Knowledge

Stellar evolution

Source 📝

20: 28: 1038: 1312:, thus causing a Type Ib, Type Ic, or Type II supernova. Current understanding of this energy transfer is still not satisfactory; although current computer models of Type Ib, Type Ic, and Type II supernovae account for part of the energy transfer, they are not able to account for enough energy transfer to produce the observed ejection of material. However, neutrino oscillations may play an important role in the energy transfer problem as they not only affect the energy available in a particular flavour of neutrinos but also through other general-relativistic effects on neutrinos. 36: 1402:(see below), and provided that the ignition of carbon is not so violent as to blow the star apart in a supernova. A star of mass on the order of magnitude of the Sun will be unable to ignite carbon fusion, and will produce a white dwarf composed chiefly of carbon and oxygen, and of mass too low to collapse unless matter is added to it later (see below). A star of less than about half the mass of the Sun will be unable to ignite helium fusion (as noted earlier), and will produce a white dwarf composed chiefly of helium. 1340: 243:. Filamentary structures are truly ubiquitous in the molecular cloud. Dense molecular filaments will fragment into gravitationally bound cores, which are the precursors of stars. Continuous accretion of gas, geometrical bending, and magnetic fields may control the detailed fragmentation manner of the filaments. In supercritical filaments, observations have revealed quasi-periodic chains of dense cores with spacing comparable to the filament inner width, and embedded two protostars with gas outflows. 1093: 204: 731: 5111: 56: 4746: 449: 386: 5075: 179: 822:, with the material being mixed by turbulence from near the fusing regions up to the surface of the star. For all but the lowest-mass stars, the fused material has remained deep in the stellar interior prior to this point, so the convecting envelope makes fusion products visible at the star's surface for the first time. At this stage of evolution, the results are subtle, with the largest effects, alterations to the 5099: 609: 5063: 1225: 5087: 948:, which pulsate with well-defined periods of tens to hundreds of days and large amplitudes up to about 10 magnitudes (in the visual, total luminosity changes by a much smaller amount). In more-massive stars the stars become more luminous and the pulsation period is longer, leading to enhanced mass loss, and the stars become heavily obscured at visual wavelengths. These stars can be observed as 582: 4757: 971: 879:) for a few seconds. However, the energy is consumed by the thermal expansion of the initially degenerate core and thus cannot be seen from outside the star. Due to the expansion of the core, the hydrogen fusion in the overlying layers slows and total energy generation decreases. The star contracts, although not all the way to the main sequence, and it migrates to the 800:
with the star expanding and cooling at a similar or slightly lower luminosity to its main sequence state. Eventually either the core becomes degenerate, in stars around the mass of the sun, or the outer layers cool sufficiently to become opaque, in more massive stars. Either of these changes cause the hydrogen shell to increase in temperature and the
1179:. Surrounding the core are shells of lighter elements still undergoing fusion. The timescale for complete fusion of a carbon core to an iron core is so short, just a few hundred years, that the outer layers of the star are unable to react and the appearance of the star is largely unchanged. The iron core grows until it reaches an 875:. In the nondegenerate cores of more massive stars, the ignition of helium fusion occurs relatively slowly with no flash. The nuclear power released during the helium flash is very large, on the order of 10 times the luminosity of the Sun for a few days and 10 times the luminosity of the Sun (roughly the luminosity of the 1545:
Because the core-collapse mechanism of a supernova is, at present, only partially understood, it is still not known whether it is possible for a star to collapse directly to a black hole without producing a visible supernova, or whether some supernovae initially form unstable neutron stars which then
1284:
started by rebound of some of the infalling material from the collapse of the core. Electron capture in very dense parts of the infalling matter may produce additional neutrons. Because some of the rebounding matter is bombarded by the neutrons, some of its nuclei capture them, creating a spectrum of
799:
When a star exhausts the hydrogen in its core, it leaves the main sequence and begins to fuse hydrogen in a shell outside the core. The core increases in mass as the shell produces more helium. Depending on the mass of the helium core, this continues for several million to one or two billion years,
125:
phase. Stars with at least half the mass of the Sun can also begin to generate energy through the fusion of helium at their core, whereas more massive stars can fuse heavier elements along a series of concentric shells. Once a star like the Sun has exhausted its nuclear fuel, its core collapses into
940:
is formed, very cool and strongly reddened stars showing strong carbon lines in their spectra. A process known as hot bottom burning may convert carbon into oxygen and nitrogen before it can be dredged to the surface, and the interaction between these processes determines the observed luminosities
161:
Stellar evolution is not studied by observing the life of a single star, as most stellar changes occur too slowly to be detected, even over many centuries. Instead, astrophysicists come to understand how stars evolve by observing numerous stars at various points in their lifetime, and by simulating
1431:
or runaway ignition of carbon and oxygen. Heavier elements favor continued core collapse, because they require a higher temperature to ignite, because electron capture onto these elements and their fusion products is easier; higher core temperatures favor runaway nuclear reaction, which halts core
1088:
because the outer layers would be expelled by the extreme radiation. Although lower-mass stars normally do not burn off their outer layers so rapidly, they can likewise avoid becoming red giants or red supergiants if they are in binary systems close enough so that the companion star strips off the
1100:
The core of a massive star, defined as the region depleted of hydrogen, grows hotter and denser as it accretes material from the fusion of hydrogen outside the core. In sufficiently massive stars, the core reaches temperatures and densities high enough to fuse carbon and heavier elements via the
986:
These mid-range stars ultimately reach the tip of the asymptotic-giant-branch and run out of fuel for shell burning. They are not sufficiently massive to start full-scale carbon fusion, so they contract again, going through a period of post-asymptotic-giant-branch superwind to produce a planetary
926:
on the Hertzsprung–Russell diagram, paralleling the original red-giant evolution, but with even faster energy generation (which lasts for a shorter time). Although helium is being burnt in a shell, the majority of the energy is produced by hydrogen burning in a shell further from the core of the
1454:
If a white dwarf forms a close binary system with another star, hydrogen from the larger companion may accrete around and onto a white dwarf until it gets hot enough to fuse in a runaway reaction at its surface, although the white dwarf remains below the Chandrasekhar limit. Such an explosion is
1558:
that can be used to compute the evolutionary phases of a star from its formation until it becomes a remnant. The mass and chemical composition of the star are used as the inputs, and the luminosity and surface temperature are the only constraints. The model formulae are based upon the physical
1390:
A white dwarf is very hot when it first forms, more than 100,000 K at the surface and even hotter in its interior. It is so hot that a lot of its energy is lost in the form of neutrinos for the first 10 million years of its existence and will have lost most of its energy after a billion years.
1315:
Some evidence gained from analysis of the mass and orbital parameters of binary neutron stars (which require two such supernovae) hints that the collapse of an oxygen-neon-magnesium core may produce a supernova that differs observably (in ways other than size) from a supernova produced by the
1049:
In massive stars, the core is already large enough at the onset of the hydrogen burning shell that helium ignition will occur before electron degeneracy pressure has a chance to become prevalent. Thus, when these stars expand and cool, they do not brighten as dramatically as lower-mass stars;
1474: 1502:); observed rotational periods of neutron stars range from about 1.5 milliseconds (over 600 revolutions per second) to several seconds. When these rapidly rotating stars' magnetic poles are aligned with the Earth, we detect a pulse of radiation each revolution. Such neutron stars are called 1481:
Ordinarily, atoms are mostly electron clouds by volume, with very compact nuclei at the center (proportionally, if atoms were the size of a football stadium, their nuclei would be the size of dust mites). When a stellar core collapses, the pressure causes electrons and protons to fuse by
776:
Mid-sized stars are red giants during two different phases of their post-main-sequence evolution: red-giant-branch stars, with inert cores made of helium and hydrogen-burning shells, and asymptotic-giant-branch stars, with inert cores made of carbon and helium-burning shells inside the
70:
changes over the course of its lifetime and how it can lead to the creation of a new star. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the current
1387:. Electron degeneracy pressure provides a rather soft limit against further compression; therefore, for a given chemical composition, white dwarfs of higher mass have a smaller volume. With no fuel left to burn, the star radiates its remaining heat into space for billions of years. 1436:. These supernovae may be many times brighter than the Type II supernova marking the death of a massive star, even though the latter has the greater total energy release. This instability to collapse means that no white dwarf more massive than approximately 1.4  935:
There is a phase on the ascent of the asymptotic-giant-branch where a deep convective zone forms and can bring carbon from the core to the surface. This is known as the second dredge up, and in some stars there may even be a third dredge up. In this way a
711:, but their helium cores are not massive enough to reach the temperatures required for helium fusion so they never reach the tip of the red-giant branch. When hydrogen shell burning finishes, these stars move directly off the red-giant branch like a post- 900:), whereas some become even hotter and can form a blue tail or blue hook to the horizontal branch. The morphology of the horizontal branch depends on parameters such as metallicity, age, and helium content, but the exact details are still being modelled. 891:
of stars in the colour-magnitude diagram of a cluster, hotter and less luminous than the red giants. Higher-mass stars with larger helium cores move along the horizontal branch to higher temperatures, some becoming unstable pulsating stars in the yellow
1559:
understanding of the star, usually under the assumption of hydrostatic equilibrium. Extensive computer calculations are then run to determine the changing state of the star over time, yielding a table of data that can be used to determine the
1010:
It is possible for thermal pulses to be produced once post-asymptotic-giant-branch evolution has begun, producing a variety of unusual and poorly understood stars known as born-again asymptotic-giant-branch stars. These may result in extreme
849:. Red-giant-branch stars with a degenerate helium core all reach the tip with very similar core masses and very similar luminosities, although the more massive of the red giants become hot enough to ignite helium fusion before that point. 1546:
collapse into black holes; the exact relation between the initial mass of the star and the final remnant is also not completely certain. Resolution of these uncertainties requires the analysis of more supernovae and supernova remnants.
1497:
These stars, known as neutron stars, are extremely small—on the order of radius 10 km, no bigger than the size of a large city—and are phenomenally dense. Their period of rotation shortens dramatically as the stars shrink (due to
1297:(and in particular, of certain isotopes of elements that have multiple stable or long-lived isotopes) produced in such reactions is quite different from that produced in a supernova. Neither abundance alone matches that found in the 886:
Core helium flash stars evolve to the red end of the horizontal branch but do not migrate to higher temperatures before they gain a degenerate carbon-oxygen core and start helium shell burning. These stars are often observed as a
1506:, and were the first neutron stars to be discovered. Though electromagnetic radiation detected from pulsars is most often in the form of radio waves, pulsars have also been detected at visible, X-ray, and gamma ray wavelengths. 1327:, leaves behind no black hole remnant. In the past history of the universe, some stars were even larger than the largest that exists today, and they would immediately collapse into a black hole at the end of their lives, due to 545:
in which energy released by the core maintains a high gas pressure, balancing the weight of the star's matter and preventing further gravitational collapse. The star thus evolves rapidly to a stable state, beginning the
3139:
Ekström, S.; Georgy, C.; Eggenberger, P.; Meynet, G.; Mowlavi, N.; Wyttenbach, A.; Granada, A.; Decressin, T.; Hirschi, R.; Frischknecht, U.; Charbonnel, C.; Maeder, A. (2012). "Grids of stellar models with rotation".
