6355: 6349: 6345: 6341: 6337: 6330: 6328: 6326: 6324: 6322: 6320: 6318: 6308: 6303: 6299: 6295: 6291: 6287: 6283: 6276: 6267: 6262: 6258: 6254: 6250: 6246: 6242: 6235: 6233: 6231: 6222: 6218: 6214: 6210: 6206: 6202: 6197: 6192: 6188: 6184: 6177: 6169: 6165: 6161: 6157: 6153: 6149: 6144: 6139: 6135: 6131: 6124: 6116: 6112: 6108: 6104: 6100: 6096: 6092: 6088: 6084: 6077: 6068: 6063: 6059: 6055: 6051: 6047: 6043: 6036: 6027: 6022: 6018: 6014: 6010: 6006: 6002: 5995: 5979: 5975: 5972: 5966: 5950: 5946: 5942: 5938: 5932: 5916: 5912: 5905: 5897: 5893: 5889: 5885: 5881: 5877: 5872: 5867: 5863: 5859: 5852: 5836: 5832: 5828: 5821: 5813: 5809: 5805: 5801: 5797: 5793: 5788: 5783: 5779: 5775: 5768: 5766: 5764: 5762: 5760: 5758: 5749: 5745: 5741: 5735: 5731: 5727: 5723: 5719: 5714: 5709: 5705: 5698: 5696: 5679: 5675: 5671: 5665: 5656: 5651: 5647: 5643: 5639: 5635: 5631: 5624: 5622: 5620: 5610: 5605: 5601: 5597: 5593: 5589: 5585: 5578: 5570: 5566: 5565: 5557: 5555: 5546: 5542: 5538: 5534: 5530: 5526: 5522: 5519:(in German). 5518: 5514: 5508: 5489: 5485: 5478: 5475: 5469: 5453: 5449: 5445: 5439: 5437: 5435: 5433: 5424: 5420: 5416: 5412: 5408: 5404: 5400: 5396: 5392: 5388: 5381: 5372: 5367: 5363: 5359: 5355: 5351: 5347: 5340: 5338: 5336: 5327: 5321: 5317: 5313: 5309: 5305: 5298: 5282: 5278: 5274: 5273: 5268: 5261: 5253: 5249: 5245: 5241: 5237: 5233: 5228: 5223: 5219: 5215: 5208: 5200: 5196: 5191: 5186: 5181: 5176: 5172: 5168: 5164: 5160: 5156: 5149: 5141: 5137: 5133: 5129: 5128: 5123: 5117: 5108: 5103: 5099: 5095: 5091: 5087: 5086: 5081: 5074: 5066: 5062: 5058: 5054: 5050: 5046: 5041: 5036: 5032: 5028: 5027: 5019: 5011: 5007: 5003: 4999: 4995: 4991: 4990: 4982: 4963: 4959: 4952: 4951: 4943: 4935: 4931: 4927: 4923: 4919: 4915: 4914: 4906: 4898: 4894: 4889: 4884: 4880: 4876: 4871: 4866: 4862: 4858: 4857: 4852: 4848: 4842: 4840: 4831: 4827: 4823: 4819: 4815: 4811: 4806: 4801: 4797: 4793: 4792: 4784: 4776: 4772: 4768: 4764: 4760: 4756: 4751: 4746: 4742: 4738: 4730: 4728: 4718: 4713: 4709: 4705: 4701: 4697: 4693: 4686: 4684: 4682: 4680: 4670: 4665: 4661: 4657: 4653: 4649: 4648: 4643: 4639: 4633: 4624: 4619: 4615: 4611: 4607: 4603: 4599: 4592: 4590: 4588: 4578: 4573: 4569: 4565: 4561: 4557: 4556: 4551: 4544: 4535: 4530: 4526: 4522: 4518: 4514: 4513: 4508: 4504: 4498: 4489: 4484: 4480: 4476: 4472: 4468: 4464: 4460: 4454: 4445: 4440: 4436: 4432: 4428: 4424: 4423: 4418: 4414: 4408: 4399: 4394: 4390: 4386: 4382: 4378: 4377: 4372: 4368: 4362: 4353: 4348: 4344: 4340: 4336: 4332: 4331: 4326: 4322: 4316: 4308: 4304: 4300: 4296: 4295: 4287: 4285: 4275: 4270: 4266: 4262: 4258: 4254: 4253: 4248: 4244: 4238: 4236: 4226: 4221: 4217: 4213: 4209: 4205: 4204: 4199: 4195: 4189: 4181: 4177: 4173: 4169: 4162: 4160: 4158: 4149: 4145: 4141: 4137: 4132: 4127: 4123: 4119: 4115: 4111: 4110: 4105: 4101: 4095: 4087: 4083: 4079: 4075: 4071: 4067: 4062: 4057: 4053: 4049: 4041: 4033: 4029: 4025: 4021: 4017: 4013: 4008: 4003: 3999: 3995: 3988: 3986: 3969: 3965: 3961: 3955: 3953: 3944: 3940: 3936: 3932: 3928: 3924: 3919: 3914: 3910: 3906: 3905: 3897: 3895: 3886: 3882: 3877: 3872: 3868: 3861: 3859: 3842: 3838: 3834: 3831:Richmond, M. 3827: 3825: 3823: 3821: 3819: 3809: 3804: 3800: 3796: 3792: 3788: 3787: 3782: 3775: 3773: 3771: 3769: 3760: 3754: 3750: 3749: 3741: 3739: 3737: 3735: 3718: 3714: 3710: 3706: 3700: 3684: 3680: 3676: 3669: 3667: 3665: 3663: 3661: 3659: 3657: 3655: 3653: 3648: 3637: 3634: 3631: 3628: 3625: 3622: 3619: 3616: 3614: 3611: 3608: 3605: 3603: 3600: 3597: 3594: 3592: 3589: 3586: 3583: 3580: 3577: 3576: 3564: 3556: 3551: 3542: 3537: 3534: 3527: 3522: 3513: 3508: 3507: 3496: 3493: 3491:<0.000086 3490: 3487: 3484: 3481: 3478: 3475: 3472: 3469: 3468: 3464: 3461: 3458: 3455: 3452: 3449: 3446: 3443: 3441: 3438: 3437: 3433: 3430: 3427: 3424: 3421: 3418: 3415: 3412: 3410: 3407: 3406: 3402: 3399: 3396: 3393: 3390: 3387: 3384: 3381: 3378: 3375: 3374: 3370: 3367: 3364: 3361: 3358: 3355: 3352: 3349: 3346: 3343: 3342: 3338: 3335: 3332: 3329: 3326: 3323: 3320: 3317: 3315: 3312: 3311: 3307: 3304: 3301: 3298: 3295: 3292: 3289: 3286: 3284: 3281: 3280: 3276: 3273: 3270: 3267: 3264: 3261: 3258: 3255: 3252: 3249: 3248: 3244: 3241: 3238: 3235: 3232: 3229: 3226: 3223: 3220: 3217: 3216: 3212: 3209: 3205: 3202: 3191: 3188: 3177: 3175: 3170: 3167: 3164: 3160: 3157: 3154: 3153: 3142: 3140: 3136: 3132: 3128: 3124: 3120: 3119:WD J1953-1019 3116: 3106: 3104: 3100: 3096: 3092: 3088: 3084: 3080: 3073: 3063: 3061: 3057: 3053: 3049: 3043: 3033: 3031: 3027: 3023: 3018: 3014: 3012: 3008: 3003: 2999: 2994: 2992: 2988: 2984: 2983:thermonuclear 2980: 2975: 2974:carbon fusion 2971: 2967: 2966:compressional 2963: 2959: 2955: 2951: 2946: 2944: 2939: 2926: 2916: 2914: 2909: 2905: 2898: 2893: 2884: 2881: 2877: 2873: 2869: 2865: 2861: 2857: 2853: 2843: 2841: 2825: 2821: 2817: 2812: 2810: 2809:planetesimals 2806: 2802: 2798: 2793: 2791: 2790:proper motion 2787: 2783: 2779: 2768: 2763: 2761: 2757: 2753: 2749: 2745: 2743: 2739: 2737: 2733: 2729: 2725: 2720: 2718: 2717:hydrogen line 2714: 2710: 2705: 2702: 2697: 2694: 2690: 2686: 2682: 2678: 2677:rocky planets 2674: 2670: 2666: 2661: 2657: 2645: 2616: 2602: 2600: 2596: 2590: 2588: 2584: 2580: 2575: 2569: 2567: 2563: 2559: 2555: 2551: 2547: 2543: 2539: 2535: 2531: 2527: 2522: 2517: 2515: 2511: 2502: 2494: 2489: 2479: 2477: 2473: 2472:helium planet 2469: 2464: 2462: 2458: 2454: 2450: 2446: 2442: 2438: 2434: 2430: 2426: 2417: 2395: 2393: 2389: 2385: 2381: 2380: 2375: 2366: 2364: 2360: 2356: 2352: 2348: 2344: 2340: 2336: 2325: 2321: 2317: 2313: 2302: 2300: 2296: 2292: 2288: 2284: 2267: 2264: 2260: 2256: 2246: 2237: 2227: 2225: 2221: 2217: 2213: 2209: 2205: 2204: 2199: 2198:V777 Her 2195: 2191: 2187: 2183: 2179: 2175: 2165: 2161: 2157: 2154: 2150: 2147: 2146: 2142: 2138: 2135: 2131: 2128: 2127: 2123: 2119: 2118:spectral type 2115: 2112: 2108: 2104: 2101: 2100: 2093: 2087: 2077: 2075: 2071: 2067: 2063: 2062:chemical bond 2053: 2051: 2047: 2042: 2027: 2025: 2021: 2013: 2008: 2007:magnetic flux 2004: 2003: 1998: 1994: 1990: 1986: 1976: 1974: 1964: 1955: 1953: 1946: 1942: 1938: 1932: 1928: 1924: 1921: 1917: 1916: 1915: 1913: 1909: 1905: 1895: 1892: 1891: 1887: 