Knowledge

Van der Waals force

Source 📝

404:
attractive or repulsive, depending on the mutual orientation of the molecules. When molecules are in thermal motion, as they are in the gas and liquid phase, the electrostatic force is averaged out to a large extent because the molecules thermally rotate and thus probe both repulsive and attractive parts of the electrostatic force. Random thermal motion can disrupt or overcome the electrostatic component of the van der Waals force but the averaging effect is much less pronounced for the attractive induction and dispersion forces.
53: 3925: 299:, which has only one valence electron, and they are still not strong enough to achieve an aggregate state other than gas for Xe under standard conditions. The interactions between atoms in metals can also be effectively described as van der Waals interactions and account for the observed solid aggregate state with bonding strengths comparable to covalent and ionic interactions. The strength of pairwise van der Waals type interactions is on the order of 12 kJ/mol (120 meV) for low-melting Pb ( 1842: 227:. Specifically, the electron density may temporarily shift to be greater on one side of the nucleus. This shift generates a transient charge which a nearby atom can be attracted to or repelled by. The force is repulsive at very short distances, reaches zero at an equilibrium distance characteristic for each atom, or molecule, and becomes attractive for distances larger than the equilibrium distance. For individual atoms, the equilibrium distance is between 0.3  1856: 1775: 1729:
small particles such as very fine-grained dry powders (where there are no capillary forces present) even though the force of attraction is smaller in magnitude than it is for larger particles of the same substance. Such powders are said to be cohesive, meaning they are not as easily fluidized or pneumatically conveyed as their more coarse-grained counterparts. Generally, free-flow occurs with particles greater than about 250 μm.
3919: 33: 3931: 910: 518:
bodies with known volumes and numbers of atoms or molecules per unit volume, the total van der Waals force is often computed based on the "microscopic theory" as the sum over all interacting pairs. It is necessary to integrate over the total volume of the object, which makes the calculation dependent
1728:
From the expression above, it is seen that the van der Waals force decreases with decreasing size of bodies (R). Nevertheless, the strength of inertial forces, such as gravity and drag/lift, decrease to a greater extent. Consequently, the van der Waals forces become dominant for collections of very
391:
When to apply the term "van der Waals" force depends on the text. The broadest definitions include all intermolecular forces which are electrostatic in origin, namely (2), (3) and (4). Some authors, whether or not they consider other forces to be of van der Waals type, focus on (3) and (4) as these
1732:
The van der Waals force of adhesion is also dependent on the surface topography. If there are surface asperities, or protuberances, that result in a greater total area of contact between two particles or between a particle and a wall, this increases the van der Waals force of attraction as well as
403:
atoms), which means that they depend on the relative orientation of the molecules. The induction and dispersion interactions are always attractive, irrespective of orientation, but the electrostatic interaction changes sign upon rotation of the molecules. That is, the electrostatic force can be
501:
forces', 'London forces', or 'instantaneous dipole–induced dipole forces'. The strength of London dispersion forces is proportional to the polarizability of the molecule, which in turn depends on the total number of electrons and the area over which they are spread. Hydrocarbons display small
267:
molecular liquids, which result as a sum of all van der Waals interactions per molecule in the molecular liquids, amount to 0.90 kJ/mol (9.3 meV) and 6.82 kJ/mol (70.7 meV), respectively, and thus approximately 15 times the value of the individual pairwise interatomic interactions (excluding
539: 1804:
that exploits the effect, and success was achieved in 2011 to create an adhesive tape on similar grounds (i.e. based on van der Waals forces). In 2011, a paper was published relating the effect to both velcro-like hairs and the presence of lipids in gecko footprints.
502:
dispersive contributions, the presence of heteroatoms lead to increased LD forces as function of their polarizability, e.g. in the sequence RI>RBr>RCl>RF. In absence of solvents weakly polarizable hydrocarbons form crystals due to dispersive forces; their
2371: 1346: 3255:
We have demonstrated that it is the CE-driven electrostatic interactions which dictate the strength of gecko adhesion, and not the van der Waals or capillary forces which are conventionally considered as the main source of gecko
1707: 1560: 231:
and 0.5 nm, depending on the atomic-specific diameter. When the interatomic distance is greater than 1.0 nm the force is not strong enough to be easily observed as it decreases as a function of distance
497:. In and between organic molecules the multitude of contacts can lead to larger contribution of dispersive attraction, particularly in the presence of heteroatoms. London dispersion forces are also known as ' 446:
They are all short-range forces and hence only interactions between the nearest particles need to be considered (instead of all the particles). Van der Waals attraction is greater if the molecules are closer.
905:{\displaystyle {\begin{aligned}&U(z;R_{1},R_{2})=-{\frac {A}{6}}\left({\frac {2R_{1}R_{2}}{z^{2}-(R_{1}+R_{2})^{2}}}+{\frac {2R_{1}R_{2}}{z^{2}-(R_{1}-R_{2})^{2}}}+\ln \left\right)\end{aligned}}} 1110: 1745: 544: 1756:
derived a much more cumbersome "exact" expression in 1970 for spherical bodies within the framework of the Lifshitz theory while a simpler macroscopic model approximation had been made by
2871:
Autumn, Kellar; Sitti, Metin; Liang, Yiching A.; Peattie, Anne M.; Hansen, Wendy R.; Sponberg, Simon; Kenny, Thomas W.; Fearing, Ronald; Israelachvili, Jacob N.; Full, Robert J. (2002).
1789:– which can hang on a glass surface using only one toe – to climb on sheer surfaces has been for many years mainly attributed to the van der Waals forces between these surfaces and the 2018:
Tschumper, Gregory S. (20 October 2008). "Reliable Electronic Structure Computations for Weak Noncovalent Interactions in Clusters". In Lipkowitz, Kenny B.; Cundari, Thomas R. (eds.).
3379:
Brevik, Iver; Marachevsky, V. N.; Milton, Kimball A. (1999). "Identity of the van der Waals Force and the Casimir Effect and the Irrelevance of These Phenomena to Sonoluminescence".
457:
dominate other weaker van der Waals interactions. In higher molecular weight alcohols, the properties of the nonpolar hydrocarbon chain(s) dominate and determine their solubility.
3511: 1007: 1398: 3178:
Prowse, Michael S.; Wilkinson, Matt; Puthoff, Michael; Mayer, George; Autumn, Kellar (February 2011). "Effects of humidity on the mechanical properties of gecko setae".
99:; they are comparatively weak and therefore more susceptible to disturbance. The van der Waals force quickly vanishes at longer distances between interacting molecules. 311:. Accordingly, van der Waals forces can range from weak to strong interactions, and support integral structural loads when multitudes of such interactions are present. 3102:
Chen, Bin; Gao, Huajian (2010). "An alternative explanation of the effect of humidity in gecko adhesion: stiffness reduction enhances adhesion on a rough surface".
1425: 3268:
Kesel, Antonia B.; Martin, Andrew; Seidl, Tobias (19 April 2004). "Getting a grip on spider attachment: an AFM approach to microstructure adhesion in arthropods".
1120: 368:), which is the attractive interaction between a permanent multipole on one molecule with an induced multipole on another. This interaction is sometimes called 932:, which is a constant (~10 − 10 J) that depends on the material properties (it can be positive or negative in sign depending on the intervening medium), and 426:
for dielectric media, the former being the microscopic description of the latter bulk property. The first detailed calculations of this were done in 1955 by
1032:
are treated as parameters) is then a function of separation since the force on an object is the negative of the derivative of the potential energy function,
387:), which is the attractive interaction between any pair of molecules, including non-polar atoms, arising from the interactions of instantaneous multipoles. 1973: 1586: 4018: 2295:"The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters" 411:
is often used as an approximate model for the isotropic part of a total (repulsion plus attraction) van der Waals force as a function of distance.
243:
Van der Waals forces are often among the weakest chemical forces. For example, the pairwise attractive van der Waals interaction energy between H (
153:
is present, the distance between atoms at which the force becomes repulsive rather than attractive as the atoms approach one another is called the
2191:"Accurate and Compatible Force Fields for Molecular Oxygen, Nitrogen, and Hydrogen to Simulate Gases, Electrolytes, and Heterogeneous Interfaces" 1760:
as early as 1934. Expressions for the van der Waals forces for many different geometries using the Lifshitz theory have likewise been published.