931:
and they occur towards the end of the asymptotic-giant-branch phase, sometimes even into the post-asymptotic-giant-branch phase. Depending on mass and composition, there may be several to hundreds of thermal pulses.
1201:
in more massive stars. Once this mass is reached, electrons begin to be captured into the iron-peak nuclei and the core becomes unable to support itself. The core collapses and the star is destroyed, either in a
2449:
Jones, S.; Hirschi, R.; Nomoto, K.; Fischer, T.; Timmes, F. X.; Herwig, F.; Paxton, B.; Toki, H.; Suzuki, T.; Martínez-Pinedo, G.; Lam, Y. H.; Bertolli, M. G. (2013). "Advanced Burning Stages and Fate of 8–10
367:(but if they orbit around another stellar object they are classified as planets). Both types, deuterium-burning and not, shine dimly and fade away slowly, cooling gradually over hundreds of millions of years. 2049: 1089:
envelope as it expands, or if they rotate rapidly enough so that convection extends all the way from the core to the surface, resulting in the absence of a separate core and envelope due to thorough mixing.
1567:, along with other evolving properties. Accurate models can be used to estimate the current age of a star by comparing its physical properties with those of stars along a matching evolutionary track. 1398:
to form magnesium, neon, and smaller amounts of other elements, resulting in a white dwarf composed chiefly of oxygen, neon, and magnesium, provided that it can lose enough mass to get below the
1077:), which are very luminous and thus have very rapid stellar winds, lose mass so rapidly due to radiation pressure that they tend to strip off their own envelopes before they can expand to become 987:
nebula with an extremely hot central star. The central star then cools to a white dwarf. The expelled gas is relatively rich in heavy elements created within the star and may be particularly
927:
star. Helium from these hydrogen burning shells drops towards the center of the star and periodically the energy output from the helium shell increases dramatically. This is known as a
1187:
due to various corrections for the relativistic effects, entropy, charge, and the surrounding envelope. The effective Chandrasekhar mass for an iron core varies from about 1.34 
1081:, and thus retain extremely high surface temperatures (and blue-white color) from their main-sequence time onwards. The largest stars of the current generation are about 100–150  4597: 2980: 1050:
however, they were more luminous on the main sequence and they evolve to highly luminous supergiants. Their cores become massive enough that they cannot support themselves by
1726:
Zhang, Guo-Yin; André, Ph.; Men'shchikov, A.; Wang, Ke (1 October 2020). "Fragmentation of star-forming filaments in the X-shaped nebula of the California molecular cloud".
2213:
Gratton, R. G.; Carretta, E.; Bragaglia, A.; Lucatello, S.; d'Orazi, V. (2010). "The second and third parameters of the horizontal branch in globular clusters".
1486:. Without electrons, which keep nuclei apart, the neutrons collapse into a dense ball (in some ways like a giant atomic nucleus), with a thin overlying layer of 1542:
may allow deviations from this strict rule. The existence of black holes in the universe is well supported, both theoretically and by astronomical observation.
1524:. The stellar remnant thus becomes a black hole. The mass at which this occurs is not known with certainty, but is currently estimated at between 2 and 3  700:
and it will not develop a degenerate helium core with a shell burning hydrogen. Instead, hydrogen fusion will proceed until almost the whole star is helium.
722:
will be able to reach temperatures high enough to fuse helium, and these "mid-sized" stars go on to further stages of evolution beyond the red-giant branch.
781:
with a helium-fusing core. Many of these helium-fusing stars cluster towards the cool end of the horizontal branch as K-type giants and are referred to as
1308:
The energy transferred from collapse of the core to rebounding material not only generates heavy elements, but provides for their acceleration well beyond
1289:. Although non-exploding red giants can produce significant quantities of elements heavier than iron using neutrons released in side reactions of earlier 573:
star, like the Sun, will remain on the main sequence for about 10 billion years. The Sun is thought to be in the middle of its main sequence lifespan.
670:
is around 13.8 billion years old, which is less time (by several orders of magnitude, in some cases) than it takes for fusion to cease in such stars.
1427:
and the star collapses. Depending upon the chemical composition and pre-collapse temperature in the center, this will lead either to collapse into a
2649:
Ahluwalia-Khalilova, D. V (2004). "Addendum to: Gen. Rel. Grav. 28 (1996) 1161, First Prize Essay for 1996: Neutrino Oscillations and Supernovae".
1116:
to form neon, sodium, and magnesium. Stars somewhat less massive may partially ignite carbon, but they are unable to fully fuse the carbon before
1003:
and molecules to form. With the high infrared energy input from the central star, ideal conditions are formed in these circumstellar envelopes for
1538:. According to classical general relativity, no matter or information can flow from the interior of a black hole to an outside observer, although 845:, so it increases in temperature which causes the rate of fusion in the hydrogen shell to increase. The star increases in luminosity towards the 117:
begin to fuse hydrogen along a spherical shell surrounding the core. This process causes the star to gradually grow in size, passing through the
2627: 2610: 2755:
van den Heuvel, E. P. J. (2004). "X-Ray Binaries and Their Descendants: Binary Radio Pulsars; Evidence for Three Classes of Neutron Stars?".
757:
K or M. Red giants lie along the right edge of the Hertzsprung–Russell diagram due to their red color and large luminosity. Examples include
2307:
Zijlstra, A. A.; Loup, C.; Waters, L. B. F. M.; Whitelock, P. A.; Th. van Loon, J.; Guglielmo, F.; Groenewegen; Waters; Trams (March 1996).
1171:
In more massive stars, the fusion of neon proceeds without a runaway deflagration. This is followed in turn by complete oxygen burning and
235:). As it collapses, a giant molecular cloud breaks into smaller and smaller pieces. In each of these fragments, the collapsing gas releases 5016: 501:, which will be the last phase in which the Sun undergoes fusion. The numbers along the main sequence curve are the masses in solar units. 3002:
Demarque, P.; Guenther, D. B.; Li, L. H.; Mazumdar, A.; Straka, C. W. (August 2008). "YREC: the Yale rotating stellar evolution code".
1379:, compressed into approximately the volume of the Earth. White dwarfs are stable because the inward pull of gravity is balanced by the 452: 389: 1520:
If the mass of the stellar remnant is high enough, the neutron degeneracy pressure will be insufficient to prevent collapse below the
2378:
Evolution of Stars: The Photospheric Abundance Connection: Proceedings of the 145th Symposium of the International Astronomical Union
2988: 2793: 1301:, so both supernovae and ejection of elements from red giants are required to explain the observed abundance of heavy elements and 1241: 841:
The helium core continues to grow on the red-giant branch. It is no longer in thermal equilibrium, either degenerate or above the
39:
Artist's depiction of the life cycle of a Sun-like star, starting as a main-sequence star at lower left then expanding through the
1969: 1347:
After a star has burned out its fuel supply, its remnants can take one of three forms, depending on the mass during its lifetime.
1394:
The chemical composition of the white dwarf depends upon its mass. A star that has a mass of about 8-12 solar masses will ignite
1105:. At the end of helium fusion, the core of a star consists primarily of carbon and oxygen. In stars heavier than about 8  1127:
The exact mass limit for full carbon burning depends on several factors such as metallicity and the detailed mass lost on the
4794: 4629: 3122: 1654: 1423:
for a white dwarf composed chiefly of carbon, oxygen, neon, and/or magnesium, then electron degeneracy pressure fails due to
565:
fuse hydrogen slowly and will remain on the main sequence for hundreds of billions of years or longer, whereas massive, hot
158:
suggest they will slowly become brighter and hotter before running out of hydrogen fuel and becoming low-mass white dwarfs.
3190: 254:
as it reaches its final mass. Further development is determined by its mass. Mass is typically compared to the mass of the
956:
activity. These stars are clearly oxygen rich, in contrast to the carbon stars, but both must be produced by dredge ups.
842: 1861: 280: 1319:
The most massive stars that exist today may be completely destroyed by a supernova with an energy greatly exceeding its
239:
as heat. As its temperature and pressure increase, a fragment condenses into a rotating ball of superhot gas known as a
4604: 3923: 914:
After a star has consumed the helium at the core, hydrogen and helium fusion continues in shells around a hot core of
3103: 3084: 3041: 1490:(chiefly iron unless matter of different composition is added later). The neutrons resist further compression by the 2309:"Obscured asymptotic giant branch stars in the Magellanic Clouds -- II. Near-infrared and mid-infrared counterparts" 1499: 511: 325: 2930:
D'Amico, N.; Stappers, B. W.; Bailes, M.; Martin, C. E.; Bell, J. F.; Lyne, A. G.; Manchester, R. N. (June 1998).
541:) contributes a large portion of the energy generation. The onset of nuclear fusion leads relatively quickly to a 19: 4316: 1846: 1564: 554: 465: 2887:
Nomoto, Ken'ichi & Kondo, Yoji (January 1991). "Conditions for accretion-induced collapse of white dwarfs".
5141: 4609: 4246: 4230: 3265: 1583: 1249: 666:
What happens after a low-mass star ceases to produce energy through fusion has not been directly observed; the
4656: 4523: 1622: 4639: 4590: 4565: 3858: 1320: 868: 651: 883:
on the Hertzsprung–Russell diagram, gradually shrinking in radius and increasing its surface temperature.
715:(AGB) star, but at lower luminosity, to become a white dwarf. A star with an initial mass about 0.6  5006: 4580: 4560: 1597: â€“ Process that creates new atomic nuclei from pre-existing nucleons, primarily protons and neutrons 1020: 846: 3943: 5136: 5131: 5053: 4817: 4644: 4575: 4545: 1588: 1324: 1165: 1019:), hydrogen deficient post-asymptotic-giant-branch stars, variable planetary nebula central stars, and 1343:
Stellar evolution of low-mass (left cycle) and high-mass (right cycle) stars, with examples in italics
4787: 4651: 4528: 4505: 4087: 3536: 3531: 3526: 3521: 3516: 3511: 3211: 2635: 2607: 1491: 1448: 1384: 570: 566: 2376:
Heber, U. (1991). "Atmospheres and Abundances of Blue Horizontal Branch Stars and Related Objects".
2343: 1037: 3794: 3668: 3303: 3239: 1616: 247: 834:, with lower C/C ratios and altered proportions of carbon and nitrogen. These are detectable with 684:
may stay on the main sequence for some six to twelve trillion years, gradually increasing in both
75:. The table shows the lifetimes of stars as a function of their masses. All stars are formed from 5038: 4887: 4570: 4321: 4120: 4030: 3990: 3972: 3898: 3469: 3395: 2840:
stars toward electron capture supernovae. I – Formation of electron-degenerate O + Ne + Mg cores"
2515:
Woosley, S. E.; Heger, A.; Weaver, T. A. (2002). "The evolution and explosion of massive stars".
2182: 1172: 1128: 923: 909: 712: 638:
Eventually the star's core exhausts its supply of hydrogen and the star begins to evolve off the
542: 498: 433: 236: 1966:
Lejeune, T; Schaerer, D (2001). "Database of Geneva stellar evolution tracks and isochrones for
867:
In the helium cores of stars in the 0.6 to 2.0 solar mass range, which are largely supported by
27: 4731: 4711: 4483: 4478: 4376: 4271: 4220: 4025: 4015: 3688: 3486: 3454: 3345: 3328: 2702:
Yang, Yue; Kneller, James P (2017). "GR effects in supernova neutrino flavor transformations".