1884: 1883: 1879: 1876: 1875: 1871: 1868: 1867: 1862: 1858: 1855: 1854: 1850: 1847: 1846: 1842: 1839: 1838: 1834: 1831: 1830: 1826: 1823: 1822: 1818: 1815: 1814: 1810: 1807: 1806: 1801: 1795: 1793: 1787: 1765: 1761: 1756: 1752: 1748: 1744: 1736: 1735:WD J0914+1914 1731: 1722: 1712: 1710: 1705: 1704:fractionation 1700: 1696: 1692: 1688: 1684: 1680: 1676: 1672: 1668: 1665: 1658: 1653: 1649: 1647: 1643: 1639: 1635: 1634: 1629: 1628:galactic disk 1625: 1621: 1620:WD J2147–4035 1616: 1610: 1607: 1596: 1591: 1587: 1579: 1574: 1570: 1568: 1564: 1559: 1557: 1553: 1549: 1535: 1531: 1525: 1523: 1519: 1515: 1505: 1501: 1499: 1495: 1491: 1487: 1483: 1478: 1472: 1467: 1463: 1462: 1456: 1451: 1436: 1430: 1413: 1408: 1404: 1400: 1395: 1390: 1386: 1383: 1377: 1370: 1366: 1362: 1339: 1330: 1328: 1323: 1317: 1313: 1308: 1303: 1299: 1295: 1289: 1287: 1279: 1263: 1255: 1254:electron mass 1218: 1210: 1206: 1202: 1198: 1194: 1189: 1185: 1181: 1174: 1170: 1164: 1160: 1156: 1152: 1145: 1142: 1134: 1132: 1126: 1122: 1112: 1110: 1106: 1103: 1099: 1095: 1090: 1088: 1083: 1079: 1073: 1071: 1067: 1063: 1059: 1055: 1051: 1046: 1044: 1043: 1038: 1034: 1019: 1003: 998: 997:atomic weight 994: 986: 977: 964: 960: 956: 950: 947: 946: 939: 937: 936: 931: 930: 925: 924: 919: 915: 911: 907: 903: 899: 895: 891: 887: 883: 879: 869: 864: 861: 860: 857: 848: 845: 844: 840: 835: 833: 832:Atomic nuclei 830: 829: 826: 821: 818: 817: 814: 811: 808: 807: 804: 800: 797: 795: 792: 791: 788: 784: 781: 779:Water (fresh) 778: 777: 769: 766: 763: 762: 758: 755: 752: 749: 748: 745: 743: 739: 733: 728: 726: 722: 718: 714: 710: 691: 686: 684: 680: 676: 675:neutron stars 672: 671:compact stars 668: 664: 660: 625: 608: 601: 594: 587: 585:Bright giants 580: 573: 566: 559: 552: 548:Main sequence 543: 536: 529: 522: 515: 508: 501: 494: 487: 480: 473: 466: 459: 452: 450:Spectral type 445: 438: 428: 426: 422: 418: 414: 413:Willem Luyten 410: 409:proper motion 406: 402: 398: 393: 391: 387: 383: 382:C.A.F. Peters 377: 374: 370: 364: 362: 358: 352: 350: 344: 339: 337: 336:spectral type 333: 329: 325: 321: 317: 314: 311: 310:main sequence 307: 303: 302:binary system 299: 295: 294:main sequence 291: 287: 281: 271: 269: 265: 261: 257: 252: 250: 246: 242: 238: 229: 225: 221: 216: 214: 210: 206: 202: 198: 189: 185: 181: 177: 173: 169: 165: 161: 157: 153: 149: 145: 141: 137: 133: 129: 125: 120: 118: 114: 110: 104: 99: 95: 91: 87: 83: 79: 75: 71: 67: 59: 55: 50: 46: 41: 34: 19: 15920:White dwarfs 15877:Solar System 15653:White dwarfs 15643:Brown dwarfs 15626:Most distant 15574:Most massive 15552:Proper names 15512:Photographic 15465:Solar System 15443:observations 15370:Star systems 15193:Stellar wind 15176:Chromosphere 15149:Oscillations 15029:Helium flash 14879:Hypothetical 14857:X-ray binary 14805: 14796:Compact star 14691: 14631:Bright giant 14384:Henyey track 14362:Herbig Ae/Be 14086: 14028:Compact star 14002:Urca process 13992:Timing noise 13977:Relativistic 13872:X-ray binary 13867:X-ray pulsar 13791:Neutron star 13673:Urca process 13647:Helium flash 13630:X-ray binary 13531:Compact star 13497:Neutron star 13449:PG 1159 star 13429: 13396: 13387: 13382: 13373: 13368: 13359: 13354: 13345: 13340: 13331: 13326: 13317: 13312: 13299: 13298: 13249: 13245: 13233:. Retrieved 13229:the original 13181: 13177: 13149: 13145: 13133: 13132: 13091: 13087: 13079: 13078: 13053: 13049: 13037: 13036: 13005: 13001: 12994:Variability 12993: 12992: 12984: 12967: 12950: 12944: 12943: 12933: 12885: 12881: 12858: 12850: 12849: 12832:. Retrieved 12823: 12811:. Retrieved 12802: 12790:. Retrieved 12781: 12754: 12750: 12744: 12701: 12697: 12691: 12679:. Retrieved 12650:. Retrieved 12646:the original 12636: 12585: 12579: 12569: 12518: 12514: 12508: 12457: 12453: 12447: 12439:the original 12428: 12385: 12381: 12371: 12328: 12324: 12268: 12264: 12206: 12202: 12195: 12152: 12148: 12142: 12130:. Retrieved 12115: 12103:. Retrieved 12088: 12043: 12039: 12029: 11993: 11986: 11941: 11937: 11927: 11874: 11871:Astrobiology 11870: 11860: 11817: 11813: 11807: 11785: 11756: 11752: 11742: 11705: 11701: 11690: 11681: 11674:. Retrieved 11672:. 5 May 2023 11660: 11648:. Retrieved 11644: 11641:"CYCLE 2 GO" 11635: 11600: 11596: 11592: 11585: 11534: 11530: 11520: 11469: 11465: 11455: 11433: 11421:. Retrieved 11409: 11396: 11345: 11341: 11317:. Retrieved 11313:the original 11308: 11298: 11247: 11243: 11237: 11184: 11180: 11170: 11117: 11113: 11103: 11050: 11046: 11036: 10983: 10979: 10969: 10916: 10912: 10902: 10851: 10847: 10841: 10814: 10810: 10800: 10757: 10753: 10747: 10704: 10700: 10694: 10684:20 September 10682:. Retrieved 10678:the original 10673: 10664: 10652:. Retrieved 10648: 10639: 10622: 10615: 10572: 10568: 10562: 10545: 10539: 10476: 10472: 10462: 10419: 10415: 10365: 10361: 10355: 10304: 10300: 10294: 10277: 10271: 10218: 10214: 10161:(172): 258. 10158: 10154: 10144: 10091: 10087: 10017: 10013: 10007: 9956: 9952: 9946: 9934:. Retrieved 9925: 9916: 9904:. Retrieved 9895: 9886: 9874:. Retrieved 9870:the original 9863: 9853: 9810: 9806: 9800: 9757: 9753: 9697: 9693: 9683: 9640: 9636: 9629: 9602: 9598: 9588: 9545: 9541: 9535: 9508: 9504: 9494: 9451: 9447: 9441: 9429:. Retrieved 9425:the original 9414: 9402:. Retrieved 9398:the original 9387: 9362: 9358: 9339:18 September 9337:. Retrieved 9326: 9317: 9290: 9286: 9280: 9253: 9249: 9239: 9214: 9210: 9204: 9192:. Retrieved 9188:the original 9147: 9143: 9133: 9098: 9094: 9042: 9038: 9032: 8989: 8985: 8943: 8939: 8933: 8890: 8886: 8880: 8837: 8833: 8827: 8800: 8796: 8786: 8761: 8757: 8750: 8723: 8719: 8692:. Retrieved 8688:the original 8683: 8674: 8662:. Retrieved 8641: 8631: 8588: 8582: 8576: 8533: 8529: 8523: 8483:(A30): 9pp. 8480: 8476: 8470: 8425: 8421: 8411: 8368: 8362: 8356: 8329: 8323: 8313: 8280: 8276: 8270: 8245: 8241: 8235: 8202: 8198: 8192: 8151: 8147: 8141: 8096: 8092: 8082: 8058:(1): 45–67. 8055: 8051: 7995: 7991: 7985: 7934: 7930: 7924: 7879: 7875: 7865: 7834: 7826: 7801: 7797: 7791: 7767:(314): 248. 