1435: 2986:"Direct evidence of phospholipids in gecko footprints and spatula-substrate contact interface detected using surface-sensitive spectroscopy" 2248:"Thermodynamically Consistent Force Fields for the Assembly of Inorganic, Organic, and Biological Nanostructures: The INTERFACE Force Field" 2984:
Hsu, Ping Yuan; Ge, Liehui; Li, Xiaopeng; Stark, Alyssa Y.; Wesdemiotis, Chrys; Niewiarowski, Peter H.; Dhinojwala, Ali (24 August 2011).
3519: 17: 333:
interactions between permanent charges (in the case of molecular ions), dipoles (in the case of molecules without inversion centre),
4136: 4063: 3744: 4167: 1808:
A later study suggested that capillary adhesion might play a role, but that hypothesis has been rejected by more recent studies.
3550: 2990: 1725:
The van der Waals forces between objects with other geometries using the Hamaker model have been published in the literature.
531:(using London's famous 1937 equation for the dispersion interaction energy between atoms/molecules as the starting point) by: 2759: 2730: 2587: 2099: 2062: 1035: 279:
of the participating atoms. For example, the pairwise van der Waals interaction energy for more polarizable atoms such as S (
3638: 2674: 2334:"Accurate Simulation of Surfaces and Interfaces of Face-Centered Cubic Metals Using 12−6 and 9−6 Lennard-Jones Potentials" 2086:
Abrikosov, A. A.; Gorkov, L. P.; Dzyaloshinsky, I. E. (1963–1975). "6: Electromagnetic Radiation in an Absorbing Medium".
4058: 440:
The van der Waals forces are additive in nature, consisting of several individual interactions, and cannot be saturated.
3535:
Lifshitz, E. M. (1955). "Russian title is missing" [The Theory of Molecular Attractive Forces between Solids].
3331: 1830:
or scopula pads, enabling them to climb or hang upside-down from extremely smooth surfaces such as glass or porcelain.
3620: 3043:
Huber, Gerrit; Mantz, Hubert; Spolenak, Ralph; Mecke, Klaus; Jacobs, Karin; Gorb, Stanislav N.; Arzt, Eduard (2005).
2165: 2035: 3983: 45: 3655: 3807: 3998: 1364:
In the limit of close-approach, the spheres are sufficiently large compared to the distance between them; i.e.,
4162: 3834: 3795: 3785: 3270: 103: 2672:
Tadmor, R. (March 2001). "The London–Van der Waals interaction energy between objects of various geometries".
3790: 2490:
Dzyaloshinskii, I. E.; Lifshitz, E. M.; Pitaevskii, Lev P. (1961). "General theory of van der Waals forces".
519:
on the objects' shapes. For example, the van der Waals interaction energy between spherical bodies of radii R
3737: 3448:
Dzyaloshinskii, I. D.; Lifshitz, E. M.; Pitaevskii, L. P. (1961). "General theory of van der Waalsforces".
2816:"A new angle on clinging in geckos: incline, not substrate, triggers the deployment of the adhesive system" 427: 3045:"Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements" 353:
interactions. Orientation-averaged contributions from electrostatic interactions are sometimes called the
307:), which is about one order of magnitude stronger than in Xe due to the presence of a highly polarizable 295:) atoms is 2.35 kJ/mol (24.3 meV). These van der Waals interactions are up to 40 times stronger than in H 291:
exceeds 1 kJ/mol (10 meV), and the pairwise interaction energy between even larger, more polarizable Xe (
346: 2751: 2525:
Zheng, Y.; Narayanaswamy, A. (2011). "Lifshitz Theory of van der Waals Pressure in Dissipative Media".
957: 493:
that arise from the interactive forces between instantaneous multipoles in molecules without permanent
4053: 4043: 4033: 4008: 3978: 2931: 2394: 323: 3824: 1895: 415: 127: 107: 3586: 1367: 4085: 3988: 3960: 3730: 2419: 1945: 1925: 1890: 1816: 503: 498: 482: 477: 408: 380: 350: 251:
molecules equals 0.06 kJ/mol (0.6 meV) and the pairwise attractive interaction energy between O (
181: 165: 464:
interactions between unpolarized dipoles particularly in acid-base aqueous solution and between
36:
Rainwater flux from a canopy. Among the forces that govern drop formation: Van der Waals force,
3651:
An introductory description of the van der Waals force (as a sum of attractive components only)
3450: 1905: 1880: 419: 3490: 2437:
Leonhardt, Ulf; Philbin, Thomas G. (2007). "Quantum levitation by left-handed metamaterials".
4129: 4090: 1920: 358: 315: 4124: 2959: 4048: 3939: 3802: 3761: 3459: 3398: 3279: 3111: 3056: 2884: 2683: 2544: 2499: 2456: 1915: 1910: 1812: 1403: 1341:{\displaystyle \ F_{\rm {VdW}}(z)=-{\frac {A}{6}}{\frac {64R_{1}^{3}R_{2}^{3}z}{^{2}^{2}}}} 490: 201: 41: 2246:
Heinz, Hendrik; Lin, Tzu-Jen; Kishore Mishra, Ratan; Emami, Fateme S. (12 February 2013).
449:
Van der Waals forces are independent of temperature except for dipole-dipole interactions.
8: 3814: 3780: 3505:. Springer Tracts in Modern Physics. Vol. 72. New York, Heidelberg: Springer-Verlag. 494: 4114: 3463: 3402: 3283: 3115: 3060: 2888: 2687: 2548: 2503: 2460: 1949: 3869: 3706: 3677: 3414: 3388: 3353: 3322: 3303: 3241: 3216: 3180: 3079: 3044: 3020: 2985: 2848: 2815: 2699: 2560: 2534: 2472: 2446: 2228: 2136: 2091: 1870: 1790: 1769: 1741: 111: 2907: 2872: 4100: 3889: 3849: 3839: 3711: 3616: 3565: 3483: 3358: 3307: 3295: 3291: 3246: 3197: 3160: 3084: 3025: 3007: 2912: 2853: 2835: 2755: 2726: 2703: 2695: 2628: 2593: 2583: 2353: 2314: 2275: 2267: 2232: 2220: 2212: 2171: 2161: 2095: 2068: 2058: 2031: 1737: 515: 373: 143: 131: 64: 3471: 3418: 2748:
Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists
2564: 2511: 2468: 2190: 2140: 1983: 259:
molecules equals 0.44 kJ/mol (4.6 meV). The corresponding vaporization energies of H
4141: 3881: 3854: 3701: 3693: 3659: 3467: 3406: 3348: 3340: 3287: 3236: 3228: 3189: 3150: 3139:"Changes in materials properties explain the effects of humidity on gecko adhesion" 3119: 3074: 3064: 3015: 2999: 2902: 2892: 2843: 2827: 2691: 2620: 2552: 2507: 2464: 2345: 2306: 2294: 2259: 2202: 2128: 2116: 2023: 1987: 1978: 1847: 929: 224: 217: 3217:"Role of contact electrification and electrostatic interactions in gecko adhesion" 3137:
Puthoff, Jonathan B.; Prowse, Michael S.; Wilkinson, Matt; Autumn, Kellar (2010).
2476: 4119: 3993: 3864: 3498: 3193: 2624: 1900: 1757: 1749: 453:
In low molecular weight alcohols, the hydrogen-bonding properties of their polar
337:(all molecules with symmetry lower than cubic), and in general between permanent 135: 123: 115: 52: 37: 3427: 3410: 4028: 3829: 3612: 2722: 2556: 1861: 454: 423: 414:
Van der Waals forces are responsible for certain cases of pressure broadening (
365: 276: 213: 158: 119: 3123: 2611:
Schneider, Hans-Jörg (2015). "Dispersive Interactions in Solution Complexes".
2132: 2027: 1702:{\displaystyle \ F_{\rm {VdW}}(r)=-{\frac {AR_{1}R_{2}}{(R_{1}+R_{2})6r^{2}}}} 4156: 4077: 4037: 3970: 3924: 3899: 3772: 3753: 3299: 3011: 2839: 2597: 2357: 2333: 2318: 2271: 2247: 2216: 2207: 2072: 1982:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 528: 461: 342: 330: 269: 205: 96: 92: 3069: 1991: 4023: 3715: 3697: 3362: 3344: 3250: 3232: 3201: 3164: 3088: 3029: 3003: 2916: 2897: 2857: 2831: 2632: 2332:
Heinz, Hendrik; Vaia, R. A.; Farmer, B. L.; Naik, R. R. (6 November 2008).