2338: 2177: 1395: 1146: 1113: 996: 762: 754: 405: 251: 212: 76: 995:
enriched, depending on the type of the star. The gas builds up in an expanding shell called a
734:
The evolutionary track of a solar mass, solar metallicity, star from main sequence to post-AGB
4585: 4555: 4550: 4540: 4468: 4256: 3422: 3199: 216: 3703: 3163: 3025: 2416: 2236: 2074: 1824: 1749: 101:
powers a star for most of its existence. Initially the energy is generated by the fusion of
4996: 4944: 4837: 4780: 4726: 4624: 4614: 4463: 4431: 4225: 4020: 4005: 3318: 3195: 3159: 3021: 2943: 2896: 2851: 2774: 2721: 2668: 2574: 2524: 2476: 2412: 2385: 2330: 2279: 2232: 2169: 2070: 1930: 1820: 1745: 1686: 1600: 1521: 1154: 616:, convection zones with arrowed cycles and radiative zones with red flashes. To the left a 8: 5103: 4832: 4186: 4169: 3840: 3742: 3565: 2680: 1443:
can exist (with a possible minor exception for very rapidly spinning white dwarfs, whose
1413: 1399: 1380: 1328: 1117: 1096:
The onion-like layers of a massive, evolved star just before core collapse (not to scale)
1051: 1004: 975: 593: 72: 4326: 2947: 2900: 2855: 2800: 2778: 2725: 2672: 2578: 2528: 2480: 2389: 2334: 2283: 2173: 1934: 1690: 1285:
heavier-than-iron material including the radioactive elements up to (and likely beyond)
654:
becomes sufficient to oppose gravity or the core becomes hot enough (around 100 MK) for
35: 5091: 5079: 4901: 4822: 4721: 4682: 4634: 4619: 4533: 4473: 4396: 4306: 4276: 4266: 4210: 4132: 3823: 3459: 3258: 3175: 3149: 3047: 3011: 2764: 2737: 2711: 2684: 2658: 2540: 2492: 2466: 2428: 2320: 2248: 2222: 2195: 2086: 2060: 1810: 1769: 1735: 1606: 1603: â€“ Theoretical framework detailing the sun's structure, composition and energetics 1560: 1555: 1535: 1184: 1000: 897: 643: 2488: 1447:
due to rotation partially counteracts the weight of their matter). Mass transfer in a
4672: 4097: 4070: 4050: 3850: 3634: 3622: 3449: 3429: 3383: 3333: 3186: 3118: 3099: 3080: 3037: 2961: 2956: 2931: 2912: 2869: 2741: 2590: 2496: 2432: 2358: 1948: 1836: 1801:
Majaess, D. (March 2013). "Discovering protostars and their host clusters via WISE".
1773: 1761: 1650: 1539: 1487: 1444: 1433: 1290: 1176: 1012: 893: 880: 858: 778: 627: 412: 329: 163: 4157: 3179: 3051: 2544: 2252: 2199: 1138:. After carbon burning is complete, the core of these stars reaches about 2.5  804:
of the star to increase, at which point the star expands onto the red-giant branch.
506:
For a more-massive protostar, the core temperature will eventually reach 10 million
109:
of the main-sequence star. Later, as the preponderance of atoms at the core becomes
5067: 4877: 4500: 4453: 4403: 4391: 4369: 4364: 4291: 4251: 4198: 3980: 3903: 3878: 3772: 3693: 3417: 3378: 3167: 3029: 2951: 2904: 2859: 2729: 2688: 2676: 2582: 2532: 2484: 2420: 2348: 2287: 2240: 2187: 2090: 2078: 1938: 1828: 1753: 1694: 1642: 1483: 1424: 1232:, the shattered remnants of a star which exploded as a supernova visible in 1054 AD 1150: 979: 876: 813: 597: 477: 131: 48: 3171: 2244: 1757: 1477:
Bubble-like shock wave still expanding from a supernova explosion 15,000 years ago
4926: 4687: 4490: 4359: 4203: 4174: 4115: 4110: 3985: 3713: 3678: 3612: 3558: 3553: 3498: 3308: 2614: 2565:
stars toward electron capture supernovae. II – Collapse of an O + Ne + Mg core".
2082: 1594: 1309: 1016: 697: 419: 398: 364: 84: 1339: 1252:
released by this core collapse is converted into a Type Ib, Type Ic, or Type II
777:
hydrogen-burning shells. Between these two phases, stars spend a period on the
5115: 4991: 4954: 4749: 4515: 4354: 4181: 4152: 4127: 4060: 3749: 3617: 3503: 3405: 3295: 3285: 2733: 2536: 1577: 1277: 1078: 473: 426: 317: 187: 167: 102: 98: 3222:
MESA stellar evolution codes (Modules for Experiments in Stellar Astrophysics)
3033: 2757:
Proceedings of the 5th INTEGRAL Workshop on the INTEGRAL Universe (ESA SP-552)
1869: 1832: 1451:
may cause an initially stable white dwarf to surpass the Chandrasekhar limit.
1145:
and becomes hot enough for heavier elements to fuse. Before oxygen starts to
5125: 5021: 5001: 4701: 4495: 4458: 4426: 4301: 4010: 3833: 3804: 3782: 3400: 3373: 3350: 3251: 2965: 2916: 2873: 2594: 2362: 2353: 2308: 1952: 1840: 1765: 1619: â€“ Angular motion of a star about its axis – Rotations slow as stars age 1409:. However, the universe is not old enough for any black dwarfs to exist yet. 1102: 1092: 965: 945: 928: 750: 655: 639: 613: 558: 547: 469: 376: 155: 92: 3226: 3196:
Astronomy 162, Unit 2 (The Structure & Evolution of Stars) lecture notes
2817: 4761: 4436: 4386: 4381: 4281: 4164: 4147: 4105: 4075: 4065: 4000: 3883: 3828: 3809: 3789: 3767: 3759: 3602: 3595: 3434: 3355: 3338: 3216: 2325: 1943: 1918: 1468: 1428: 1298: 1237: 1055: 872: 835: 704: 337: 333: 288: 203: 139: 134:. Stars with around ten or more times the mass of the Sun can explode in a 106: 2424: 2403:
Vanbeveren, D.; De Loore, C.; Van Rensbergen, W. (1998). "Massive stars".
692:, and take several hundred billion years more to collapse, slowly, into a 4970: 4911: 4803: 4677: 4349: 4341: 4331: 4311: 4286: 4215: 4137: 3893: 3868: 3863: 3777: 3737: 3698: 3663: 3646: 3641: 3313: 3229:, BBC Radio 4 discussion with Paul Murdin, Janna Levin and Phil Charles ( 2769: 2663: 2160:
Deupree, R. G. (1996-11-01). "A Reexamination of the Core Helium Flash".
2065: 1610: 1406: 1360: 1356: 1229: 1121: 937: 693: 685: 569:
will leave the main sequence after just a few million years. A mid-sized
321: 300: 127: 2932:"The Parkes Southern Pulsar Survey — III. Timing of long-period pulsars" 1120:
sets in, and these stars will eventually leave an oxygen-neon-magnesium
730: 55: 5011: 4975: 4932: 4261: 3958: 3931: 3908: 3888: 3873: 3725: 3629: 3607: 3585: 3580: 3444: 1515: 1281: 1245: 1207: 1059: 1032: 949: 819: 801: 689: 224: 143: 44: 5110: 1164:, this process is unstable and creates runaway fusion resulting in an 561:
depending upon the mass of the star. Small, relatively cold, low-mass
497:
after its main-sequence phase ends before expanding further along the
283:(WISE) have been especially important for unveiling numerous galactic 4915: 4867: 4842: 4827: 4448: 4296: 4080: 4045: 4040: 4035: 3995: 3948: 3938: 3732: 3708: 3683: 3590: 3541: 3474: 3464: 3439: 3412: 3388: 3323: 1265: 1253: 1219: 1203: 888: 862: 831: 827: 782: 758: 746: 708: 674: 658:
to begin. Which of these happens first depends upon the star's mass.
620: 562: 538: 519: 494: 440: 284: 272: 240: 198: 151: 135: 122: 91:
settle down into a state of equilibrium, becoming what is known as a
88: 1494:, in a way analogous to electron degeneracy pressure, but stronger. 1405:
In the end, all that remains is a cold dark mass sometimes called a
1268:
fragment some nuclei; some of their energy is consumed in releasing
1248:. Through a process that is not completely understood, some of the 770: 553:
A new star will sit at a specific point on the main sequence of the
4863: 4441: 4142: 3816: 3575: 3548: 2908: 2864: 2832: 2716: 2586: 2292: 2267: 2191: 1740: 1699: 1674: 1302: 1273: 1269: 1261: 1257: 823: 794: 766: 667: 515: 276: 232: 147: 118: 40: 3237: 3154: 3016: 2471: 2227: 1815: 1473: 4716: 4191: 3953: 3720: 3673: 3656: 3651: 3570: 2212: 1286: 1256:. It is known that the core collapse produces a massive surge of 1042: 982:
formed by the death of a star with about the same mass as the Sun
944:
Another well known class of asymptotic-giant-branch stars is the
647: 586: 219:. Typical giant molecular clouds are roughly 100 light-years (9.5 178: 3096:
An Introduction to the Theory of Stellar Structure and Evolution
3077:
Stellar interiors: physical principles, structure, and evolution
3067:, p. 79, "Assigning ages from hydrogen-burning timescales") 2402: 1787: 696:. Such stars will not become red giants as the whole star is a 4706: 4694: 3913: 3799: 3221: 3075:
Hansen, Carl J.; Kawaler, Steven D.; Trimble, Virginia (2004).
2929: 1862:"Working Group on Extrasolar Planets: Definition of a "Planet"" 1503: 992: 988: 919: 915: 826:
of hydrogen and helium, being unobservable. The effects of the
646:
generated by the fusion of hydrogen to counteract the force of
523: 507: 110: 80: 23:
Representative lifetimes of stars as a function of their masses
4772: 3138: 1725: 1673:
Laughlin, Gregory; Bodenheimer, Peter; Adams, Fred C. (1997).
1224: 275:
are encompassed in dust, and are thus more readily visible at
3187:
Astronomy 606 (Stellar Structure and Evolution) lecture notes
1917:
Adams, F. C.; Bodenheimer, P.; Laughlin, G. (December 2005).
953: 608: 461: 2044:{\displaystyle (UBV)_{\mathsf {J}}(RI)_{\mathsf {C}}JHKLL'M} 182:
Simplistic representation of the stages of stellar evolution
4055: 3274: 2306: 2266:
Sackmann, I. -J.; Boothroyd, A. I.; Kraemer, K. E. (1993).
