Knowledge

Universal enveloping algebra

Source 📝

11884: 2418: 15112: 11709: 905: 9902: 8502:
has a unique left-invariant extension. We then identify the vector in the tangent space with the associated left-invariant vector field. Now, the commutator (as differential operators) of two left-invariant vector fields is again a vector field and again left-invariant. We can then define the bracket
2473:
is the field over which the Lie algebra is defined. From here, through to the remainder of this article, the tensor product is always explicitly shown. Many authors omit it, since, with practice, its location can usually be inferred from context. Here, a very explicit approach is adopted, to minimize
6612:
One can also state the theorem in a coordinate-free fashion, avoiding the use of total orders and basis elements. This is convenient when there are difficulties in defining the basis vectors, as there can be for infinite-dimensional Lie algebras. It also gives a more natural form that is more easily
2477:
The first step in the construction is to "lift" the Lie bracket from the Lie algebra (where it is defined) to the tensor algebra (where it is not), so that one can coherently work with the Lie bracket of two tensors. The lifting is done as follows. First, recall that the bracket operation on a Lie
1403:
In general, elements of the universal enveloping algebra are linear combinations of products of the generators in all possible orders. Using the defining relations of the universal enveloping algebra, we can always re-order those products in a particular order, say with all the factors of
5555: 10533: 3328:
That is, the Lie bracket defines the equivalence relation used to perform the quotienting. The result is still a unital associative algebra, and one can still take the Lie bracket of any two members. Computing the result is straight-forward, if one keeps in mind that each element of
4046:
The above construction focuses on Lie algebras and on the Lie bracket, and its skewness and antisymmetry. To some degree, these properties are incidental to the construction. Consider instead some (arbitrary) algebra (not a Lie algebra) over a vector space, that is, a vector space
2298: 2041:
The formal construction of the universal enveloping algebra takes the above ideas, and wraps them in notation and terminology that makes it more convenient to work with. The most important difference is that the free associative algebra used in the above is narrowed to the
12614: 6785: 15850:
is in many ways analogous to constructing the universal enveloping algebra for a given Lie algebra. Both constructions are universal and translate representation theory into module theory. Furthermore, both group algebras and universal enveloping algebras carry natural
7033: 10344: 6304: 3381:; the Poisson algebra is likewise rather complicated, with many peculiar properties. It is compatible with the tensor algebra, and so the modding can be performed. The Hopf algebra structure is conserved; this is what leads to its many novel applications, e.g. in 756: 6874: 7642:. This is perhaps not immediately obvious: to get this result, one must repeatedly apply the commutation relations, and turn the crank. The essence of the Poincaré–Birkhoff–Witt theorem is that it is always possible to do this, and that the result is unique. 15411: 68:. Because Casimir operators commute with all elements of a Lie algebra, they can be used to classify representations. The precise definition also allows the importation of Casimir operators into other areas of mathematics, specifically, those that have a 14955: 10593:
is just the canonical embedding (with subscripts, respectively for algebras one and two). It is straightforward to verify that this embedding lifts, given the prescription above. See, however, the discussion of the bialgebra structure in the article on
11879:{\displaystyle {\begin{aligned}\delta (v\otimes w\otimes \cdots \otimes u)=&\,\delta (v)\otimes w\otimes \cdots \otimes u\\&+v\otimes \delta (w)\otimes \cdots \otimes u\\&+\cdots +v\otimes w\otimes \cdots \otimes \delta (u).\end{aligned}}} 4563:, any homomorphism on its generating set can be extended to the entire algebra. Everything else proceeds as described above: upon completion, one has a unital associative algebra; one can take a quotient in either of the two ways described above. 3529: 4340: 3636: 9729: 13169: 12235: 3028:
It is straightforward to verify that the above definition is bilinear, and is skew-symmetric; one can also show that it obeys the Jacobi identity. The final result is that one has a Lie bracket that is consistently defined on all of
9102:, that places the algebraic structure of the Lie algebra onto what is otherwise a standard associative algebra. That is, what the PBW theorem obscures (the commutation relations) the algebra of symbols restores into the spotlight. 14589: 14409: 2603: 14853:
If the Lie algebra acts on a differentiable manifold, then each Casimir operator corresponds to a higher-order differential on the cotangent manifold, the second-order differential being the most common and most important.
7312: 13306: 12400: 7983: 6534:
and the symmetric algebra are isomorphic, and it is the PBW theorem that shows that this is so. See, however, the section on the algebra of symbols, below, for a more precise statement of the nature of the isomorphism.
2776: 15863:: the tensor algebra has a Hopf algebra structure on it, and because the Lie bracket is consistent with (obeys the consistency conditions for) that Hopf structure, it is inherited by the universal enveloping algebra. 11172: 3970: 2654: 5399: 5231: 4823: 2520: 10403: 1746:, discussed below, asserts that these elements are linearly independent and thus form a basis for the universal enveloping algebra. In particular, the universal enveloping algebra is always infinite dimensional. 14097:
is of rank one, and thus has one Casimir operator. It is three-dimensional, and thus the Casimir operator must have order (3 âˆ’ 1) = 2 i.e. be quadratic. Of course, this is the Lie algebra of
13900: 13536: 13790: 4926: 710: 16009: 9398: 4550: 4449: 6441: 2413:{\displaystyle T({\mathfrak {g}})=K\,\oplus \,{\mathfrak {g}}\,\oplus \,({\mathfrak {g}}\otimes {\mathfrak {g}})\,\oplus \,({\mathfrak {g}}\otimes {\mathfrak {g}}\otimes {\mathfrak {g}})\,\oplus \,\cdots } 1650: 16086: 5305: 4667: 5116: 3238: 11525: 5841:
Although the canonical construction, given above, can be applied to other algebras, the result, in general, does not have the universal property. Thus, for example, when the construction is applied to
1947:; the universal enveloping algebra is always infinite dimensional. Thus, in the case of sl(2,C), if we identify our Lie algebra as a subspace of its universal enveloping algebra, we must not interpret 12467: 2151: 8257: 10588: 10395: 9994: 7863: 6694: 6114: 5025: 4036: 1166: 12777: 8300: 6956: 4973: 14947: 13095: 11714: 4570:
is constructed. One need only to carefully keep track of the sign, when permuting elements. In this case, the (anti-)commutator of the superalgebra lifts to an (anti-)commuting Poisson bracket.
4262: 16214: 16136: 10240: 7898:. It is constructed by appeal to the same notion of naturality as before. One starts with the same tensor algebra, and just uses a different ideal, the ideal that makes all elements commute: 6169: 14735: 9594: 3702: 6796: 6542:: this is what one gets, if one mods out by all commutators, without specifying what the values of the commutators are. The second step is to apply the specific commutation relations from 4710: 551: 14026: 11305: 9543: 2718:
This is a consistent, coherent definition, because both sides are bilinear, and both sides are skew symmetric (the Jacobi identity will follow shortly). The above defines the bracket on
13693: 11405: 3747: 13623: 14458: 8527:
as the commutator on the associated left-invariant vector fields. This definition agrees with any other standard definition of the bracket structure on the Lie algebra of a Lie group.
6482: 15107:{\displaystyle H={\begin{pmatrix}-1&0\\0&1\end{pmatrix}},{\text{ }}E={\begin{pmatrix}0&1\\0&0\end{pmatrix}},{\text{ }}F={\begin{pmatrix}0&0\\1&0\end{pmatrix}}} 4153: 3815: 16311: 15255: 13981: 13199: 9076: 5651: 1393: 15929: 14084: 11269: 7717: 7640: 7532: 4862: 3454: 3323: 2816: 2713: 13342: 12921: 11951: 11205: 11109: 11064: 10894: 10759: 6029: 5612: 5391: 14258: 12699: 12350: 12294: 8093: 7826: 7785: 7751: 7677: 7600: 7566: 7492: 7455: 7417: 7383: 7349: 7189: 6944: 6648: 3023: 2931: 12051: 11478: 11372: 10990: 10930: 10852: 8336: 8205: 8129: 7225: 7155: 7080: 6684: 5774: 3063: 1793: 16268: 15782: 15736: 15625: 15546: 15482: 14809: 14776: 13942: 12015: 11442: 10792: 10696: 10221: 10152: 9710: 9673: 9337: 9136: 9036: 9003: 8970: 8929: 8867: 8805: 8659: 8169: 8052: 8019: 7896: 7119: 6532: 6379: 6340: 5902: 5827: 5731: 5338: 4345:
This is consistent precisely because the tensor product is bilinear, and the multiplication is bilinear. The rest of the lift is performed so as to preserve multiplication as a
3360: 3148: 3096: 2255: 900:{\displaystyle E={\begin{pmatrix}0&1\\0&0\end{pmatrix}}\qquad F={\begin{pmatrix}0&0\\1&0\end{pmatrix}}\qquad H={\begin{pmatrix}1&0\\0&-1\end{pmatrix}}~,} 597: 412: 14877:, respectively, one can then contract upper and lower indices (with the metric tensor) to obtain more interesting structures. For the quadratic Casimir invariant, this is the 11336: 10702:, of all orders. (See, for example, the realization of the universal enveloping algebra as left-invariant differential operators on the associated group, as discussed above.) 9640: 6910: 6594: 6567: 4103: 3882: 15690: 15659: 15583: 15513: 15441: 14840: 11982: 11918: 11678: 11549: 11014: 10954: 10816: 10657: 10184: 10115: 8743: 8686: 8525: 8500: 8456: 8432: 8408: 5678: 5583: 5362: 5069: 3847: 3465: 3172: 2287: 2215: 2179: 1945: 1921: 1871: 741: 369: 337: 289: 185: 137: 313: 265: 241: 161: 12994: 12846: 14169: 12810: 5977: 11651: 1849:
of the original Lie algebra. That is to say, we identify the original Lie algebra as the subspace of its universal enveloping algebra spanned by the generators. Although
9897:{\displaystyle p(t)\star q(t)=\left.\exp \left(t_{i}m^{i}\left({\frac {\partial }{\partial u}},{\frac {\partial }{\partial v}}\right)\right)p(u)q(v)\right\vert _{u=v=t}} 4257: 1530: 1493: 719:. Below we will make this "generators and relations" construction more precise by constructing the universal enveloping algebra as a quotient of the tensor algebra over 6490:. The proof of the theorem involves noting that, if one starts with out-of-order basis elements, these can always be swapped by using the commutator (together with the 3546: 2031: 1897: 1225: 1199: 13445: 13400: 6065: 5251: 2441: 13813: 12879: 2461: 1713: 1331: 1278: 445: 14126: 13486: 10075: 9475: 9100: 3773: 14196: 13845: 12115: 12084: 10024: 9455: 9428: 9300: 9273: 9190: 9163: 8550:
can be expressed (non-uniquely) as a linear combination of products of left-invariant vector fields. The collection of all left-invariant differential operators on
6141: 3264: 1847: 1820: 1740: 1680: 1561: 1456: 1429: 1063: 217: 15162: 8896: 8834: 8772: 8719: 8626: 8597: 4205: 993: 15244: 15203: 13122: 949: 14647: 12459: 2839: 1031: 12314: 12258: 12143: 12135: 11698: 10044: 9246: 9226: 8568: 8548: 8476: 8384: 6161: 5794: 5698: 5136: 5045: 4245: 4225: 4176: 4065: 3975:
where each arrow is a linear map, and the kernel of that map is given by the image of the previous map. The universal enveloping algebra can then be defined as
2005: 1985: 1965: 1298: 1245: 5853:. Likewise, the Poincaré–Birkhoff–Witt theorem, below, constructs a basis for an enveloping algebra; it just won't be universal. Similar remarks hold for the 6116:
be the injection into the tensor algebra; this is used to give the tensor algebra a basis as well. This is done by lifting: given some arbitrary sequence of
3388:
The construction can be performed in a slightly different (but ultimately equivalent) way. Forget, for a moment, the above lifting, and instead consider the
14470: 1333:
because we do not impose this relation in the construction of the enveloping algebra. Indeed, it follows from the Poincaré–Birkhoff–Witt theorem (discussed
14266: 3117:
such algebra, however; it contains far more elements than needed. One can get something smaller by projecting back down. The universal enveloping algebra
1563:'s. Doing this sort of thing repeatedly eventually converts any element into a linear combination of terms in ascending order. Thus, elements of the form 2537: 15698:
as abelian Lie algebra, the left-invariant differential operators are the constant coefficient operators, which are indeed a polynomial algebra in the
7235: 16223:
essentially states that every commutative Hopf algebra is isomorphic to the Hopf algebra of continuous functions on some compact topological group
13213: 12355: 7904: 2721: 1923:
does not consist of (finite-dimensional) matrices. In particular, there is no finite-dimensional algebra that contains the universal enveloping of
5561:
The point is that because there are no other relations in the universal enveloping algebra besides those coming from the commutation relations of
8434:
with the space of left-invariant vector fields (i.e., first-order left-invariant differential operators). Specifically, if we initially think of
5550:{\displaystyle {\widehat {\varphi }}(X_{i_{1}}\cdots X_{i_{N}})=\varphi (X_{i_{1}})\cdots \varphi (X_{i_{N}}),\quad X_{i_{j}}\in {\mathfrak {g}}} 11114: 16740: 8721:
of left-invariant differential operators is generated by elements (the left-invariant vector fields) that satisfy the commutation relations of
3897: 2615: 10528:{\displaystyle i({\mathfrak {g}}_{1}\oplus {\mathfrak {g}}_{2})=i_{1}({\mathfrak {g}}_{1})\otimes 1\oplus 1\otimes i_{2}({\mathfrak {g}}_{2})} 6494:). The hard part of the proof is establishing that the final result is unique and independent of the order in which the swaps were performed. 5141: 4733: 2481: 64:
can be constructed as quotients of the universal enveloping algebra. In addition, the enveloping algebra gives a precise definition for the
7457:
of the filtration, as one might naively surmise. It is not constructed through a set subtraction mechanism associated with the filtration.
13850: 13491: 12406:, and so an explicit indexed form of the above equations can be given, in terms of the Lie algebra basis; this is originally a theorem of 13704: 4877: 3884:
Establishing that this is an ideal is important, because ideals are precisely those things that one can quotient with; ideals lie in the
14035:
by the above, these clearly corresponds to the roots of the characteristic equation. One concludes that the roots form a space of rank
605: 16229:—the theory of compact topological groups and the theory of commutative Hopf algebras are the same. For Lie groups, this implies that 15937: 14846:, then one can construct Casimir invariants on the corresponding space of operators. The quadratic Casimir operator corresponds to an 9345: 4460: 4359: 103:
From an analytic viewpoint, the universal enveloping algebra of the Lie algebra of a Lie group may be identified with the algebra of
8689: 6387: 5866: 1743: 1569: 16020: 9717: 5256: 4623: 12609:{\displaystyle f_{ij}^{\;\;k}\kappa ^{jl\cdots m}+f_{ij}^{\;\;l}\kappa ^{kj\cdots m}+\cdots +f_{ij}^{\;\;m}\kappa ^{kl\cdots j}=0} 8688:
arises as the Lie algebra of a real Lie group, one can use left-invariant differential operators to give an analytic proof of the
4573:
Another possibility is to use something other than the tensor algebra as the covering algebra. One such possibility is to use the
13107: 5928:
of a totally ordered set. Recall that a free vector space is defined as the space of all finitely supported functions from a set
5085: 3377:
structure. (This is a non-trivial statement; the tensor algebra has a rather complicated structure: it is, among other things, a
3183: 11490: 6780:{\displaystyle T_{m}{\mathfrak {g}}=K\oplus {\mathfrak {g}}\oplus T^{2}{\mathfrak {g}}\oplus \cdots \oplus T^{m}{\mathfrak {g}}} 2064: 14897:
are able to evade the premises of the Coleman–Mandula theorem, and can be used to mix together space and internal symmetries.
8210: 7028:{\displaystyle K\subset {\mathfrak {g}}\subset T_{2}{\mathfrak {g}}\subset \cdots \subset T_{m}{\mathfrak {g}}\subset \cdots } 16680: 16640: 16584: 10544: 10352: 9913: 7831: 6070: 4981: 3981: 1071: 12710: 8354:, rather than the symmetric algebra. In essence, the construction zeros out the anti-commutators. The resulting algebra is 8266: 4937: 14908: 14778:
above was that it was a differential algebra, by dint of the fact that any derivation on the Lie algebra can be lifted to
13018: 10339:{\displaystyle U({\mathfrak {g}}_{1}\oplus {\mathfrak {g}}_{2})\cong U({\mathfrak {g}}_{1})\otimes U({\mathfrak {g}}_{2})} 6299:{\displaystyle h(e_{a}\otimes e_{b}\otimes \cdots \otimes e_{c})=h(e_{a})\otimes h(e_{b})\otimes \cdots \otimes h(e_{c})} 16147: 16097: 16610: 15792: 6869:{\displaystyle T^{m}{\mathfrak {g}}=T^{\otimes m}{\mathfrak {g}}={\mathfrak {g}}\otimes \cdots \otimes {\mathfrak {g}}} 14661: 13902:, one concludes that this tensor must be completely symmetric. This tensor is exactly the Casimir invariant of order 9551: 3644: 3113:
with a Lie bracket that is compatible with the Lie algebra bracket; it is compatible by construction. It is not the
8358:
enveloping algebra, but is not universal. As mentioned above, it fails to envelop the exceptional Jordan algebras.