2279: 2224: 1875: 486: 384: 354: 177: 106:, the van der Waals force plays a fundamental role in fields as diverse as 2175: 2052: 1555:{\displaystyle \ U(r;R_{1},R_{2})=-{\frac {AR_{1}R_{2}}{(R_{1}+R_{2})6r}}} 27:
Interactions between groups of atoms that do not arise from chemical bonds
4109: 3859: 2451: 1753: 465: 430:. A more general theory of van der Waals forces has also been developed. 396: 173: 2310: 1427:, so that equation (1) for the potential energy function simplifies to: 59:
cloth makes use of van der Waals force to remove dirt without scratches.
3393: 3155: 3138: 2155: 1885: 334: 209: 164:
The van der Waals forces are usually described as a combination of the
157:; this phenomenon results from the mutual repulsion between the atoms' 139: 88: 56: 3672:
TED Talk on biomimicry, including applications of van der Waals force.
2960:"Biologically inspired adhesive tape can be reused thousands of times" 2349: 2263: 1815:
surfaces is mainly determined by electrostatic interaction (caused by
3844: 3819: 2154:
Hirschfelder, Joseph O.; Curtiss, Charles F.; Bird, R. Byron (1954).
1823: 1744:. A more rigorous approach accounting for these effects, called the " 400: 338: 308: 228: 68: 3918: 3678:"The influence of humidity on the attachment ability of the spider 3426:
Dzyaloshinskii, I. D.; Lifshitz, E. M.; Pitaevskii, Lev P. (1961).
3323:"The influence of humidity on the attachment ability of the spider 1855: 1827: 1801: 1774: 509: 326:
that prevents close contact of atoms, or the collapse of molecules.
304: 244: 212:
bonding in that they are caused by correlations in the fluctuating
197: 84: 2539: 184:
whose rotational orientations are dynamically averaged over time.
3722: 2936: 2085: 288: 3447: 3425: 2489: 1811:
A 2014 study has shown that gecko adhesion to smooth Teflon and
1736:
The microscopic theory assumes pairwise additivity. It neglects
303:) and on the order of 32 kJ/mol (330 meV) for high-melting Pt ( 280: 252: 192:
Van der Waals forces include attraction and repulsions between
169: 1786: 1778: 1014: 369: 292: 150: 32: 3136: 3177: 2245: 1794: 300: 193: 80: 3930: 3551:"The Theory of Molecular Attractive Forces between Solids" 3215:
Izadi, H.; Stewart, K. M. E.; Penlidis, A. (9 July 2014).
2189:
Wang, Shiyi; Hou, Kaiyi; Heinz, Hendrik (10 August 2021).
1950:"How do microfiber cloths work? | The science of cleaning" 275:
The strength of van der Waals bonds increases with higher
2393:
Tao, Jianmin; Perdew, John; Ruzsinszky, Adrienn (2013).
1793:, or microscopic projections, which cover the hair-like 3686:
Proceedings of the Royal Society B: Biological Sciences
3378: 3042: 2870: 2820:
Proceedings of the Royal Society B: Biological Sciences
2153: 2022:. Vol. 26. John Wiley & Sons. pp. 39–90. 2007:(6th ed.). University of Virginia. pp. 12–13. 1105:{\displaystyle \ F_{\rm {VdW}}(z)=-{\frac {d}{dz}}U(z)} 176:
between permanent dipoles and induced dipoles, and the
3321:
Wolff, Jonas O.; Gorb, Stanislav N. (7 January 2012).
2088:
Methods of Quantum Field Theory in Statistical Physics
460:
Van der Waalsforces are also responsible for the weak
433:
The main characteristics of van der Waals forces are:
2716: 1589: 1438: 1406: 1370: 1123: 1038: 960: 542: 527:
and with smooth surfaces was approximated in 1937 by
437:
They are weaker than normal covalent and ionic bonds.
422:. The London–van der Waals forces are related to the 392:
are the components which act over the longest range.
3214: 2873:"Evidence for van der Waals adhesion in gecko setae" 1837: 2392: 2331: 936:is the center-to-center distance; i.e., the sum of 3482: 2524: 2003:Garrett, Reginald H.; Grisham, Charles M. (2016). 1701: 1554: 1419: 1392: 1340: 1104: 1001: 904: 3537:Zhurnal Éksperimental'noĭ i Teoreticheskoĭ Fiziki 3430:[General theory of van der Waals forces] 2814:Russell, Anthony P.; Higham, Timothy. E. (2009). 2807: 4154: 3267: 2436: 2050: 510:Van der Waals forces between macroscopic objects 3261: 3049:Proceedings of the National Academy of Sciences 2877:Proceedings of the National Academy of Sciences 1763: 3480: 2002: 79:) is a distance-dependent interaction between 3738: 3656:"Robert Full: Learning from the gecko's tail" 3606: 3600:Fundamentals of Interface and Colloid Science 2932:"Gecko-like glue is said to be stickiest yet" 2813: 2983: 2188: 506:is a measure of the dispersive interaction. 485:, named after the German-American physicist 395:All intermolecular/van der Waals forces are 223:The force results from a transient shift in 2929: 2577: 1826:, some spiders have similar setae on their 3745: 3731: 3104:International Journal of Applied Mechanics 2977: 2571: 2195:Journal of Chemical Theory and Computation 1819:), not van der Waals or capillary forces. 1733:the tendency for mechanical interlocking. 471: 3705: 3676:Wolff, J. O.; Gorb, S. N. (18 May 2011). 3675: 3392: 3352: 3320: 3240: 3154: 3078: 3068: 3019: 2906: 2896: 2847: 2745: 2610: 2582:. New Delhi: Discovery Publishing House. 2538: 2450: 2402:International Journal of Modern Physics B 2206: 2057:. Princeton: Princeton University Press. 2017: 418:) of spectral lines and the formation of 322:A repulsive component resulting from the 95:, these attractions do not result from a 4137:Polyhedral skeletal electron pair theory 3548: 3534: 3497: 2420:"New way to levitate objects discovered" 2299:Journal of the American Chemical Society 2114: 2079: 1944: 1773: 443:They have no directional characteristic. 51: 31: 3481:Landau, L. D.; Lifshitz, E. M. (1960). 3101: 2292: 1800:There were efforts in 2008 to create a 1018:between two spheres of constant radii ( 130:. It also underlies many properties of 14: 4155: 3636: 3221:Journal of the Royal Society Interface 2991:Journal of the Royal Society Interface 2671: 2395:"Long range Van der Waals interaction" 216:of nearby particles (a consequence of 3726: 3428:"Общая теория ван-дер-ваальсовых сил" 2957: 2930:Steenhuysen, Julie (8 October 2008). 