7764: 7760: 7750: 7731: 7689: 7685: 7651: 7647: 7641: 7629:. Retrieved 7620: 7611: 7568: 7564: 7558: 7546:. Retrieved 7492: 7488: 7475: 7432: 7428: 7422: 7377: 7373: 7363: 7320: 7316: 7310: 7259: 7255: 7245: 7220: 7216: 7210: 7183: 7179: 7169: 7126: 7122: 7115: 7103:. Retrieved 7099:the original 7094: 7084: 7041: 7037: 7031: 7004: 7000: 6990: 6976:(1–2): L15. 6973: 6969: 6963: 6938: 6934: 6928: 6883: 6879: 6869: 6846: 6840: 6831:10183/108730 6803: 6799: 6789: 6744: 6740: 6684: 6680: 6674: 6647: 6643: 6606:(1): 1–130. 6603: 6599: 6589: 6562: 6558: 6548: 6511: 6505: 6478: 6474: 6464: 6419: 6415: 6405: 6372: 6368: 6362: 6335: 6289: 6285: 6275: 6248: 6244: 6186: 6182: 6176: 6133: 6129: 6123: 6090: 6086: 6076: 6049: 6045: 6035: 6008: 6004: 5994: 5982:. Retrieved 5965: 5953:. Retrieved 5940: 5931: 5919:. Retrieved 5904: 5861: 5857: 5851: 5839:. Retrieved 5830: 5820: 5777: 5773: 5704:White Dwarfs 5703: 5682:. Retrieved 5664: 5637: 5633: 5591: 5587: 5577: 5568: 5562: 5520: 5516: 5513:Anderson, W. 5507: 5497:21 September 5495:. Retrieved 5488:the original 5468: 5456:. Retrieved 5447: 5390: 5386: 5380: 5353: 5349: 5303: 5297: 5285:. Retrieved 5272:HyperPhysics 5270: 5265:Nave, C. R. 5260: 5217: 5213: 5207: 5162: 5158: 5148: 5126: 5116: 5089: 5083: 5073: 5030: 5024: 5018: 4988: 4981: 4969:. Retrieved 4949: 4942: 4917: 4911: 4905: 4860: 4854: 4847:Kepler, S.O. 4795: 4789: 4783: 4743:(1): 40–58. 4740: 4736: 4702:(1): 1–130. 4699: 4695: 4651: 4645: 4638:Luyten, W.J. 4632: 4605: 4601: 4562:(202): 353. 4559: 4553: 4543: 4519:(198): 132. 4516: 4510: 4503:Luyten, W.J. 4497: 4470: 4466: 4459:Luyten, W.J. 4453: 4429:(199): 156. 4426: 4420: 4413:Luyten, W.J. 4407: 4383:(172): 258. 4380: 4374: 4361: 4337:(161): 236. 4334: 4328: 4315: 4298: 4292: 4256: 4250: 4243:Bessel, F.W. 4210:(155): 198. 4207: 4201: 4188: 4167: 4113: 4107: 4100:Herschel, W. 4094: 4051: 4047: 4040: 3997: 3993: 3972:. Retrieved 3908: 3902: 3866: 3845:. Retrieved 3790: 3784: 3748:White Dwarfs 3747: 3721:. Retrieved 3699: 3687:. Retrieved 3613:PG 1159 star 3607:Neutron star 3440:Gliese 223.2 3283:Van Maanen 2 3112: 3075: 3045: 3019: 3015: 3011:neutron star 3001: 2997: 2995: 2986: 2961: 2957: 2953: 2947: 2928: 2901: 2872:tidal forces 2849: 2846:Habitability 2813: 2794: 2764: 2746: 2740: 2721: 2706: 2698: 2693:Roche radius 2660:Helix Nebula 2653: 2591: 2579:Roche radius 2574:Giclas 29-38 2570: 2540:shows iron, 2538:van Maanen 2 2518: 2507: 2465: 2422: 2391: 2377: 2372: 2358: 2354: 2345:, neon, and 2324:compact star 2308: 2273: 2252: 2233: 2219: 2211: 2207: 2203:GW Vir stars 2201: 2197: 2193: 2189: 2185: 2182:gravity wave 2171: 2163: 2159: 2152: 2148: 2133: 2129: 2110: 2102: 2059: 2043: 2028: 2016:GRW +70 8247 2000: 1982: 1969: 1943: 1939: 1936: 1904:G. P. Kuiper 1901: 1843:Metal lines 1788: 1743:spectroscopy 1740: 1713: 1711:satellite. 1708: 1661: 1657:Gaia mission 1631: 1611: 1583: 1567:Urca process 1565:through the 1560: 1533: 1526: 1511: 1502: 1479: 1470: 1459: 1447: 1434: 1321: 1315: 1311: 1301: 1297: 1293: 1290: 1232: 1128: 1109:brown dwarfs 1091: 1074: 1062:neutron star 1047: 1040: 1017: 1001: 984: 975: 951: 943: 940: 933: 927: 921: 902:R. H. Fowler 875: 735: 730: 687: 665:, or 1  628: 527:White dwarfs 525: 520:Brown dwarfs 416: 404: 394: 390:Walter Adams 379: 372: 368: 366: 353: 349:Walter Adams 346: 341: 316:40 Eridani C 306:40 Eridani B 298:40 Eridani A 283: 253: 217: 212: 208: 188:solar masses 183: 150:period of a 142:. After the 132:neutron star 121: 112: 96:of residual 65: 63: 45: 15865:Outer space 15853:Spaceflight 15706:Brown dwarf 15482:Circumpolar 15360:Kraft break 15340:Color index 15315:Metallicity 15275:Designation 15244:Cosmic dust 15166:Photosphere 14932:Dark-energy 14907:Electroweak 14892:Black dwarf 14823:Radio-quiet 14806:White dwarf 14692:White dwarf 14342:Bok globule 14087:White dwarf 14072:Microquasar 14038:Exotic star 13967:Pulsar kick 13889:Millisecond 13805:Radio-quiet 13613:AM CVn star 13541:Exotic star 13480:Black dwarf 13430:White dwarf 13235:22 November 13184:(2): L129. 12834:16 December 12813:13 December 12757:: 897–910. 12105:16 February 11423:11 December 10817:(1): L151. 10422:(2): L161. 9936:14 February 8591:(2): 0029. 7621:www.eso.org 6687:(2): L129. 6292:(2): L157. 5864:: 337–377. 5841:22 February 5780:: 191–230. 5448:ScienceBits 4473:(197): 54. 4321:Adams, W.S. 4194:Adams, W.S. 3911:(2): L147. 3705:Henry, T.J. 3585:Brown dwarf 3579:Black dwarf 3471:Gliese 3991 3155:Identifier 3139:WD 0806−661 3083:dwarf novae 3048:brown dwarf 3030:WD 0810-353 2801:brown dwarf 2778:WD 1202−232 2742:WD 1856+534 2736:exoasteroid 2724:WD 0145+234 2701:WD 1145+017 2546:F-type star 2379:zombie star 2080:Variability 2020:Roger Angel 1819:He I lines 1699:latent heat 1679:crystallize 1633:black dwarf 1586:Leon Mestel 1498:dynamically 1037:Nobel Prize 888:of unbound 819:White dwarf 683:black holes 679:quark stars 606:Hypergiants 592:Supergiants 578:Blue giants 417:white dwarf 399:discovered 260:black dwarf 113:white dwarf 109:binary star 66:white dwarf 15905:Star types 15899:Categories 15668:Candidates 15663:Supernovae 15648:Red dwarfs 15507:Extinction 15295:Kinematics 15290:Luminosity 15268:Properties 15161:Atmosphere 15059:Si burning 15049:Ne burning 14987:White hole 14960:Quasi-star 14887:Blue dwarf 14742:Technetium 14658:Hypergiant 14636:Supergiant 14216:Astropulse 14131:QCD matter 14111:Radio star 14082:Quark-nova 14033:Quark star 13982:Rp-process 13913:Properties 13661:Properties 13593:Dwarf nova 13536:Quark star 13490:Candidates 13080:Frequency 12792:2 December 12595:2210.04863 12053:2007.13932 12046:(2): L40. 11820:(2): L31. 11798:2408.03985 11766:2404.05488 11715:2401.13153 11708:(2): L32. 11683:concerned. 11610:2206.05595 11544:2109.10912 11479:1811.08902 11446:1910.04314 11355:1510.06387 11319:22 October 11194:1708.05391 11127:1603.09344 11060:1711.02940 10854:(2): 148. 10707:(1): L41. 10486:2104.14035 10479:(2): L31. 10314:1604.03092 10228:2102.01834 10101:1902.07073 10094:(2): L25. 9643:(2): L23. 9101:(67): 67. 8840:(2): L45. 8598:1612.03185 8378:1504.08072 8106:1505.07466 7998:(2): L18. 7631:4 December 7502:1908.00370 7442:2007.13669 7387:2103.12892 7269:2409.04419 7007:(2): 129. 6893:2206.03174 6754:2206.05258 6196:2209.02846 6136:(2): 553. 6093:(2): 417. 5955:12 January 5909:Kaler, J. 5033:(1): L69. 4116:: 40–126. 