4679: 457: 13986: 11274: 9483: 16572: 13634: 12963: 11377: 10159: 10090: 5076: 4158:
the multiplication is bilinear, then the same construction and definitions can go through. One starts by lifting
3713: 3175: 2051: 104: 50: 15406:{\displaystyle U({\mathfrak {sl}}_{2})={\frac {\mathbb {C} \langle x,y,z\rangle }{(xy-yx+2y,xz-zx-2z,yz-zy+x)}}} 13548: 15827:
for this; one must take a quotient, so that the central elements of the Lie algebra act as prescribed scalars.
14417: 6449: 4620:
The universal enveloping algebra, or rather the universal enveloping algebra together with the canonical map
4108: 3778: 16672: 16624: 16576: 16316: 16273: 13947: 13177: 11408: 9048: 5617: 1340: 15893: 14044: 11210: 7682: 7605: 7497: 4831: 3403: 3272: 2781: 2662: 14812: 13314: 12884: 11923: 11177: 11072: 11027: 10857: 10722: 10661: 5982: 5588: 5367: 4593:
coming from the grading on the exterior algebra. (The Gerstenhaber algebra should not be confused with the
2527: 14201: 12625: 12319: 12263: 8064: 7797: 7756: 7722: 7648: 7571: 7537: 7463: 7426: 7388: 7354: 7320: 7160: 6915: 6619: 2942: 2850: 16345: 16220: 14890: 14874: 12020: 11447: 11341: 10959: 10899: 10821: 8305: 8174: 8098: 7753:
has the effect of setting all commutators to zero. What PBW states is that the commutator of elements in
7194: 7124: 7049: 6653: 5736: 3032: 1752: 85: 16666: 16240: 15754: 15708: 15597: 15518: 15454: 14781: 14748: 13914: 11987: 11414: 10764: 10668: 10193: 10124: 9682: 9675:, as written, and that one must first perform a tedious reshuffling of the basis elements (applying the 9645: 9309: 9108: 9008: 8975: 8942: 8901: 8839: 8777: 8631: 8141: 8024: 7991: 7868: 7091: 6504: 6351: 6312: 5874: 5799: 5703: 5310: 3524:{\displaystyle {\mathfrak {g}}\oplus ({\mathfrak {g}}\otimes {\mathfrak {g}})\subset T({\mathfrak {g}})} 3332: 3120: 3068: 2227: 559: 374: 16546: 15789: 14866: 12927: 10711: 7568:
to zero. One can see this by observing that the commutator of a pair of elements whose products lie in
5776:.) This observation is important because it allows (as discussed below) the Casimir elements to act on 5079:
to the universal enveloping algebra. This map is an embedding, by the Poincaré–Birkhoff–Witt theorem.)
3110: 2154: 556:
Then the universal enveloping algebra is the associative algebra (with identity) generated by elements
20: 11314: 9601: 6888: 6572: 6545: 4070: 3852: 3370:
such algebra; one cannot find anything smaller that still obeys the axioms of an associative algebra.
3366:: one just takes the bracket as usual, and searches for the coset that contains the result. It is the 15671: 15640: 15564: 15494: 15422: 14821: 14461: 14041:
and that the Casimir invariants span this space. That is, the Casimir invariants generate the center
13003: 11956: 11892: 11659: 11530: 10995: 10935: 10797: 10638: 10187: 10165: 10096: 8724: 8667: 8506: 8481: 8437: 8413: 8389: 8132: 5659: 5564: 5343: 5050: 3820: 3153: 2268: 2196: 2160: 1926: 1902: 1852: 1795:
themselves are linearly independent. It is therefore common—if potentially confusing—to identify the
722: 350: 318: 270: 166: 118: 97: 93: 294: 246: 222: 142: 16340: 14882: 12969: 12818: 10618: 8530:
We may then consider left-invariant differential operators of arbitrary order. Every such operator
6947: 6614: 4335:{\displaystyle {\begin{aligned}m:V\otimes V&\to V\\a\otimes b&\mapsto m(a,b)\end{aligned}}} 2033:
matrices, but rather as symbols with no further properties (other than the commutation relations).
77: 14131: 12785: 6538:
It is useful, perhaps, to split the process into two steps. In the first step, one constructs the
5943: 5656:
The universal property of the enveloping algebra immediately implies that every representation of
3631:{\displaystyle c\otimes d\otimes \cdots \otimes (a\otimes b-b\otimes a-)\otimes f\otimes g\cdots } 12926:
The center of the universal enveloping algebra of a simple Lie algebra is given in detail by the
12055:
From the PBW theorem, it is clear that all central elements are linear combinations of symmetric
11561: 9712:
in the properly ordered basis. An explicit expression for this product can be given: this is the
7043: 3885: 72:. They also play a central role in some recent developments in mathematics. In particular, their 5940:(finitely supported means that only finitely many values are non-zero); it can be given a basis 1498: 1461: 16735: 15485: 14893:
restricts the form that these can take, when one considers ordinary Lie algebras. However, the
13448: 12939: 11308: 11017: 10227: 7085: 5846: 4590: 2010: 1876: 1204: 1178: 46: 13414: 13369: 6688:
First, a notation is needed for an ascending sequence of subspaces of the tensor algebra. Let
6038: 5236: 2426: 1033:. The universal enveloping algebra of sl(2,C) is then the algebra generated by three elements 16708: 15628: 13798: 12851: 12056: 10699: 10231: 3373:
The universal enveloping algebra is what remains of the tensor algebra after modding out the
2446: 1685: 1303: 1250: 417: 57: 16701: 15819:
variables with polynomial coefficients may be obtained starting with the Lie algebra of the
14101: 13465: 13164:{\displaystyle \operatorname {ad} :{\mathfrak {g}}\to \operatorname {End} ({\mathfrak {g}})} 12090:
are the irreducible homogenous polynomials of a given, fixed degree. That is, given a basis
10060: 9460: 9085: 8259:
is a projection, and one then gets PBW-type theorems for the associated graded algebra of a
7787:
is necessarily zero. What is left are the elements that are not expressible as commutators.
3752: 16730: 16650: 16594: 14174: 14094: 13818: 12093: 12062: 11481: 10717: 10118: 10002: 9433: 9406: 9278: 9251: 9168: 9141: 9079: 6119: 5904:. This can be done in either one of two different ways: either by reference to an explicit 4869: 4594: 4582: 3889: 3249: 3244: 1825: 1798: 1718: 1658: 1539: 1434: 1407: 1036: 190: 69: 16690: 15123: 12230:{\displaystyle C_{(m)}=\kappa ^{ab\cdots c}e_{a}\otimes e_{b}\otimes \cdots \otimes e_{c}} 8872: 8810: 8748: 8695: 8602: 8573: 7042:, since the filtration preserves the algebraic properties of the subspaces. Note that the 4181: 3385:. However, for the purposes of the formal definition, none of this particularly matters.) 954: 8: 16320: 16315:
These ideas can then be extended to the non-commutative case. One starts by defining the
15847: 15208: 15167: 14862: 14653: 12403: 11307:
Thus, a technique is needed for computing that kernel. What we have is the action of the
9676: 6491: 4609: 913: 448: 291:. There may be many ways to make such an embedding, but there is a unique "largest" such 42: 15738:
consists of the left- and right- invariant differential operators; this, in the case of
14600: 12413: 2821: 998: 16654: 16528: 15699: 12407: 12299: 12243: 12120: 11683: 10050: 10029: 9231: 9195: 8553: 8533: 8461: 8369: 7794:. This is the algebra where all commutators vanish. It can be defined as a filtration 6146: 6032: 5779: 5683: 5121: 5030: 4670: 4230: 4210: 4161: 4050: 1990: 1970: 1950: 1533: 1283: 1230: 16402: 14584:{\displaystyle C_{(2)}=L^{2}=e_{1}\otimes e_{1}+e_{2}\otimes e_{2}+e_{3}\otimes e_{3}} 16676: 16658: 16636: 16606: 16580: 16532: 15831: 14886: 14847: 14404:{\displaystyle \det \left(xL_{1}+yL_{2}+zL_{3}-tI\right)=-t^{3}-(x^{2}+y^{2}+z^{2})t} 12087: 8836:—which one can establish analytically—they must certainly be linearly independent in 7791: 6498: 5925: 3098:
in the conventional sense of a "lift" from a base space (here, the Lie algebra) to a
73: 13360:
such roots; this is the rank of the algebra. This implies that the highest value of
16696: 16686: 16628: 16520: 16444: 16439: 16427: 16406: 16398: 15830:
The universal enveloping algebra of a finite-dimensional Lie algebra is a filtered
15820: 15796: 15745: 14894: 12923:
follows from the fact that the Killing form is invariant under the adjoint action.
11021: 10614: 10155: 8351: 8260: 7039: 6539: 5854: 4586: 4578: 4574: 4567: 65: 16389:
Perez-Izquierdo, J.M.; Shestakov, I.P. (2004). "An envelope for Malcev algebras".
15744:
not commutative, is often not generated by first-order operators (see for example
12938:
The number of algebraically independent Casimir operators of a finite-dimensional
10992:
Because of this, the center is directly useful for classifying representations of
5829:) act as scalars and provide important information about the representations. The 2598:{\displaystyle T({\mathfrak {g}})\otimes T({\mathfrak {g}})\to T({\mathfrak {g}})} 16646: 16590: 16566: 16562: 14843: 12943: 10599: 8138:
The construction above, due to its use of quotienting, implies that the limit of
5921: 5909: 5830: 3389: 3374: 3106: 2531: 2058: 7307:{\displaystyle G_{m}{\mathfrak {g}}=U_{m}{\mathfrak {g}}/U_{m-1}{\mathfrak {g}}} 15860: 14858: 14128:
As an elementary exercise, one can compute this directly. Changing notation to
10629: 10595: 8347: 6309:
The Poincaré–Birkhoff–Witt theorem then states that one can obtain a basis for
5850: 5842: 5072: 4601: 3099: 2262: 2222: 2047: 2043: 89: 39: 16411: 1280:, as is easily verified. But in the universal enveloping algebra, the element 16724: 16508: 16328: 13539: 13344:
The non-zero roots of this characteristic polynomial (that are roots for all
13301:{\displaystyle \det(tI-\operatorname {ad} _{x})=\sum _{n=0}^{d}p_{n}(x)t^{n}} 12395:{\displaystyle \left(\operatorname {ad} _{\mathfrak {g}}\right)^{\otimes m}.} 10078: 7978:{\displaystyle S({\mathfrak {g}})=T({\mathfrak {g}})/(a\otimes b-b\otimes a)} 6613:
extended to other kinds of algebras. This is accomplished by constructing a
3382: 2771:{\displaystyle T^{2}({\mathfrak {g}})={\mathfrak {g}}\otimes {\mathfrak {g}}} 2523: 1749:
The Poincaré–Birkhoff–Witt theorem implies, in particular, that the elements
92:
of the corresponding Lie group. This relationship generalizes to the idea of
81: 7157:
This also works naturally on the subspaces, and so one obtains a filtration
15856: 15824: 15662: 15489: 12813: 11552: 10625: 10054: 9248:. Indeed, the correspondence is trivial: one simply substitutes the symbol 6604:; these are explicitly constructed to behave appropriately as commutators. 5905: 4560: 4346: 3378: 2258: 2218: 1171:
and no other relations. We emphasize that the universal enveloping algebra
61: 11167:{\displaystyle z=v\otimes w\otimes \cdots \otimes u\in U({\mathfrak {g}})} 10089:
The universal enveloping algebra preserves the representation theory: the
16605:, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, 16603:
Lie Groups, Lie Algebras, and Representations: An Elementary Introduction
15890:. This algebra has a natural Hopf algebra structure: given two functions 15785: 13351: 12959: 11700:, the Lie bracket is that of vector fields.) The lifting is performed by 10598:
for a review of some of the finer points of doing so: in particular, the
6601: 4556: 3965:{\displaystyle 0\to I\to T({\mathfrak {g}})\to T({\mathfrak {g}})/I\to 0} 2649:{\displaystyle {\mathfrak {g}}\otimes {\mathfrak {g}}\to {\mathfrak {g}}} 2182: 35: 27: 15249:
this shows us that the universal enveloping algebra has the presentation
5226:{\displaystyle \varphi ()=\varphi (X)\varphi (Y)-\varphi (Y)\varphi (X)} 4818:{\displaystyle \varphi ()=\varphi (X)\varphi (Y)-\varphi (Y)\varphi (X)} 2515:{\displaystyle {\mathfrak {g}}\times {\mathfrak {g}}\to {\mathfrak {g}}} 371:
be a Lie algebra, assumed finite-dimensional for simplicity, with basis
16524: 16511:(1967). "Some remarks about the associated envelope of a Lie algebra". 15887: 15843: 15549: 12942:
is equal to the rank of that algebra, i.e. is equal to the rank of the
3710:
are obtained as linear combinations of elements of this form. Clearly,
2464: 1682:'s being non-negative integers, span the enveloping algebra. (We allow 115:
The idea of the universal enveloping algebra is to embed a Lie algebra
16632: 13207:-dimensional endomorphism, and so one has the characteristic equation 10602:
employed there corresponds to the Wigner-Racah coefficients, i.e. the
7988:
Thus, one can view the Poincaré–Birkhoff–Witt theorem as stating that
7084:
It was already established, above, that quotienting by the ideal is a
15852: 15586: 14878: 10607: 10603: 6597: 4727:
given by the commutator). More explicitly, this means that we assume
2605:
that is also bilinear, skew symmetric and obeys the Jacobi identity.
16671:, Graduate Studies in Mathematics, vol. 131, Providence, R.I.: 13895:{\displaystyle \operatorname {ad} _{x+y}=\operatorname {ad} _{y+x},} 13531:{\displaystyle \operatorname {ad} _{kx}=k\,\operatorname {ad} _{x}.} 10230:
rests on the observation that there is an isomorphism, known as the
9457:. The algebraic structure is obtained by requiring that the product 4577:; that is, to replace every occurrence of the tensor product by the 1495:(in the "wrong" order), we can use the relations to rewrite this as 16623:, Graduate Studies in Mathematics, vol. 34, Providence, R.I.: 16270:; more precisely, it is isomorphic to a subspace of the dual space 13785:{\displaystyle p_{n}(x)=x_{a}x_{b}\cdots x_{c}\kappa ^{ab\cdots c}} 10624:
Construction of representations typically proceeds by building the
8207:
In more general settings, with loosened conditions, one finds that
4921:{\displaystyle {\widehat {\varphi }}\colon U({\mathfrak {g}})\to A} 4605: 163:
with identity in such a way that the abstract bracket operation in
15117:
which satisfy the following identities under the standard bracket:
6596:
It can also be precisely defined: the basis elements are given by
5871:
The Poincaré–Birkhoff–Witt theorem gives a precise description of
5849:, but not the exceptional ones: that is, it does not envelope the 1395:
are all linearly independent in the universal enveloping algebra.
6569:
The first step is universal, and does not depend on the specific
4247:
does – symmetry or antisymmetry or whatever. The lifting is done
747: 705:{\displaystyle x_{i}x_{j}-x_{j}x_{i}=\sum _{k=1}^{n}c_{ijk}x_{k}} 16004:{\displaystyle (\nabla (\varphi ,\psi ))(x)=\varphi (x)\psi (x)} 12402:
Recall that the adjoint representation is given directly by the
4581:. If the base algebra is a Lie algebra, then the result is the 9393:{\displaystyle w:\star ({\mathfrak {g}})\to U({\mathfrak {g}})} 5614:
is well defined, independent of how one writes a given element
4545:{\displaystyle m(a,b\otimes c)=m(a,b)\otimes c+b\otimes m(a,c)} 4444:{\displaystyle m(a\otimes b,c)=a\otimes m(b,c)+m(a,c)\otimes b} 16547:
Universal enveloping algebras and some applications in physics
8807:. Thus, if the PBW basis elements are linearly independent in 6436:{\displaystyle e_{a}\otimes e_{b}\otimes \cdots \otimes e_{c}} 4566:
The above is exactly how the universal enveloping algebra for
1645:{\displaystyle x_{1}^{k_{1}}x_{2}^{k_{2}}\cdots x_{n}^{k_{n}}} 16081:{\displaystyle (\Delta (\varphi ))(x\otimes y)=\varphi (xy),} 14870: 10613:
Also important is that the universal enveloping algebra of a
10057:(modulo the relation that the center be the unit); here, the 8745:. Thus, by the universal property of the enveloping algebra, 5653:
as a linear combination of products of Lie algebra elements.
5300:{\displaystyle {\widehat {\varphi }}:U({\mathfrak {g}})\to A} 4662:{\displaystyle h\colon {\mathfrak {g}}\to U({\mathfrak {g}})} 3363: 19:
For the universal enveloping W* algebra of a C* algebra, see
13847:. By linearity and the commutativity of addition, i.e. that 7645:
Since commutators of elements whose products are defined in
4589:
of the corresponding Lie group. As before, it has a grading
16712: 14198:
belonging to the adjoint rep, a general algebra element is
9765: 5111:{\displaystyle \varphi \colon {\mathfrak {g}}\rightarrow A} 3233:{\displaystyle U({\mathfrak {g}})=T({\mathfrak {g}})/\sim } 14464:
for the rotation group is that Casimir operator. That is,
11520:{\displaystyle \delta :{\mathfrak {g}}\to {\mathfrak {g}}} 10397:. The isomorphism follows from a lifting of the embedding 5920:
One way is to suppose that the Lie algebra can be given a
4041: 2474:
any possible confusion about the meanings of expressions.