2293:Halgren, Thomas A. (September 1992). 2157:Molecular theory of gases and liquids 954:(the distance between the surfaces): 318:have several possible contributions: 2675:Journal of Physics: Condensed Matter 2372:"Intermolecular Van der Waals force" 1580: 1429: 1114: 533: 3597: 3485:Electrodynamics of Continuous Media 2660:Transactions of the Faraday Society 2338:The Journal of Physical Chemistry C 236:approximately with the 7th power (~ 24: 3752: 3509: 3503:Theory of Van der Waals Attraction 3372: 3332:Proceedings of the Royal Society B 2020:Reviews in Computational Chemistry 1979:Compendium of Chemical Terminology 1605: 1602: 1599: 1139: 1136: 1133: 1054: 1051: 1048: 341:. These interactions also include 25: 4179: 3630: 3609:Intermolecular and Surface Forces 2958:Quick, Darren (6 November 2011). 2719:Intermolecular and Surface Forces 2578:Sethi, M. S.; Satake, M. (1992). 2117:"Van der Waals Radii of Elements" 1002:{\displaystyle \ z=R_{1}+R_{2}+r} 168:between "instantaneously induced 3929: 3923: 3917: 3639:"What are van der Waals forces?" 3607:Israelachvili, Jacob N. (1992). 3549:Lifshitz, E. M. (January 1956). 3512:"Van der Waals dispersion force" 1854: 1840: 3472:10.1070/PU1961v004n02ABEH003330 3314: 3208: 3171: 3143:Journal of Experimental Biology 3130: 3095: 3036: 2951: 2923: 2864: 2794: 2781: 2768: 2739: 2710: 2665: 2652: 2639: 2604: 2518: 2512:10.1070/PU1961v004n02ABEH003330 2483: 2430: 2412: 2386: 2364: 2325: 2286: 2239: 2054:Quantum mechanics in a nutshell 4168:Johannes Diderik van der Waals 3518:. Holmgren Lab. Archived from 3271:Smart Materials and Structures 2717:Israelachvili J. (1985–2004). 2182: 2147: 2108: 2044: 2011: 1996: 1967: 1938: 1680: 1654: 1617: 1611: 1540: 1514: 1477: 1445: 1326: 1316: 1289: 1273: 1264: 1254: 1227: 1211: 1151: 1145: 1099: 1093: 1066: 1060: 877: 850: 826: 799: 758: 731: 675: 648: 583: 551: 381:London dispersion interactions 155:van der Waals contact distance 104:Johannes Diderik van der Waals 13: 1: 3489:. Oxford: Pergamon. pp.  2613:Accounts of Chemical Research 1932: 187: 3641:. Frostburg State University 3593:. Western Oregon University. 3194:10.1016/j.actbio.2010.09.036 2625:10.1021/acs.accounts.5b00111 1764:Use by geckos and arthropods 1393:{\displaystyle \ r\ll R_{1}} 102:Named after Dutch physicist 46:Plateau–Rayleigh instability 7: 3411:10.1103/PhysRevLett.82.3948 1833: 1715: 1568: 1354: 918: 10: 4184: 3835:Metal–ligand multiple bond 3292:10.1088/0964-1726/13/3/009 2752:Cambridge University Press 2696:10.1088/0953-8984/13/9/101 2557:10.1103/PhysRevA.83.042504 1797:found on their footpads. 1767: 475: 399:(except those between two 379:Dispersion (usually named 18:Van der Waals interactions 4099: 4076: 4007: 3969: 3949: 3938: 3915: 3898: 3880: 3771: 3760: 3682:(Araneae, Philodromidae)" 3436:Uspekhi Fizicheskikh Nauk 3327:(Araneae, Philodromidae)" 3124:10.1142/s1758825110000433 2746:Parsegian, V. A. (2006). 2649:, 4(10), 1058–1072 (1937) 2469:10.1088/1367-2630/9/8/254 2051:Mahan, Gerald D. (2009). 2028:10.1002/9780470399545.ch2 364:Induction (also known as 324:Pauli exclusion principle 3587:"London force animation" 2208:10.1021/acs.jctc.0c01132 2115:Batsanov, S. S. (2001). 1926:Wringing of gauge blocks 1896:Noncovalent interactions 1781:climbing a glass surface 483:London dispersion forces 416:van der Waals broadening 329:Attractive or repulsive 166:London dispersion forces 128:condensed matter physics 108:supramolecular chemistry 97:chemical electronic bond 3564:(1): 73. Archived from 3381:Physical Review Letters 3070:10.1073/pnas.0506328102 2133:10.1023/A:1011625728803 1992:10.1351/goldbook.V06597 1891:Lennard-Jones potential 1817:contact electrification 478:London dispersion force 472:London dispersion force 420:van der Waals molecules 409:Lennard-Jones potential 3698:10.1098/rspb.2011.0505 3451:Soviet Physics Uspekhi 3345:10.1098/rspb.2011.0505 3233:10.1098/rsif.2014.0371 3004:10.1098/rsif.2011.0370 2898:10.1073/pnas.192252799 2832:10.1098/rspb.2009.0946 2492:Soviet Physics Uspekhi 2439:New Journal of Physics 1906:Van der Waals molecule 1881:Dispersion (chemistry) 1782: 1738:many-body interactions 1703: 1556: 1421: 1394: 1342: 1106: 1003: 906: 357:or Keesom force after 255:) atoms in different O 247:) atoms in different H 60: 49: 4163:Intermolecular forces 3637:Senese, Fred (1999). 3591:Intermolecular Forces 3547:English translation: 3516:Life Science Glossary 3446:English translation: 1921:Van der Waals surface 1777: 1768:Further information: 1704: 1557: 1422: 1420:{\displaystyle R_{2}} 1395: 1343: 1107: 1004: 907: 491:intermolecular forces 359:Willem Hendrik Keesom 316:intermolecular forces 202:intermolecular forces 55: 35: 3825:Coordinate (dipolar) 2804:, 69, 155–164 (1934) 1984:van der Waals forces 1916:Van der Waals strain 1911:Van der Waals radius 1813:polydimethylsiloxane 1748:", was developed by 1587: 1436: 1404: 1368: 1121: 1036: 958: 540: 466:biological molecules 3999:C–H···O interaction 3781:Electron deficiency 3464:1961SvPhU...4..153D 3403:1999PhRvL..82.3948B 3284:2004SMaS...13..512K 3116:2010IJAM....2....1C 3061:2005PNAS..10216293H 3055:(45): 16293–16296. 2889:2002PNAS...9912252A 2826:(1673): 3705–3709. 2802:Kolloid-Zeitschrift 2776:Soviet Physics—JETP 2688:2001JPCM...13L.195T 2549:2011PhRvA..83d2504Z 2504:1961SvPhU...4..153D 2461:2007NJPh....9..254L 2344:(44): 17281–17290. 2311:10.1021/ja00046a032 2160:. New York: Wiley. 