1456: 1294: 1194:
in the least massive red supergiants to more than 1.8 
581: 138:
as their inert iron cores collapse into an extremely dense
67: 4756: 3001: 1236:
When the core of a massive star collapses, it will form a
970: 4421: 2448: 2051:, HST-WFPC2, Geneva and Washington photometric systems". 1070:
Extremely massive stars (more than approximately 40 
537:
10 kg), the carbon–nitrogen–oxygen fusion reaction (
490: 255: 114: 3243: 2265: 1916: 1672: 1276:, and some of their energy is transformed into heat and 871:, helium fusion will ignite on a timescale of days in a 294: 47:
phases, until its outer envelope is expelled to form a
5051: 2634:. Max-Planck-Institut fĂŒr Astrophysik. Archived from 2558:
Nomoto, Ken'ichi (November 1987). "Evolution of 8–10
1972: 370: 316:
10 kg) never reach temperatures high enough for
250:
of gas and dust from the molecular cloud, becoming a
3074: 2103: 1919:"M dwarfs: planet formation and long term evolution" 941:
and spectra of carbon stars in particular clusters.
468:. The tracks start once the star has evolved to the 2648: 1157:. For a range of stars of approximately 8–12  999:and cools as it moves away from the star, allowing 345:), 2.5 × 10 kg, or 0.0125  305:
Protostars with masses less than roughly 0.08 
2514: 2043: 1609: â€“ Grouping of stars by similar metallicity ( 2936:Monthly Notices of the Royal Astronomical Society 2313:Monthly Notices of the Royal Astronomical Society 1372:, the resulting white dwarf is of about 0.6  5123: 2116: 2114: 2112: 903: 476:stops (for massive stars) and at the end of the 328:defines brown dwarfs as stars massive enough to 3058: 1965: 838:and have been measured for many evolved stars. 451: 388: 223:10 km) across and contain up to 6,000,000 87:. Over the course of millions of years, these 31:The change in size with time of a Sun-like star 2754: 2143: 2141: 1412:If the white dwarf's mass increases above the 1383:of the star's electrons, a consequence of the 4788: 3259: 3198:, Richard W. Pogge, Department of Astronomy, 2628:"Supernova Simulations Still Defy Explosions" 2109: 1788:"Wide-field Infrared Survey Explorer Mission" 2995: 2794:"Pair Instability Supernovae and Hypernovae" 154:to have reached the end of their existence, 2886: 2701: 2153: 2138: 1534:Black holes are predicted by the theory of 952:, pulsating in the infrared and showing OH 818:The expanding outer layers of the star are 4795: 4781: 3266: 3252: 3112: 3064: 2551: 2510: 2508: 2506: 2206: 2132: 2120: 1591: â€“ History and future of the universe 1240:, or in the case of cores that exceed the 1054:and will eventually collapse to produce a 150:is not old enough for any of the smallest 3153: 3113:Ryan, Sean G.; Norton, Andrew J. (2010). 3015: 2978: 2955: 2863: 2791: 2768: 2715: 2662: 2470: 2369: 2352: 2342: 2324: 2291: 2226: 2181: 2064: 1942: 1895: 1814: 1739: 1698: 1641: 1350: 1293:, the abundance of elements heavier than 1175:, producing a core consisting largely of 807: 673:Recent astrophysical models suggest that 320:of hydrogen to begin. These are known as 3189:, Cole Miller, Department of Astronomy, 3093: 2626:Buras, Robert; et al. (June 2003). 2444: 2442: 2147: 1889: 1713: 1472: 1338: 1223: 1091: 1036: 969: 729: 607: 580: 202: 177: 54: 34: 26: 18: 2503: 2159: 1959: 1800: 1668: 1666: 1065: 830:appear at the surface during the first 596:, which furthermore can develop into a 130:and the outer layers are expelled as a 5124: 2830: 2785: 2557: 2012: 1991: 438: 431: 424: 4776: 3247: 3115:Stellar Evolution and Nucleosynthesis 2981:"Pulsar Detected by Gamma Waves Only" 2979:Courtland, Rachel (17 October 2008). 2625: 2439: 2405:The Astronomy and Astrophysics Review 2375: 1902:"Why the Smallest Stars Stay Small". 1794: 1780: 464:with different initial masses on the 417: 410: 403: 396: 79:clouds of gas and dust, often called 16:Changes to stars over their lifespans 2792:J. Hammer, Nicolay (July 24, 2003). 1663: 852: 295:Brown dwarfs and sub-stellar objects 2300: 2104:Hansen, Kawaler & Trimble (2004 1580: â€“ Classification in astronomy 1334: 576: 526:. In stars of slightly over 1  281:Wide-field Infrared Survey Explorer 279:wavelengths. Observations from the 13: 3132: 2681:10.1023/B:GERG.0000038633.96716.04 2651:General Relativity and Gravitation 2268:"Our Sun. III. Present and Future" 1617:Stellar rotation § After formation 1554:A stellar evolutionary model is a 725: 650:, the core contracts until either 585:Illustration of the dynamics of a 447: 384: 371:Main sequence stellar mass objects 211:Stellar evolution starts with the 14: 5153: 3205: 3079:(2nd ed.). Springer-Verlag. 788: 661: 332:at some point in their lives (13 246:A protostar continues to grow by 173: 5109: 5097: 5085: 5073: 5061: 4755: 4745: 4744: 2957:10.1046/j.1365-8711.1998.01397.x 2818:"Fossil Stars (1): White Dwarfs" 1500:conservation of angular momentum 1462: 1242:Tolman–Oppenheimer–Volkoff limit 1131:, but is approximately 8–9  1026: 489:A yellow track is shown for the 326:International Astronomical Union 269:10 kg) means 1 solar mass. 4802: 2972: 2923: 2880: 2824: 2810: 2748: 2695: 2642: 2619: 2601: 2396: 2259: 2126: 2097: 1910: 603: 3117:. Cambridge University Press. 3098:. Cambridge University Press. 3004:Astrophysics and Space Science 2007: 1997: 1986: 1973: 1883: 1854: 1803:Astrophysics and Space Science 1719: 1707: 1675:"The End of the Main Sequence" 1635: 1584:Galaxy formation and evolution 1509: 1250:gravitational potential energy 634:blue-white main-sequence star. 237:gravitational potential energy 207:Schematic of stellar evolution 1: 4888:creation of chemical elements 4657:Timeline of stellar astronomy 2608:How do Massive Stars Explode? 1629: 1623:Timeline of stellar astronomy 1323:. This rare event, caused by 1260:, as observed with supernova 904:Asymptotic-giant-branch phase 843:Schönberg–Chandrasekhar limit 738:Stars of roughly 0.6–10  3142:Astronomy & Astrophysics 2831:Nomoto, K. (February 1984). 2053:Astronomy & Astrophysics 1868:. 2003-02-28. Archived from 1321:gravitational binding energy 1213: 1181:effective Chandrasekhar mass 1021:R Coronae Borealis variables 869:electron degeneracy pressure 652:electron degeneracy pressure 512:proton–proton chain reaction 192: 7: 4317:Hertzsprung–Russell diagram 3212:Stellar evolution simulator 3172:10.1051/0004-6361/201117751 2489:10.1088/0004-637X/772/2/150 2245:10.1051/0004-6361/200912572 1758:10.1051/0004-6361/202037721 1570: 1565:Hertzsprung–Russell diagram 959: 847:tip of the red-giant branch 555:Hertzsprung–Russell diagram 466:Hertzsprung–Russell diagram 460:The evolutionary tracks of 121:stage until it reaches the 10: 5158: 4818:Chronology of the universe 4231:Kelvin–Helmholtz mechanism 2734:10.1103/PhysRevD.96.023009 2537:10.1103/RevModPhys.74.1015 2215:Astronomy and Astrophysics 2083:10.1051/0004-6361:20000214 1728:Astronomy and Astrophysics 1589:Chronology of the universe 1513: 1466: 1354: 1316:collapse of an iron core. 1264:. The extremely energetic 1217: 1166:electron capture supernova 1030: 963: 907: 856: 811: 792: 374: 298: 196: 185: 66:is the process by which a 59:Chart of stellar evolution 5030: 4984: 4963: 4851: 4810: 4740: 4665: 4514: 4412: 4340: 4239: 4096: 3971: 3849: 3758: 3494: 3485: 3364: 3294: 3281: 3273: 3034:10.1007/s10509-007-9698-y 2889:The Astrophysical Journal 2844:The Astrophysical Journal 2567:The Astrophysical Journal 2517:Reviews of Modern Physics 2459:The Astrophysical Journal 2272:The Astrophysical Journal 2162:The Astrophysical Journal 1923:Astronomische Nachrichten 1833:10.1007/s10509-012-1308-y 1679:The Astrophysical Journal 1549: 1492:Pauli exclusion principle 1385:Pauli exclusion principle 1183:, higher than the formal 1112:, the carbon ignites and 557:, with the main-sequence 4610:With multiple exoplanets 1432:collapse and leads to a 1206:or direct collapse to a 769:in the constellation of 550:phase of its evolution. 352:). Objects smaller than 4945:Agricultural Revolution 3396:Asymptotic giant branch 3164:2012A&A...537A.146E 3094:Prialnik, Dina (2000). 