3689:17 October 3644:References 3377:Stein 2051 3345:40 Eridani 3314:LP 145-141 3192:Luminosity 3161:Distance ( 3158:WD Number 3131:exoplanets 2797:PHL 5038AB 2782:WD 2105−82 2713:evaporated 2534:exoplanets 2486:See also: 2451:predict a 2320:black hole 2259:blue dwarf 2255:solar mass 2090:See also: 2046:AR Scorpii 1987:(100  1947:hydrogen ( 1792:isothermal 1522:black body 1494:Fred Hoyle 1119:See also: 1105:red dwarfs 1094:luminosity 935:degenerate 880:joined by 812:c. 150,000 717:Ernst Öpik 693:0.94  571:Red giants 550:("dwarfs") 534:Red dwarfs 290:40 Eridani 278:See also: 136:black hole 90:luminosity 15829:Astronomy 15599:Brightest 15497:Magnitude 15477:Pole star 15398:Symbiotic 15393:Eclipsing 15325:Starlight 15126:Structure 15116:Supernova 15109:Micronova 15104:Recurrent 15089:Symbiotic 15074:p-process 15069:r-process 15064:s-process 15054:O burning 15044:C burning 15024:CNO cycle 14967:Gravastar 14503:Hypernova 14493:Supernova 14468:Dredge-up 14441:Blue loop 14434:super-AGB 14417:Red clump 14394:Evolution 14352:Protostar 14332:Accretion 14324:Formation 14166:Satellite 14140:Discovery 14062:Hypernova 14045:Supernova 13987:Starquake 13668:Pulsating 13598:Micronova 13567:In binary 13437:Formation 13259:0711.3227 13030:250749380 12922:1365-2966 12895:1411.4149 12736:118304737 12711:1202.5581 12704:(2): 35. 12628:252863734 12620:0004-6361 12528:0810.5106 12467:1210.1948 12420:0066-4146 12395:1312.0628 12363:1387-6473 12338:1204.1155 12303:1448-6083 12278:1111.4492 12080:220831174 11978:119227364 11951:1211.1013 11884:1211.6467 11852:118739494 11827:1103.2791 11645:STScI.edu 11627:249626026 11577:237605138 11569:0004-6361 11512:119491061 11504:0004-6361 11282:0004-637X 11257:0710.0907 11221:0035-8711 11154:0035-8711 11087:0035-8711 11028:119257046 11020:0035-8711 10993:1401.5470 10961:119279872 10953:0035-8711 10926:1411.6012 10894:118688656 10886:0004-637X 10861:1201.0756 10835:. p. L51. 10792:119284418 10767:0910.1288 10649:STScI.edu 10607:250666952 10582:0903.2159 10513:0004-637X 10454:119462589 10390:0028-0836 10347:118486264 10339:1387-6473 10263:231786441 10255:0004-637X 10221:(1): 61. 10193:250734202 10185:0004-6280 10136:119359995 10128:2041-8213 10052:0004-6256 10027:0802.4075 9999:119268896 9991:0004-6361 9966:1404.2617 9820:0707.2895 9675:119203015 9650:1208.5069 9486:118886040 9108:1101.5169 9052:0903.2159 8968:250749380 8925:115958740 8490:1208.3650 8435:1211.5709 8403:119057870 8305:119003761 8205:: 1–115. 8030:119248244 8005:1302.6619 7944:0711.3227 7714:122582479 7578:1410.5471 7467:220793255 7414:232335433 7380:(1): L5. 7355:119279832 7330:1110.5665 7294:1476-4687 7105:6 January 7076:119378552 6920:0004-637X 6886:(1): 36. 6781:0035-8711 6397:120431159 6221:252111027 6143:1109.3046 5545:122576829 5423:120476662 5308:CRC Press 4971:20 August 4148:186209747 3943:118894713 3476:1708+437 3459:0.000062 3444:0552–041 3428:0.000085 3413:1748+708 3382:0426+588 3350:0413-077 3318:1142–645 3287:0046+051 3256:0736+053 3224:0642–166 3174:magnitude 3052:red giant 2960:. In the 2756:Hipparcos 2711:is being 2673:asteroids 2392:iron-core 2351:supernova 2347:magnesium 2339:fuse neon 2230:Formation 2178:HL Tau 76 1945:Molecular 1896:Variable 1751:Schatzman 1695:BPM 37093 1675:electrons 1578:IK Pegasi 1563:neutrinos 1490:viscosity 1466:Fermi gas 1384:ℏ 1363:≈ 1264:ℏ 1171:ℏ 1146:≈ 1131:Fermi gas 1066:accreting 1054:electrons 929:Fermi sea 894:electrons 557:Subgiants 541:Subdwarfs 395:In 1917, 313:red dwarf 274:Discovery 205:magnesium 156:red giant 140:Milky Way 119:in 1922. 52:Image of 15778:Category 15673:Remnants 15569:Extremes 15529:Parallax 15502:Apparent 15492:Asterism 15470:Sunlight 15420:Globular 15405:Multiple 15330:Variable 15320:Rotation 15280:Dynamics 15171:Starspot 14845:Magnetar 14788:Remnants 14604:Subgiant 14577:Subdwarf 14429:post-AGB 14251:Category 14067:Kilonova 13894:Be/X-ray 13826:Magnetar 13749:Category 13507:Magnetar 13284:18033290 13126:14080941 13118:11423620 12945:Physics 12861:. 1997. 12851:General 12675:Archived 12553:19052622 12492:23018963 12241:15493284 12126:Archived 12099:Archived 11919:23537137 11676:8 August 11414:Archived 11380:26490620 11290:17813180 11229:55764122 11162:56091285 10739:15244406 10674:BBC News 10625:: 1911. 10531:35003618 10307:: 9–34. 10060:16571761 9930:Archived 9900:Archived 9792:12173790 9734:17854858 9333:Archived 9077:17521113 9024:59065632 8764:: L161. 8658:Archived 8623:15683792 8515:55153825 8462:53316287 8227:74674634 8176:20239729 8133:54049842 7969:18033290 7916:10892288 7734:. 1997. 7625:Archived 7603:55152203 7539:Archived 7535:58004893 7527:30626942 7302:38448597 7095:BBC News 6456:15797437 6189:: 1–63. 6052:: 1089. 5978:Archived 5949:Archived 5915:Archived 5896:59325115 5835:Archived 5812:10210550 5678:Archived 5474:Bean, R. 5452:Archived 5281:Archived 5252:17677758 5199:16587023 5140:27015694 5124:(1927). 5010:10009645 4962:Archived 4897:10892288 4830:18587748 4775:13829139 4640:(1950). 4505:(1922). 4461:(1922). 4415:(1922). 4369:(1917). 4323:(1915). 4245:(1844). 4196:(1914). 4102:(1785). 4086:59065632 3974:20 April 3968:Archived 3841:Archived 3717:Archived 3683:Archived 3572:See also 3533:NGC 2440 3409:G 240-72 3397:0.00030 3333:0.00054 3302:0.00017 3271:0.00049 3200:☉ 3186:☉ 3172:Absolute 3123:Gaia DR2 2970:ignition 2956:and the 2934:☉ 2868:eclipses 2864:transits 2839:☉ 2689:exomoons 2566:exomoons 2554:nitrogen 2429:galaxies 2425:universe 2331:☉ 2312:collapse 2289:via the 2279:☉ 2263:helium-4 2243:☉ 1719:☉ 1606:hydrogen 1602:☉ 1590:accretes 1500:stable. 1029:☉ 1013:☉ 982:, where 972:☉ 850:8.4 × 10 837:2.3 × 10 767:c. 1,000 750:Material 713:spectrum 705:☉ 698:☉ 673:such as 655:☉ 648:☉ 641:☉ 634:☉ 613:absolute 308:and the 236:☉ 196:☉ 144:hydrogen 103:Sirius B 94:emission 15889:Science 15817:Physics 15803:Portals 15745:Gravity 15694:Related 15614:Nearest 15562:Chinese 15410:Cluster 15383:Contact 15220:Proplyd 15094:Remnant 14982:Blitzar 14956:Hawking 14912:Strange 14862:Burster 14818:Neutron 14771:Extreme 14722:He-weak 14367:T Tauri 14261:Commons 14011:Related 13962:Optical 13920:Blitzar 13899:Spin-up 13692:Related 13581:Remnant 13569:systems 13300:Images 13292:4398697 13264:Bibcode 13216:7570539 13196:Bibcode 13154:Bibcode 13088:Science 13058:Bibcode 13010:Bibcode 12900:Bibcode 12769:Bibcode 12716:Bibcode 12600:Bibcode 12588:: A14. 