2121:Inorganic Materials 1205: 1190: 930:Hamaker coefficient 204:. They differ from 200:, as well as other 144:polar and non-polar 77:van de Waals' force 73:van der Waals force 3984:Resonance-assisted 3680:Philodromus dispar 3325:Philodromus dispar 3181:Acta Biomaterialia 3156:10.1242/jeb.047654 2092:Dover Publications 1954:Explain that Stuff 1871:Arthropod adhesion 1783: 1770:Arthropod adhesion 1746:macroscopic theory 1699: 1552: 1417: 1390: 1338: 1191: 1176: 1102: 1012:The van der Waals 999: 902: 900: 355:Keesom interaction 180:between permanent 138:, including their 112:structural biology 61: 50: 4150: 4149: 4101:Electron counting 4072: 4071: 3961:London dispersion 3913: 3912: 3890:Metal aromaticity 3692:(1726): 139–143. 3662:. 1 February 2009 3387:(20): 3948–3951. 3339:(1726): 139–143. 3149:(21): 3699–3704. 2800:B. V. Derjaguin, 2789:Physical Review B 2761:978-0-521-83906-8 2732:978-0-12-375181-2 2589:978-81-7141-163-4 2527:Physical Review A 2350:10.1021/jp801931d 2305:(20): 7827–7843. 2264:10.1021/la3038846 2101:978-0-486-63228-5 2064:978-0-691-13713-1 1723: 1722: 1697: 1592: 1576: 1575: 1550: 1441: 1373: 1362: 1361: 1336: 1168: 1126: 1088: 1041: 963: 926: 925: 887: 768: 685: 600: 495:multipole moments 374:Peter J. W. Debye 309:free electron gas 182:molecular dipoles 132:organic compounds 65:molecular physics 16:(Redirected from 4175: 4142:Jemmis mno rules 3994:Dihydrogen bonds 3947: 3946: 3933: 3927: 3921: 3855:Hyperconjugation 3769: 3768: 3747: 3740: 3733: 3724: 3723: 3719: 3709: 3671: 3669: 3667: 3650: 3648: 3646: 3626: 3603: 3594: 3580: 3578: 3576: 3570: 3555: 3544: 3531: 3529: 3527: 3506: 3499:Langbein, Dieter 3494: 3488: 3475: 3443: 3433: 3422: 3396: 3367: 3366: 3356: 3318: 3312: 3311: 3265: 3259: 3258: 3244: 3227:(98): 20140371. 3212: 3206: 3205: 3175: 3169: 3168: 3158: 3134: 3128: 3127: 3099: 3093: 3092: 3082: 3072: 3040: 3034: 3033: 3023: 2981: 2975: 2974: 2972: 2970: 2955: 2949: 2948: 2946: 2944: 2927: 2921: 2920: 2910: 2900: 2868: 2862: 2861: 2851: 2811: 2805: 2798: 2792: 2791:, 2, 3371 (1970) 2785: 2779: 2774:E. M. Lifshitz, 2772: 2766: 2765: 2743: 2737: 2736: 2714: 2708: 2707: 2682:(9): L195–L202. 2669: 2663: 2656: 2650: 2643: 2637: 2636: 2619:(7): 1815–1822. 2608: 2602: 2601: 2580:Chemical bonding 2575: 2569: 2568: 2542: 2522: 2516: 2515: 2487: 2481: 2480: 2454: 2452:quant-ph/0608115 2434: 2428: 2427: 2426:. 6 August 2007. 2416: 2410: 2409: 2399: 2390: 2384: 2383: 2381: 2379: 2368: 2362: 2361: 2329: 2323: 2322: 2290: 2284: 2283: 2258:(6): 1754–1765. 2243: 2237: 2236: 2210: 2201:(8): 5198–5213. 2186: 2180: 2179: 2151: 2145: 2144: 2112: 2106: 2105: 2083: 2077: 2076: 2048: 2042: 2041: 2015: 2009: 2008: 2000: 1994: 1971: 1965: 1964: 1962: 1960: 1942: 1864: 1859: 1858: 1850: 1848:Chemistry portal 1845: 1844: 1843: 1717: 1708: 1706: 1705: 1700: 1698: 1696: 1695: 1694: 1679: 1678: 1666: 1665: 1652: 1651: 1650: 1641: 1640: 1627: 1610: 1609: 1608: 1590: 1581: 1578:with the force: 1570: 1561: 1559: 1558: 1553: 1551: 1549: 1539: 1538: 1526: 1525: 1512: 1511: 1510: 1501: 1500: 1487: 1476: 1475: 1463: 1462: 1439: 1430: 1426: 1424: 1423: 1418: 1416: 1415: 1399: 1397: 1396: 1391: 1389: 1388: 1371: 1356: 1347: 1345: 1344: 1339: 1337: 1335: 1334: 1333: 1324: 1323: 1314: 1313: 1301: 1300: 1285: 1284: 1272: 1271: 1262: 1261: 1252: 1251: 1239: 1238: 1223: 1222: 1209: 1204: 1199: 1189: 1184: 1171: 1169: 1161: 1144: 1143: 1142: 1124: 1115: 1111: 1109: 1108: 1103: 1089: 1087: 1076: 1059: 1058: 1057: 1039: 1008: 1006: 1005: 1000: 992: 991: 979: 978: 961: 920: 911: 909: 908: 903: 901: 897: 893: 892: 888: 886: 885: 884: 875: 874: 862: 861: 846: 845: 835: 834: 833: 824: 823: 811: 810: 795: 794: 784: 769: 767: 766: 765: 756: 755: 743: 742: 727: 726: 716: 715: 714: 705: 704: 691: 686: 684: 683: 682: 673: 672: 660: 659: 644: 643: 633: 632: 631: 622: 621: 608: 601: 593: 582: 581: 569: 568: 546: 534: 504:sublimation heat 225:electron density 218:quantum dynamics 136:molecular solids 21: 4183: 4182: 4178: 4177: 4176: 4174: 4173: 4172: 4153: 4152: 4151: 4146: 4095: 4068: 4011: 4003: 3965: 3952: 3942: 3934: 3928: 3922: 3909: 3894: 3876: 3764: 3756: 3751: 3665: 3663: 3654: 3644: 3642: 3633: 3623: 3602:. p. 4.43. 3585: 3574: 3572: 3571:on 13 July 2019 3568: 3553: 3525: 3523: 3522:on 24 July 2019 3431: 3375: 3373:Further reading 3370: 3319: 3315: 3266: 3262: 3213: 3209: 3176: 3172: 3135: 3131: 3100: 3096: 3041: 3037: 2998:(69): 657–664. 2982: 2978: 2968: 2966: 2956: 2952: 2942: 2940: 2928: 2924: 2883:(19): 12252–6. 2869: 2865: 2812: 2808: 2799: 2795: 2786: 2782: 2773: 2769: 2762: 2744: 2740: 2733: 2715: 2711: 2670: 2666: 2662:33, 8–26 (1937) 2657: 2653: 2645:H. C. Hamaker, 2644: 2640: 2609: 2605: 2590: 2576: 2572: 2523: 2519: 2488: 2484: 2435: 2431: 2418: 2417: 2413: 2397: 2391: 2387: 2377: 2375: 2370: 2369: 2365: 2330: 2326: 2291: 2287: 2244: 2240: 2187: 2183: 2168: 2152: 2148: 2113: 2109: 2102: 2084: 2080: 2065: 2049: 2045: 2038: 2016: 2012: 2001: 1997: 1972: 1968: 1958: 1956: 1948:(2 July 2008). 1946:Woodford, Chris 1943: 1939: 1935: 1930: 1901:Synthetic setae 1860: 1853: 1846: 1841: 1839: 1836: 1785:The ability of 1772: 1766: 1690: 1686: 1674: 1670: 1661: 1657: 1653: 1646: 1642: 1636: 1632: 1628: 1626: 1598: 1597: 1593: 1588: 1585: 1584: 1534: 1530: 1521: 1517: 1513: 1506: 1502: 1496: 1492: 1488: 1486: 1471: 1467: 1458: 1454: 1437: 1434: 1433: 1411: 1407: 1405: 1402: 1401: 1384: 1380: 1369: 1366: 1365: 1329: 1325: 1319: 1315: 1309: 1305: 1296: 1292: 1280: 1276: 1267: 1263: 1257: 1253: 1247: 1243: 1234: 1230: 1218: 1214: 1210: 1200: 1195: 1185: 1180: 1172: 1170: 1160: 1132: 1131: 1127: 1122: 1119: 1118: 1112:. This yields: 1080: 1075: 1047: 1046: 1042: 1037: 1034: 1033: 1031: 1024: 987: 983: 974: 970: 959: 956: 955: 949: 942: 928:where A is the 899: 898: 880: 876: 870: 866: 857: 853: 841: 837: 836: 829: 825: 819: 815: 806: 802: 790: 786: 785: 783: 779: 761: 757: 751: 747: 738: 734: 722: 718: 717: 710: 706: 700: 696: 692: 690: 678: 674: 668: 664: 655: 651: 639: 635: 634: 627: 623: 617: 613: 609: 607: 606: 602: 592: 577: 573: 