3065:Ryan & Norton (2010 3026:2008Ap&SS.316...31D 2417:1998A&ARv...9...63V 2237:2010A&A...517A..81G 2133:Ryan & Norton (2010 2121:Ryan & Norton (2010 2075:2001A&A...366..538L 1825:2013Ap&SS.344..175M 1750:2020A&A...642A..76Z 1563:of the star across the 1129:asymptotic giant branch 1041:Reconstructed image of 924:asymptotic giant branch 922:. The star follows the 910:Asymptotic giant branch 713:asymptotic-giant-branch 612:Internal structures of 543:hydrostatic equilibrium 499:asymptotic giant branch 4732:Tidal disruption event 4221:Circumstellar envelope 3455:Luminous blue variable 3191:University of Maryland 2354:10.1093/mnras/279.1.32 2045: 1944:10.1002/asna.200510440 1866:IAU position statement 1478: 1351:White and black dwarfs 1344: 1280:, thus augmenting the 1233: 1097: 1046: 997:circumstellar envelope 983: 808:Red-giant-branch phase 755:stellar classification 749:, which are large non- 735: 642:. Without the outward 635: 589: 493:, which will become a 455: 392: 252:pre-main-sequence star 213:gravitational collapse 208: 183: 60: 52: 32: 24: 5142:Concepts in astronomy 4257:Effective temperature 3236:Life cycle of a star 3200:Ohio State University 2425:10.1007/s001590050015 2046: 1476: 1365:For a star of 1  1342: 1227: 1095: 1040: 973: 761:in the constellation 733: 611: 584: 454: 391: 217:giant molecular cloud 206: 181: 58: 38: 30: 22: 4997:Cynthia Stokes Brown 4902:formation of planets 4838:Goldilocks principle 4727:Planet-hosting stars 4605:With resolved images 4576:Historical brightest 4506:Photometric-standard 4432:Solar radio emission 4226:Eddington luminosity 4006:Triple-alpha process 3944:Thorne–ƻytkow object 3319:Young stellar object 1970: 1906:(22). November 1997. 1892:, Fig. 8.19, p. 174) 1649:. World Scientific. 1647:Nuclei in the Cosmos 1643:Bertulani, Carlos A. 1601:Standard solar model 1522:Schwarzschild radius 1416:, which is 1.4  1066:Supergiant evolution 4971:Big History Project 4964:Web-based education 4811:Themes and subjects 4551:Highest temperature 4322:Color–color diagram 4187:Protoplanetary disk 3991:Proton–proton chain 3669:Chemically peculiar 3227:"The Life of Stars" 3217:Pisa Stellar Models 2948:1998MNRAS.297...28D 2901:1991ApJ...367L..19N 2856:1984ApJ...277..791N 2833:"Evolution of 8–10 2779:2004ESASP.552..185V 2726:2017PhRvD..96b3009Y 2673:2004GReGr..36.2183A 2632:Research Highlights 2579:1987ApJ...322..206N 2529:2002RvMP...74.1015W 2481:2013ApJ...772..150J 2390:1991IAUS..145..363H 2335:1996MNRAS.279...32Z 2284:1993ApJ...418..457S 2174:1996ApJ...471..377D 1935:2005AN....326..913A 1904:Sky & Telescope 1872:on February 4, 2012 1691:1997ApJ...482..420L 1414:Chandrasekhar limit 1400:Chandrasekhar limit 1381:degeneracy pressure 1329:photodisintegration 1118:electron degeneracy 1052:electron degeneracy 630:and at the right a 614:main-sequence stars 594:protoplanetary disk 73:age of the universe 4556:Lowest temperature 4307:Photometric system 4277:Absolute magnitude 4211:Circumstellar dust 3824:Stellar black hole 3460:Stellar population 3346:Herbig–Haro object 2613:2003-06-27 at the 2326:astro-ph/9709119v1 2041: 1607:Stellar population 1561:evolutionary track 1556:mathematical model 1536:general relativity 1479: 1345: 1234: 1185:Chandrasekhar mass 1177:iron-peak elements 1098: 1047: 1045:, a red supergiant 984: 898:RR Lyrae variables 736: 644:radiation pressure 636: 623:, in the center a 592:A star may gain a 590: 518:to fuse, first to 480:(for stars 1  456: 393: 363:are classified as 209: 184: 61: 53: 33: 25: 5137:Stellar astronomy 5132:Stellar evolution 5049: 5048: 4924:- development of 4916:evolution of life 4878:creation of stars 4770: 4769: 4673:Substellar object 4652:Planetary nebulae 4071:Luminous red nova 3981:Deuterium burning 3967: 3966: 3450:Instability strip 3430:Wolf-Rayet nebula 3384:Horizontal branch 3329:Pre-main-sequence 3124:978-0-521-13320-3 2991:on April 2, 2013. 2704:Physical Review D 2106:, pp. 55–56) 1656:978-981-4417-66-2 1488:degenerate matter 1445:centrifugal force 1434:Type Ia supernova 1291:nuclear reactions 1151:capture electrons 1149:, neon begins to 1013:horizontal-branch 894:instability strip 881:horizontal branch 859:Horizontal branch 853:Horizontal branch 779:horizontal branch 510:, initiating the 287:and their parent 164:stellar structure 113:, stars like the 64:Stellar evolution 5149: 5114: 5113: 5102: 5101: 5100: 5090: 5089: 5088: 5078: 5077: 5076: 5066: 5065: 5064: 5057: 4852:Eight thresholds 4823:Cosmic evolution 4797: 4790: 4783: 4774: 4773: 4762:Stars portal 4760: 4759: 4748: 4747: 4404:Planetary system 4327:Strömgren sphere 4199:Asteroseismology 3920:Black hole star 3492: 3491: 3418:Planetary nebula 3379:Red-giant branch 3268: 3261: 3254: 3245: 3244: 3233:, Mar. 27, 2003) 3183: 3157: 3128: 3109: 3090: 3068: 3062: 3056: 3055: 3019: 2999: 2993: 2992: 2987:. Archived from 2976: 2970: 2969: 2959: 2927: 2921: 2920: 2884: 2878: 2877: 2867: 2828: 2822: 2821: 2814: 2808: 2807: 2805: 2799:. Archived from 2798: 2789: 2783: 2782: 2772: 2770:astro-ph/0407451 2752: 2746: 2745: 2719: 2699: 2693: 2692: 2666: 2664:astro-ph/0404055 2657:(9): 2183–2187. 2646: 2640: 2639: 2623: 2617: 2605: 2599: 2598: 2555: 2549: 2548: 2523:(4): 1015–1071. 2512: 2501: 2500: 2474: 2446: 2437: 2436: 2400: 2394: 2393: 2373: 2367: 2366: 2356: 2346: 2328: 2304: 2298: 2297: 2295: 2263: 2257: 2256: 2230: 2210: 2204: 2203: 2185: 2157: 2151: 2145: 2136: 2130: 2124: 2118: 2107: 2101: 2095: 2094: 2068: 2066:astro-ph/0011497 2050: 2048: 2047: 2042: 2037: 2017: 2016: 2015: 1996: 1995: 1994: 1963: 1957: 1956: 1946: 1914: 1908: 1907: 1899: 1893: 1887: 1881: 1880: 1878: 1877: 1858: 1852: 1844: 1818: 1798: 1792: 1791: 1784: 1778: 1777: 1743: 1723: 1717: 1711: 1705: 1704: 1702: 1670: 1661: 1660: 1639: 1484:electron capture 1425:electron capture 1335:Stellar remnants 1325:pair-instability 1017:subdwarf B stars 980:planetary nebula 976:Cat's Eye Nebula 877:Milky Way Galaxy 814:Red-giant branch 598:planetary system 577:Planetary system 536: 478:red-giant branch 450: 443: 436: 429: 422: 415: 408: 401: 387: 365:sub-brown dwarfs 355: 315: 268: 230: 222: 132:planetary nebula 85:molecular clouds 49:planetary nebula 5157: 5156: 5152: 5151: 5150: 5148: 5147: 5146: 5122: 5121: 5120: 5108: 5098: 5096: 5086: 5084: 5074: 5072: 5062: 5060: 5052: 5050: 5045: 5026: 5007:David Christian 4980: 4959: 4847: 4806: 4801: 4771: 4766: 4754: 4736: 4661: 4630:Milky Way novae 4566:Smallest volume 4510: 4491:Radial velocity 4414: 4408: 4360:Common envelope 4336: 4235: 4204:Helioseismology 4175:Bipolar outflow 4116:Microturbulence 4111:Convection zone 4092: 3986:Lithium burning 3973:Nucleosynthesis 3963: 3845: 3754: 3481: 3360: 3309:Molecular cloud 3290: 3277: 3272: 3208: 3135: 3133:Further reading 3125: 3106: 3087: 3071: 3063: 3059: 3044: 3000: 2996: 2977: 2973: 2928: 2924: 2885: 2881: 2839: 2836: 2829: 2825: 2816: 2815: 2811: 2803: 2796: 2790: 2786: 2753: 2749: 2700: 2696: 2647: 2643: 2624: 2620: 2615:Wayback Machine 2606: 2602: 2564: 2561: 2556: 2552: 2513: 2504: 2456: 2453: 2447: 2440: 2411:(1–2): 63–152. 2401: 2397: 2374: 2370: 2344:10.1.1.389.3269 2305: 2301: 2264: 2260: 2211: 2207: 2158: 2154: 2146: 2139: 2131: 2127: 2119: 2110: 2102: 2098: 2030: 2011: 2010: 2006: 1990: 1989: 1985: 1971: 1968: 1967: 1964: 1960: 1929:(10): 913–919. 