2050:. The commutation relations are imposed by constructing a 1458:, etc. For example, whenever we have a term that contains 14740: 7534:
has the effect of setting all Lie commutators defined in
6497:
This basis should be easily recognized as the basis of a
2289:, without any restrictions whatsoever on those products. 2146:{\displaystyle x_{i}x_{j}-x_{j}x_{i}-\Sigma c_{ijk}x_{k}} 2046:, so that the product of symbols is understood to be the 76:
provides a commutative example of the objects studied in
16388: 11680:
is the space of left invariant vector fields on a group
8361: 8252:{\displaystyle S({\mathfrak {g}})\to G({\mathfrak {g}})} 16621:
Differential geometry, Lie groups, and symmetric spaces
10583:{\displaystyle i:{\mathfrak {g}}\to U({\mathfrak {g}})} 10390:{\displaystyle {\mathfrak {g}}_{1},{\mathfrak {g}}_{2}} 9989:{\displaystyle m(A,B)=\log \left(e^{A}e^{B}\right)-A-B} 7858:{\displaystyle \operatorname {Sym} ^{m}{\mathfrak {g}}} 6109:{\displaystyle h:{\mathfrak {g}}\to T({\mathfrak {g}})} 5020:{\displaystyle h:{\mathfrak {g}}\to U({\mathfrak {g}})} 4597:; both invoke anticommutation, but in different ways.) 4031:{\displaystyle U({\mathfrak {g}})=T({\mathfrak {g}})/I} 1161:{\displaystyle he-eh=2e,\quad hf-fh=-2f,\quad ef-fe=h,} 15073: 15023: 14970: 12772:{\displaystyle C_{(2)}=\kappa ^{ij}e_{i}\otimes e_{j}} 11962: 11898: 11383: 11280: 11234: 857: 814: 771: 16551:
Lecture, Modave Summer School in Mathematical Physics
16276: 16243: 16150: 16100: 16023: 15940: 15896: 15757: 15711: 15674: 15643: 15627:
can be identified with the algebra of left-invariant
15600: 15567: 15521: 15497: 15457: 15425: 15258: 15211: 15170: 15126: 14958: 14911: 14824: 14784: 14751: 14664: 14603: 14473: 14420: 14269: 14204: 14177: 14134: 14104: 14047: 13989: 13950: 13917: 13853: 13821: 13801: 13707: 13637: 13551: 13494: 13468: 13417: 13372: 13317: 13216: 13180: 13125: 13021: 12972: 12887: 12854: 12821: 12788: 12713: 12628: 12470: 12416: 12358: 12322: 12302: 12266: 12246: 12146: 12123: 12096: 12065: 12023: 11990: 11959: 11926: 11895: 11712: 11686: 11662: 11564: 11533: 11493: 11450: 11417: 11411:, and that the space of derivations can be lifted to 11380: 11344: 11317: 11277: 11213: 11180: 11117: 11075: 11030: 10998: 10962: 10938: 10902: 10860: 10824: 10800: 10767: 10725: 10671: 10641: 10547: 10406: 10355: 10243: 10196: 10168: 10127: 10099: 10063: 10032: 10005: 9916: 9732: 9685: 9648: 9604: 9554: 9486: 9463: 9436: 9409: 9348: 9312: 9281: 9254: 9234: 9198: 9171: 9144: 9111: 9088: 9051: 9011: 8978: 8945: 8904: 8875: 8842: 8813: 8780: 8751: 8727: 8698: 8670: 8634: 8605: 8576: 8556: 8536: 8509: 8484: 8464: 8440: 8416: 8392: 8372: 8308: 8295:{\displaystyle \operatorname {gr} U({\mathfrak {g}})} 8269: 8213: 8177: 8144: 8101: 8067: 8027: 7994: 7907: 7871: 7834: 7800: 7759: 7725: 7685: 7651: 7608: 7574: 7540: 7500: 7466: 7429: 7391: 7357: 7323: 7238: 7197: 7163: 7127: 7094: 7052: 6959: 6918: 6891: 6799: 6697: 6656: 6622: 6575: 6548: 6507: 6452: 6390: 6354: 6315: 6172: 6149: 6122: 6073: 6041: 5985: 5946: 5877: 5802: 5782: 5739: 5706: 5686: 5662: 5620: 5591: 5567: 5402: 5370: 5346: 5313: 5259: 5239: 5144: 5124: 5088: 5053: 5033: 4984: 4968:{\displaystyle \varphi ={\widehat {\varphi }}\circ h} 4940: 4880: 4834: 4736: 4682: 4626: 4555:
This extension is consistent by appeal to a lemma on
4463: 4362: 4260: 4233: 4213: 4184: 4164: 4111: 4073: 4053: 3984: 3900: 3855: 3823: 3781: 3755: 3716: 3647: 3549: 3468: 3406: 3335: 3275: 3252: 3186: 3156: 3123: 3071: 3035: 2945: 2853: 2824: 2784: 2724: 2665: 2618: 2540: 2484: 2449: 2429: 2301: 2271: 2230: 2199: 2163: 2067: 2013: 1993: 1973: 1953: 1929: 1905: 1879: 1855: 1828: 1801: 1755: 1721: 1715:, meaning that we allow terms in which no factors of 1688: 1661: 1572: 1542: 1501: 1464: 1437: 1410: 1343: 1306: 1286: 1253: 1233: 1207: 1181: 1074: 1039: 1001: 957: 916: 759: 725: 608: 562: 460: 420: 377: 353: 321: 297: 273: 249: 225: 193: 169: 145: 121: 14942:{\displaystyle {\mathfrak {g}}={\mathfrak {sl}}_{2}} 14881:. Quartic Casimir operators allow one to square the 13106:-dimensional Lie algebra, that is, an algebra whose 13090:{\displaystyle \det(tI-M)=\sum _{n=0}^{d}p_{n}t^{n}} 6484:, the ordering being that of total order on the set 5393:
must be uniquely determined by the requirement that
2153:. The universal enveloping algebra is the "largest" 15837: 15751:Another characterization in Lie group theory is of 14815:, from which one can construct Casimir invariants. 13462:This can be seen in several ways: Given a constant 11111:corresponds to linear combinations of all elements 8338:serving to remind that it is the filtered algebra. 1334: 16305: 16262: 16209:{\displaystyle (S(\varphi ))(x)=\varphi (x^{-1}).} 16208: 16131:{\displaystyle \varepsilon (\varphi )=\varphi (e)} 16130: 16080: 16003: 15923: 15776: 15730: 15684: 15653: 15619: 15577: 15540: 15507: 15476: 15435: 15405: 15238: 15197: 15156: 15106: 14941: 14834: 14803: 14770: 14729: 14641: 14583: 14452: 14403: 14252: 14190: 14163: 14120: 14078: 14020: 13975: 13936: 13894: 13839: 13807: 13784: 13687: 13617: 13530: 13480: 13439: 13394: 13336: 13300: 13193: 13163: 13089: 12988: 12915: 12873: 12840: 12804: 12771: 12693: 12608: 12453: 12394: 12344: 12316:belonging to the adjoint representation. That is, 12308: 12288: 12252: 12229: 12129: 12109: 12078: 12045: 12009: 11976: 11945: 11912: 11878: 11692: 11672: 11645: 11543: 11519: 11472: 11436: 11399: 11366: 11330: 11299: 11263: 11199: 11166: 11103: 11058: 11008: 10984: 10948: 10932:and in particular with the canonical embedding of 10924: 10888: 10846: 10810: 10786: 10753: 10690: 10651: 10582: 10527: 10389: 10338: 10215: 10178: 10146: 10109: 10069: 10038: 10018: 9988: 9896: 9704: 9667: 9634: 9588: 9537: 9469: 9449: 9422: 9392: 9331: 9294: 9267: 9240: 9220: 9184: 9157: 9130: 9094: 9070: 9030: 8997: 8964: 8923: 8890: 8861: 8828: 8799: 8766: 8737: 8713: 8680: 8653: 8628:is isomorphic to the universal enveloping algebra 8620: 8591: 8562: 8542: 8519: 8494: 8470: 8450: 8426: 8402: 8378: 8330: 8294: 8251: 8199: 8163: 8123: 8087: 8046: 8013: 7977: 7890: 7857: 7820: 7779: 7745: 7711: 7671: 7634: 7594: 7560: 7526: 7486: 7449: 7411: 7377: 7343: 7306: 7219: 7183: 7149: 7113: 7074: 7027: 6938: 6904: 6868: 6779: 6678: 6642: 6588: 6561: 6526: 6476: 6435: 6373: 6334: 6298: 6155: 6135: 6108: 6059: 6023: 5971: 5896: 5821: 5788: 5768: 5725: 5692: 5672: 5645: 5606: 5577: 5549: 5385: 5356: 5332: 5299: 5245: 5225: 5130: 5110: 5063: 5039: 5019: 4967: 4920: 4856: 4817: 4704: 4661: 4544: 4443: 4334: 4239: 4219: 4199: 4170: 4147: 4097: 4059: 4030: 3964: 3876: 3841: 3809: 3767: 3741: 3696: 3630: 3523: 3448: 3354: 3317: 3258: 3232: 3166: 3142: 3090: 3057: 3017: 2925: 2833: 2810: 2770: 2707: 2648: 2597: 2514: 2455: 2435: 2412: 2281: 2249: 2209: 2173: 2145: 2025: 1999: 1979: 1959: 1939: 1915: 1891: 1865: 1841: 1814: 1787: 1734: 1707: 1674: 1644: 1555: 1524: 1487: 1450: 1423: 1387: 1325: 1292: 1272: 1239: 1219: 1193: 1160: 1057: 1025: 987: 943: 899: 735: 704: 591: 545: 439: 406: 363: 331: 307: 283: 259: 235: 211: 179: 155: 131: 12704:As an example, the quadratic Casimir operator is 10190:to the abelian category of all left modules over 9598:The primary issue with this construction is that 8410:. Following the modern approach, we may identify 7385:of strictly smaller filtration degree. Note that 5860: 2608:The lifting can be done grade by grade. Begin by 2534:. We wish to define a Lie bracket that is a map 16722: 14842:acts on a space of linear operators, such as in 14270: 14088: 13217: 13022: 9720:for the product of two elements of a Lie group. 7191:whose limit is the universal enveloping algebra 6650:whose limit is the universal enveloping algebra 6342:from the above, by enforcing the total order of 5845:, the resulting enveloping algebra contains the 16425: 14900: 14730:{\displaystyle =\varepsilon _{ij}^{\;\;k}e_{k}} 12352:can be (should be) thought of as an element of 9589:{\displaystyle p,q\in \star ({\mathfrak {g}}).} 4600:The construction has also been generalized for 4227:obeys all of the same properties that the base 3697:{\displaystyle a,b,c,d,f,g\in {\mathfrak {g}}.} 14869:endowed with a metric and the symmetry groups 9105:The algebra is obtained by taking elements of 8972:may be given a new algebra structure so that 56:Universal enveloping algebras are used in the 15859:. This is made precise in the article on the 14745:A key observation during the construction of 9192:to obtain the space of symmetric polynomials 4705:{\displaystyle \varphi :{\mathfrak {g}}\to A} 3888:of the quotienting map. That is, one has the 3065:one says that it has been "lifted" to all of 1175:the same as (or contained in) the algebra of 546:{\displaystyle =\sum _{k=1}^{n}c_{ijk}X_{k}.} 315:, called the universal enveloping algebra of 60:of Lie groups and Lie algebras. For example, 15314: 15296: 14021:{\displaystyle \operatorname {ad} _{x}(z)=0} 11300:{\displaystyle {\mbox{ad}}_{\mathfrak {g}}.} 9538:{\displaystyle w(p\star q)=w(p)\otimes w(q)} 7790:In this way, one is lead immediately to the 5833:is of particular importance in this regard. 13688:{\displaystyle x=\sum _{i=1}^{d}x_{i}e_{i}} 13628:By linearity, if one expands in the basis, 13354:of the algebra. In general, there are only 11400:{\displaystyle {\mbox{ad}}_{\mathfrak {g}}} 11024:form a distinguished basis from the center 8095:also form a filtered algebra; its limit is 6501:. That is, the underlying vector spaces of 3742:{\displaystyle I\subset T({\mathfrak {g}})} 3105:The result of this lifting is explicitly a 342: 15880:of continuous complex-valued functions on 14711: 14710: 13618:{\displaystyle p_{n}(kx)=k^{d-n}p_{n}(x).} 12675: 12674: 12575: 12574: 12527: 12526: 12485: 12484: 12296:is a completely symmetric tensor of order 10794:can be identified with the centralizer of 8869:. (And, at this point, the isomorphism of 3749:is a subspace. It is an ideal, in that if 2185:compatible with the original Lie algebra. 16668:Lie Superalgebras and Enveloping Algebras 16443: 16410: 15813:The algebra of differential operators in 15292: 14453:{\displaystyle \kappa ^{ij}=\delta ^{ij}} 13514: 11752: 10117:correspond in a one-to-one manner to the 9642:is not trivially, inherently a member of 9302:. The resulting polynomial is called the 7046:of this filtration is the tensor algebra 6477:{\displaystyle a\leq b\leq \cdots \leq c} 2406: 2402: 2368: 2364: 2340: 2336: 2328: 2324: 16618: 16495: 16483: 15585:is the Lie algebra corresponding to the 10084: 10049:The universal enveloping algebra of the 9477:act as an isomorphism, that is, so that 9165:by an indeterminate, commuting variable 5700:extends uniquely to a representation of 4148:{\displaystyle a\times b\mapsto m(a,b).} 3810:{\displaystyle x\in T({\mathfrak {g}}),} 2054:of the tensor algebra quotiented by the 910:which satisfy the commutation relations 746:Consider, for example, the Lie algebra 110: 16561: 16507: 16319:, and then performing what is called a 16306:{\displaystyle U^{*}({\mathfrak {g}}).} 15665:as first-order differential operators. 15558:, with one variable per basis element. 13976:{\displaystyle z\in Z({\mathfrak {g}})} 13194:{\displaystyle \operatorname {ad} _{x}} 11066:. These may be constructed as follows. 9071:{\displaystyle \star ({\mathfrak {g}})} 8021:is isomorphic to the symmetric algebra 5915: 5796:. These operators (from the center of 5646:{\displaystyle x\in U({\mathfrak {g}})} 4042:Superalgebras and other generalizations 1388:{\displaystyle 1,e,e^{2},e^{3},\ldots } 16723: 16664: 15924:{\displaystyle \varphi ,\psi \in C(G)} 15661:lying inside it as the left-invariant 14741:Example: Pseudo-differential operators 14414:The quadratic term can be read off as 14079:{\displaystyle Z(U({\mathfrak {g}})).} 11264:{\displaystyle ={\mbox{ad}}_{x}(z)=0.} 7712:{\displaystyle U_{m-1}{\mathfrak {g}}} 7635:{\displaystyle U_{m-1}{\mathfrak {g}}} 7527:{\displaystyle U_{m-1}{\mathfrak {g}}} 5253:extends to an algebra homomorphism of 5118:is a linear map into a unital algebra 4857:{\displaystyle X,Y\in {\mathfrak {g}}} 4673:. Suppose we have any Lie algebra map 3449:{\displaystyle a\otimes b-b\otimes a-} 3318:{\displaystyle a\otimes b-b\otimes a=} 2811:{\displaystyle T^{n}({\mathfrak {g}})} 2708:{\displaystyle a\otimes b-b\otimes a=} 1899:matrices, the universal enveloping of 16741:Representation theory of Lie algebras 15872:, one can construct the vector space 13337:{\displaystyle x\in {\mathfrak {g}}.