564: 560: 543: 541: 538: 537: 526: 522: 512: 480: 474: 298: 286: 266: 262: 258: 250: 190: 159:electron clouds 124:surface science 116:polymer science 38:surface tension 28: 23: 22: 15: 12: 11: 5: 4181: 4171: 4170: 4165: 4148: 4147: 4145: 4144: 4139: 4134: 4133: 4132: 4127: 4122: 4117: 4106: 4104: 4097: 4096: 4094: 4093: 4088: 4082: 4080: 4074: 4073: 4070: 4069: 4067: 4066: 4061: 4056: 4051: 4046: 4041: 4031: 4026: 4021: 4015: 4013: 4005: 4004: 4002: 4001: 3996: 3991: 3986: 3981: 3975: 3973: 3967: 3966: 3964: 3963: 3957: 3955: 3944: 3940:Intermolecular 3936: 3935: 3916: 3914: 3911: 3910: 3908: 3907: 3904: 3902: 3896: 3895: 3893: 3892: 3886: 3884: 3878: 3877: 3875: 3874: 3873: 3872: 3867: 3857: 3852: 3847: 3842: 3837: 3832: 3827: 3822: 3817: 3812: 3811: 3810: 3800: 3799: 3798: 3793: 3788: 3777: 3775: 3766: 3762:Intramolecular 3758: 3757: 3754:Chemical bonds 3750: 3749: 3742: 3735: 3727: 3721: 3720: 3673: 3652: 3632: 3631:External links 3629: 3628: 3627: 3621: 3613:Academic Press 3604: 3595: 3583: 3582: 3581: 3558:Soviet Physics 3539:(in Russian). 3532: 3510:Lefers, Mark. 3507: 3495: 3478: 3477: 3476: 3438:(in Russian). 3423: 3394:hep-th/9810062 3374: 3371: 3369: 3368: 3313: 3278:(3): 512–518. 3260: 3207: 3188:(2): 733–738. 3170: 3129: 3094: 3035: 2976: 2950: 2922: 2863: 2806: 2793: 2780: 2778:, 2, 73 (1956) 2767: 2760: 2738: 2731: 2723:Academic Press 2709: 2664: 2651: 2638: 2603: 2588: 2570: 2517: 2482: 2429: 2411: 2385: 2363: 2324: 2285: 2238: 2181: 2166: 2146: 2127:(9): 871–885. 2107: 2100: 2078: 2063: 2043: 2036: 2010: 1995: 1966: 1936: 1934: 1931: 1929: 1928: 1923: 1918: 1913: 1908: 1903: 1898: 1893: 1888: 1883: 1878: 1873: 1867: 1866: 1865: 1862:Biology portal 1851: 1835: 1832: 1765: 1762: 1721: 1720: 1711: 1709: 1693: 1689: 1685: 1682: 1677: 1673: 1669: 1664: 1660: 1656: 1649: 1645: 1639: 1635: 1631: 1625: 1622: 1619: 1616: 1613: 1607: 1604: 1601: 1596: 1574: 1573: 1564: 1562: 1548: 1545: 1542: 1537: 1533: 1529: 1524: 1520: 1516: 1509: 1505: 1499: 1495: 1491: 1485: 1482: 1479: 1474: 1470: 1466: 1461: 1457: 1453: 1450: 1447: 1444: 1414: 1410: 1387: 1383: 1379: 1376: 1360: 1359: 1350: 1348: 1332: 1328: 1322: 1318: 1312: 1308: 1304: 1299: 1295: 1291: 1288: 1283: 1279: 1275: 1270: 1266: 1260: 1256: 1250: 1246: 1242: 1237: 1233: 1229: 1226: 1221: 1217: 1213: 1208: 1203: 1198: 1194: 1188: 1183: 1179: 1175: 1167: 1164: 1159: 1156: 1153: 1150: 1147: 1141: 1138: 1135: 1130: 1101: 1098: 1095: 1092: 1086: 1083: 1079: 1074: 1071: 1068: 1065: 1062: 1056: 1053: 1050: 1045: 1029: 1022: 998: 995: 990: 986: 982: 977: 973: 969: 966: 947: 940: 924: 923: 914: 912: 896: 891: 883: 879: 873: 869: 865: 860: 856: 852: 849: 844: 840: 832: 828: 822: 818: 814: 809: 805: 801: 798: 793: 789: 782: 778: 775: 772: 764: 760: 754: 750: 746: 741: 737: 733: 730: 725: 721: 713: 709: 703: 699: 695: 689: 681: 677: 671: 667: 663: 658: 654: 650: 647: 642: 638: 630: 626: 620: 616: 612: 605: 599: 596: 591: 588: 585: 580: 576: 572: 567: 563: 559: 556: 553: 550: 547: 545: 524: 520: 511: 508: 476:Main article: 473: 470: 455:hydroxyl group 451: 450: 447: 444: 441: 438: 428:E. M. Lifshitz 424:Casimir effect 389: 388: 377: 362: 343:hydrogen bonds 327: 314:More broadly, 296: 284: 277:polarizability 270:covalent bonds 264: 260: 256: 248: 189: 186: 120:nanotechnology 93:covalent bonds 26: 9: 6: 4: 3: 2: 4180: 4169: 4166: 4164: 4161: 4160: 4158: 4143: 4140: 4138: 4135: 4131: 4128: 4126: 4123: 4121: 4118: 4116: 4115:Hückel's rule 4113: 4112: 4111: 4108: 4107: 4105: 4102: 4098: 4092: 4089: 4087: 4084: 4083: 4081: 4079: 4078:Bond cleavage 4075: 4065: 4062: 4060: 4057: 4055: 4052: 4050: 4047: 4045: 4044:Intercalation 4042: 4039: 4035: 4034:Metallophilic 4032: 4030: 4027: 4025: 4022: 4020: 4017: 4016: 4014: 4010: 4006: 4000: 3997: 3995: 3992: 3990: 3987: 3985: 3982: 3980: 3977: 3976: 3974: 3972: 3968: 3962: 3959: 3958: 3956: 3954: 3951:Van der Waals 3948: 3945: 3941: 3937: 3932: 3926: 3920: 3906: 3905: 3903: 3901: 3897: 3891: 3888: 3887: 3885: 3883: 3879: 3871: 3868: 3866: 3863: 3862: 3861: 3858: 3856: 3853: 3851: 3848: 3846: 3843: 3841: 3838: 3836: 3833: 3831: 3828: 3826: 3823: 3821: 3818: 3816: 3813: 3809: 3806: 3805: 3804: 3801: 3797: 3794: 3792: 3789: 3787: 3784: 3783: 3782: 3779: 3778: 3776: 3774: 3770: 3767: 3763: 3759: 3755: 3748: 3743: 3741: 3736: 3734: 3729: 3728: 3725: 3717: 3713: 3708: 3703: 3699: 3695: 3691: 3687: 3683: 3681: 3674: 3661: 3657: 3653: 3640: 3635: 3634: 3624: 3622:9780123751812 3618: 3614: 3610: 3605: 3601: 3596: 3592: 3588: 3584: 3567: 3563: 3559: 3552: 3546: 3545: 3542: 3538: 3533: 3521: 3517: 3513: 3508: 3504: 3500: 3496: 3492: 3487: 3486: 3479: 3473: 3469: 3465: 3461: 3457: 3453: 3452: 3445: 3444: 3441: 3437: 3429: 3424: 3420: 3416: 3412: 3408: 3404: 3400: 3395: 3390: 3386: 3382: 3377: 3376: 3364: 3360: 3355: 3350: 3346: 3342: 3338: 3334: 3333: 3328: 3326: 3317: 3309: 3305: 3301: 3297: 3293: 3289: 3285: 3281: 3277: 3273: 3272: 3264: 3257: 3252: 3248: 3243: 3238: 3234: 3230: 3226: 3222: 3218: 3211: 3203: 3199: 3195: 3191: 3187: 3183: 3182: 3174: 3166: 3162: 3157: 3152: 3148: 3144: 3140: 3133: 3125: 3121: 3117: 3113: 3109: 3105: 3098: 3090: 3086: 3081: 3076: 3071: 3066: 3062: 3058: 3054: 3050: 3046: 3039: 3031: 3027: 3022: 3017: 3013: 3009: 3005: 3001: 2997: 2993: 2992: 2987: 2980: 2965: 2961: 2954: 2939: 2938: 2933: 2926: 2918: 2914: 2909: 2904: 2899: 2894: 2890: 2886: 2882: 2878: 2874: 2867: 2859: 2855: 2850: 2845: 2841: 2837: 2833: 2829: 2825: 2821: 2817: 2810: 2803: 2797: 2790: 2787:D. Langbein, 2784: 2777: 2771: 2763: 2757: 2753: 2749: 2742: 2734: 2728: 2724: 2720: 2713: 2705: 2701: 2697: 2693: 2689: 2685: 2681: 2677: 2676: 2668: 2661: 2655: 2648: 2642: 2634: 2630: 2626: 2622: 2618: 2614: 2607: 2599: 2595: 2591: 2585: 2581: 2574: 2566: 2562: 2558: 2554: 2550: 2546: 2541: 2536: 2533:(4): 042504. 