1915: 1911: 1901: 1900: 1896: 1888: 1884: 1875: 1873: 1860: 1859: 1855: 1799: 1795: 1786: 1785: 1781: 1724: 1720: 1712: 1708: 1671: 1664: 1657: 1640: 1636: 1632: 1627: 1595:Nucleosynthesis 1573: 1552: 1540:quantum effects 1530: 1527: 1518: 1512: 1471: 1465: 1442: 1439: 1422: 1419: 1378: 1375: 1371: 1368: 1363: 1355:Main articles: 1353: 1337: 1310:escape velocity 1222: 1216: 1200: 1197: 1193: 1190: 1173:silicon burning 1163: 1160: 1153:which triggers 1144: 1141: 1137: 1134: 1111: 1108: 1087: 1084: 1079:red supergiants 1076: 1073: 1068: 1035: 1029: 968: 962: 912: 906: 865: 857:Main articles: 855: 816: 810: 797: 791: 744: 741: 728: 726:Mid-sized stars 721: 718: 707:do expand into 698:convection zone 683: 680: 664: 606: 579: 534: 532: 504: 503: 502: 488: 486: 483: 458: 457: 453: 448: 445: 444: 439: 437: 432: 430: 425: 423: 418: 416: 411: 409: 404: 402: 397: 394: 390: 385: 379: 373: 362: 359: 353: 351: 348: 343: 340: 313: 311: 303: 297: 266: 264: 228: 220: 201: 195: 190: 176: 168:computer models 146:. Although the 17: 12: 11: 5: 5155: 5145: 5144: 5139: 5134: 5119: 5118: 5106: 5094: 5082: 5070: 5047: 5046: 5044: 5043: 5034: 5032: 5028: 5027: 5025: 5024: 5019: 5014: 5009: 5004: 4999: 4994: 4992:Walter Alvarez 4988: 4986: 4985:Notable people 4982: 4981: 4979: 4978: 4973: 4967: 4965: 4961: 4960: 4958: 4957: 4947: 4937: 4936: 4935: 4918: 4904: 4894: 4880: 4870: 4855: 4853: 4849: 4848: 4846: 4845: 4840: 4835: 4830: 4825: 4820: 4814: 4812: 4808: 4807: 4800: 4799: 4792: 4785: 4777: 4768: 4767: 4765: 4764: 4752: 4741: 4738: 4737: 4735: 4734: 4729: 4724: 4719: 4714: 4709: 4704: 4699: 4698: 4697: 4692: 4691: 4690: 4685: 4669: 4667: 4663: 4662: 4660: 4659: 4654: 4649: 4648: 4647: 4642: 4632: 4627: 4622: 4617: 4612: 4607: 4602: 4601: 4600: 4595: 4594: 4593: 4583: 4578: 4573: 4568: 4563: 4561:Largest volume 4558: 4553: 4548: 4538: 4537: 4536: 4531: 4520: 4518: 4512: 4511: 4509: 4508: 4503: 4498: 4493: 4488: 4487: 4486: 4481: 4476: 4466: 4461: 4456: 4451: 4446: 4445: 4444: 4439: 4434: 4429: 4418: 4416: 4410: 4409: 4407: 4406: 4401: 4400: 4399: 4394: 4389: 4379: 4374: 4373: 4372: 4367: 4362: 4357: 4346: 4344: 4338: 4337: 4335: 4334: 4329: 4324: 4319: 4314: 4309: 4304: 4299: 4294: 4289: 4284: 4279: 4274: 4272:Magnetic field 4269: 4264: 4259: 4254: 4249: 4243: 4241: 4237: 4236: 4234: 4233: 4228: 4223: 4218: 4213: 4208: 4207: 4206: 4196: 4195: 4194: 4189: 4182:Accretion disk 4179: 4178: 4177: 4172: 4162: 4161: 4160: 4158:AlfvĂ©n surface 4155: 4153:Stellar corona 4150: 4145: 4140: 4130: 4128:Radiation zone 4125: 4124: 4123: 4118: 4108: 4102: 4100: 4094: 4093: 4091: 4090: 4085: 4084: 4083: 4078: 4073: 4068: 4063: 4053: 4048: 4043: 4038: 4033: 4028: 4023: 4018: 4013: 4008: 4003: 3998: 3993: 3988: 3983: 3977: 3975: 3969: 3968: 3965: 3964: 3962: 3961: 3956: 3951: 3946: 3941: 3936: 3935: 3934: 3929: 3926: 3918: 3917: 3916: 3911: 3906: 3901: 3896: 3891: 3886: 3881: 3876: 3866: 3861: 3855: 3853: 3847: 3846: 3844: 3843: 3838: 3837: 3836: 3826: 3821: 3820: 3819: 3814: 3813: 3812: 3807: 3797: 3787: 3786: 3785: 3775: 3770: 3764: 3762: 3756: 3755: 3753: 3752: 3750:Blue straggler 3747: 3746: 3745: 3735: 3730: 3729: 3728: 3718: 3717: 3716: 3711: 3706: 3701: 3696: 3691: 3686: 3681: 3676: 3666: 3661: 3660: 3659: 3654: 3649: 3639: 3638: 3637: 3627: 3626: 3625: 3620: 3615: 3605: 3600: 3599: 3598: 3593: 3588: 3578: 3573: 3568: 3563: 3562: 3561: 3556: 3546: 3545: 3544: 3539: 3534: 3529: 3524: 3519: 3514: 3508:Main sequence 3506: 3501: 3495: 3489: 3487:Classification 3483: 3482: 3480: 3479: 3478: 3477: 3472: 3462: 3457: 3452: 3447: 3442: 3437: 3432: 3427: 3426: 3425: 3423:Protoplanetary 3415: 3410: 3409: 3408: 3403: 3393: 3392: 3391: 3381: 3376: 3370: 3368: 3362: 3361: 3359: 3358: 3353: 3348: 3343: 3342: 3341: 3336: 3331: 3326: 3316: 3311: 3306: 3300: 3298: 3292: 3291: 3289: 3288: 3282: 3279: 3278: 3271: 3270: 3263: 3256: 3248: 3242: 3241: 3234: 3224: 3219: 3214: 3207: 3206:External links 3204: 3203: 3202: 3193: 3184: 3134: 3131: 3130: 3129: 3123: 3110: 3104: 3091: 3085: 3070: 3069: 3057: 3042: 3010:(1–4): 31–41. 2994: 2971: 2922: 2909:10.1086/185922 2879: 2865:10.1086/161749 2837: 2834: 2823: 2809: 2806:on 2012-06-08. 2784: 2747: 2694: 2641: 2638:on 2003-08-03. 2618: 2600: 2587:10.1086/165716 2562: 2559: 2550: 2502: 2454: 2451: 2438: 2395: 2368: 2299: 2293:10.1086/173407 2258: 2205: 2192:10.1086/177976 2168:(1): 377–384. 2152: 2150:, p. 151) 2148:Prialnik (2000 2137: 2135:, p. 125) 2125: 2123:, p. 115) 2108: 2096: 2059:(2): 538–546. 2040: 2036: 2033: 2029: 2026: 2023: 2020: 2014: 2009: 2005: 2002: 1999: 1993: 1988: 1984: 1981: 1978: 1975: 1958: 1909: 1894: 1890:Prialnik (2000 1882: 1853: 1848:VizieR catalog 1809:(1): 175–186. 1793: 1779: 1718: 1714:Prialnik (2000 1706: 1700:10.1086/304125 1685:(1): 420–432. 1662: 1655: 1633: 1631: 1628: 1626: 1625: 1620: 1614: 1604: 1598: 1592: 1586: 1581: 1578:Compact object 1574: 1572: 1569: 1551: 1548: 1528: 1525: 1514:Main article: 1511: 1508: 1467:Main article: 1464: 1461: 1440: 1437: 1420: 1417: 1376: 1373: 1369: 1366: 1352: 1349: 1336: 1333: 1278:kinetic energy 1218:Main article: 1215: 1212: 1198: 1195: 1191: 1188: 1161: 1158: 1142: 1139: 1135: 1132: 1109: 1106: 1085: 1082: 1074: 1071: 1067: 1064: 1031:Main article: 1028: 1025: 1001:dust particles 964:Main article: 961: 958: 946:Mira variables 908:Main article: 905: 902: 854: 851: 812:Main article: 809: 806: 793:Main article: 790: 789:Subgiant phase 787: 742: 739: 727: 724: 719: 716: 703:Slightly more 681: 678: 663: 662:Low-mass stars 660: 605: 602: 578: 575: 530: 484: 481: 472:and stop when 459: 446: 395: 383: 382: 381: 380: 375:Main article: 372: 369: 360: 357: 349: 346: 341: 338: 334:Jupiter masses 330:fuse deuterium 318:nuclear fusion 309: 299:Main article: 296: 293: 262: 197:Main article: 194: 191: 188:Star formation 186:Main article: 175: 174:Star formation 172: 156:stellar models 103:hydrogen atoms 99:Nuclear fusion 51:at upper right 15: 9: 6: 4: 3: 2: 5154: 5143: 5140: 5138: 5135: 5133: 5130: 5129: 5127: 5117: 5112: 5107: 5105: 5095: 5093: 5083: 5081: 5071: 5069: 5059: 5058: 5055: 5042:(2013 series) 5041: 5040: 5036: 5035: 5033: 5029: 5023: 5022:Graeme Snooks 5020: 5018: 5015: 5013: 5010: 5008: 5005: 5003: 5002:Eric Chaisson 5000: 4998: 4995: 4993: 4990: 4989: 4987: 4983: 4977: 4974: 4972: 4969: 4968: 4966: 4962: 4956: 4952: 4948: 4946: 4942: 4938: 4934: 4931: 4930: 4929: 4928: 4923: 4919: 4917: 4913: 4909: 4905: 4903: 4899: 4895: 4893: 4889: 4885: 4881: 4879: 4875: 4871: 4869: 4865: 4861: 4857: 4856: 4854: 4850: 4844: 4841: 4839: 4836: 4834: 4831: 4829: 4826: 4824: 4821: 4819: 4816: 4815: 4813: 4809: 4805: 4798: 4793: 4791: 4786: 4784: 4779: 4778: 4775: 4763: 4758: 4753: 4751: 4743: 4742: 4739: 4733: 4730: 4728: 4725: 4723: 4722:Intergalactic 4720: 4718: 4715: 4713: 4710: 4708: 4705: 4703: 4702:Galactic year 4700: 4696: 4693: 4689: 4686: 4684: 4681: 4680: 4679: 4676: 4675: 4674: 4671: 4670: 4668: 4664: 4658: 4655: 4653: 4650: 4646: 4643: 4641: 4638: 4637: 4636: 4633: 4631: 4628: 4626: 4623: 4621: 4618: 4616: 4613: 4611: 4608: 4606: 4603: 4599: 4596: 4592: 4589: 4588: 4587: 4584: 4582: 4581:Most luminous 4579: 4577: 4574: 4572: 4569: 4567: 4564: 4562: 4559: 4557: 4554: 4552: 4549: 4547: 4544: 4543: 4542: 4539: 4535: 4532: 4530: 4527: 4526: 4525: 4522: 4521: 4519: 4517: 4513: 4507: 4504: 4502: 4499: 4497: 4496:Proper motion 4494: 4492: 4489: 4485: 4482: 4480: 4477: 4475: 4472: 4471: 4470: 4467: 4465: 4462: 4460: 4459:Constellation 4457: 4455: 4452: 4450: 4447: 4443: 4440: 4438: 4435: 4433: 4430: 4428: 4427:Solar eclipse 4425: 4424: 4423: 4420: 4419: 4417: 4413:Earth-centric 4411: 4405: 4402: 4398: 4395: 4393: 4390: 4388: 4385: 4384: 4383: 4380: 4378: 4375: 4371: 4368: 4366: 4363: 4361: 4358: 4356: 4353: 4352: 4351: 4348: 4347: 4345: 4343: 4339: 4333: 4330: 4328: 4325: 4323: 4320: 4318: 4315: 4313: 4310: 4308: 4305: 4303: 4300: 4298: 4295: 4293: 4290: 4288: 4285: 4283: 4280: 4278: 4275: 4273: 4270: 4268: 4265: 4263: 4260: 4258: 4255: 4253: 4250: 4248: 4245: 4244: 4242: 4238: 4232: 4229: 4227: 4224: 4222: 4219: 4217: 4214: 4212: 4209: 4205: 4202: 4201: 4200: 4197: 4193: 4190: 4188: 4185: 4184: 4183: 4180: 4176: 4173: 4171: 4168: 4167: 4166: 4163: 4159: 4156: 4154: 4151: 4149: 4146: 4144: 4141: 4139: 4136: 4135: 4134: 4131: 4129: 4126: 4122: 4119: 4117: 4114: 4113: 4112: 4109: 4107: 4104: 4103: 4101: 4099: 4095: 4089: 4086: 4082: 4079: 4077: 4074: 4072: 4069: 4067: 4064: 4062: 4059: 4058: 4057: 4054: 4052: 4049: 4047: 4044: 4042: 4039: 4037: 4034: 4032: 4029: 4027: 4024: 4022: 4019: 4017: 4014: 4012: 4011:Alpha process 4009: 4007: 4004: 4002: 3999: 3997: 3994: 3992: 3989: 3987: 3984: 3982: 3979: 3978: 3976: 3974: 3970: 3960: 3957: 3955: 3952: 3950: 3947: 3945: 3942: 3940: 3937: 3933: 3930: 