12561:4409995 12533:Bibcode 12500:4431391 12472:Bibcode 12400:Bibcode 12343:Bibcode 12283:Bibcode 12221:Bibcode 12187:2963085 12167:Bibcode 12132:17 July 12058:Bibcode 11999:Bibcode 11956:Bibcode 11910:3612282 11889:Bibcode 11832:Bibcode 11720:Bibcode 11603:: A34. 11549:Bibcode 11484:Bibcode 11472:: A72. 11388:4451207 11360:Bibcode 11262:Bibcode 11199:Bibcode 11132:Bibcode 11095:4809366 11065:Bibcode 10998:Bibcode 10931:Bibcode 10866:Bibcode 10819:Bibcode 10772:Bibcode 10719:Bibcode 10627:Bibcode 10587:Bibcode 10550:Bibcode 10522:8740607 10491:Bibcode 10434:Bibcode 10398:4357883 10370:Bibcode 10319:Bibcode 10282:Bibcode 10233:Bibcode 10163:Bibcode 10106:Bibcode 10032:Bibcode 9971:Bibcode 9959:: A34. 9876:18 June 9845:8369390 9825:Bibcode 9772:Bibcode 9712:Bibcode 9655:Bibcode 9607:Bibcode 9605:: 797. 9580:2983893 9560:Bibcode 9513:Bibcode 9511:: 791. 9466:Bibcode 9367:Bibcode 9305:Bibcode 9293:: L85. 9258:Bibcode 9219:Bibcode 9152:Bibcode 9113:Bibcode 9057:Bibcode 9004:Bibcode 8948:Bibcode 8905:Bibcode 8872:9481357 8852:Bibcode 8805:Bibcode 8803:: 151. 8766:Bibcode 8728:Bibcode 8664:21 July 8603:Bibcode 8568:9005227 8548:Bibcode 8495:Bibcode 8440:Bibcode 8383:Bibcode 8334:Bibcode 8332:: L77. 8285:Bibcode 8250:Bibcode 8184:4133416 8156:Bibcode 8111:Bibcode 8060:Bibcode 8010:Bibcode 7977:4398697 7949:Bibcode 7894:Bibcode 7857:61-9138 7845:Bibcode 7806:Bibcode 7804:: 283. 7769:Bibcode 7694:Bibcode 7656:Bibcode 7654:: 143. 7583:Bibcode 7548:23 July 7507:Bibcode 7447:Bibcode 7435:: L11. 7392:Bibcode 7335:Bibcode 7323:: A33. 7274:Bibcode 7225:Bibcode 7223:: 465. 7188:Bibcode 7161:7297628 7141:Bibcode 7056:Bibcode 7009:Bibcode 6978:Bibcode 6943:Bibcode 6941:: 227. 6898:Bibcode 6808:Bibcode 6806:: L77. 6759:Bibcode 6719:7570539 6699:Bibcode 6652:Bibcode 6608:Bibcode 6567:Bibcode 6526:Bibcode 6483:Bibcode 6434:Bibcode 6377:Bibcode 6294:Bibcode 6253:Bibcode 6251:: 253. 6201:Bibcode 6148:Bibcode 6115:8372549 6095:Bibcode 6054:Bibcode 6013:Bibcode 5876:Bibcode 5792:Bibcode 5748:9288287 5718:Bibcode 5642:Bibcode 5596:Bibcode 5525:Bibcode 5415:2990270 5395:Bibcode 5358:Bibcode 5312:Bibcode 5287:26 June 5232:Bibcode 5190:1086032 5167:Bibcode 5094:Bibcode 5092:: 292. 5065:8792889 5045:Bibcode 4998:Bibcode 4922:Bibcode 4920:: 240. 4875:Bibcode 4810:Bibcode 4755:Bibcode 4704:Bibcode 4656:Bibcode 4610:Bibcode 4564:Bibcode 4521:Bibcode 4475:Bibcode 4431:Bibcode 4385:Bibcode 4339:Bibcode 4303:Bibcode 4301:: 186. 4261:Bibcode 4212:Bibcode 4176:Bibcode 4118:Bibcode 4066:Bibcode 4032:1386346 4012:Bibcode 3923:Bibcode 3881:Bibcode 3795:Bibcode 3723:21 July 3504:Gallery 3485:>15 3365:0.0141 3251:Procyon 3239:0.0295 3145:Nearest 3022:SN 1006 2979:runaway 2824:Spitzer 2752:LAWD 37 2728:NEOWISE 2542:calcium 2510:stellar 2190:ZZ Ceti 2151:(GCVS: 2132:(GCVS: 1975:phase. 1781:⁄ 1771:⁄ 1737:system. 1664:ionized 1604:with a 1541:⁄ 1514:opacity 1284:is the 1276:is the 1252:is the 756:in kg/m 754:Density 373:Procyon 361:Procyon 264:kelvins 249:SN 1006 176:billion 15735:Galaxy 15723:Planet 15711:Desert 15619:bright 15557:Arabic 15378:Binary 15198:Bubble 14922:Planck 14897:Exotic 14833:Binary 14828:Pulsar 14766:Helium 14727:Barium 14670:Carbon 14663:Yellow 14651:Yellow 14624:Yellow 14463:PG1159 13947:Glitch 13862:Binary 13810:Pulsar 13711:RAMBOs 13502:Pulsar 13290:  13282:  13246:Nature 13214:  13124:  13116:  13028:  12957:  12920:  12865:  12734:  12626:  12618:  12559:  12551:  12515:Nature 12498:  12490:  12454:Nature 12418:  12361:  12301:  12239:  12185:  12078:  12017:  11976:  11917:  11907:  11850:  11650:15 May 11625:  11575:  11567:  11537:: A7. 11510:  11502:  11386:  11378:  11342:Nature 11288:  11280:  11227:  11219:  11160:  11152:  11093:  11085:  11026:  11018:  10959:  10951:  10892:  10884:  10790:  10737:  10654:15 May 10605:  10529:  10519:  10511:  10452:  10396:  10388:  10362:Nature 10345:  10337:  10261:  10253:  10191:  10183:  10134:  10126:  10058:  10050:  9997:  9989:  9906:10 May 9843:  9790:  9732:  9673:  9578:  9484:  9075:  9022:  8966:  8923:  8870:  8694:6 June 8643:Nature 8621:  8566:  8513:  8460:  8401:  8303:  8225:  8219:769678 8217:  8182:  8174:  8148:Nature 8131:  8028:  7975:  7967:  7931:Nature 7914:  7855:  7738:  7712:  7601:  7571:: L3. 7533:  7525:  7489:Nature 7465:  7412:  7353:  7300:  7292:  7256:Nature 7159:  7074:  6918:  6857:  6779:  6717:  6536:  6454:  6395:  6350:  6219:  6168:144301 6166:  6113:  5984:30 May 5945:VizieR 5894:  5810:  5746:  5736:  5594:: 81. 5571:: 944. 5543:  5421:  5413:  5322:  5250:  5197:  5187:  5138:  5063:  5008:  4895:  4828:  4773:  4654:: 86. 4146:  4140:106749 4138:  4084:  4030:  3941:  3755:  3494:>6 3479:24.23 3453:15.29 3447:21.01 3422:15.23 3416:20.26 3391:13.43 3385:17.99 3359:11.27 3353:16.39 3327:12.77 3321:15.12 3296:14.09 3290:14.07 3265:13.20 3259:11.46 3233:11.18 3219:Sirius 3099:polars 2952:: the 2943:fusion 2938:binary 2748:GD 140 2734:of an 2681:metals 2665:G29-38 2552:. The 2445:proton 2437:fusing 2343:oxygen 2287:oxygen 2283:carbon 2174:varied 2166:stars 2149:GW Vir 2141:helium 2050:pulsar 2012:GJ 742 1989:teslas 1783:10,000 1747:helium 1671:nuclei 1667:plasma 1595:carbon 1548:X-rays 1543:10,000 1319:where 1280:, and 1233:where 1082:X-rays 923:ground 890:nuclei 886:plasma 866:2 × 10 854:1 × 10 823:1 × 10 798:22,610 794:Osmium 759:Notes 690:binary 615:magni- 564:Giants 369:Sirius 168:oxygen 164:carbon 160:helium 148:fusing 54:Sirius 15841:Stars 15740:Guest 15544:Lists 15425:Super 15079:Fusor 14952:Black 14937:Quark 14917:Preon 14902:Boson 14838:X-ray 14754:Shell 14707:Ap/Bp 14609:Giant 14527:Early 14473:OH/IR 14303:Stars 14199:Other 14147:LGM-1 13798:Types 13618:Polar 13288:S2CID 13254:arXiv 13212:S2CID 13186:arXiv 13122:S2CID 13096:arXiv 13026:S2CID 12890:arXiv 12759:arXiv 12738:. 29. 