2532: 2528: 2521: 2513: 2509: 2505: 2501: 2497: 2493: 2486: 2478: 2474: 2470: 2466: 2462: 2458: 2453: 2448: 2444: 2440: 2433: 2425: 2424:Science Daily 2421: 2415: 2407: 2403: 2396: 2389: 2373: 2367: 2359: 2355: 2351: 2347: 2343: 2339: 2335: 2328: 2320: 2316: 2312: 2308: 2304: 2300: 2296: 2289: 2281: 2277: 2273: 2269: 2265: 2261: 2257: 2253: 2249: 2242: 2234: 2230: 2226: 2222: 2218: 2214: 2209: 2204: 2200: 2196: 2192: 2185: 2177: 2173: 2169: 2167:0-471-40065-3 2163: 2159: 2158: 2150: 2142: 2138: 2134: 2130: 2126: 2122: 2118: 2111: 2103: 2097: 2093: 2089: 2082: 2074: 2070: 2066: 2060: 2056: 2055: 2047: 2039: 2037:9780470399545 2033: 2029: 2025: 2021: 2014: 2006: 1999: 1993: 1989: 1985: 1981: 1980: 1975: 1970: 1955: 1951: 1947: 1941: 1937: 1927: 1924: 1922: 1919: 1917: 1914: 1912: 1909: 1907: 1904: 1902: 1899: 1897: 1894: 1892: 1889: 1887: 1884: 1882: 1879: 1877: 1874: 1872: 1869: 1868: 1863: 1857: 1852: 1849: 1838: 1831: 1829: 1825: 1820: 1818: 1814: 1809: 1806: 1803: 1798: 1796: 1792: 1788: 1780: 1776: 1771: 1761: 1759: 1755: 1751: 1747: 1743: 1739: 1734: 1730: 1726: 1719: 1712: 1710: 1691: 1687: 1683: 1675: 1671: 1667: 1662: 1658: 1647: 1643: 1637: 1633: 1629: 1623: 1620: 1614: 1594: 1583: 1582: 1579: 1572: 1565: 1563: 1546: 1543: 1535: 1531: 1527: 1522: 1518: 1507: 1503: 1497: 1493: 1489: 1483: 1480: 1472: 1468: 1464: 1459: 1455: 1451: 1448: 1442: 1432: 1431: 1428: 1412: 1408: 1385: 1381: 1377: 1374: 1358: 1351: 1349: 1330: 1320: 1310: 1306: 1302: 1297: 1293: 1286: 1281: 1277: 1268: 1258: 1248: 1244: 1240: 1235: 1231: 1224: 1219: 1215: 1206: 1201: 1196: 1192: 1186: 1181: 1177: 1173: 1165: 1162: 1157: 1154: 1148: 1128: 1117: 1116: 1113: 1096: 1090: 1084: 1081: 1077: 1072: 1069: 1063: 1043: 1028: 1021: 1017: 1016: 1010: 996: 993: 988: 984: 980: 975: 971: 967: 964: 953: 946: 939: 935: 931: 922: 915: 913: 894: 889: 881: 871: 867: 863: 858: 854: 847: 842: 838: 830: 820: 816: 812: 807: 803: 796: 791: 787: 780: 776: 773: 770: 762: 752: 748: 744: 739: 735: 728: 723: 719: 711: 707: 701: 697: 693: 687: 679: 669: 665: 661: 656: 652: 645: 640: 636: 628: 624: 618: 614: 610: 603: 597: 594: 589: 586: 578: 574: 570: 565: 561: 557: 554: 548: 536: 535: 532: 530: 517: 507: 505: 500: 496: 492: 488: 484: 479: 469: 467: 463: 462:hydrogen bond 458: 456: 448: 445: 442: 439: 436: 435: 434: 431: 429: 425: 421: 417: 412: 410: 405: 402: 398: 393: 386: 382: 378: 375: 371: 367: 363: 360: 356: 352: 348: 344: 340: 336: 332: 331:electrostatic 328: 325: 321: 320: 319: 317: 312: 310: 306: 302: 294: 290: 282: 278: 273: 271: 254: 246: 241: 239: 235: 230: 226: 221: 219: 215: 214:polarizations 211: 207: 203: 199: 195: 185: 183: 179: 175: 171: 167: 162: 160: 156: 152: 147: 145: 141: 137: 133: 129: 125: 121: 117: 113: 109: 105: 100: 98: 94: 90: 86: 82: 78: 74: 70: 66: 58: 54: 47: 43: 39: 34: 30: 19: 4120:Baird's rule 3950: 3840:Charge-shift 3803:Hypervalence 3689: 3685: 3679: 3664:. Retrieved 3643:. Retrieved 3608: 3599: 3598:Lyklema, J. 3590: 3573:. Retrieved 3566:the original 3561: 3557: 3540: 3536: 3524:. Retrieved 3520:the original 3515: 3502: 3484: 3455: 3449: 3439: 3435: 3384: 3380: 3336: 3330: 3324: 3316: 3275: 3269: 3263: 3254: 3224: 3220: 3210: 3185: 3179: 3173: 3146: 3142: 3132: 3107: 3103: 3097: 3052: 3048: 3038: 2995: 2989: 2979: 2967:. Retrieved 2963: 2953: 2941:. Retrieved 2935: 2925: 2880: 2876: 2866: 2823: 2819: 2809: 2801: 2796: 2788: 2783: 2775: 2770: 2747: 2741: 2718: 2712: 2679: 2673: 2667: 2659: 2654: 2646: 2641: 2616: 2612: 2606: 2579: 2573: 2530: 2526: 2520: 2495: 2491: 2485: 2442: 2438: 2432: 2423: 2414: 2405: 2401: 2388: 2376:. Retrieved 2366: 2341: 2337: 2327: 2302: 2298: 2288: 2255: 2251: 2241: 2198: 2194: 2184: 2156: 2149: 2124: 2120: 2110: 2087: 2081: 2053: 2046: 2019: 2013: 2005:Biochemistry 2004: 1998: 1977: 1969: 1957:. Retrieved 1953: 1940: 1876:Cold welding 1821: 1810: 1807: 1799: 1784: 1735: 1731: 1727: 1724: 1713: 1577: 1566: 1363: 1352: 1026: 1019: 1013: 1011: 951: 944: 937: 933: 927: 916: 513: 487:Fritz London 481: 459: 452: 432: 413: 406: 394: 390: 385:Fritz London 372:force after 366:polarization 313: 283:) atoms in H 274: 242: 237: 233: 222: 191: 178:Keesom force 174:Debye forces 163: 154: 149:If no other 148: 101: 76: 72: 62: 29: 4110:Aromaticity 4086:Heterolysis 4064:Salt bridge 4009:Noncovalent 3979:Low-barrier 3860:Aromaticity 3850:Conjugation 3830:Pi backbond 2658:London, F. 1959:11 February 1742:retardation 516:macroscopic 489:, are weak 397:anisotropic 351:pi-stacking 335:quadrupoles 75:(sometimes 4157:Categories 4038:aurophilic 4019:Mechanical 3458:(2): 153. 3110:(1): 1–9. 2498:(2): 153. 2445:(8): 254. 1933:References 1886:Gecko feet 1824:arthropods 1822:Among the 499:dispersion 339:multipoles 188:Definition 140:solubility 57:Microfiber 4130:spherical 4091:Homolysis 4054:Cation–pi 4029:Chalcogen 3989:Symmetric 3845:Hapticity 3666:5 October 3526:2 October 3308:250841250 3300:0964-1726 3256:adhesion. 3012:1742-5689 2969:5 October 2964:New Atlas 2943:5 October 2840:0962-8452 2704:250790137 2598:912437861 2540:1011.5433 2358:1932-7447 2319:0002-7863 2272:0743-7463 2233:235823673 2217:1549-9618 2073:226037727 1758:Derjaguin 1752:in 1956. 1624:− 1484:− 1378:≪ 1303:− 1287:− 1225:− 1158:− 1073:− 864:− 848:− 797:− 777:⁡ 745:− 729:− 646:− 590:− 401:noble gas 347:cation-pi 198:molecules 87:. Unlike 85:molecules 69:chemistry 4059:Anion–pi 4049:Stacking 3971:Hydrogen 3882:Metallic 3773:Covalent 3765:(strong) 3716:21593034 3575:8 August 3543:(1): 94. 3501:(1974). 