3927: 3925: 3922: 3921: 3919: 3915: 3912: 3910: 3907: 3905: 3902: 3900: 3897: 3895: 3892: 3890: 3887: 3885: 3882: 3880: 3877: 3875: 3872: 3871: 3870: 3867: 3865: 3862: 3860: 3857: 3856: 3854: 3852: 3848: 3842: 3839: 3835: 3832: 3831: 3830: 3827: 3825: 3822: 3818: 3815: 3811: 3808: 3806: 3803: 3802: 3801: 3798: 3796: 3793: 3792: 3791: 3788: 3784: 3783:Helium planet 3781: 3780: 3779: 3776: 3774: 3773:Parker's star 3771: 3769: 3766: 3765: 3763: 3761: 3757: 3751: 3748: 3744: 3741: 3740: 3739: 3736: 3734: 3731: 3727: 3724: 3723: 3722: 3719: 3715: 3712: 3710: 3707: 3705: 3704:Lambda Boötis 3702: 3700: 3697: 3695: 3692: 3690: 3687: 3685: 3682: 3680: 3677: 3675: 3672: 3671: 3670: 3667: 3665: 3662: 3658: 3655: 3653: 3650: 3648: 3645: 3644: 3643: 3640: 3636: 3633: 3632: 3631: 3628: 3624: 3621: 3619: 3616: 3614: 3611: 3610: 3609: 3606: 3604: 3601: 3597: 3594: 3592: 3589: 3587: 3584: 3583: 3582: 3579: 3577: 3574: 3572: 3569: 3567: 3564: 3560: 3557: 3555: 3552: 3551: 3550: 3547: 3543: 3540: 3538: 3535: 3533: 3530: 3528: 3525: 3523: 3520: 3518: 3515: 3513: 3510: 3509: 3507: 3505: 3502: 3500: 3497: 3496: 3493: 3490: 3488: 3484: 3476: 3473: 3471: 3470:Superluminous 3468: 3467: 3466: 3463: 3461: 3458: 3456: 3453: 3451: 3448: 3446: 3443: 3441: 3438: 3436: 3433: 3431: 3428: 3424: 3421: 3420: 3419: 3416: 3414: 3411: 3407: 3404: 3402: 3399: 3398: 3397: 3394: 3390: 3387: 3386: 3385: 3382: 3380: 3377: 3375: 3374:Main sequence 3372: 3371: 3369: 3367: 3363: 3357: 3354: 3352: 3351:Hayashi track 3349: 3347: 3344: 3340: 3337: 3335: 3332: 3330: 3327: 3325: 3322: 3321: 3320: 3317: 3315: 3312: 3310: 3307: 3305: 3302: 3301: 3299: 3297: 3293: 3287: 3284: 3283: 3280: 3276: 3269: 3264: 3262: 3257: 3255: 3250: 3249: 3246: 3240: 3238: 3235: 3232: 3228: 3225: 3223: 3220: 3218: 3215: 3213: 3210: 3209: 3201: 3197: 3194: 3192: 3188: 3185: 3181: 3177: 3173: 3169: 3165: 3161: 3156: 3151: 3147: 3143: 3137: 3136: 3126: 3120: 3116: 3111: 3107: 3105:0-521-65065-8 3101: 3097: 3092: 3088: 3086:0-387-20089-4 3082: 3078: 3073: 3072: 3066: 3061: 3053: 3049: 3045: 3043:9781402094408 3039: 3035: 3031: 3027: 3023: 3018: 3013: 3009: 3005: 2998: 2990: 2986: 2985:New Scientist 2982: 2975: 2967: 2963: 2958: 2953: 2949: 2945: 2941: 2937: 2933: 2926: 2918: 2914: 2910: 2906: 2902: 2898: 2894: 2890: 2883: 2875: 2871: 2866: 2861: 2857: 2853: 2849: 2845: 2841: 2827: 2819: 2813: 2802: 2795: 2788: 2780: 2776: 2771: 2766: 2762: 2758: 2751: 2743: 2739: 2735: 2731: 2727: 2723: 2718: 2713: 2710:(2): 023009. 2709: 2705: 2698: 2690: 2686: 2682: 2678: 2674: 2670: 2665: 2660: 2656: 2652: 2645: 2637: 2633: 2629: 2622: 2616: 2612: 2609: 2604: 2596: 2592: 2588: 2584: 2580: 2576: 2572: 2568: 2554: 2546: 2542: 2538: 2534: 2530: 2526: 2522: 2518: 2511: 2509: 2507: 2498: 2494: 2490: 2486: 2482: 2478: 2473: 2468: 2464: 2460: 2445: 2443: 2434: 2430: 2426: 2422: 2418: 2414: 2410: 2406: 2399: 2391: 2387: 2383: 2379: 2372: 2364: 2360: 2355: 2350: 2345: 2340: 2336: 2332: 2327: 2322: 2318: 2314: 2310: 2303: 2294: 2289: 2285: 2281: 2277: 2273: 2269: 2262: 2254: 2250: 2246: 2242: 2238: 2234: 2229: 2224: 2220: 2216: 2209: 2201: 2197: 2193: 2189: 2184: 2179: 2175: 2171: 2167: 2163: 2156: 2149: 2144: 2142: 2134: 2129: 2122: 2117: 2115: 2113: 2105: 2100: 2092: 2088: 2084: 2080: 2076: 2072: 2067: 2062: 2058: 2054: 2038: 2034: 2031: 2027: 2024: 2021: 2018: 2003: 2000: 1982: 1979: 1976: 1962: 1954: 1950: 1945: 1940: 1936: 1932: 1928: 1924: 1920: 1913: 1905: 1898: 1891: 1886: 1871: 1867: 1863: 1857: 1850: 1849: 1842: 1838: 1834: 1830: 1826: 1822: 1817: 1812: 1808: 1804: 1797: 1789: 1783: 1775: 1771: 1767: 1763: 1759: 1755: 1751: 1747: 1742: 1737: 1733: 1729: 1722: 1716:, Chapter 10) 1715: 1710: 1701: 1696: 1692: 1688: 1684: 1680: 1676: 1669: 1667: 1658: 1652: 1648: 1644: 1638: 1634: 1624: 1621: 1618: 1615: 1612: 1608: 1605: 1602: 1599: 1596: 1593: 1590: 1587: 1585: 1582: 1579: 1576: 1575: 1568: 1566: 1562: 1557: 1547: 1543: 1541: 1537: 1532: 1523: 1517: 1507: 1505: 1501: 1495: 1493: 1489: 1485: 1475: 1470: 1463:Neutron stars 1460: 1458: 1452: 1450: 1449:binary system 1446: 1435: 1430: 1426: 1415: 1410: 1408: 1403: 1401: 1397: 1396:carbon fusion 1392: 1388: 1386: 1382: 1362: 1358: 1348: 1341: 1332: 1330: 1326: 1322: 1317: 1313: 1311: 1306: 1304: 1300: 1296: 1292: 1288: 1283: 1279: 1275: 1271: 1267: 1263: 1259: 1255: 1251: 1247: 1243: 1239: 1231: 1226: 1221: 1211: 1209: 1205: 1186: 1182: 1178: 1174: 1169: 1167: 1156: 1152: 1148: 1130: 1125: 1123: 1119: 1115: 1104: 1103:alpha process 1094: 1090: 1080: 1063: 1061: 1057: 1053: 1044: 1039: 1034: 1027:Massive stars 1024: 1022: 1018: 1014: 1008: 1006: 1002: 998: 994: 990: 981: 977: 972: 967: 966:Post-AGB star 957: 955: 951: 947: 942: 939: 933: 930: 929:thermal pulse 925: 921: 917: 911: 901: 899: 895: 890: 884: 882: 878: 874: 870: 864: 860: 850: 848: 844: 839: 837: 833: 829: 825: 821: 815: 805: 803: 796: 786: 784: 780: 774: 772: 768: 764: 760: 756: 752: 751:main-sequence 748: 732: 723: 714: 710: 706: 705:massive stars 701: 699: 695: 691: 687: 676: 671: 669: 659: 657: 656:helium fusion 653: 649: 645: 641: 640:main sequence 633: 629: 626: 622: 619: 615: 610: 601: 599: 595: 588: 583: 574: 572: 568: 564: 560: 559:spectral type 556: 551: 549: 548:main-sequence 544: 540: 529: 525: 521: 517: 514:and allowing 513: 509: 500: 496: 492: 479: 475: 471: 470:main sequence 467: 463: 442: 435: 428: 421: 414: 407: 400: 378: 377:Main sequence 368: 366: 344: 335: 331: 327: 323: 319: 308: 302: 292: 290: 289:star clusters 286: 282: 278: 274: 270: 261: 257: 253: 249: 244: 242: 238: 234: 226: 218: 214: 205: 200: 189: 180: 171: 169: 165: 159: 157: 153: 149: 145: 141: 137: 133: 129: 124: 120: 116: 112: 108: 104: 100: 96: 94: 93:main-sequence 90: 86: 82: 78: 74: 69: 65: 57: 50: 46: 42: 37: 29: 21: 5104:Solar System 5037: 4950: 4940: 4927:Homo sapiens 4925: 4921: 4907: 4897: 4891: 4883: 4873: 4859: 4625:White dwarfs 4615:Brown dwarfs 4598:Most distant 4546:Most massive 4524:Proper names 4484:Photographic 4437:Solar System 4415:observations 4342:Star systems 4165:Stellar wind 4148:Chromosphere 4121:Oscillations 4001:Helium flash 3851:Hypothetical 3829:X-ray binary 3768:Compact star 3603:Bright giant 3365: 3356:Henyey track 3334:Herbig Ae/Be 3230: 3145: 3141: 3114: 3095: 3076: 3060: 3007: 3003: 2997: 2989:the original 2984: 2974: 2942:(1): 28–40. 2939: 2935: 2925: 2892: 2888: 2882: 2847: 2843: 2826: 2812: 2801:the original 2787: 2760: 2756: 2750: 2707: 2703: 2697: 2654: 2650: 2644: 2636:the original 2631: 2621: 2603: 2570: 2566: 2553: 2520: 2516: 2462: 2458: 2408: 2404: 2398: 2381: 2377: 2371: 2319:(1): 32–62. 2316: 2312: 2302: 2275: 2271: 2261: 2218: 2214: 2208: 2183:10.1.1.31.44 2165: 2161: 2155: 2128: 2099: 2056: 2052: 1961: 1926: 1922: 1912: 1903: 1897: 1885: 1874:. Retrieved 1870:the original 1865: 1856: 1847: 1806: 1802: 1796: 1782: 1731: 1727: 1721: 1709: 1682: 1678: 1646: 1637: 1553: 1544: 1533: 1519: 1496: 1480: 1469:Neutron star 1453: 1429:neutron star 1411: 1404: 1393: 1389: 1364: 1346: 1318: 1314: 1307: 1299:Solar System 1272:, including 1238:neutron star 1235: 1180: 1170: 1155:neon burning 1126: 1099: 1069: 1056:neutron star 1048: 1009: 1007:excitation. 985: 943: 934: 913: 885: 873:helium flash 866: 840: 836:spectroscopy 817: 798: 775: 737: 702: 677:of 0.1  672: 665: 637: 631: 628:yellow dwarf 624: 617: 604:Mature stars 591: 571:yellow dwarf 567:O-type stars 552: 527: 522:and then to 505: 322:brown dwarfs 306: 304: 271: 259: 245: 225:solar masses 210: 160: 140:neutron star 97: 63: 62: 5092:Outer space 5080:Spaceflight 5039:Big History 4941:Agriculture 4912:abiogenesis 4892:dying stars 4833:Time scales 4804:Big History 4678:Brown dwarf 4454:Circumpolar 4332:Kraft break 4312:Color index 4287:Metallicity 4247:Designation 4216:Cosmic dust 4138:Photosphere 3904:Dark-energy 3879:Electroweak 3864:Black dwarf 3795:Radio-quiet 3778:White dwarf 3664:White dwarf 3314:Bok globule 3231:In Our Time 2763:: 185–194. 