} 12946:. This may be seen as follows. For a 12916:{\displaystyle Z(U({\mathfrak {g}}))} 11946:{\displaystyle x\in {\mathfrak {g}},} 11200:{\displaystyle x\in {\mathfrak {g}};} 11104:{\displaystyle Z(U({\mathfrak {g}}))} 11059:{\displaystyle Z(U({\mathfrak {g}}))} 10889:{\displaystyle Z(U({\mathfrak {g}}))} 10754:{\displaystyle Z(U({\mathfrak {g}}))} 9723:A closed form expression is given by 8934: 8478:at the identity, then each vector in 8386:is a real Lie group with Lie algebra 8362:Left-invariant differential operators 7865:. Its limit is the symmetric algebra 6024:{\displaystyle e_{a}(b)=\delta _{ab}} 5607:{\displaystyle {\widehat {\varphi }}} 5386:{\displaystyle {\widehat {\varphi }}} 4615: 2221:. Thus, one is free to construct the 105:left-invariant differential operators 16600: 16470: 16458: 16376: 16364: 16325:quantum universal enveloping algebra 14594:and explicit computation shows that 14253:{\displaystyle xL_{1}+yL_{2}+zL_{3}} 12694:{\displaystyle =f_{ij}^{\;\;k}e_{k}} 12345:{\displaystyle \kappa ^{ab\cdots c}} 12289:{\displaystyle \kappa ^{ab\cdots c}} 11480:This implies that both of these are 10705: 8088:{\displaystyle G_{m}{\mathfrak {g}}} 7821:{\displaystyle S_{m}{\mathfrak {g}}} 7780:{\displaystyle G_{m}{\mathfrak {g}}} 7746:{\displaystyle G_{m}{\mathfrak {g}}} 7672:{\displaystyle U_{m}{\mathfrak {g}}} 7595:{\displaystyle U_{m}{\mathfrak {g}}} 7561:{\displaystyle U_{m}{\mathfrak {g}}} 7487:{\displaystyle U_{m}{\mathfrak {g}}} 7450:{\displaystyle U^{m}{\mathfrak {g}}} 7412:{\displaystyle G_{m}{\mathfrak {g}}} 7378:{\displaystyle U_{n}{\mathfrak {g}}} 7344:{\displaystyle U_{m}{\mathfrak {g}}} 7184:{\displaystyle U_{m}{\mathfrak {g}}} 6939:{\displaystyle T_{m}{\mathfrak {g}}} 6643:{\displaystyle U_{m}{\mathfrak {g}}} 3018:{\displaystyle =\otimes c+b\otimes } 2926:{\displaystyle =a\otimes +\otimes b} 2188: 16292: 16252: 15766: 15720: 15677: 15646: 15609: 15570: 15530: 15500: 15466: 15428: 15271: 15268: 14928: 14925: 14914: 14827: 14793: 14760: 14062: 13965: 13926: 13326: 13153: 13134: 12902: 12370: 12046:{\displaystyle U({\mathfrak {g}}).} 12032: 11999: 11935: 11665: 11536: 11512: 11502: 11473:{\displaystyle U({\mathfrak {g}}).} 11459: 11426: 11391: 11367:{\displaystyle U({\mathfrak {g}}).} 11353: 11320: 11288: 11271:That is, they are in the kernel of 11189: 11156: 11090: 11045: 11001: 10985:{\displaystyle U({\mathfrak {g}}).} 10971: 10941: 10925:{\displaystyle U({\mathfrak {g}}),} 10911: 10875: 10847:{\displaystyle U({\mathfrak {g}}).} 10833: 10803: 10776: 10740: 10680: 10644: 10572: 10556: 10511: 10466: 10433: 10416: 10376: 10359: 10322: 10296: 10270: 10253: 10205: 10171: 10136: 10102: 9694: 9679:as needed) to obtain an element of 9657: 9575: 9382: 9363: 9321: 9120: 9060: 9042:. This leads to the concept of the 9020: 8987: 8954: 8913: 8851: 8789: 8730: 8673: 8643: 8512: 8487: 8443: 8419: 8395: 8341: 8331:{\displaystyle G({\mathfrak {g}}),} 8317: 8284: 8241: 8222: 8200:{\displaystyle U({\mathfrak {g}}).} 8186: 8153: 8124:{\displaystyle G({\mathfrak {g}}).} 8110: 8080: 8036: 8003: 7935: 7916: 7880: 7850: 7813: 7772: 7738: 7704: 7664: 7627: 7587: 7553: 7519: 7479: 7442: 7404: 7370: 7336: 7299: 7271: 7251: 7220:{\displaystyle U({\mathfrak {g}}).} 7206: 7176: 7150:{\displaystyle U({\mathfrak {g}}).} 7136: 7103: 7075:{\displaystyle T({\mathfrak {g}}).} 7061: 7014: 6988: 6968: 6931: 6894: 6861: 6845: 6835: 6812: 6772: 6746: 6726: 6710: 6679:{\displaystyle U({\mathfrak {g}}).} 6665: 6635: 6578: 6551: 6516: 6363: 6324: 6098: 6082: 5886: 5811: 5769:{\displaystyle A=\mathrm {End} (V)} 5715: 5665: 5635: 5570: 5542: 5349: 5322: 5283: 5097: 5056: 5009: 4993: 4904: 4849: 4691: 4651: 4635: 4012: 3993: 3940: 3921: 3796: 3731: 3686: 3513: 3494: 3484: 3471: 3344: 3214: 3195: 3159: 3132: 3080: 3058:{\displaystyle T({\mathfrak {g}});} 3044: 2800: 2763: 2753: 2740: 2641: 2631: 2621: 2587: 2568: 2549: 2507: 2497: 2487: 2394: 2384: 2374: 2356: 2346: 2331: 2310: 2274: 2239: 2202: 2166: 1932: 1908: 1858: 1788:{\displaystyle x_{1},\ldots ,x_{n}} 728: 356: 324: 276: 172: 124: 13: 16575:, vol. 11, Providence, R.I.: 16263:{\displaystyle U({\mathfrak {g}})} 16027: 15944: 15777:{\displaystyle U({\mathfrak {g}})} 15731:{\displaystyle Z({\mathfrak {g}})} 15668:To relate the above two cases: if 15620:{\displaystyle U({\mathfrak {g}})} 15541:{\displaystyle U({\mathfrak {g}})} 15477:{\displaystyle U({\mathfrak {g}})} 14804:{\displaystyle U({\mathfrak {g}})} 14771:{\displaystyle U({\mathfrak {g}})} 13937:{\displaystyle Z({\mathfrak {g}})} 13116:-dimensional, the linear operator 12619:where the structure constants are 12010:{\displaystyle T({\mathfrak {g}})} 11437:{\displaystyle T({\mathfrak {g}})} 11374:The easiest route is to note that 10787:{\displaystyle U({\mathfrak {g}})} 10691:{\displaystyle U({\mathfrak {g}})} 10216:{\displaystyle U({\mathfrak {g}})} 10147:{\displaystyle U({\mathfrak {g}})} 9828: 9824: 9810: 9806: 9716:. It follows essentially from the 9705:{\displaystyle U({\mathfrak {g}})} 9668:{\displaystyle U({\mathfrak {g}})} 9332:{\displaystyle S({\mathfrak {g}})} 9131:{\displaystyle S({\mathfrak {g}})} 9031:{\displaystyle S({\mathfrak {g}})} 8998:{\displaystyle U({\mathfrak {g}})} 8965:{\displaystyle S({\mathfrak {g}})} 8924:{\displaystyle U({\mathfrak {g}})} 8862:{\displaystyle U({\mathfrak {g}})} 8800:{\displaystyle U({\mathfrak {g}})} 8654:{\displaystyle U({\mathfrak {g}})} 8263:. To emphasize this, the notation 8164:{\displaystyle G({\mathfrak {g}})} 8047:{\displaystyle S({\mathfrak {g}})} 8014:{\displaystyle G({\mathfrak {g}})} 7891:{\displaystyle S({\mathfrak {g}})} 7114:{\displaystyle T({\mathfrak {g}})} 6607: 6600:, a special case of which are the 6527:{\displaystyle U({\mathfrak {g}})} 6374:{\displaystyle U({\mathfrak {g}})} 6335:{\displaystyle U({\mathfrak {g}})} 5897:{\displaystyle U({\mathfrak {g}})} 5822:{\displaystyle U({\mathfrak {g}})} 5753: 5750: 5747: 5726:{\displaystyle U({\mathfrak {g}})} 5333:{\displaystyle U({\mathfrak {g}})} 3397:generated by elements of the form 3355:{\displaystyle U({\mathfrak {g}})} 3143:{\displaystyle U({\mathfrak {g}})} 3091:{\displaystyle T({\mathfrak {g}})} 2292:That is, one constructs the space 2261:: it simply contains all possible 2250:{\displaystyle T({\mathfrak {g}})} 2114: 1398: 592:{\displaystyle x_{1},\ldots x_{n}} 407:{\displaystyle X_{1},\ldots X_{n}} 300: 252: 228: 148: 14: 16752: 14949:, then it has a basis of matrices 13698:then the polynomial has the form 12260:terms in the tensor product, and 5836: 2257:from it. The tensor algebra is a 84:. This dual can be shown, by the 15931:, one defines multiplication as 15838:Hopf algebras and quantum groups 15447:(that is, the bracket is always 14857:If the action of the algebra is 14811:. Thus, one is led to a ring of 11331:{\displaystyle {\mathfrak {g}};} 9718:Baker–Campbell–Hausdorff formula 9635:{\displaystyle w(p)\otimes w(q)} 9306:of the corresponding element of 6905:{\displaystyle {\mathfrak {g}}.} 6589:{\displaystyle {\mathfrak {g}}.} 6562:{\displaystyle {\mathfrak {g}}.} 4715:to a unital associative algebra 4559:: since the tensor algebra is a 4098:{\displaystyle m:V\times V\to V} 3877:{\displaystyle x\otimes j\in I.} 3459:This generator is an element of 2061:containing elements of the form 267:is generated by the elements of 16573:Graduate Studies in Mathematics 16539: 15748:of a semi-simple Lie algebra). 15685:{\displaystyle {\mathfrak {g}}} 15654:{\displaystyle {\mathfrak {g}}} 15578:{\displaystyle {\mathfrak {g}}} 15508:{\displaystyle {\mathfrak {g}}} 15436:{\displaystyle {\mathfrak {g}}} 14835:{\displaystyle {\mathfrak {g}}} 13944:corresponded to those elements 13542:in the above, one obtains that 12964:completely antisymmetric tensor 11977:{\displaystyle {\mbox{ad}}_{x}} 11913:{\displaystyle {\mbox{ad}}_{x}} 11673:{\displaystyle {\mathfrak {g}}} 11544:{\displaystyle {\mathfrak {g}}} 11174:that commute with all elements 11009:{\displaystyle {\mathfrak {g}}} 10949:{\displaystyle {\mathfrak {g}}} 10811:{\displaystyle {\mathfrak {g}}} 10652:{\displaystyle {\mathfrak {g}}} 10179:{\displaystyle {\mathfrak {g}}} 10110:{\displaystyle {\mathfrak {g}}} 8939:The underlying vector space of 8738:{\displaystyle {\mathfrak {g}}} 8681:{\displaystyle {\mathfrak {g}}} 8520:{\displaystyle {\mathfrak {g}}} 8495:{\displaystyle {\mathfrak {g}}} 8451:{\displaystyle {\mathfrak {g}}} 8427:{\displaystyle {\mathfrak {g}}} 8403:{\displaystyle {\mathfrak {g}}} 7719:, the quotienting that defines 6143:, one defines the extension of 5673:{\displaystyle {\mathfrak {g}}} 5578:{\displaystyle {\mathfrak {g}}} 5519: 5357:{\displaystyle {\mathfrak {g}}} 5064:{\displaystyle {\mathfrak {g}}} 5027:is the canonical map. (The map 3842:{\displaystyle j\otimes x\in I} 3167:{\displaystyle {\mathfrak {g}}} 2282:{\displaystyle {\mathfrak {g}}} 2210:{\displaystyle {\mathfrak {g}}} 2174:{\displaystyle {\mathfrak {g}}} 1940:{\displaystyle {\mathfrak {g}}} 1916:{\displaystyle {\mathfrak {g}}} 1866:{\displaystyle {\mathfrak {g}}} 1133: 1102: 845: 802: 736:{\displaystyle {\mathfrak {g}}} 364:{\displaystyle {\mathfrak {g}}} 332:{\displaystyle {\mathfrak {g}}} 284:{\displaystyle {\mathfrak {g}}} 180:{\displaystyle {\mathfrak {g}}} 132:{\displaystyle {\mathfrak {g}}} 16501: 16489: 16476: 16464: 16452: 16445:10.1016/j.jalgebra.2004.09.038 16428:"An envelope for Bol algebras" 16426:Perez-Izquierdo, J.M. (2005). 16419: 16382: 16370: 16358: 16317:quasi-triangular Hopf algebras 16297: 16287: 16257: 16247: 16200: 16184: 16175: 16169: 16166: 16163: 16157: 16151: 16125: 16119: 16110: 16104: 16072: 16063: 16054: 16042: 16039: 16036: 16030: 16024: 15998: 15992: 15986: 15980: 15971: 15965: 15962: 15959: 15947: 15941: 15918: 15912: 15771: 15761: 15725: 15715: 15614: 15604: 15535: 15525: 15471: 15461: 15397: 15319: 15282: 15262: 15224: 15212: 15183: 15171: 15139: 15127: 14798: 14788: 14765: 14755: 14691: 14665: 14630: 14604: 14485: 14479: 14395: 14356: 14070: 14067: 14057: 14051: 14009: 14003: 13970: 13960: 13931: 13921: 13724: 13718: 13609: 13603: 13571: 13562: 13434: 13428: 13389: 13383: 13285: 13279: 13242: 13220: 13158: 13148: 13139: 13040: 13025: 12910: 12907: 12897: 12891: 12866: 12860: 12725: 12719: 12655: 12629: 12442: 12437: 12431: 12417: 12158: 12152: 12117:, a Casimir operator of order 12037: 12027: 12004: 11994: 11866: 11860: 11808: 11802: 11762: 11756: 11744: 11720: 11640: 11637: 11631: 11619: 11613: 11604: 11598: 11592: 11586: 11583: 11571: 11568: 11507: 11464: 11454: 11431: 11421: 11358: 11348: 11252: 11246: 11226: 11214: 11161: 11151: 11098: 11095: 11085: 11079: 11053: 11050: 11040: 11034: 10976: 10966: 10916: 10906: 10883: 10880: 10870: 10864: 10838: 10828: 10781: 10771: 10748: 10745: 10735: 10729: 10685: 10675: 10577: 10567: 10561: 10522: 10505: 10477: 10460: 10444: 10410: 10333: 10316: 10307: 10290: 10281: 10247: 10210: 10200: 10154:. In more abstract terms, the 10141: 10131: 9932: 9920: 9868: 9862: 9856: 9850: 9757: 9751: 9742: 9736: 9699: 9689: 9662: 9652: 9629: 9623: 9614: 9608: 9580: 9570: 9532: 9526: 9517: 9511: 9502: 9490: 9387: 9377: 9371: 9368: 9358: 9326: 9316: 9215: 9202: 9125: 9115: 9082:, endowed with a product, the 9065: 9055: 9025: 9015: 8992: 8982: 8959: 8949: 8918: 8908: 8885: 8879: 8856: 8846: 8823: 8817: 8794: 8784: 8761: 8755: 8708: 8702: 8690:Poincaré–Birkhoff–Witt theorem 8648: 8638: 8615: 8609: 8586: 8580: 8322: 8312: 8289: 8279: 8246: 8236: 8230: 8227: 8217: 8191: 8181: 8158: 8148: 8115: 8105: 8041: 8031: 8008: 7998: 7972: 7948: 7940: 7930: 7921: 7911: 7885: 7875: 7211: 7201: 7141: 7131: 7108: 7098: 7066: 7056: 6670: 6660: 6521: 6511: 6368: 6358: 6329: 6319: 6293: 6280: 6265: 6252: 6243: 6230: 6221: 6176: 6103: 6093: 6087: 6002: 5996: 5963: 5891: 5881: 5867:Poincaré–Birkhoff–Witt theorem 5861:Poincaré–Birkhoff–Witt theorem 5816: 5806: 5763: 5757: 5720: 5710: 5640: 5630: 5513: 5493: 5484: 5464: 5455: 5415: 5327: 5317: 5291: 5288: 5278: 5220: 5214: 5208: 5202: 5193: 5187: 5181: 5175: 5166: 5163: 5151: 5148: 5102: 5014: 5004: 4998: 4912: 4909: 4899: 4812: 4806: 4800: 4794: 4785: 4779: 4773: 4767: 4758: 4755: 4743: 4740: 4696: 4656: 4646: 4640: 4539: 4527: 4506: 4494: 4485: 4467: 4432: 4420: 4411: 4399: 4384: 4366: 4325: 4313: 4307: 4284: 4194: 4188: 4139: 4127: 4121: 4089: 4017: 4007: 3998: 3988: 3956: 3945: 3935: 3929: 3926: 3916: 3910: 3904: 3801: 3791: 3736: 3726: 3610: 3607: 3595: 3568: 3534:A general member of the ideal 3518: 3508: 3499: 3479: 3443: 3431: 3349: 3339: 3312: 3300: 3219: 3209: 3200: 3190: 3137: 3127: 3085: 3075: 3049: 3039: 3012: 3000: 2982: 2970: 2964: 2946: 2914: 2902: 2896: 2884: 2872: 2854: 2805: 2795: 2745: 2735: 2702: 2690: 2636: 2592: 2582: 2576: 2573: 2563: 2554: 2544: 2502: 2399: 2369: 2361: 2341: 2315: 2305: 2244: 2234: 2193:Recall that every Lie algebra 2036: 1744:Poincaré–Birkhoff–Witt theorem 1014: 1002: 970: 958: 929: 917: 487: 461: 308:{\displaystyle {\mathcal {A}}} 260:{\displaystyle {\mathcal {A}}} 236:{\displaystyle {\mathcal {A}}} 187:corresponds to the commutator 156:{\displaystyle {\mathcal {A}}} 1: 16673:American Mathematical Society 16625:American Mathematical Society 16577:American Mathematical Society 16403:10.1016/s0021-8693(03)00389-2 16351: 14813:pseudo-differential operators 14260:and direct computation gives 14089:Example: Rotation group SO(3) 12989:{\displaystyle V^{\otimes d}} 12841:{\displaystyle \kappa _{ij}.