12732:S2CID 12706:arXiv 12681:4 May 12652:4 May 12624:S2CID 12590:arXiv 12557:S2CID 12523:arXiv 12496:S2CID 12462:arXiv 12390:arXiv 12333:arXiv 12273:arXiv 12237:S2CID 12211:arXiv 12183:S2CID 12157:arXiv 12076:S2CID 12048:arXiv 11974:S2CID 11946:arXiv 11879:arXiv 11848:S2CID 11822:arXiv 11793:arXiv 11761:arXiv 11753:MNRAS 11710:arXiv 11623:S2CID 11605:arXiv 11573:S2CID 11539:arXiv 11508:S2CID 11474:arXiv 11441:arXiv 11417:(PDF) 11406:(PDF) 11384:S2CID 11350:arXiv 11286:S2CID 11252:arXiv 11225:S2CID 11189:arXiv 11158:S2CID 11122:arXiv 11091:S2CID 11055:arXiv 11024:S2CID 10988:arXiv 10957:S2CID 10921:arXiv 10890:S2CID 10856:arXiv 10788:S2CID 10762:arXiv 10735:S2CID 10709:arXiv 10603:S2CID 10577:arXiv 10481:arXiv 10450:S2CID 10424:arXiv 10394:S2CID 10343:S2CID 10309:arXiv 10259:S2CID 10223:arXiv 10189:S2CID 10132:S2CID 10096:arXiv 10056:S2CID 10022:arXiv 9995:S2CID 9961:arXiv 9841:S2CID 9815:arXiv 9788:S2CID 9762:arXiv 9730:S2CID 9702:arXiv 9671:S2CID 9645:arXiv 9576:S2CID 9550:arXiv 9482:S2CID 9456:arXiv 9431:3 May 9404:3 May 9295:arXiv 9194:3 May 9103:arXiv 9073:S2CID 9047:arXiv 9020:S2CID 8994:arXiv 8964:S2CID 8921:S2CID 8895:arXiv 8868:S2CID 8842:arXiv 8619:S2CID 8593:arXiv 8564:S2CID 8538:arXiv 8511:S2CID 8485:arXiv 8458:S2CID 8430:arXiv 8399:S2CID 8373:arXiv 8301:S2CID 8223:S2CID 8215:JSTOR 8180:S2CID 8129:S2CID 8101:arXiv 8026:S2CID 8000:arXiv 7973:S2CID 7939:arXiv 7912:S2CID 7884:arXiv 7710:S2CID 7599:S2CID 7573:arXiv 7542:(PDF) 7531:S2CID 7497:arXiv 7485:(PDF) 7463:S2CID 7437:arXiv 7410:S2CID 7382:arXiv 7351:S2CID 7325:arXiv 7264:arXiv 7157:S2CID 7131:arXiv 7072:S2CID 7046:arXiv 6888:arXiv 6749:arXiv 6715:S2CID 6689:arXiv 6516:arXiv 6452:S2CID 6424:arXiv 6393:S2CID 6217:S2CID 6191:arXiv 6164:S2CID 6138:arXiv 6111:S2CID 5921:5 May 5892:S2CID 5866:arXiv 5808:S2CID 5782:arXiv 5744:S2CID 5708:arXiv 5684:4 May 5541:S2CID 5491:(PDF) 5480:(PDF) 5458:9 May 5419:S2CID 5411:JSTOR 5248:S2CID 5222:arXiv 5061:S2CID 5035:arXiv 4965:(PDF) 4954:(PDF) 4893:S2CID 4865:arXiv 4826:S2CID 4800:arXiv 4771:S2CID 4745:arXiv 4144:S2CID 4136:JSTOR 4082:S2CID 4056:arXiv 4028:S2CID 4002:arXiv 3939:S2CID 3913:arXiv 3871:arXiv 3847:3 May 3462:7.89 3456:0.82 3431:5.69 3425:0.81 3400:2.02 3394:0.69 3368:0.12 3362:0.59 3336:1.29 3330:0.61 3305:3.30 3299:0.68 3274:1.37 3268:0.63 3242:0.10 3236:0.98 3227:8.66 3206:Age ( 3168:Type 2904:novae 2669:comet 2562:crust 2521:metal 2433:stars 2363:novae 2355:ONeMg 2196:, or 2188:, or 2070:ionic 1985:gauss 1552:X-ray 1438:limit 914:state 878:atoms 801:Near 782:1,000 667:tonne 296:star 209:ONeMg 86:Earth 78:dense 68:is a 15415:Open 15310:Mass 15134:Core 15084:Nova 14977:Iron 14927:Dark 14737:Lead 14717:HgMn 14712:CEMP 14641:Blue 14614:Blue 14532:Late 14314:List 13882:List 13739:List 13704:List 13586:List 13576:Nova 13473:Fate 13280:PMID 13237:2007 13114:PMID 12955:ISBN 12918:ISSN 12863:ISBN 12836:2022 12815:2022 12794:2021 12683:2007 12654:2007 12616:ISSN 12549:PMID 12488:PMID 12416:ISSN 12359:ISSN 12299:ISSN 12134:2011 12107:2011 12015:ISBN 11915:PMID 11678:2023 11652:2023 11593:Gaia 11565:ISSN 11500:ISSN 11425:2019 11376:PMID 11321:2015 11278:ISSN 11217:ISSN 11150:ISSN 11083:ISSN 11016:ISSN 10949:ISSN 10882:ISSN 10686:2007 10656:2023 10527:PMID 10509:ISSN 10386:ISSN 10335:ISSN 10251:ISSN 10181:ISSN 10124:ISSN 10048:ISSN 9987:ISSN 9938:2017 9908:2013 9878:2015 9433:2007 9406:2007 9341:2017 9196:2007 8696:2007 8666:2012 8172:PMID 7965:PMID 7853:LCCN 7736:ISBN 7633:2019 7550:2019 7523:PMID 7298:PMID 7290:ISSN 7107:2007 6916:ISSN 6855:ISBN 6777:ISSN 6534:ISBN 6348:ISBN 5986:2007 5957:2007 5923:2007 5843:2010 5734:ISBN 5686:2007 5499:2007 5460:2007 5320:ISBN 5289:2009 5195:PMID 5136:LCCN 5006:LCCN 4973:2011 4044:§3, 3976:2007 3849:2007 3753:ISBN 3725:2010 3691:2011 3488:0.5 3482:D?? 3262:DQZ 3178:Mass 3101:and 2996:The 2822:and 2820:Gaia 2760:JWST 2750:and 2599:JWST 2595:Gaia 2512:and 2398:Fate 2388:iron 2359:neon 2295:neon 2285:and 2212:PNNV 2210:and 2164:PNNV 2162:and 2107:GCVS 2072:and 1931:He I 1920:He I 1709:Gaia 1673:and 1554:and 1123:and 892:and 663:g/cm 617:tude 371:and 330:and 201:neon 166:and 128:mass 15716:Sub 15450:Sun 14869:SGR 14646:Red 14619:Red 13272:doi 13250:450 13204:doi 13182:612 13162:doi 13150:494 13106:doi 13092:292 13066:doi 13054:112 13018:doi 12932:". 12908:doi 12886:446 12755:344 12724:doi 12702:199 12608:doi 12586:668 12541:doi 12519:456 12480:doi 12458:489 12408:doi 12351:doi 12291:doi 12229:doi 12207:453 12175:doi 12153:419 12066:doi 12044:898 12007:doi 11964:doi 11942:432 11905:PMC 11897:doi 11840:doi 11818:635 11771:doi 11757:530 11728:doi 11706:962 11670:ESA 11615:doi 11601:674 11557:doi 11535:657 11492:doi 11470:623 11410:ESO 11368:doi 11346:526 11270:doi 11248:674 11207:doi 11185:473 11140:doi 11118:457 11073:doi 11051:476 11006:doi 10984:439 10939:doi 10917:447 10874:doi 10852:747 10827:doi 10815:503 10780:doi 10758:138 10727:doi 10705:657 10595:doi 10573:172 10517:PMC 10499:doi 10477:913 10442:doi 10420:635 10378:doi 10366:330 10327:doi 10241:doi 10219:914 10171:doi 10114:doi 10092:872 10040:doi 10018:135 9979:doi 9957:566 9833:doi 9811:669 9780:doi 9720:doi 9698:312 9663:doi 9641:761 9615:doi 9603:425 9568:doi 9546:421 9521:doi 9509:277 9474:doi 9375:doi 9291:335 9266:doi 9254:362 9227:doi 9215:322 9160:doi 9148:482 9121:doi 9099:730 9065:doi 9043:172 9012:doi 8990:591 8956:doi 8913:doi 8891:532 8860:doi 8838:426 8813:doi 8801:153 8774:doi 8762:148 8736:doi 8724:171 8648:doi 8611:doi 8556:doi 8534:125 8503:doi 8481:545 8448:doi 8426:429 8391:doi 8369:191 8342:doi 8330:161 8293:doi 8258:doi 8246:153 8207:doi 8164:doi 8152:159 8119:doi 8097:451 8068:doi 8018:doi 7996:766 7957:doi 7935:450 7902:doi 7880:375 7814:doi 7802:116 7777:doi 7702:doi 7591:doi 7569:571 7515:doi 7493:565 7455:doi 7433:640 7400:doi 7378:911 7343:doi 7321:537 7282:doi 7260:627 7233:doi 7196:doi 7184:622 7149:doi 7127:432 7064:doi 7042:605 7017:doi 6974:199 6951:doi 6939:151 6906:doi 6884:934 6826:hdl 6816:doi 6804:315 6767:doi 6745:517 6707:doi 6685:612 6660:doi 6648:497 6616:doi 6604:121 6575:doi 6563:108 6491:doi 6479:112 6442:doi 6420:356 6385:doi 6302:doi 6290:489 6261:doi 6249:269 6209:doi 6187:988 6156:doi 6134:253 6103:doi 6091:166 6062:doi 6050:151 6021:doi 6009:107 5884:doi 5800:doi 5726:doi 5650:doi 5604:doi 5533:doi 5403:doi 5391:371 5366:doi 5240:doi 5185:PMC 5175:doi 5102:doi 5053:doi 5031:630 4930:doi 4918:228 4883:doi 4861:375 4818:doi 4796:660 4763:doi 4741:167 4712:doi 4700:121 4664:doi 4618:doi 4572:doi 4529:doi 4483:doi 4439:doi 4393:doi 4347:doi 4269:doi 4220:doi 4126:doi 4074:doi 4052:591 4020:doi 3998:170 3931:doi 3909:606 3803:doi 3791:113 3450:DZ 3419:DQ 3388:DC 3356:DA 3324:DQ 3293:DZ 3230:DA 3208:Gyr 2972:of 2474:or 2357:or 2208:DOV 2194:DBV 2186:DAV 2160:DOV 2153:ZZO 2134:ZZB 2130:DBV 2116:DA 2111:ZZA 2103:DAV 2037:to 1773:100 1760:AGB 1300:/ 2 967:5.7 787:STP 785:At 721:Sun 288:of 213:ONe 211:or 162:to 134:or 82:Sun 15901:: 14749:Be 14702:Am 14685:CH 14680:CN 14599:OB 14594:WR 13386:. 