1611:metallicity 1510:Black holes 1407:black dwarf 1361:Black dwarf 1357:White dwarf 1230:Crab Nebula 1122:white dwarf 950:OH/IR stars 938:carbon star 694:white dwarf 686:temperature 301:Brown dwarf 258:: 1.0  128:white dwarf 5126:Categories 5017:Fred Spier 5012:Carl Sagan 4976:ChronoZoom 4955:modern era 4640:Candidates 4635:Supernovae 4620:Red dwarfs 4479:Extinction 4267:Kinematics 4262:Luminosity 4240:Properties 4133:Atmosphere 4031:Si burning 4021:Ne burning 3959:White hole 3932:Quasi-star 3859:Blue dwarf 3714:Technetium 3630:Hypergiant 3608:Supergiant 2717:1705.09723 2465:(2): 150. 1876:2012-05-30 1741:2002.05984 1630:References 1516:Black hole 1282:shock wave 1246:black hole 1208:black hole 1060:black hole 1033:Supergiant 820:convective 802:luminosity 747:red giants 709:red giants 690:luminosity 675:red dwarfs 563:red dwarfs 487:and less). 285:protostars 273:Protostars 152:red dwarfs 144:black hole 89:protostars 77:collapsing 5068:Astronomy 4951:Modernity 4933:Stone Age 4868:cosmogony 4843:Modernity 4828:Deep time 4571:Brightest 4469:Magnitude 4449:Pole star 4370:Symbiotic 4365:Eclipsing 4297:Starlight 4098:Structure 4088:Supernova 4081:Micronova 4076:Recurrent 4061:Symbiotic 4046:p-process 4041:r-process 4036:s-process 4026:O burning 4016:C burning 3996:CNO cycle 3939:Gravastar 3475:Hypernova 3465:Supernova 3440:Dredge-up 3413:Blue loop 3406:super-AGB 3389:Red clump 3366:Evolution 3324:Protostar 3304:Accretion 3296:Formation 3155:1110.5049 3017:0710.4003 2966:0035-8711 2917:0004-637X 2874:0004-637X 2742:119190550 2595:0004-637X 2497:118687195 2472:1306.2030 2433:189933559 2363:0035-8711 2339:CiteSeerX 2228:1004.3862 2178:CiteSeerX 1953:0004-6337 1841:0004-640X 1816:1211.4032 1774:211126855 1766:0004-6361 1455:termed a 1305:thereof. 1266:neutrinos 1258:neutrinos 1254:supernova 1220:Supernova 1214:Supernova 1204:supernova 889:red clump 863:Red clump 832:dredge-up 828:CNO cycle 783:red clump 759:Aldebaran 753:stars of 625:mid-sized 621:red dwarf 539:CNO cycle 520:deuterium 495:red giant 248:accretion 241:protostar 199:Protostar 193:Protostar 136:supernova 123:red-giant 4884:Elements 4864:Big Bang 4860:Creation 4750:Category 4645:Remnants 4541:Extremes 4501:Parallax 4474:Apparent 4464:Asterism 4442:Sunlight 4392:Globular 4377:Multiple 4302:Variable 4292:Rotation 4252:Dynamics 4143:Starspot 3817:Magnetar 3760:Remnants 3576:Subgiant 3549:Subdwarf 3401:post-AGB 3180:85458919 3148:: A146. 3052:14254892 2838:☉ 2611:Archived 2563:☉ 2545:55932331 2457:Stars". 2455:☉ 2253:55701280 2200:15585754 2035:′ 1645:(2013). 1571:See also 1529:☉ 1441:☉ 1421:☉ 1377:☉ 1370:☉ 1303:isotopes 1274:neutrons 1270:nucleons 1262:SN 1987A 1199:☉ 1192:☉ 1162:☉ 1143:☉ 1136:☉ 1110:☉ 1086:☉ 1075:☉ 960:Post-AGB 824:isotopes 795:Subgiant 785:giants. 767:Arcturus 743:☉ 720:☉ 682:☉ 668:universe 618:low-mass 516:hydrogen 485:☉ 350:☉ 277:infrared 231:10  148:universe 126:a dense 119:subgiant 41:subgiant 5116:Science 5054:Portals 5031:Related 4898:Planets 4890:inside 4717:Gravity 4666:Related 4586:Nearest 4534:Chinese 4382:Cluster 4355:Contact 4192:Proplyd 4066:Remnant 3954:Blitzar 3928:Hawking 3884:Strange 3834:Burster 3790:Neutron 3743:Extreme 3694:He-weak 3339:T Tauri 3160:Bibcode 3022:Bibcode 2944:Bibcode 2897:Bibcode 2895:: L19. 2852:Bibcode 2850:: 791. 2775:Bibcode 2722:Bibcode 2689:1045277 2669:Bibcode 2575:Bibcode 2573:: 206. 2525:Bibcode 2477:Bibcode 2413:Bibcode 2386:Bibcode 2384:: 363. 2331:Bibcode 2280:Bibcode 2278:: 457. 2233:Bibcode 2221:: A81. 2170:Bibcode 2091:6708419 2071:Bibcode 1931:Bibcode 1821:Bibcode 1790:. NASA. 1746:Bibcode 1734:: A76. 1687:Bibcode 1504:pulsars 1287:uranium 1043:Antares 1015:stars ( 745:become 648:gravity 632:massive 587:proplyd 105:at the 81:nebulae 4922:Humans 4707:Galaxy 4695:Planet 4683:Desert 4591:bright 4529:Arabic 4350:Binary 4170:Bubble 3894:Planck 3869:Exotic 3805:Binary 3800:Pulsar 3738:Helium 3699:Barium 3642:Carbon 3635:Yellow 3623:Yellow 3596:Yellow 3435:PG1159 3178:  3121:  3102:  3083:  3050:  3040:  2964:  2915:  2872:  2740:  2687:  2593:  2543:  2495:  2431:  2361:  2341:  2251:  2198:  2180:  2089:  1951:  1839:  1772:  1764:  1653:  1550:Models 993:carbon 989:oxygen 920:oxygen 916:carbon 771:Boötes 763:Taurus 524:helium 508:kelvin 474:fusion 356:  324:. The 166:using 111:helium 95:star. 4874:Stars 4712:Guest 4516:Lists 4397:Super 4051:Fusor 3924:Black 3909:Quark 3889:Preon 3874:Boson 3810:X-ray 3726:Shell 3679:Ap/Bp 3581:Giant 3499:Early 3445:OH/IR 3275:Stars 3176:S2CID 3150:arXiv 3048:S2CID 3012:arXiv 2804:(PDF) 2797:(PDF) 2765:arXiv 2738:S2CID 2712:arXiv 2685:S2CID 2659:arXiv 2541:S2CID 2493:S2CID 2467:arXiv 2429:S2CID 2321:arXiv 2249:S2CID 2223:arXiv 2196:S2CID 2087:S2CID 2061:arXiv 1811:arXiv 1770:S2CID 1736:arXiv 1114:fuses 1005:maser 954:maser 462:stars 215:of a 45:giant 4914:and 4908:Life 4866:and 4387:Open 4282:Mass 4106:Core 4056:Nova 3949:Iron 3899:Dark 3709:Lead 3689:HgMn 3684:CEMP 3613:Blue 3586:Blue 3504:Late 3286:List 3119:ISBN 3100:ISBN 3081:ISBN 3038:ISBN 2962:ISSN 2913:ISSN 2870:ISSN 2591:ISSN 2359:ISSN 1949:ISSN 1837:ISSN 1762:ISSN 1651:ISBN 1457:nova 1359:and 1295:iron 1244:, a 1228:The 1147:fuse 978:, a 974:The 918:and 861:and 765:and 688:and 533:(2.0 312:(1.6 265:(2.0 227:(1.2 107:core 68:star 43:and 4949:8: 4939:7: 4920:6: 4906:5: 4896:4: 4882:3: 4872:2: 4858:1: 4688:Sub 4422:Sun 3841:SGR 3618:Red 3591:Red 3168:doi 3146:537 3030:doi 3008:316 2952:doi 2940:297 2905:doi 2893:367 2860:doi 2848:277 2761:552 2730:doi 2677:doi 2583:doi 2571:322 2533:doi 2485:doi 2463:772 2421:doi 2382:145 2349:doi 2317:279 2288:doi 2276:418 2241:doi 2219:517 2188:doi 2166:471 2079:doi 2057:366 1939:doi 1927:326 1829:doi 1807:344 1754:doi 1732:642 1695:doi 1683:482 1058:or 991:or 491:Sun 434:AGB 427:RSG 420:BSG 413:YHG 406:LBV 256:Sun 142:or 115:Sun 83:or 5128:: 4953:- 4943:- 4910:- 4900:- 4886:- 4876:- 4862:- 3721:Be 3674:Am 3657:CH 3652:CN 3571:OB 3566:WR 3174:. 3166:. 3158:. 3144:. 3046:. 3036:. 3028:. 3020:. 3006:. 2983:. 2960:. 2950:. 2938:. 2934:. 2911:. 2903:. 2891:. 2868:. 2858:. 2846:. 2842:. 2773:. 2759:. 2736:. 2728:. 2720:. 2708:96 2706:. 2683:. 2675:. 2667:. 2655:36 2653:. 2630:. 2589:. 2581:. 2569:. 2539:. 2531:. 2521:74 2519:. 2505:^ 2491:. 2483:. 2475:. 2461:. 2441:^ 2427:. 2419:. 2407:. 2380:. 2357:. 2347:. 2337:. 2329:. 2315:. 2311:. 2286:. 2274:. 2270:. 2247:. 2239:. 2231:. 2217:. 2194:. 2186:. 2176:. 2164:. 2140:^ 2111:^ 2085:. 2077:. 2069:. 2055:. 1947:. 1937:. 1925:. 1921:. 1864:. 1835:. 1827:. 1819:. 1805:. 1768:. 1760:. 1752:. 1744:. 1730:. 1693:. 1681:. 1677:. 1665:^ 1531:. 1459:. 1331:. 1210:. 1168:. 1124:. 1062:. 1023:. 773:. 600:. 441:RG 399:WR 354:13 291:. 233:kg 170:. 5056:: 4796:e 4789:t 4782:v 3914:Q 3733:B 3647:S 3559:B 3554:O 3542:M 3537:K 3532:G 3527:F 3522:A 3517:B 3512:O 3267:e 3260:t 3253:v 3182:. 3170:: 3162:: 3152:: 3127:. 3108:. 3089:. 3054:. 3032:: 3024:: 3014:: 2968:. 2954:: 2946:: 2919:. 2907:: 2899:: 2876:. 2862:: 2854:: 2835:M 2820:. 2781:. 2777:: 2767:: 2744:. 2732:: 2724:: 2714:: 2691:. 2679:: 2671:: 2661:: 2597:. 2585:: 2577:: 2560:M 2547:. 2535:: 2527:: 2499:. 2487:: 2479:: 2469:: 2452:M 2435:. 2423:: 2415:: 2409:9 2392:. 2388:: 2365:. 2351:: 2333:: 2323:: 2296:. 2290:: 2282:: 2255:. 2243:: 2235:: 2225:: 2202:. 2190:: 2172:: 2093:. 2081:: 2073:: 2063:: 2039:M 2032:L 2028:L 2025:K 2022:H 2019:J 2013:C 2008:) 2004:I 2001:R 1998:( 1992:J 1987:) 1983:V 1980:B 1977:U 1974:( 1955:. 1941:: 1933:: 1879:. 1851:) 1845:( 1843:. 1831:: 1823:: 1813:: 1776:. 1756:: 1748:: 1738:: 1703:. 1697:: 1689:: 1659:. 1613:) 1526:M 1438:M 1418:M 1374:M 1367:M 1196:M 1189:M 1159:M 1140:M 1133:M 1107:M 1083:M 1072:M 896:( 740:M 717:M 679:M 535:× 531:☉ 528:M 482:M 361:J 358:M 347:M 342:J 339:M 336:( 314:× 310:☉ 307:M 267:× 263:☉ 260:M 229:× 221:×

Index




subgiant
giant
planetary nebula

star
age of the universe
collapsing
nebulae
molecular clouds
protostars
main-sequence
Nuclear fusion
hydrogen atoms
core
helium
Sun
subgiant
red-giant
white dwarf
planetary nebula
supernova
neutron star
black hole
universe
red dwarfs
stellar models
stellar structure

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