} 12812:is the inverse matrix of the 10662:infinitesimal transformations 10226:The representation theory of 9138:and replacing each generator 7828:of symmetric tensor products 7602:actually gives an element in 7423:the same as the leading term 2841:This is done recursively, by 16709:Universal enveloping algebra 14901:Examples in particular cases 14164:{\displaystyle e_{i}=L_{i},} 12805:{\displaystyle \kappa ^{ij}} 8692:. Specifically, the algebra 7351:modulo all of the subspaces 5972:{\displaystyle e_{a}:X\to K} 5908:on the Lie algebra, or in a 5340:is generated by elements of 5075:and then composing with the 4067:endowed with multiplication 3102:(here, the tensor algebra). 139:into an associative algebra 49:correspond precisely to the 32:universal enveloping algebra 7: 16619:Helgason, Sigurdur (2001), 16498:Chapter II, Proposition 1.9 16346:Harish-Chandra homomorphism 16334: 15548:can be identified with the 15416:as a non-commutative ring. 14867:pseudo-Riemannian manifolds 14861:, as would be the case for 11646:{\displaystyle \delta ()=+} 11016:. For a finite-dimensional 10635:In a typical context where 6348:onto the algebra. That is, 2778:; it must now be lifted to 2443:is the tensor product, and 2265:of all possible vectors in 1201:matrices. For example, the 100:and their representations. 10: 16757: 16237:is isomorphically dual to 12952:-dimensional vector space 12928:Harish-Chandra isomorphism 12848:That the Casimir operator 10712:Harish-Chandra isomorphism 10709: 9403:that replaces each symbol 8570:forms an algebra, denoted 8058:as a commutative algebra. 7038:More precisely, this is a 5924:basis, that is, it is the 5864: 5082:To put it differently, if 3111:unital associative algebra 2155:unital associative algebra 1525:{\displaystyle x_{1}x_{2}} 1488:{\displaystyle x_{2}x_{1}} 750:, spanned by the matrices 98:compact topological groups 18: 15484:is commutative; and if a 14462:angular momentum operator 13004:characteristic polynomial 10896:must commute with all of 8133:associated graded algebra 8054:, both as a vector space 6885:-times tensor product of 5831:quadratic Casimir element 5680:acting on a vector space 5047:is obtained by embedding 4610:left alternative algebras 4251:as before, starting with 2157:generated by elements of 2026:{\displaystyle 2\times 2} 1892:{\displaystyle n\times n} 1220:{\displaystyle 2\times 2} 1194:{\displaystyle 2\times 2} 1065:subject to the relations 599:subject to the relations 16014:and comultiplication as 15842:The construction of the 14652:after making use of the 13488:, ad is linear, so that 13440:{\displaystyle p_{n}(x)} 13395:{\displaystyle p_{n}(x)} 12086:of the Lie algebra. The 11920:is a derivation for any 10619:free associative algebra 8458:as the tangent space to 8346:The theorem, applied to 6060:{\displaystyle a,b\in X} 5246:{\displaystyle \varphi } 2467:of vector spaces. Here, 2436:{\displaystyle \otimes } 451:for this basis, so that 343:Generators and relations 78:non-commutative geometry 16665:Musson, Ian M. (2012), 16601:Hall, Brian C. (2015), 16221:Gelfand–Naimark theorem 14891:Coleman–Mandula theorem 13808:{\displaystyle \kappa } 13449:homogeneous polynomials 12933: 12874:{\displaystyle C_{(2)}} 10228:semisimple Lie algebras 9040:as associative algebras 8599:. It can be shown that 7229:Next, define the space 5847:special Jordan algebras 3362:can be understood as a 2456:{\displaystyle \oplus } 1822:'s with the generators 1708:{\displaystyle k_{j}=0} 1431:first, then factors of 1326:{\displaystyle e^{2}=0} 1273:{\displaystyle E^{2}=0} 440:{\displaystyle c_{ijk}} 86:Gelfand–Naimark theorem 16307: 16264: 16210: 16132: 16082: 16005: 15925: 15778: 15732: 15686: 15655: 15629:differential operators 15621: 15579: 15542: 15515:has been chosen, then 15509: 15478: 15437: 15414: 15407: 15247: 15240: 15199: 15158: 15115: 15108: 14943: 14836: 14805: 14772: 14731: 14643: 14585: 14454: 14405: 14254: 14192: 14165: 14122: 14121:{\displaystyle A_{1}.} 14080: 14022: 13977: 13938: 13896: 13841: 13809: 13786: 13689: 13664: 13619: 13532: 13482: 13481:{\displaystyle k\in K} 13441: 13396: 13338: 13302: 13268: 13195: 13165: 13108:adjoint representation 13091: 13066: 12990: 12940:semisimple Lie algebra 12917: 12881:belongs to the center 12875: 12842: 12806: 12773: 12695: 12610: 12455: 12396: 12346: 12310: 12290: 12254: 12231: 12131: 12111: 12080: 12059:in the basis elements 12057:homogenous polynomials 12047: 12011: 11978: 11947: 11914: 11880: 11694: 11674: 11647: 11545: 11521: 11474: 11438: 11401: 11368: 11332: 11309:adjoint representation 11301: 11265: 11201: 11168: 11105: 11060: 11018:semisimple Lie algebra 11010: 10986: 10950: 10926: 10890: 10848: 10812: 10788: 10755: 10700:differential operators 10692: 10653: 10584: 10529: 10391: 10340: 10217: 10180: 10148: 10111: 10077:product is called the 10071: 10070:{\displaystyle \star } 10040: 10020: 9990: 9898: 9706: 9669: 9636: 9590: 9539: 9471: 9470:{\displaystyle \star } 9451: 9424: 9394: 9333: 9296: 9269: 9242: 9222: 9186: 9159: 9132: 9096: 9095:{\displaystyle \star } 9072: 9032: 8999: 8966: 8925: 8892: 8863: 8830: 8801: 8768: 8739: 8715: 8682: 8655: 8622: 8593: 8564: 8544: 8521: 8496: 8472: 8452: 8428: 8404: 8380: 8332: 8302:is sometimes used for 8296: 8253: 8201: 8165: 8125: 8089: 8048: 8015: 7979: 7892: 7859: 7822: 7781: 7747: 7713: 7673: 7636: 7596: 7562: 7528: 7488: 7451: 7413: 7379: 7345: 7308: 7221: 7185: 7151: 7115: 7086:natural transformation 7076: 7029: 6940: 6906: 6870: 6781: 6680: 6644: 6590: 6563: 6528: 6478: 6437: 6375: 6336: 6300: 6157: 6137: 6110: 6061: 6025: 5973: 5898: 5823: 5790: 5770: 5727: 5694: 5674: 5647: 5608: 5579: 5551: 5387: 5358: 5334: 5301: 5247: 5227: 5132: 5112: 5065: 5041: 5021: 4969: 4922: 4864:. Then there exists a 4858: 4819: 4706: 4663: 4546: 4445: 4336: 4241: 4221: 4201: 4172: 4149: 4099: 4061: 4032: 3966: 3878: 3843: 3811: 3769: 3768:{\displaystyle j\in I} 3743: 3698: 3632: 3525: 3450: 3356: 3319: 3260: 3234: 3168: 3144: 3092: 3059: 3019: 2927: 2835: 2812: 2772: 2709: 2650: 2599: 2516: 2457: 2437: 2414: 2283: 2251: 2211: 2175: 2147: 2027: 2001: 1981: 1961: 1941: 1917: 1893: 1867: 1843: 1816: 1789: 1736: 1709: 1676: 1646: 1557: 1526: 1489: 1452: 1425: 1389: 1327: 1294: 1274: 1241: 1221: 1195: 1162: 1059: 1027: 989: 945: 901: 737: 706: 675: 593: 547: 513: 441: 408: 365: 333: 309: 285: 261: 237: 213: 181: 157: 133: 21:Sherman–Takeda theorem 16:Concept in mathematics 16705:, Harvard University. 16486:Chapter II, Section 1 16308: 16265: 16211: 16133: 16083: 16006: 15926: 15886:, and turn it into a 15779: 15733: 15687: 15656: 15622: 15580: 15543: 15510: 15479: 15438: 15408: 15251: 15241: 15200: 15159: 15119: 15109: 14951: 14944: 14885:, giving rise to the 14837: 14806: 14773: 14732: 14644: 14586: 14460:, and so the squared 14455: 14406: 14255: 14193: 14191:{\displaystyle L_{i}} 14166: 14123: 14081: 14023: 13978: 13939: 13897: 13842: 13840:{\displaystyle m=d-n} 13810: 13787: 13690: 13644: 13620: 13540:plugging and chugging 13533: 13483: 13442: 13397: 13339: 13303: 13248: 13196: 13166: 13092: 13046: 12991: 12918: 12876: 12843: 12807: 12774: 12696: 12611: 12456: 12397: 12347: 12311: 12291: 12255: 12232: 12132: 12112: 12110:{\displaystyle e_{a}} 12081: 12079:{\displaystyle e_{a}} 12048: 12012: 11979: 11948: 11915: 11881: 11695: 11675: 11648: 11546: 11522: 11482:differential algebras 11475: 11439: 11402: 11369: 11333: 11302: 11266: 11202: 11169: 11106: 11061: 11011: 10987: 10951: 10927: 10891: 10849: 10813: 10789: 10756: 10693: 10654: 10617:is isomorphic to the 10585: 10530: 10392: 10341: 10218: 10181: 10149: 10112: 10085:Representation theory 10072: 10046:in the chosen basis. 10041: 10021: 10019:{\displaystyle m^{i}} 9991: 9899: 9707: 9670: 9637: 9591: 9540: 9472: 9452: 9450:{\displaystyle e_{i}} 9425: 9423:{\displaystyle t_{i}} 9395: 9339:. The inverse map is 9334: 9297: 9295:{\displaystyle e_{i}} 9270: 9268:{\displaystyle t_{i}} 9243: 9223: 9187: 9185:{\displaystyle t_{i}} 9160: 9158:{\displaystyle e_{i}} 9133: 9097: 9080:symmetric polynomials 9073: 9033: 9000: 8967: 8926: 8893: 8864: 8831: 8802: 8769: 8740: 8716: 8683: 8656: 8623: 8594: 8565: 8545: 8522: 8497: 8473: 8453: 8429: 8405: 8381: 8333: 8297: 8254: 8202: 8166: 8126: 8090: 8049: 8016: 7980: 7893: 7860: 7823: 7782: 7748: 7714: 7674: 7637: 7597: 7563: 7529: 7489: 7452: 7414: 7380: 7346: 7309: 7222: 7186: 7152: 7116: 7077: 7030: 6941: 6907: 6871: 6782: 6681: 6645: 6591: 6564: 6529: 6479: 6438: 6376: 6337: 6301: 6158: 6138: 6136:{\displaystyle e_{a}} 6111: 6062: 6026: 5974: 5899: 5824: 5791: 5771: 5728: 5695: 5675: 5648: 5609: 5580: 5552: 5388: 5359: 5335: 5302: 5248: 5228: 5133: 5113: 5066: 5042: 5022: 4970: 4923: 4859: 4820: 4721:(with Lie bracket in 4707: 4664: 4547: 4446: 4337: 4242: 4222: 4202: 4173: 4150: 4100: 4062: 4033: 3967: 3879: 3844: 3812: 3770: 3744: 3699: 3633: 3526: 3451: 3357: 3320: 3261: 3259:{\displaystyle \sim } 3235: 3169: 3145: 3093: 3060: 3020: 2928: 2836: 2813: 2773: 2710: 2651: 2600: 2517: 2458: 2438: 2415: 2284: 2252: 2212: 2176: 2148: 2028: 2002: 1982: 1962: 1942: 1918: 1894: 1873:may be an algebra of 1868: 1844: 1842:{\displaystyle X_{j}} 1817: 1815:{\displaystyle x_{j}} 1790: 1737: 1735:{\displaystyle x_{j}} 1710: 1677: 1675:{\displaystyle k_{j}} 1647: 1558: 1556:{\displaystyle x_{j}} 1527: 1490: 1453: 1451:{\displaystyle x_{2}} 1426: 1424:{\displaystyle x_{1}} 1390: 1328: 1295: 1275: 1242: 1222: 1196: 1163: 1060: 1058:{\displaystyle e,f,h} 1028: 990: 946: 902: 738: 707: 655: 594: 548: 493: 442: 409: 366: 334: 310: 286: 262: 238: 214: 212:{\displaystyle xy-yx} 182: 158: 134: 111:Informal construction 94:Tannaka–Krein duality 58:representation theory 53:of that Lie algebra. 