13372:. 13358:. 13344:. 13330:. 13316:. 13286:. 13278:. 13270:. 13262:. 13248:. 13210:. 13202:. 13194:. 13180:. 13160:. 13148:. 13144:. 13120:. 13112:. 13104:. 13090:. 13064:. 13052:. 13048:. 13024:. 13016:. 13006:10 13004:. 12983:. 12916:. 12906:. 12898:. 12884:. 12880:. 12767:. 12753:. 12730:. 12722:. 12714:. 12700:. 12662:^ 12622:. 12614:. 12606:. 12598:. 12584:. 12578:. 12555:. 12547:. 12539:. 12531:. 12517:. 12494:. 12486:. 12478:. 12470:. 12456:. 12414:. 12406:. 12398:. 12386:52 12384:. 12380:. 12357:. 12349:. 12341:. 12329:56 12327:. 12323:. 12311:^ 12297:. 12289:. 12281:. 12269:29 12267:. 12263:. 12249:^ 12235:. 12227:. 12219:. 12205:. 12181:. 12173:. 12165:. 12151:. 12074:. 12064:. 12056:. 12042:. 12038:. 12013:. 12005:. 11972:. 11962:. 11954:. 11940:. 11936:. 11913:. 11903:. 11895:. 11887:. 11875:13 11873:. 11869:. 11846:. 11838:. 11830:. 11816:. 11769:. 11755:. 11751:. 11726:. 11718:. 11704:. 11700:. 11680:. 11668:. 11643:. 11621:. 11613:. 11599:. 11571:. 11563:. 11555:. 11547:. 11533:. 11529:. 11506:. 11498:. 11490:. 11482:. 11468:. 11464:. 11412:. 11408:. 11382:. 11374:. 11366:. 11358:. 11344:. 11329:^ 11307:. 11284:. 11276:. 11268:. 11260:. 11246:. 11223:. 11215:. 11205:. 11197:. 11183:. 11179:. 11156:. 11148:. 11138:. 11130:. 11116:. 11112:. 11089:. 11081:. 11071:. 11063:. 11049:. 11045:. 11022:. 11014:. 11004:. 10996:. 10982:. 10978:. 10955:. 10947:. 10937:. 10929:. 10915:. 10911:. 10888:. 10880:. 10872:. 10864:. 10850:. 10825:. 10813:. 10809:. 10786:. 10778:. 10770:. 10756:. 10733:. 10725:. 10717:. 10703:. 10672:. 10647:. 10601:. 10593:. 10585:. 10571:. 10548:. 10525:. 10515:. 10507:. 10497:. 10489:. 10475:. 10471:. 10448:. 10440:. 10432:. 10418:. 10406:^ 10392:. 10384:. 10376:. 10364:. 10341:. 10333:. 10325:. 10317:. 10305:71 10303:. 10257:. 10249:. 10239:. 10231:. 10217:. 10213:. 10201:^ 10187:. 10179:. 10169:. 10159:29 10157:. 10153:. 10130:. 10122:. 10112:. 10104:. 10090:. 10086:. 10068:^ 10054:. 10046:. 10038:. 10030:. 10016:. 9993:. 9985:. 9977:. 9969:. 9955:. 9928:. 9924:. 9898:. 9894:. 9862:. 9839:. 9831:. 9823:. 9809:. 9786:. 9778:. 9770:. 9758:69 9756:. 9742:^ 9728:. 9718:. 9710:. 9696:. 9692:. 9669:. 9661:. 9653:. 9639:. 9613:. 9601:. 9597:. 9574:. 9566:. 9558:. 9544:. 9519:. 9507:. 9503:. 9480:. 9472:. 9464:. 9452:31 9450:. 9373:. 9363:74 9361:. 9349:^ 9325:. 9303:. 9289:. 9264:. 9252:. 9248:. 9225:. 9213:. 9174:^ 9158:. 9146:. 9142:. 9119:. 9111:. 9097:. 9085:^ 9071:. 9063:. 9055:. 9018:. 9010:. 9002:. 8988:. 8976:^ 8962:. 8954:. 8944:10 8942:. 8919:. 8911:. 8903:. 8889:. 8866:. 8858:. 8850:. 8836:. 8811:. 8799:. 8795:. 8772:. 8760:. 8734:. 8722:. 8718:. 8704:^ 8682:. 8656:. 8646:. 8617:. 8609:. 8601:. 8587:. 8562:. 8554:. 8546:. 8532:. 8509:. 8501:. 8493:. 8479:. 8456:. 8446:. 8438:. 8424:. 8420:. 8397:. 8389:. 8381:. 8367:. 8340:. 8328:. 8322:. 8299:. 8291:. 8279:. 8256:. 8244:. 8221:. 8213:. 8203:21 8201:. 8178:. 8170:. 8162:. 8150:. 8127:. 8117:. 8109:. 8095:. 8091:. 8066:. 8056:42 8054:. 8050:. 8038:^ 8024:. 8016:. 8008:. 7994:. 7971:. 7963:. 7955:. 7947:. 7933:. 7910:. 7900:. 7892:. 7878:. 7874:. 7851:. 7843:. 7839:. 7812:. 7800:. 7775:. 7765:53 7763:. 7759:. 7722:^ 7708:. 7700:. 7690:53 7688:. 7668:^ 7650:. 7623:. 7619:. 7597:. 7589:. 7581:. 7567:. 7537:. 7529:. 7521:. 7513:. 7505:. 7491:. 7487:. 7461:. 7453:. 7445:. 7431:. 7408:. 7398:. 7390:. 7376:. 7372:. 7349:. 7341:. 7333:. 7319:. 7296:. 7288:. 7280:. 7272:. 7258:. 7254:. 7231:. 7221:41 7219:. 7194:. 7182:. 7178:. 7155:. 7147:. 7139:. 7125:. 7093:. 7070:. 7062:. 7054:. 7040:. 7015:. 7003:. 6999:. 6972:. 6949:. 6937:. 6914:. 6904:. 6896:. 6882:. 6878:. 6853:. 6849:. 6824:. 6814:. 6802:. 6798:. 6775:. 6765:. 6757:. 6743:. 6739:. 6727:^ 6713:. 6705:. 6697:. 6683:. 6658:. 6646:. 6642:. 6630:^ 6614:. 6602:. 6598:. 6573:. 6561:. 6557:. 6532:. 6524:. 6489:. 6477:. 6473:. 6450:. 6440:. 6432:. 6418:. 6414:. 6391:. 6383:. 6373:40 6371:. 6346:. 6338:. 6316:^ 6300:. 6288:. 6284:. 6259:. 6247:. 6243:. 6229:^ 6215:. 6207:. 6199:. 6185:. 6162:. 6154:. 6146:. 6132:. 6109:. 6101:. 6089:. 6085:. 6060:. 6048:. 6044:. 6019:. 6007:. 6003:. 5976:. 5947:. 5943:. 5939:. 5913:. 5890:. 5882:. 5874:. 5862:38 5860:. 5833:. 5829:. 5806:. 5798:. 5790:. 5778:38 5776:. 5756:^ 5742:. 5732:. 5724:. 5716:. 5694:^ 5676:. 5672:. 5648:. 5638:95 5636:. 5632:. 5618:^ 5602:. 5592:74 5590:. 5586:. 5567:. 5553:^ 5539:. 5531:. 5521:56 5450:. 5446:. 5431:^ 5417:. 5409:. 5401:. 5389:. 5364:. 5354:87 5352:. 5348:. 5334:^ 5318:. 5279:. 5275:. 5269:. 5246:. 5238:. 5230:. 5218:16 5216:. 5193:. 5183:. 5173:. 5163:11 5161:. 5157:. 5134:. 5130:. 5100:. 5090:44 5088:. 5082:. 5059:. 5051:. 5043:. 5029:. 5004:. 4996:. 4992:. 4960:. 4928:. 4916:. 4891:. 4881:. 4873:. 4859:. 4853:. 4838:^ 4824:. 4816:. 4808:. 4794:. 4769:. 4761:. 4753:. 4739:. 4726:^ 4710:. 4698:. 4694:. 4678:^ 4662:. 4652:55 4650:. 4644:. 4616:. 4606:84 4604:. 4600:. 4586:^ 4570:. 4560:34 4558:. 4552:. 4527:. 4517:34 4515:. 4509:. 4481:. 4471:34 4469:. 4465:. 4437:. 4427:34 4425:. 4419:. 4391:. 4381:29 4379:. 4373:. 4345:. 4335:27 4333:. 4327:. 4299:15 4297:. 4283:^ 4267:. 4255:. 4249:. 4234:^ 4218:. 4208:26 4206:. 4200:. 4170:. 4156:^ 4142:. 4134:. 4124:. 4114:75 4112:. 4106:. 4080:. 4072:. 4064:. 4050:. 4026:. 4018:. 4010:. 3996:. 3984:^ 3951:^ 3937:. 3929:. 3921:. 3907:. 3893:^ 3879:. 3857:^ 3839:. 3817:^ 3801:. 3789:. 3783:. 3767:^ 3733:^ 3715:. 3711:. 3681:. 3651:^ 3497:2 3473:B 3465:1 3434:1 3403:2 3379:B 3371:3 3347:B 3339:1 3308:1 3277:2 3253:B 3245:2 3221:B 3210:) 3203:) 3189:) 3165:) 3163:ly 3032:. 