3419:14762105 3363:21593034 3251:25008078 3202:20920615 3165:20952618 3089:16260737 3030:21865250 2917:12198184 2858:19656797 2633:26083908 2565:64619547 2374:. NT-MDT 2280:23276161 2252:Langmuir 2225:34255965 2141:52088903 1834:See also 1828:scopulae 1802:dry glue 1791:spatulae 1754:Langbein 1750:Lifshitz 305:platinum 289:sulfides 245:hydrogen 206:covalent 42:cohesion 4024:Halogen 3870:bicyclo 3815:Agostic 3707:3223641 3645:1 March 3491:368–376 3460:Bibcode 3399:Bibcode 3354:3223641 3280:Bibcode 3242:4233685 3112:Bibcode 3080:1283435 3057:Bibcode 3021:3284128 2937:Reuters 2885:Bibcode 2849:2817305 2684:Bibcode 2647:Physica 2545:Bibcode 2500:Bibcode 2457:Bibcode 529:Hamaker 170:dipoles 146:media. 4125:Möbius 3953:forces 3943:(weak) 3714:  3704:  3619:  3442:(381). 3417:  3361:  3351:  3306:  3298:  3249:  3239:  3200:  3163:  3087:  3077:  3028:  3018:  3010:  2915:  2908:129431 2905:  2856:  2846:  2838:  2758:  2729:  2702:  2631:  2596:  2586:  2563:  2477:463815 2475:  2378:30 May 2356:  2317:  2278:  2270:  2231:  2223:  2215:  2176:534717 2174:  2164:  2139:  2098:  2071:  2061:  2034:  1787:geckos 1591:  1440:  1372:  1125:  1040:  962:  950:, and 383:after 349:, and 287:S and 281:sulfur 253:oxygen 126:, and 71:, the 4103:rules 4012:other 3900:Ionic 3808:3c–4e 3796:8c–2e 3791:4c–2e 3786:3c–2e 3569:(PDF) 3554:(PDF) 3432:(PDF) 3415:S2CID 3389:arXiv 3304:S2CID 2700:S2CID 2561:S2CID 2535:arXiv 2473:S2CID 2447:arXiv 2398:(PDF) 2229:S2CID 2137:S2CID 1974:IUPAC 1795:setae 1779:Gecko 1015:force 523:and R 370:Debye 293:xenon 263:and O 210:ionic 194:atoms 151:force 89:ionic 81:atoms 3865:homo 3820:Bent 3712:PMID 3668:2016 3647:2010 3617:ISBN 3577:2020 3528:2017 3359:PMID 3296:ISSN 3247:PMID 3198:PMID 3161:PMID 3085:PMID 3026:PMID 3008:ISSN 2971:2016 2945:2016 2913:PMID 2854:PMID 2836:ISSN 2756:ISBN 2727:ISBN 2629:PMID 2594:OCLC 2584:ISBN 2380:2024 2354:ISSN 2315:ISSN 2276:PMID 2268:ISSN 2221:PMID 2213:ISSN 2172:OCLC 2162:ISBN 2096:ISBN 2069:OCLC 2059:ISBN 2032:ISBN 1961:2022 1740:and 1025:and 514:For 407:The 301:lead 208:and 134:and 67:and 3702:PMC 3694:doi 3690:279 3660:TED 3468:doi 3407:doi 3349:PMC 3341:doi 3337:279 3288:doi 3237:PMC 3229:doi 3190:doi 3151:doi 3147:213 3120:doi 3075:PMC 3065:doi 3053:102 3016:PMC 3000:doi 2903:PMC 2893:doi 2844:PMC 2828:doi 2824:276 2692:doi 2621:doi 2553:doi 2508:doi 2465:doi 2346:doi 2342:112 2307:doi 2303:114 2260:doi 2203:doi 2129:doi 2024:doi 1988:doi 1986:". 1400:or 272:). 240:). 220:). 172:", 142:in 91:or 83:or 63:In 4159:: 3710:. 3700:. 3688:. 3684:. 3658:. 3615:. 3611:. 3589:. 3560:. 3556:. 3541:29 3514:. 3466:. 3454:. 3440:73 3434:. 3413:. 3405:. 3397:. 3385:82 3383:. 3357:. 3347:. 3335:. 3329:. 3302:. 3294:. 3286:. 3276:13 3274:. 3253:. 3245:. 3235:. 3225:11 3223:. 3219:. 3196:. 3184:. 3159:. 3145:. 3141:. 3118:. 3106:. 3083:. 3073:. 3063:. 3051:. 3047:. 3024:. 3014:. 3006:. 2994:. 2988:. 2962:. 2934:. 2911:. 2901:. 2891:. 2881:99 2879:. 2875:. 2852:. 2842:. 2834:. 2822:. 2818:. 2754:. 2750:. 2725:. 2721:. 2698:. 2690:. 2680:13 2678:. 2627:. 2617:48 2615:. 2592:. 2559:. 2551:. 2543:. 2531:83 2529:. 2506:. 2494:. 2471:. 2463:. 2455:. 2441:. 2422:. 2406:27 2404:. 2400:. 2352:. 2340:. 2336:. 2313:. 2301:. 2297:. 2274:. 2266:. 2256:29 2254:. 2250:. 2227:. 2219:. 2211:. 2199:17 2197:. 2193:. 2170:. 2135:. 2125:37 2123:. 2119:. 2094:. 2090:. 2067:. 2030:. 1976:, 1952:. 1174:64 1009:. 943:, 774:ln 468:. 345:, 229:nm 196:, 161:. 122:, 118:, 114:, 110:, 44:, 40:, 4040:) 4036:( 3746:e 3739:t 3732:v 3718:. 3696:: 3670:. 3649:. 3625:. 3579:. 3562:2 3530:. 3493:. 3474:. 3470:: 3462:: 3456:4 3421:. 3409:: 3401:: 3391:: 3365:. 3343:: 3310:. 3290:: 3282:: 3231:: 3204:. 3192:: 3186:7 3167:. 3153:: 3126:. 3122:: 3114:: 3108:2 3091:. 3067:: 3059:: 3032:. 3002:: 2996:9 2973:. 2947:. 2919:. 2895:: 2887:: 2860:. 2830:: 2764:. 2735:. 2706:. 2694:: 2686:: 2635:. 2623:: 2600:. 2567:. 2555:: 2547:: 2537:: 2514:. 2510:: 2502:: 2496:4 2479:. 2467:: 2459:: 2449:: 2443:9 2408:. 2382:. 2360:. 2348:: 2321:. 2309:: 2282:. 2262:: 2235:. 2205:: 2178:. 2143:. 2131:: 2104:. 2075:. 2040:. 2026:: 1990:: 1963:. 1718:) 1716:4 1714:( 1692:2 1688:r 1684:6 1681:) 1676:2 1672:R 1668:+ 1663:1 1659:R 1655:( 1648:2 1644:R 1638:1 1634:R 1630:A 1621:= 1618:) 1615:r 1612:( 1606:W 1603:d 1600:V 1595:F 1571:) 1569:3 1567:( 1547:r 1544:6 1541:) 1536:2 1532:R 1528:+ 1523:1 1519:R 1515:( 1508:2 1504:R 1498:1 1494:R 1490:A 1481:= 1478:) 1473:2 1469:R 1465:, 1460:1 1456:R 1452:; 1449:r 1446:( 1443:U 1413:2 1409:R 1386:1 1382:R 1375:r 1357:) 1355:2 1353:( 1331:2 1327:] 1321:2 1317:) 1311:2 1307:R 1298:1 1294:R 1290:( 1282:2 1278:z 1274:[ 1269:2 1265:] 1259:2 1255:) 1249:2 1245:R 1241:+ 1236:1 1232:R 1228:( 1220:2 1216:z 1212:[ 1207:z 1202:3 1197:2 1193:R 1187:3 1182:1 1178:R 1166:6 1163:A 1155:= 1152:) 1149:z 1146:( 1140:W 1137:d 1134:V 1129:F 1100:) 1097:z 1094:( 1091:U 1085:z 1082:d 1078:d 1070:= 1067:) 1064:z 1061:( 1055:W 1052:d 1049:V 1044:F 1030:2 1027:R 1023:1 1020:R 997:r 994:+ 989:2 985:R 981:+ 976:1 972:R 968:= 965:z 952:r 948:2 945:R 941:1 938:R 934:z 921:) 919:1 917:( 895:) 890:] 882:2 878:) 872:2 868:R 859:1 855:R 851:( 843:2 839:z 831:2 827:) 821:2 817:R 813:+ 808:1 804:R 800:( 792:2 788:z 781:[ 771:+ 763:2 759:) 753:2 749:R 740:1 736:R 732:( 724:2 720:z 712:2 708:R 702:1 698:R 694:2 688:+ 680:2 676:) 670:2 666:R 662:+ 657:1 653:R 649:( 641:2 637:z 629:2 625:R 619:1 615:R 611:2 604:( 598:6 595:A 587:= 584:) 579:2 575:R 571:, 566:1 562:R 558:; 555:z 552:( 549:U 525:2 521:1 376:. 361:. 297:2 285:2 265:2 261:2 257:2 249:2 238:r 234:r 48:. 20:)

Index

Van der Waals interactions

surface tension
cohesion
Plateau–Rayleigh instability

Microfiber
molecular physics
chemistry
atoms
molecules
ionic
covalent bonds
chemical electronic bond
Johannes Diderik van der Waals
supramolecular chemistry
structural biology
polymer science
nanotechnology
surface science
condensed matter physics
organic compounds
molecular solids
solubility
polar and non-polar
force
electron clouds
London dispersion forces
dipoles
Debye forces

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.