16341:Milnor–Moore theorem 16274: 16241: 16148: 16141:and the antipode as 16098: 16021: 15938: 15894: 15855:that turn them into 15755: 15709: 15672: 15641: 15598: 15565: 15519: 15495: 15455: 15423: 15256: 15209: 15168: 15157:{\displaystyle =-2E} 15124: 14956: 14909: 14883:stress–energy tensor 14822: 14782: 14749: 14662: 14601: 14471: 14418: 14267: 14202: 14175: 14132: 14102: 14095:rotation group SO(3) 14045: 13987: 13948: 13915: 13851: 13819: 13815:is a tensor of rank 13799: 13705: 13635: 13549: 13492: 13466: 13415: 13402:is non-vanishing is 13370: 13315: 13214: 13178: 13123: 13019: 13002:, one may write the 12970: 12885: 12852: 12819: 12786: 12711: 12626: 12468: 12414: 12356: 12320: 12300: 12264: 12244: 12144: 12121: 12094: 12063: 12021: 11988: 11957: 11924: 11893: 11710: 11684: 11660: 11562: 11531: 11491: 11448: 11415: 11378: 11342: 11315: 11275: 11211: 11178: 11115: 11073: 11028: 10996: 10960: 10936: 10900: 10858: 10822: 10798: 10765: 10723: 10669: 10639: 10545: 10404: 10353: 10241: 10194: 10166: 10125: 10097: 10061: 10030: 10003: 9914: 9730: 9683: 9646: 9602: 9552: 9484: 9461: 9434: 9407: 9346: 9310: 9279: 9252: 9232: 9196: 9169: 9142: 9109: 9086: 9049: 9009: 8976: 8943: 8902: 8891:{\displaystyle D(G)} 8873: 8840: 8829:{\displaystyle D(G)} 8811: 8778: 8767:{\displaystyle D(G)} 8749: 8725: 8714:{\displaystyle D(G)} 8696: 8668: 8632: 8621:{\displaystyle D(G)} 8603: 8592:{\displaystyle D(G)} 8574: 8554: 8534: 8507: 8482: 8462: 8438: 8414: 8390: 8370: 8306: 8267: 8211: 8175: 8142: 8099: 8065: 8025: 7992: 7905: 7869: 7832: 7798: 7757: 7723: 7683: 7649: 7606: 7572: 7538: 7498: 7464: 7427: 7389: 7355: 7321: 7236: 7195: 7161: 7125: 7092: 7088:that takes one from 7050: 6957: 6916: 6889: 6797: 6695: 6654: 6620: 6573: 6546: 6505: 6450: 6388: 6352: 6313: 6170: 6147: 6120: 6071: 6039: 5983: 5944: 5916:Using basis elements 5875: 5800: 5780: 5737: 5704: 5684: 5660: 5618: 5589: 5565: 5400: 5368: 5344: 5311: 5257: 5237: 5142: 5122: 5086: 5051: 5031: 4982: 4938: 4878: 4870:algebra homomorphism 4832: 4734: 4680: 4624: 4595:Poisson superalgebra 4583:Gerstenhaber algebra 4461: 4360: 4258: 4231: 4211: 4200:{\displaystyle T(V)} 4182: 4162: 4109: 4105:that takes elements 4071: 4051: 3982: 3898: 3890:short exact sequence 3853: 3821: 3779: 3753: 3714: 3645: 3547: 3466: 3404: 3333: 3273: 3250: 3245:equivalence relation 3184: 3154: 3121: 3069: 3033: 2943: 2851: 2822: 2782: 2722: 2663: 2616: 2538: 2482: 2447: 2427: 2299: 2269: 2228: 2197: 2161: 2065: 2011: 1991: 1971: 1951: 1927: 1903: 1877: 1853: 1826: 1799: 1753: 1719: 1686: 1659: 1570: 1540: 1499: 1462: 1435: 1408: 1341: 1337:) that the elements 1304: 1284: 1251: 1231: 1205: 1179: 1072: 1037: 999: 988:{\displaystyle =-2F} 955: 914: 757: 723: 606: 560: 458: 418: 375: 351: 319: 295: 271: 247: 223: 191: 167: 143: 119: 70:differential algebra 16568:Enveloping algebras 16321:quantum deformation 15700:partial derivatives 15631:(of all orders) on 15239:{\displaystyle =-H} 15198:{\displaystyle =2F} 14818:If the Lie algebra 14716: 14654:structure constants 12680: 12580: 12532: 12490: 12404:structure constants 11527:is a derivation on 11207:that is, for which 9677:structure constants 8135:of the filtration. 6492:structure constants 4207:so that the lifted 3540:will have the form 2217:is in particular a 1641: 1616: 1594: 944:{\displaystyle =2E} 449:structure constants 16525:10.1007/bf01076082 16432:Journal of Algebra 16412:10338.dmlcz/140108 16391:Journal of Algebra 16303: 16260: 16206: 16128: 16078: 16001: 15921: 15866:Given a Lie group 15774: 15728: 15692:is a vector space 15682: 15651: 15617: 15575: 15538: 15505: 15474: 15433: 15403: 15236: 15195: 15154: 15104: 15098: 15048: 14998: 14939: 14832: 14801: 14768: 14727: 14697: 14642:{\displaystyle =0} 14639: 14581: 14450: 14401: 14250: 14188: 14161: 14118: 14076: 14018: 13973: 13934: 13892: 13837: 13805: 13782: 13685: 13615: 13528: 13478: 13437: 13392: 13334: 13298: 13191: 13161: 13087: 12986: 12958:, recall that the 12913: 12871: 12838: 12802: 12769: 12691: 12661: 12606: 12561: 12513: 12471: 12461:, it follows that 12454:{\displaystyle =0} 12451: 12392: 12342: 12306: 12286: 12250: 12227: 12127: 12107: 12088:Casimir invariants 12076: 12043: 12007: 11974: 11966: 11953:the above defines 11943: 11910: 11902: 11876: 11874: 11690: 11670: 11643: 11541: 11517: 11470: 11434: 11397: 11387: 11364: 11328: 11297: 11284: 11261: 11238: 11197: 11164: 11101: 11056: 11006: 10982: 10946: 10922: 10886: 10844: 10808: 10784: 10751: 10688: 10665:, the elements of 10649: 10580: 10525: 10387: 10336: 10213: 10176: 10144: 10107: 10067: 10051:Heisenberg algebra 10036: 10016: 9986: 9894: 9702: 9665: 9632: 9586: 9535: 9467: 9447: 9420: 9390: 9329: 9292: 9265: 9238: 9218: 9182: 9155: 9128: 9092: 9068: 9044:algebra of symbols 9028: 8995: 8962: 8935:Algebra of symbols 8921: 8888: 8859: 8826: 8797: 8764: 8735: 8711: 8678: 8651: 8618: 8589: 8560: 8540: 8517: 8492: 8468: 8448: 8424: 8400: 8376: 8328: 8292: 8249: 8197: 8161: 8121: 8085: 8044: 8011: 7975: 7888: 7855: 7818: 7777: 7743: 7709: 7669: 7632: 7592: 7558: 7524: 7484: 7447: 7409: 7375: 7341: 7317:This is the space 7304: 7217: 7181: 7147: 7111: 7072: 7025: 6936: 6902: 6866: 6777: 6676: 6640: 6586: 6559: 6524: 6474: 6433: 6371: 6332: 6296: 6153: 6133: 6106: 6057: 6033:indicator function 6021: 5969: 5894: 5819: 5786: 5766: 5723: 5690: 5670: 5643: 5604: 5575: 5547: 5383: 5354: 5330: 5297: 5243: 5223: 5128: 5108: 5061: 5037: 5017: 4965: 4918: 4854: 4815: 4702: 4671:universal property 4659: 4616:Universal property 4542: 4441: 4332: 4330: 4237: 4217: 4197: 4168: 4145: 4095: 4057: 4028: 3962: 3874: 3839: 3807: 3765: 3739: 3694: 3628: 3521: 3446: 3352: 3315: 3256: 3230: 3174:is defined as the 3164: 3140: 3088: 3055: 3015: 2923: 2834:{\displaystyle n.} 2831: 2808: 2768: 2705: 2646: 2595: 2530:and satisfies the 2512: 2453: 2433: 2410: 2279: 2247: 2207: 2171: 2143: 2023: 1997: 1977: 1957: 1937: 1913: 1889: 1863: 1839: 1812: 1785: 1732: 1705: 1672: 1642: 1620: 1595: 1573: 1553: 1534:linear combination 1522: 1485: 1448: 1421: 1385: 1323: 1290: 1270: 1237: 1217: 1191: 1158: 1055: 1026:{\displaystyle =H} 1023: 985: 941: 897: 885: 839: 796: 733: 717:no other relations 702: 589: 543: 437: 404: 361: 329: 305: 281: 257: 233: 209: 177: 153: 129: 16682:978-0-8218-6867-6 16642:978-0-8218-2848-9 16586:978-0-8218-0560-2 16545:Xavier Bekaert, " 16513:Funct. Anal. Appl 15853:comultiplications 15832:quadratic algebra 15401: 15060: 15010: 14895:Lie superalgebras 14887:Yang-Mills action 14848:elliptic operator 12996:. Given a matrix 12944:Cartan–Weyl basis 12309:{\displaystyle m} 12253:{\displaystyle m} 12130:{\displaystyle m} 11965: 11901: 11693:{\displaystyle G} 11386: 11283: 11237: 11022:Casimir operators 10706:Casimir operators 10349:for Lie algebras 10232:Kronecker product 10039:{\displaystyle m} 9835: 9817: 9241:{\displaystyle K} 9221:{\displaystyle K} 8774:is a quotient of 8664:In the case that 8563:{\displaystyle G} 8543:{\displaystyle A} 8471:{\displaystyle G} 8379:{\displaystyle G} 8171:is isomorphic to 7792:symmetric algebra 6499:symmetric algebra 6156:{\displaystyle h} 5926:free vector space 5855:Lie superalgebras 5789:{\displaystyle V} 5693:{\displaystyle V} 5601: 5412: 5380: 5269: 5131:{\displaystyle A} 5040:{\displaystyle h} 4956: 4890: 4568:Lie superalgebras 4240:{\displaystyle m} 4220:{\displaystyle m} 4171:{\displaystyle m} 4060:{\displaystyle V} 2478:algebra is a map 2189:Formal definition 2000:{\displaystyle H} 1980:{\displaystyle F} 1960:{\displaystyle E} 1300:does not satisfy 1293:{\displaystyle x} 1240:{\displaystyle E} 893: 88:, to contain the 66:Casimir operators 16748: 16697:Shlomo Sternberg 16693: 16661: 16615: 16597: 16563:Dixmier, Jacques 16554: 16543: 16537: 16536: 16505: 16499: 16493: 16487: 16480: 16474: 16468: 16462: 16456: 16450: 16449: 16447: 16423: 16417: 16416: 16414: 16386: 16380: 16374: 16368: 16362: 16312: 16310: 16309: 16304: 16296: 16295: 16286: 16285: 16269: 16267: 16266: 16261: 16256: 16255: 16236: 16228: 16215: 16213: 16212: 16207: 16199: 16198: 16137: 16135: 16134: 16129: 16087: 16085: 16084: 16079: 16010: 16008: 16007: 16002: 15930: 15928: 15927: 15922: 15885: 15879: 15871: 15821:Heisenberg group 15818: 15809: 15803: 15797:identity element 15783: 15781: 15780: 15775: 15770: 15769: 15746:Casimir operator 15743: 15737: 15735: 15734: 15729: 15724: 15723: 15702:of first order. 15697: 15691: 15689: 15688: 15683: 15681: 15680: 15660: 15658: 15657: 15652: 15650: 15649: 15636: 15626: 15624: 15623: 15618: 15613: 15612: 15593: 15584: 15582: 15581: 15576: 15574: 15573: 15557: 15547: 15545: 15544: 15539: 15534: 15533: 15514: 15512: 15511: 15506: 15504: 15503: 15483: 15481: 15480: 15475: 15470: 15469: 15450: 15442: 15440: 15439: 15434: 15432: 15431: 15412: 15410: 15409: 15404: 15402: 15400: 15317: 15295: 15289: 15281: 15280: 15275: 15274: 15245: 15243: 15242: 15237: 15204: 15202: 15201: 15196: 15163: 15161: 15160: 15155: 15113: 15111: 15110: 15105: 15103: 15102: 15061: 15058: 15053: 15052: 15011: 15008: 15003: 15002: 14948: 14946: 14945: 14940: 14938: 14937: 14932: 14931: 14918: 14917: 14841: 14839: 14838: 14833: 14831: 14830: 14810: 14808: 14807: 14802: 14797: 14796: 14777: 14775: 14774: 14769: 14764: 14763: 14736: 14734: 14733: 14728: 14726: 14725: 14715: 14708: 14690: 14689: 14677: 14676: 14648: 14646: 14645: 14640: 14629: 14628: 14616: 14615: 14590: 14588: 14587: 14582: 14580: 14579: 14567: 14566: 14554: 14553: 14541: 14540: 14528: 14527: 14515: 14514: 14502: 14501: 14489: 14488: 14459: 14457: 14456: 14451: 14449: 14448: 14433: 14432: 14410: 14408: 14407: 14402: 14394: 14393: 14381: 14380: 14368: 14367: 14352: 14351: 14336: 14332: 14322: 14321: 14306: 14305: 14290: 14289: 14259: 14257: 14256: 14251: 14249: 14248: 14233: 14232: 14217: 14216: 14197: 14195: 14194: 14189: 14187: 14186: 14170: 14168: 14167: 14162: 14157: 14156: 14144: 14143: 14127: 14125: 14124: 14119: 14114: 14113: 14085: 14083: 14082: 14077: 14066: 14065: 14040: 14034: 14027: 14025: 14024: 14019: 13999: 13998: 13982: 13980: 13979: 13974: 13969: 13968: 13943: 13941: 13940: 13935: 13930: 13929: 13908: 13901: 13899: 13898: 13893: 13888: 13887: 13869: 13868: 13846: 13844: 13843: 13838: 13814: 13812: 13811: 13806: 13791: 13789: 13788: 13783: 13781: 13780: 13762: 13761: 13749: 13748: 13739: 13738: 13717: 13716: 13694: 13692: 13691: 13686: 13684: 13683: 13674: 13673: 13663: 13658: 13624: 13622: 13621: 13616: 13602: 13601: 13592: 13591: 13561: 13560: 13537: 13535: 13534: 13529: 13524: 13523: 13507: 13506: 13487: 13485: 13484: 13479: 13461: 13446: 13444: 13443: 13438: 13427: 13426: 13408: 13401: 13399: 13398: 13393: 13382: 13381: 13365: 13359: 13349: 13343: 13341: 13340: 13335: 13330: 13329: 13307: 13305: 13304: 13299: 13297: 13296: 13278: 13277: 13267: 13262: 13241: 13240: 13206: 13200: 13198: 13197: 13192: 13190: 13189: 13170: 13168: 13167: 13162: 13157: 13156: 13138: 13137: 13115: 13105: 13096: 13094: 13093: 13088: 13086: 13085: 13076: 13075: 13065: 13060: 13011: 13001: 12995: 12993: 12992: 12987: 12985: 12984: 12957: 12951: 12922: 12920: 12919: 12914: 12906: 12905: 12880: 12878: 12877: 12872: 12870: 12869: 12847: 12845: 12844: 12839: 12834: 12833: 12811: 12809: 12808: 12803: 12801: 12800: 12778: 12776: 12775: 12770: 12768: 12767: 12755: 12754: 12745: 12744: 12729: 12728: 12700: 12698: 12697: 12692: 12690: 12689: 12679: 12672: 12654: 12653: 12641: 12640: 12615: 12613: 12612: 12607: 12599: 12598: 12579: 12572: 12551: 12550: 12531: 12524: 12509: 12508: 12489: 12482: 12460: 12458: 12457: 12452: 12441: 12440: 12410:. That is, from 12401: 12399: 12398: 12393: 12388: 12387: 12379: 12375: 12374: 12373: 12351: 12349: 12348: 12343: 12341: 12340: 12315: 12313: 12312: 12307: 12295: 12293: 12292: 12287: 12285: 12284: 12259: 12257: 12256: 12251: 12240:where there are 12236: 12234: 12233: 12228: 12226: 12225: 12207: 12206: 12194: 12193: 12184: 12183: 12162: 12161: 12136: 12134: 12133: 12128: 12116: 12114: 12113: 12108: 12106: 12105: 12085: 12083: 12082: 12077: 12075: 12074: 12052: 12050: 12049: 12044: 12036: 12035: 12016: 12014: 12013: 12008: 12003: 12002: 11983: 11981: 11980: 11975: 11973: 11972: 11967: 11963: 11952: 11950: 11949: 11944: 11939: 11938: 11919: 11917: 11916: 11911: 11909: 11908: 11903: 11899: 11885: 11883: 11882: 11877: 11875: 11826: 11786: 11699: 11697: 11696: 11691: 11679: 11677: 11676: 11671: 11669: 11668: 11652: 11650: 11649: 11644: 11550: 11548: 11547: 11542: 11540: 11539: 11526: 11524: 11523: 11518: 11516: 11515: 11506: 11505: 11479: 11477: 11476: 11471: 11463: 11462: 11443: 11441: 11440: 11435: 11430: 11429: 11406: 11404: 11403: 11398: 11396: 11395: 11394: 11388: 11384: 11373: 11371: 11370: 11365: 11357: 11356: 11337: 11335: 11334: 11329: 11324: 11323: 11306: 11304: 11303: 11298: 11293: 11292: 11291: 11285: 11281: 11270: 11268: 11267: 11262: 11245: 11244: 11239: 11235: 11206: 11204: 11203: 11198: 11193: 11192: 11173: 11171: 11170: 11165: 11160: 11159: 11110: 11108: 11107: 11102: 11094: 11093: 11065: 11063: 11062: 11057: 11049: 11048: 11015: 11013: 11012: 11007: 11005: 11004: 10991: 10989: 10988: 10983: 10975: 10974: 10955: 10953: 10952: 10947: 10945: 10944: 10931: 10929: 10928: 10923: 10915: 10914: 10895: 10893: 10892: 10887: 10879: 10878: 10853: 10851: 10850: 10845: 10837: 10836: 10817: 10815: 10814: 10809: 10807: 10806: 10793: 10791: 10790: 10785: 10780: 10779: 10760: 10758: 10757: 10752: 10744: 10743: 10697: 10695: 10694: 10689: 10684: 10683: 10658: 10656: 10655: 10650: 10648: 10647: 10615:free Lie algebra 10589: 10587: 10586: 10581: 10576: 10575: 10560: 10559: 