3013:. 2856:AU 2589:. 2568:. 2478:. 2109:: 2064:, 2039:10 2035:10 1893:V 1885:E 1877:H 1869:P 1856:X 1848:Q 1840:Z 1832:O 1824:C 1816:B 1808:A 1558:. 1443:Ch 1316:pc 1314:= 1296:= 1288:. 1256:, 1111:. 1045:. 852:– 772:10 685:. 677:, 619:(M 351:. 326:, 270:. 247:; 64:A 15805:: 14942:Q 14761:B 14675:S 14587:B 14582:O 14570:M 14565:K 14560:G 14555:F 14550:A 14545:B 14540:O 14295:e 14288:t 14281:v 13783:e 13776:t 13769:v 13422:e 13415:t 13408:v 13294:. 13274:: 13266:: 13256:: 13239:. 13218:. 13206:: 13198:: 13188:: 13170:. 13164:: 13156:: 13128:. 13108:: 13098:: 13074:. 13068:: 13060:: 13032:. 13020:: 13012:: 12987:. 12975:. 12961:. 12940:. 12924:. 12910:: 12902:: 12892:: 12871:. 12838:. 12817:. 12796:. 12775:. 12771:: 12761:: 12726:: 12718:: 12708:: 12685:. 12656:. 12630:. 12610:: 12602:: 12592:: 12563:. 12543:: 12535:: 12525:: 12502:. 12482:: 12474:: 12464:: 12422:. 12410:: 12402:: 12392:: 12365:. 12353:: 12345:: 12335:: 12305:. 12293:: 12285:: 12275:: 12243:. 12231:: 12223:: 12213:: 12189:. 12177:: 12169:: 12159:: 12136:. 12109:. 12082:. 12068:: 12060:: 12050:: 12023:. 12009:: 12001:: 11980:. 11966:: 11958:: 11948:: 11921:. 11899:: 11891:: 11881:: 11854:. 11842:: 11834:: 11824:: 11801:. 11795:: 11779:. 11773:: 11763:: 11736:. 11730:: 11722:: 11712:: 11654:. 11629:. 11617:: 11607:: 11591:" 11579:. 11559:: 11551:: 11541:: 11514:. 11494:: 11486:: 11476:: 11449:. 11443:: 11427:. 11390:. 11370:: 11362:: 11352:: 11323:. 11292:. 11272:: 11264:: 11254:: 11231:. 11209:: 11201:: 11191:: 11164:. 11142:: 11134:: 11124:: 11097:. 11075:: 11067:: 11057:: 11030:. 11008:: 11000:: 10990:: 10963:. 10941:: 10933:: 10923:: 10896:. 10876:: 10868:: 10858:: 10829:: 10821:: 10794:. 10782:: 10774:: 10764:: 10741:. 10729:: 10721:: 10711:: 10688:. 10658:. 10633:. 10629:: 10609:. 10597:: 10589:: 10579:: 10556:. 10552:: 10533:. 10501:: 10493:: 10483:: 10456:. 10444:: 10436:: 10426:: 10400:. 10380:: 10372:: 10349:. 10329:: 10321:: 10311:: 10288:. 10284:: 10265:. 10243:: 10235:: 10225:: 10195:. 10173:: 10165:: 10138:. 10116:: 10108:: 10098:: 10062:. 10042:: 10034:: 10024:: 10001:. 9981:: 9973:: 9963:: 9940:. 9910:. 9880:. 9847:. 9835:: 9827:: 9817:: 9794:. 9782:: 9774:: 9764:: 9736:. 9722:: 9714:: 9704:: 9677:. 9665:: 9657:: 9647:: 9623:. 9617:: 9609:: 9582:. 9570:: 9562:: 9552:: 9529:. 9523:: 9515:: 9488:. 9476:: 9468:: 9458:: 9435:. 9408:. 9381:. 9377:: 9369:: 9343:. 9311:. 9307:: 9297:: 9274:. 9268:: 9260:: 9233:. 9229:: 9221:: 9198:. 9168:. 9162:: 9154:: 9127:. 9123:: 9115:: 9105:: 9079:. 9067:: 9059:: 9049:: 9026:. 9014:: 9006:: 8996:: 8970:. 8958:: 8950:: 8927:. 8915:: 8907:: 8897:: 8874:. 8862:: 8854:: 8844:: 8821:. 8815:: 8807:: 8780:. 8776:: 8768:: 8744:. 8738:: 8730:: 8698:. 8668:. 8650:: 8625:. 8613:: 8605:: 8595:: 8589:1 8570:. 8558:: 8550:: 8540:: 8517:. 8505:: 8497:: 8487:: 8464:. 8450:: 8442:: 8432:: 8405:. 8393:: 8385:: 8375:: 8350:. 8344:: 8336:: 8307:. 8295:: 8287:: 8281:4 8264:. 8260:: 8252:: 8229:. 8209:: 8186:. 8166:: 8158:: 8135:. 8121:: 8113:: 8103:: 8076:. 8070:: 8062:: 8032:. 8020:: 8012:: 8002:: 7979:. 7959:: 7951:: 7941:: 7918:. 7904:: 7896:: 7886:: 7859:. 7847:: 7820:. 7816:: 7808:: 7785:. 7779:: 7771:: 7744:. 7716:. 7704:: 7696:: 7662:. 7658:: 7652:8 7635:. 7605:. 7593:: 7585:: 7575:: 7552:. 7517:: 7509:: 7499:: 7469:. 7457:: 7449:: 7439:: 7416:. 7402:: 7394:: 7384:: 7357:. 7345:: 7337:: 7327:: 7304:. 7284:: 7276:: 7266:: 7239:. 7235:: 7227:: 7204:. 7198:: 7190:: 7163:. 7151:: 7143:: 7133:: 7109:. 7078:. 7066:: 7058:: 7048:: 7025:. 7019:: 7011:: 7005:4 6984:. 6980:: 6957:. 6953:: 6945:: 6922:. 6908:: 6900:: 6890:: 6863:. 6834:. 6828:: 6818:: 6810:: 6783:. 6769:: 6761:: 6751:: 6721:. 6709:: 6701:: 6691:: 6668:. 6662:: 6654:: 6624:. 6618:: 6610:: 6583:. 6577:: 6569:: 6542:. 6528:: 6518:: 6499:. 6493:: 6485:: 6458:. 6444:: 6436:: 6426:: 6399:. 6387:: 6379:: 6356:. 6342:/ 6310:. 6304:: 6296:: 6269:. 6263:: 6255:: 6223:. 6211:: 6203:: 6193:: 6170:. 6158:: 6150:: 6140:: 6117:. 6105:: 6097:: 6070:. 6064:: 6056:: 6029:. 6023:: 6015:: 5988:. 5959:. 5925:. 5898:. 5886:: 5878:: 5868:: 5845:. 5814:. 5802:: 5794:: 5784:: 5750:. 5728:: 5720:: 5710:: 5688:. 5658:. 5652:: 5644:: 5612:. 5606:: 5598:: 5569:9 5547:. 5535:: 5527:: 5501:. 5462:. 5425:. 5405:: 5397:: 5374:. 5368:: 5360:: 5328:. 5314:: 5291:. 5254:. 5242:: 5234:: 5224:: 5201:. 5177:: 5169:: 5142:. 5110:. 5104:: 5096:: 5067:. 5055:: 5047:: 5037:: 5000:: 4975:. 4936:. 4932:: 4924:: 4899:. 4885:: 4877:: 4867:: 4832:. 4820:: 4812:: 4802:: 4777:. 4765:: 4757:: 4747:: 4720:. 4714:: 4706:: 4672:. 4666:: 4658:: 4626:. 4620:: 4612:: 4580:. 4574:: 4566:: 4537:. 4531:: 4523:: 4491:. 4485:: 4477:: 4447:. 4441:: 4433:: 4401:. 4395:: 4387:: 4355:. 4349:: 4341:: 4309:. 4305:: 4277:. 4271:: 4263:: 4257:6 4228:. 4222:: 4214:: 4182:. 4178:: 4150:. 4128:: 4120:: 4088:. 4076:: 4068:: 4058:: 4034:. 4022:: 4014:: 4004:: 3978:. 3945:. 3933:: 3925:: 3915:: 3887:. 3883:: 3873:: 3851:. 3811:. 3805:: 3797:: 3761:. 3727:. 3693:. 3197:L 3194:( 3183:M 3180:( 2931:M 2836:M 2831:J 2828:M 2774:J 2771:M 2646:) 2642:( 2328:M 2276:M 2240:M 2155:) 2136:) 2113:) 2105:( 2033:× 2031:2 1951:2 1949:H 1790:( 1779:1 1769:1 1716:M 1599:M 1539:1 1534:T 1474:e 1471:ÎŒ 1435:M 1414:. 1409:2 1405:/ 1401:3 1396:) 1391:G 1387:c 1378:( 1371:2 1367:N 1357:t 1354:i 1351:m 1348:i 1345:l 1340:M 1322:c 1312:T 1302:m 1298:p 1294:T 1282:G 1249:e 1247:m 1243:N 1239:M 1235:R 1219:, 1211:3 1207:/ 1203:1 1199:M 1195:G 1190:e 1186:m 1182:2 1175:2 1165:3 1161:/ 1157:5 1153:N 1143:R 1026:M 1021:e 1018:ÎŒ 1010:M 1005:e 1002:ÎŒ 988:e 985:ÎŒ 979:e 976:ÎŒ 974:/ 969:M 702:M 695:M 652:M 645:M 638:M 631:M 623:) 621:V 513:T 506:L 499:M 492:K 485:G 478:F 471:A 464:B 457:O 233:M 207:( 193:M 190:( 146:- 105:, 42:. 35:. 20:)

Index

White dwarf stars
Degenerate star
White dwarf (disambiguation)

Sirius
Hubble Space Telescope
stellar core remnant
electron-degenerate matter
dense
Sun
Earth
luminosity
emission
thermal energy
Sirius B
binary star
Willem Jacob Luyten
evolutionary state
mass
neutron star
black hole
Milky Way
hydrogen
fusing
main-sequence star
red giant
helium
carbon
oxygen
triple-alpha process

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