10534: 10532: 10531: 10526: 10521: 10520: 10515: 10514: 10504: 10503: 10476: 10475: 10470: 10469: 10459: 10458: 10443: 10442: 10437: 10436: 10426: 10425: 10420: 10419: 10396: 10394: 10393: 10388: 10386: 10385: 10380: 10379: 10369: 10368: 10363: 10362: 10345: 10343: 10342: 10337: 10332: 10331: 10326: 10325: 10306: 10305: 10300: 10299: 10280: 10279: 10274: 10273: 10263: 10262: 10257: 10256: 10222: 10220: 10219: 10214: 10209: 10208: 10185: 10183: 10182: 10177: 10175: 10174: 10156:abelian category 10153: 10151: 10150: 10145: 10140: 10139: 10116: 10114: 10113: 10108: 10106: 10105: 10076: 10074: 10073: 10068: 10045: 10043: 10042: 10037: 10025: 10023: 10022: 10017: 10015: 10014: 9995: 9993: 9992: 9987: 9973: 9969: 9968: 9967: 9958: 9957: 9903: 9901: 9900: 9895: 9893: 9892: 9875: 9871: 9846: 9842: 9841: 9837: 9836: 9834: 9823: 9818: 9816: 9805: 9798: 9797: 9788: 9787: 9711: 9709: 9708: 9703: 9698: 9697: 9674: 9672: 9671: 9666: 9661: 9660: 9641: 9639: 9638: 9633: 9595: 9593: 9592: 9587: 9579: 9578: 9548:for polynomials 9544: 9542: 9541: 9536: 9476: 9474: 9473: 9468: 9456: 9454: 9453: 9448: 9446: 9445: 9429: 9427: 9426: 9421: 9419: 9418: 9399: 9397: 9396: 9391: 9386: 9385: 9367: 9366: 9338: 9336: 9335: 9330: 9325: 9324: 9301: 9299: 9298: 9293: 9291: 9290: 9274: 9272: 9271: 9266: 9264: 9263: 9247: 9245: 9244: 9239: 9227: 9225: 9224: 9219: 9214: 9213: 9191: 9189: 9188: 9183: 9181: 9180: 9164: 9162: 9161: 9156: 9154: 9153: 9137: 9135: 9134: 9129: 9124: 9123: 9101: 9099: 9098: 9093: 9077: 9075: 9074: 9069: 9064: 9063: 9037: 9035: 9034: 9029: 9024: 9023: 9004: 9002: 9001: 8996: 8991: 8990: 8971: 8969: 8968: 8963: 8958: 8957: 8930: 8928: 8927: 8922: 8917: 8916: 8897: 8895: 8894: 8889: 8868: 8866: 8865: 8860: 8855: 8854: 8835: 8833: 8832: 8827: 8806: 8804: 8803: 8798: 8793: 8792: 8773: 8771: 8770: 8765: 8744: 8742: 8741: 8736: 8734: 8733: 8720: 8718: 8717: 8712: 8687: 8685: 8684: 8679: 8677: 8676: 8660: 8658: 8657: 8652: 8647: 8646: 8627: 8625: 8624: 8619: 8598: 8596: 8595: 8590: 8569: 8567: 8566: 8561: 8549: 8547: 8546: 8541: 8526: 8524: 8523: 8518: 8516: 8515: 8501: 8499: 8498: 8493: 8491: 8490: 8477: 8475: 8474: 8469: 8457: 8455: 8454: 8449: 8447: 8446: 8433: 8431: 8430: 8425: 8423: 8422: 8409: 8407: 8406: 8401: 8399: 8398: 8385: 8383: 8382: 8377: 8352:exterior algebra 8337: 8335: 8334: 8329: 8321: 8320: 8301: 8299: 8298: 8293: 8288: 8287: 8261:filtered algebra 8258: 8256: 8255: 8250: 8245: 8244: 8226: 8225: 8206: 8204: 8203: 8198: 8190: 8189: 8170: 8168: 8167: 8162: 8157: 8156: 8130: 8128: 8127: 8122: 8114: 8113: 8094: 8092: 8091: 8086: 8084: 8083: 8077: 8076: 8053: 8051: 8050: 8045: 8040: 8039: 8020: 8018: 8017: 8012: 8007: 8006: 7984: 7982: 7981: 7976: 7947: 7939: 7938: 7920: 7919: 7897: 7895: 7894: 7889: 7884: 7883: 7864: 7862: 7861: 7856: 7854: 7853: 7844: 7843: 7827: 7825: 7824: 7819: 7817: 7816: 7810: 7809: 7786: 7784: 7783: 7778: 7776: 7775: 7769: 7768: 7752: 7750: 7749: 7744: 7742: 7741: 7735: 7734: 7718: 7716: 7715: 7710: 7708: 7707: 7701: 7700: 7678: 7676: 7675: 7670: 7668: 7667: 7661: 7660: 7641: 7639: 7638: 7633: 7631: 7630: 7624: 7623: 7601: 7599: 7598: 7593: 7591: 7590: 7584: 7583: 7567: 7565: 7564: 7559: 7557: 7556: 7550: 7549: 7533: 7531: 7530: 7525: 7523: 7522: 7516: 7515: 7493: 7491: 7490: 7485: 7483: 7482: 7476: 7475: 7456: 7454: 7453: 7448: 7446: 7445: 7439: 7438: 7418: 7416: 7415: 7410: 7408: 7407: 7401: 7400: 7384: 7382: 7381: 7376: 7374: 7373: 7367: 7366: 7350: 7348: 7347: 7342: 7340: 7339: 7333: 7332: 7313: 7311: 7310: 7305: 7303: 7302: 7296: 7295: 7280: 7275: 7274: 7268: 7267: 7255: 7254: 7248: 7247: 7226: 7224: 7223: 7218: 7210: 7209: 7190: 7188: 7187: 7182: 7180: 7179: 7173: 7172: 7156: 7154: 7153: 7148: 7140: 7139: 7120: 7118: 7117: 7112: 7107: 7106: 7081: 7079: 7078: 7073: 7065: 7064: 7040:filtered algebra 7034: 7032: 7031: 7026: 7018: 7017: 7011: 7010: 6992: 6991: 6985: 6984: 6972: 6971: 6945: 6943: 6942: 6937: 6935: 6934: 6928: 6927: 6911: 6909: 6908: 6903: 6898: 6897: 6884: 6875: 6873: 6872: 6867: 6865: 6864: 6849: 6848: 6839: 6838: 6832: 6831: 6816: 6815: 6809: 6808: 6786: 6784: 6783: 6778: 6776: 6775: 6769: 6768: 6750: 6749: 6743: 6742: 6730: 6729: 6714: 6713: 6707: 6706: 6685: 6683: 6682: 6677: 6669: 6668: 6649: 6647: 6646: 6641: 6639: 6638: 6632: 6631: 6595: 6593: 6592: 6587: 6582: 6581: 6568: 6566: 6565: 6560: 6555: 6554: 6540:free Lie algebra 6533: 6531: 6530: 6525: 6520: 6519: 6489: 6483: 6481: 6480: 6475: 6442: 6440: 6439: 6434: 6432: 6431: 6413: 6412: 6400: 6399: 6380: 6378: 6377: 6372: 6367: 6366: 6347: 6341: 6339: 6338: 6333: 6328: 6327: 6305: 6303: 6302: 6297: 6292: 6291: 6264: 6263: 6242: 6241: 6220: 6219: 6201: 6200: 6188: 6187: 6162: 6160: 6159: 6154: 6142: 6140: 6139: 6134: 6132: 6131: 6115: 6113: 6112: 6107: 6102: 6101: 6086: 6085: 6066: 6064: 6063: 6058: 6030: 6028: 6027: 6022: 6020: 6019: 5995: 5994: 5978: 5976: 5975: 5970: 5956: 5955: 5939: 5933: 5903: 5901: 5900: 5895: 5890: 5889: 5828: 5826: 5825: 5820: 5815: 5814: 5795: 5793: 5792: 5787: 5775: 5773: 5772: 5767: 5756: 5732: 5730: 5729: 5724: 5719: 5718: 5699: 5697: 5696: 5691: 5679: 5677: 5676: 5671: 5669: 5668: 5652: 5650: 5649: 5644: 5639: 5638: 5613: 5611: 5610: 5605: 5603: 5602: 5594: 5584: 5582: 5581: 5576: 5574: 5573: 5556: 5554: 5553: 5548: 5546: 5545: 5536: 5535: 5534: 5533: 5512: 5511: 5510: 5509: 5483: 5482: 5481: 5480: 5454: 5453: 5452: 5451: 5434: 5433: 5432: 5431: 5414: 5413: 5405: 5392: 5390: 5389: 5384: 5382: 5381: 5373: 5363: 5361: 5360: 5355: 5353: 5352: 5339: 5337: 5336: 5331: 5326: 5325: 5306: 5304: 5303: 5298: 5287: 5286: 5271: 5270: 5262: 5252: 5250: 5249: 5244: 5232: 5230: 5229: 5224: 5137: 5135: 5134: 5129: 5117: 5115: 5114: 5109: 5101: 5100: 5070: 5068: 5067: 5062: 5060: 5059: 5046: 5044: 5043: 5038: 5026: 5024: 5023: 5018: 5013: 5012: 4997: 4996: 4974: 4972: 4971: 4966: 4958: 4957: 4949: 4927: 4925: 4924: 4919: 4908: 4907: 4892: 4891: 4883: 4863: 4861: 4860: 4855: 4853: 4852: 4824: 4822: 4821: 4816: 4726: 4720: 4711: 4709: 4708: 4703: 4695: 4694: 4668: 4666: 4665: 4660: 4655: 4654: 4639: 4638: 4587:exterior algebra 4579:exterior product 4575:exterior algebra 4551: 4549: 4548: 4543: 4450: 4448: 4447: 4442: 4341: 4339: 4338: 4333: 4331: 4246: 4244: 4243: 4238: 4226: 4224: 4223: 4218: 4206: 4204: 4203: 4198: 4177: 4175: 4174: 4169: 4154: 4152: 4151: 4146: 4104: 4102: 4101: 4096: 4066: 4064: 4063: 4058: 4037: 4035: 4034: 4029: 4024: 4016: 4015: 3997: 3996: 3971: 3969: 3968: 3963: 3952: 3944: 3943: 3925: 3924: 3883: 3881: 3880: 3875: 3848: 3846: 3845: 3840: 3816: 3814: 3813: 3808: 3800: 3799: 3774: 3772: 3771: 3766: 3748: 3746: 3745: 3740: 3735: 3734: 3709: 3704:All elements of 3703: 3701: 3700: 3695: 3690: 3689: 3637: 3635: 3634: 3629: 3539: 3530: 3528: 3527: 3522: 3517: 3516: 3498: 3497: 3488: 3487: 3475: 3474: 3455: 3453: 3452: 3447: 3396: 3361: 3359: 3358: 3353: 3348: 3347: 3324: 3322: 3321: 3316: 3265: 3263: 3262: 3257: 3239: 3237: 3236: 3231: 3226: 3218: 3217: 3199: 3198: 3173: 3171: 3170: 3165: 3163: 3162: 3149: 3147: 3146: 3141: 3136: 3135: 3097: 3095: 3094: 3089: 3084: 3083: 3064: 3062: 3061: 3056: 3048: 3047: 3024: 3022: 3021: 3016: 2932: 2930: 2929: 2924: 2840: 2838: 2837: 2832: 2817: 2815: 2814: 2809: 2804: 2803: 2794: 2793: 2777: 2775: 2774: 2769: 2767: 2766: 2757: 2756: 2744: 2743: 2734: 2733: 2714: 2712: 2711: 2706: 2655: 2653: 2652: 2647: 2645: 2644: 2635: 2634: 2625: 2624: 2604: 2602: 2601: 2596: 2591: 2590: 2572: 2571: 2553: 2552: 2521: 2519: 2518: 2513: 2511: 2510: 2501: 2500: 2491: 2490: 2472: 2462: 2460: 2459: 2454: 2442: 2440: 2439: 2434: 2419: 2417: 2416: 2411: 2398: 2397: 2388: 2387: 2378: 2377: 2360: 2359: 2350: 2349: 2335: 2334: 2314: 2313: 2288: 2286: 2285: 2280: 2278: 2277: 2256: 2254: 2253: 2248: 2243: 2242: 2216: 2214: 2213: 2208: 2206: 2205: 2180: 2178: 2177: 2172: 2170: 2169: 2152: 2150: 2149: 2144: 2142: 2141: 2132: 2131: 2110: 2109: 2100: 2099: 2087: 2086: 2077: 2076: 2032: 2030: 2029: 2024: 2006: 2004: 2003: 1998: 1986: 1984: 1983: 1978: 1966: 1964: 1963: 1958: 1946: 1944: 1943: 1938: 1936: 1935: 1922: 1920: 1919: 1914: 1912: 1911: 1898: 1896: 1895: 1890: 1872: 1870: 1869: 1864: 1862: 1861: 1848: 1846: 1845: 1840: 1838: 1837: 1821: 1819: 1818: 1813: 1811: 1810: 1794: 1792: 1791: 1786: 1784: 1783: 1765: 1764: 1741: 1739: 1738: 1733: 1731: 1730: 1714: 1712: 1711: 1706: 1698: 1697: 1681: 1679: 1678: 1673: 1671: 1670: 1651: 1649: 1648: 1643: 1640: 1639: 1638: 1628: 1615: 1614: 1613: 1603: 1593: 1592: 1591: 1581: 1562: 1560: 1559: 1554: 1552: 1551: 1531: 1529: 1528: 1523: 1521: 1520: 1511: 1510: 1494: 1492: 1491: 1486: 1484: 1483: 1474: 1473: 1457: 1455: 1454: 1449: 1447: 1446: 1430: 1428: 1427: 1422: 1420: 1419: 1394: 1392: 1391: 1386: 1378: 1377: 1365: 1364: 1332: 1330: 1329: 1324: 1316: 1315: 1299: 1297: 1296: 1291: 1279: 1277: 1276: 1271: 1263: 1262: 1246: 1244: 1243: 1238: 1226: 1224: 1223: 1218: 1200: 1198: 1197: 1192: 1167: 1165: 1164: 1159: 1064: 1062: 1061: 1056: 1032: 1030: 1029: 1024: 994: 992: 991: 986: 950: 948: 947: 942: 906: 904: 903: 898: 891: 890: 889: 844: 843: 801: 800: 742: 740: 739: 734: 732: 731: 711: 709: 708: 703: 701: 700: 691: 690: 674: 669: 651: 650: 641: 640: 628: 627: 618: 617: 598: 596: 595: 590: 588: 587: 572: 571: 552: 550: 549: 544: 539: 538: 529: 528: 512: 507: 486: 485: 473: 472: 446: 444: 443: 438: 436: 435: 413: 411: 410: 405: 403: 402: 387: 386: 370: 368: 367: 362: 360: 359: 338: 336: 335: 330: 328: 327: 314: 312: 311: 306: 304: 303: 290: 288: 287: 282: 280: 279: 266: 264: 263: 258: 256: 255: 243:and the algebra 242: 240: 239: 234: 232: 231: 218: 216: 215: 210: 186: 184: 183: 178: 176: 175: 162: 160: 159: 154: 152: 151: 138: 136: 135: 130: 128: 127: 16756: 16755: 16751: 16750: 16749: 16747: 16746: 16745: 16721: 16720: 16683: 16643: 16633:10.1090/gsm/034 16613: 16587: 16558: 16557: 16544: 16540: 16506: 16502: 16494: 16490: 16481: 16477: 16469: 16465: 16457: 16453: 16424: 16420: 16387: 16383: 16375: 16371: 16363: 16359: 16354: 16337: 16291: 16290: 16281: 16277: 16275: 16272: 16271: 16251: 16250: 16242: 16239: 16238: 16230: 16224: 16191: 16187: 16149: 16146: 16145: 16099: 16096: 16095: 16022: 16019: 16018: 15939: 15936: 15935: 15895: 15892: 15891: 15881: 15873: 15867: 15840: 15814: 15805: 15799: 15765: 15764: 15756: 15753: 15752: 15739: 15719: 15718: 15710: 15707: 15706: 15693: 15676: 15675: 15673: 15670: 15669: 15645: 15644: 15642: 15639: 15638: 15632: 15608: 15607: 15599: 15596: 15595: 15589: 15569: 15568: 15566: 15563: 15562: 15553: 15529: 15528: 15520: 15517: 15516: 15499: 15498: 15496: 15493: 15492: 15465: 15464: 15456: 15453: 15452: 15448: 15427: 15426: 15424: 15421: 15420: 15318: 15291: 15290: 15288: 15276: 15267: 15266: 15265: 15257: 15254: 15253: 15210: 15207: 15206: 15169: 15166: 15165: 15125: 15122: 15121: 15097: 15096: 15091: 15085: 15084: 15079: 15069: 15068: 15057: 15047: 15046: 15041: 15035: 15034: 15029: 15019: 15018: 15007: 14997: 14996: 14991: 14985: 14984: 14979: 14966: 14965: 14957: 14954: 14953: 14933: 14924: 14923: 14922: 14913: 14912: 14910: 14907: 14906: 14903: 14844:Fredholm theory 14826: 14825: 14823: 14820: 14819: 14792: 14791: 14783: 14780: 14779: 14759: 14758: 14750: 14747: 14746: 14743: 14721: 14717: 14709: 14701: 14685: 14681: 14672: 14668: 14663: 14660: 14659: 14624: 14620: 14611: 14607: 14602: 14599: 14598: 14575: 14571: 14562: 14558: 14549: 14545: 14536: 14532: 14523: 14519: 14510: 14506: 14497: 14493: 14478: 14474: 14472: 14469: 14468: 14441: 14437: 14425: 14421: 14419: 14416: 14415: 14389: 14385: 14376: 14372: 14363: 14359: 14347: 14343: 14317: 14313: 14301: 14297: 14285: 14281: 14277: 14273: 14268: 14265: 14264: 14244: 14240: 14228: 14224: 14212: 14208: 14203: 14200: 14199: 14182: 14178: 14176: 14173: 14172: 14152: 14148: 14139: 14135: 14133: 14130: 14129: 14109: 14105: 14103: 14100: 14099: 14091: 14061: 14060: 14046: 14043: 14042: 14036: 14029: 13994: 13990: 13988: 13985: 13984: 13964: 13963: 13949: 13946: 13945: 13925: 13924: 13916: 13913: 13912: 13903: 13877: 13873: 13858: 13854: 13852: 13849: 13848: 13820: 13817: 13816: 13800: 13797: 13796: 13767: 13763: 13757: 13753: 13744: 13740: 13734: 13730: 13712: 13708: 13706: 13703: 13702: 13679: 13675: 13669: 13665: 13659: 13648: 13636: 13633: 13632: 13597: 13593: 13581: 13577: 13556: 13552: 13550: 13547: 13546: 13519: 13515: 13499: 13495: 13493: 13490: 13489: 13467: 13464: 13463: 13452: 13422: 13418: 13416: 13413: 13412: 13403: 13377: 13373: 13371: 13368: 13367: 13361: 13355: 13345: 13325: 13324: 13316: 13313: 13312: 13292: 13288: 13273: 13269: 13263: 13252: 13236: 13232: 13215: 13212: 13211: 13202: 13185: 13181: 13179: 13176: 13175: 13152: 13151: 13133: 13132: 13124: 13121: 13120: 13111: 13101: 13081: 13077: 13071: 13067: 13061: 13050: 13020: 13017: 13016: 13007: 12997: 12977: 12973: 12971: 12968: 12967: 12953: 12947: 12936: 12901: 12900: 12886: 12883: 12882: 12859: 12855: 12853: 12850: 12849: 12826: 12822: 12820: 12817: 12816: 12793: 12789: 12787: 12784: 12783: 12763: 12759: 12750: 12746: 12737: 12733: 12718: 12714: 12712: 12709: 12708: 12685: 12681: 12673: 12665: 12649: 12645: 12636: 12632: 12627: 12624: 12623: 12585: 12581: 12573: 12565: 12537: 12533: 12525: 12517: 12495: 12491: 12483: 12475: 12469: 12466: 12465: 12430: 12426: 12415: 12412: 12411: 12408:Israel Gel'fand 12380: 12369: 12368: 12364: 12360: 12359: 12357: 12354: 12353: 12327: 12323: 12321: 12318: 12317: 12301: 12298: 12297: 12271: 12267: 12265: 12262: 12261: 12245: 12242: 12241: 12221: 12217: 12202: 12198: 12189: 12185: 12170: 12166: 12151: 12147: 12145: 12142: 12141: 12122: 12119: 12118: 12101: 12097: 12095: 12092: 12091: 12070: 12066: 12064: 12061: 12060: 12031: 12030: 12022: 12019: 12018: 11998: 11997: 11989: 11986: 11985: 11968: 11961: 11960: 11958: 11955: 11954: 11934: 11933: 11925: 11922: 11921: 11904: 11897: 11896: 11894: 11891: 11890: 11873: 11872: 11824: 11823: 11784: 11783: 11750: 11713: 11711: 11708: 11707: 11685: 11682: 11681: 11664: 11663: 11661: 11658: 11657: 11563: 11560: 11559: 11535: 11534: 11532: 11529: 11528: 11511: 11510: 11501: 11500: 11492: 11489: 11488: 11487:By definition, 11458: 11457: 11449: 11446: 11445: 11425: 11424: 11416: 11413: 11412: 11390: 11389: 11382: 11381: 11379: 11376: 11375: 11352: 11351: 11343: 11340: 11339: 11319: 11318: 11316: 11313: 11312: 11287: 11286: 11279: 11278: 11276: 11273: 11272: 11240: 11233: 11232: 11212: 11209: 11208: 11188: 11187: 11179: 11176: 11175: 11155: 11154: 11116: 11113: 11112: 11089: 11088: 11074: 11071: 11070: 11044: 11043: 11029: 11026: 11025: 11000: 10999: 10997: 10994: 10993: 10970: 10969: 10961: 10958: 10957: 10940: 10939: 10937: 10934: 10933: 10910: 10909: 10901: 10898: 10897: 10874: 10873: 10859: 10856: 10855: 10854:Any element of 10832: 10831: 10823: 10820: 10819: 10802: 10801: 10799: 10796: 10795: 10775: 10774: 10766: 10763: 10762: 10739: 10738: 10724: 10721: 10720: 10714: 10708: 10679: 10678: 10670: 10667: 10666: 10643: 10642: 10640: 10637: 10636: 10630:highest weights 10600:shuffle product 10596:tensor algebras 10571: 10570: 10555: 10554: 10546: 10543: 10542: 10516: 10510: 10509: 10508: 10499: 10495: 10471: 10465: 10464: 10463: 10454: 10450: 10438: 10432: 10431: 10430: 10421: 10415: 10414: 10413: 10405: 10402: 10401: 10381: 10375: 10374: 10373: 10364: 10358: 10357: 10356: 10354: 10351: 10350: 10327: 10321: 10320: 10319: 10301: 10295: 10294: 10293: 10275: 10269: 10268: 10267: 10258: 10252: 10251: 10250: 10242: 10239: 10238: 10204: 10203: 10195: 10192: 10191: 10170: 10169: 10167: 10164: 10163: 10160:representations 10135: 10134: 10126: 10123: 10122: 10101: 10100: 10098: 10095: 10094: 10091:representations 10087: 10062: 10059: 10058: 10031: 10028: 10027: 10010: 10006: 10004: 10001: 10000: 9963: 9959: 9953: 9949: 9948: 9944: 9915: 9912: 9911: 9876: 9827: 9822: 9809: 9804: 9803: 9799: 9793: 9789: 9783: 9779: 9778: 9774: 9767: 9764: 9763: 9731: 9728: 9727: 9714:Berezin formula 9693: 9692: 9684: 9681: 9680: 9656: 9655: 9647: 9644: 9643: 9603: 9600: 9599: 9574: 9573: 9553: 9550: 9549: 9485: 9482: 9481: 9462: 9459: 9458: 9441: 9437: 9435: 9432: 9431: 9414: 9410: 9408: 9405: 9404: 9381: 9380: 9362: 9361: 9347: 9344: 9343: 9320: 9319: 9311: 9308: 9307: 9286: 9282: 9280: 9277: 9276: 9259: 9255: 9253: 9250: 9249: 9233: 9230: 9229: 9228:over the field 9209: 9205: 9197: 9194: 9193: 9176: 9172: 9170: 9167: 9166: 9149: 9145: 9143: 9140: 9139: 9119: 9118: 9110: 9107: 9106: 9087: 9084: 9083: 9078:: the space of 9059: 9058: 9050: 9047: 9046: 9038:are isomorphic 9019: 9018: 9010: 9007: 9006: 8986: 8985: 8977: 8974: 8973: 8953: 8952: 8944: 8941: 8940: 8937: 8912: 8911: 8903: 8900: 8899: 8874: 8871: 8870: 8850: 8849: 8841: 8838: 8837: 8812: 8809: 8808: 8788: 8787: 8779: 8776: 8775: 8750: 8747: 8746: 8729: 8728: 8726: 8723: 8722: 8697: 8694: 8693: 8672: 8671: 8669: 8666: 8665: 8642: 8641: 8633: 8630: 8629: 8604: 8601: 8600: 8575: 8572: 8571: 8555: 8552: 8551: 8535: 8532: 8531: 8511: 8510: 8508: 8505: 8504: 8486: 8485: 8483: 8480: 8479: 8463: 8460: 8459: 8442: 8441: 8439: 8436: 8435: 8418: 8417: 8415: 8412: 8411: 8394: 8393: 8391: 8388: 8387: 8371: 8368: 8367: 8364: 8348:Jordan algebras 8344: 8316: 8315: 8307: 8304: 8303: 8283: 8282: 8268: 8265: 8264: 8240: 8239: 8221: 8220: 8212: 8209: 8208: 8185: 8184: 8176: 8173: 8172: 8152: 8151: 8143: 8140: 8139: 8109: 8108: 8100: 8097: 8096: 8079: 8078: 8072: 8068: 8066: 8063: 8062: 8035: 8034: 8026: 8023: 8022: 8002: 8001: 7993: 7990: 7989: 7943: 7934: 7933: 7915: 7914: 7906: 7903: 7902: 7879: 7878: 7870: 7867: 7866: 7849: 7848: 7839: 7835: 7833: 7830: 7829: 7812: 7811: 7805: 7801: 7799: 7796: 7795: 7771: 7770: 7764: 7760: 7758: 7755: 7754: 7737: 7736: 7730: 7726: 7724: 7721: 7720: 7703: 7702: 7690: 7686: 7684: 7681: 7680: 7663: 7662: 7656: 7652: 7650: 7647: 7646: 7626: 7625: 7613: 7609: 7607: 7604: 7603: 7586: 7585: 7579: 7575: 7573: 7570: 7569: 7552: 7551: 7545: 7541: 7539: 7536: 7535: 7518: 7517: 7505: 7501: 7499: 7496: 7495: 7478: 7477: 7471: 7467: 7465: 7462: 7461: 7441: 7440: 7434: 7430: 7428: 7425: 7424: 7403: 7402: 7396: 7392: 7390: 7387: 7386: 7369: 7368: 7362: 7358: 7356: 7353: 7352: 7335: 7334: 7328: 7324: 7322: 7319: 7318: 7298: 7297: 7285: 7281: 7276: 7270: 7269: 7263: 7259: 7250: 7249: 7243: 7239: 7237: 7234: 7233: 7205: 7204: 7196: 7193: 7192: 7175: 7174: 7168: 7164: 7162: 7159: 7158: 7135: 7134: 7126: 7123: 7122: 7102: 7101: 7093: 7090: 7089: 7060: 7059: 7051: 7048: 7047: 7013: 7012: 7006: 7002: 6987: 6986: 6980: 6976: 6967: 6966: 6958: 6955: 6954: 6930: 6929: 6923: 6919: 6917: 6914: 6913: 6893: 6892: 6890: 6887: 6886: 6880: 6860: 6859: 6844: 6843: 6834: 6833: 6824: 6820: 6811: 6810: 6804: 6800: 6798: 6795: 6794: 6771: 6770: 6764: 6760: 6745: 6744: 6738: 6734: 6725: 6724: 6709: 6708: 6702: 6698: 6696: 6693: 6692: 6664: 6663: 6655: 6652: 6651: 6634: 6633: 6627: 6623: 6621: 6618: 6617: 6610: 6608:Coordinate-free 6577: 6576: 6574: 6571: 6570: 6550: 6549: 6547: 6544: 6543: 6515: 6514: 6506: 6503: 6502: 6485: 6451: 6448: 6447: 6427: 6423: 6408: 6404: 6395: 6391: 6389: 6386: 6385: 6362: 6361: 6353: 6350: 6349: 6343: 6323: 6322: 6314: 6311: 6310: 6287: 6283: 6259: 6255: 6237: 6233: 6215: 6211: 6196: 6192: 6183: 6179: 6171: 6168: 6167: 6148: 6145: 6144: 6127: 6123: 6121: 6118: 6117: 6097: 6096: 6081: 6080: 6072: 6069: 6068: 6040: 6037: 6036: 6012: 6008: 5990: 5986: 5984: 5981: 5980: 5951: 5947: 5945: 5942: 5941: 5935: 5929: 5922:totally ordered 5918: 5910:coordinate-free 5885: 5884: 5876: 5873: 5872: 5869: 5863: 5851:Albert algebras 5843:Jordan algebras 5839: 5810: 5809: 5801: 5798: 5797: 5781: 5778: 5777: 5746: 5738: 5735: 5734: 5714: 5713: 5705: 5702: 5701: 5685: 5682: 5681: 5664: 5663: 5661: 5658: 5657: 5634: 5633: 5619: 5616: 5615: 5593: 5592: 5590: 5587: 5586: 5569: 5568: 5566: 5563: 5562: 5541: 5540: 5529: 5525: 5524: 5520: 5505: 5501: 5500: 5496: 5476: 5472: 5471: 5467: 5447: 5443: 5442: 5438: 5427: 5423: 5422: 5418: 5404: 5403: 5401: 5398: 5397: 5372: 5371: 5369: 5366: 5365: 5348: 5347: 5345: 5342: 5341: 5321: 5320: 5312: 5309: 5308: 5282: 5281: 5261: 5260: 5258: 5255: 5254: 5238: 5235: 5234: 5143: 5140: 5139: 5123: 5120: 5119: 5096: 5095: 5087: 5084: 5083: 5055: 5054: 5052: 5049: 5048: 5032: 5029: 5028: 5008: 5007: 4992: 4991: 4983: 4980: 4979: 4948: 4947: 4939: 4936: 4935: 4903: 4902: 4882: 4881: 4879: 4876: 4875: 4848: 4847: 4833: 4830: 4829: 4735: 4732: 4731: 4722: 4716: 4690: 4689: 4681: 4678: 4677: 4650: 4649: 4634: 4633: 4625: 4622: 4621: 4618: 4602:Malcev algebras 4462: 4459: 4458: 4361: 4358: 4357: 4329: 4328: 4303: 4291: 4290: 4280: 4261: 4259: 4256: 4255: 4232: 4229: 4228: 4212: 4209: 4208: 4183: 4180: 4179: 4163: 4160: 4159: 4110: 4107: 4106: 4072: 4069: 4068: 4052: 4049: 4048: 4044: 4020: 4011: 4010: 3992: 3991: 3983: 3980: 3979: 3948: 3939: 3938: 3920: 3919: 3899: 3896: 3895: 3854: 3851: 3850: 3822: 3819: 3818: 3795: 3794: 3780: 3777: 3776: 3754: 3751: 3750: 3730: 3729: 3715: 3712: 3711: 3705: 3685: 3684: 3646: 3643: 3642: 3548: 3545: 3544: 3535: 3512: 3511: 3493: 3492: 3483: 3482: 3470: 3469: 3467: 3464: 3463: 3405: 3402: 3401: 3392: 3390:two-sided ideal 3375:Poisson algebra 3343: 3342: 3334: 3331: 3330: 3274: 3271: 3270: 3251: 3248: 3247: 3222: 3213: 3212: 3194: 3193: 3185: 3182: 3181: 3158: 3157: 3155: 3152: 3151: 3131: 3130: 3122: 3119: 3118: 3107:Poisson algebra 3079: 3078: 3070: 3067: 3066: 3043: 3042: 3034: 3031: 3030: 2944: 2941: 2940: 2852: 2849: 2848: 2823: 2820: 2819: 2799: 2798: 2789: 2785: 2783: 2780: 2779: 2762: 2761: 2752: 2751: 2739: 2738: 2729: 2725: 2723: 2720: 2719: 2664: 2661: 2660: 2640: 2639: 2630: 2629: 2620: 2619: 2617: 2614: 2613: 2612:the bracket on 2586: 2585: 2567: 2566: 2548: 2547: 2539: 2536: 2535: 2532:Jacobi identity 2506: 2505: 2496: 2495: 2486: 2485: 2483: 2480: 2479: 2468: 2448: 2445: 2444: 2428: 2425: 2424: 2393: 2392: 2383: 2382: 2373: 2372: 2355: 2354: 2345: 2344: 2330: 2329: 2309: 2308: 2300: 2297: 2296: 2273: 2272: 2270: 2267: 2266: 2263:tensor products 2238: 2237: 2229: 2226: 2225: 2201: 2200: 2198: 2195: 2194: 2191: 2165: 2164: 2162: 2159: 2158: 2137: 2133: 2121: 2117: 2105: 2101: 2095: 2091: 2082: 2078: 2072: 2068: 2066: 2063: 2062: 2059:two-sided ideal 2039: 2012: 2009: 2008: 1992: 1989: 1988: 1972: 1969: 1968: 1952: 1949: 1948: 1931: 1930: 1928: 1925: 1924: 1907: 1906: 1904: 1901: 1900: 1878: 1875: 1874: 1857: 1856: 1854: 1851: 1850: 1833: 1829: 1827: 1824: 1823: 1806: 1802: 1800: 1797: 1796: 1779: 1775: 1760: 1756: 1754: 1751: 1750: 1726: 1722: 1720: 1717: 1716: 1693: 1689: 1687: 1684: 1683: 1666: 1662: 1660: 1657: 1656: 1634: 1630: 1629: 1624: 1609: 1605: 1604: 1599: 1587: 1583: 1582: 1577: 1571: 1568: 1567: 1547: 1543: 1541: 1538: 1537: 1516: 1512: 1506: 1502: 1500: 1497: 1496: 1479: 1475: 1469: 1465: 1463: 1460: 1459: 1442: 1438: 1436: 1433: 1432: 1415: 1411: 1409: 1406: 1405: 1401: 1399:Finding a basis 1373: 1369: 1360: 1356: 1342: 1339: 1338: 1311: 1307: 1305: 1302: 1301: 1285: 1282: 1281: 1258: 1254: 1252: 1249: 1248: 1232: 1229: 1228: 1206: 1203: 1202: 1180: 1177: 1176: 1073: 1070: 1069: 1038: 1035: 1034: 1000: 997: 996: 956: 953: 952: 915: 912: 911: 884: 883: 875: 869: 868: 863: 853: 852: 838: 837: 832: 826: 825: 820: 810: 809: 795: 794: 789: 783: 782: 777: 767: 766: 758: 755: 754: 727: 726: 724: 721: 720: 696: 692: 680: 676: 670: 659: 646: 642: 636: 632: 623: 619: 613: 609: 607: 604: 603: 583: 579: 567: 563: 561: 558: 557: 534: 530: 518: 514: 508: 497: 481: 477: 468: 464: 459: 456: 455: 425: 421: 419: 416: 415: 398: 394: 382: 378: 376: 373: 372: 355: 354: 352: 349: 348: 345: 323: 322: 320: 317: 316: 299: 298: 296: 293: 292: 275: 274: 272: 269: 268: 251: 250: 248: 245: 244: 227: 226: 224: 221: 220: 192: 189: 188: 171: 170: 168: 165: 164: 147: 146: 144: 141: 140: 123: 122: 120: 117: 116: 113: 51:representations 47:representations 24: 17: 12: 11: 5: 16754: 16744: 16743: 16738: 16733: 16719: 16718: 16706: 16694: 16681: 16662: 16641: 16616: 16612:978-3319134666 16611: 16598: 16585: 16556: 16555: 16538: 16500: 16488: 16475: 16463: 16451: 16438:(2): 480–493. 16418: 16381: 16369: 16356: 16355: 16353: 16350: 16349: 16348: 16343: 16336: 16333: 16323:to obtain the 16302: 16299: 16294: 16289: 16284: 16280: 16259: 16254: 16249: 16246: 16217: 16216: 16205: 16202: 16197: 16194: 16190: 16186: 16183: 16180: 16177: 16174: 16171: 16168: 16165: 16162: 16159: 16156: 16153: 16139: 16138: 16127: 16124: 16121: 16118: 16115: 16112: 16109: 16106: 16103: 16091:the counit as 16089: 16088: 16077: 16074: 16071: 16068: 16065: 16062: 16059: 16056: 16053: 16050: 16047: 16044: 16041: 16038: 16035: 16032: 16029: 16026: 16012: 16011: 16000: 15997: 15994: 15991: 15988: 15985: 15982: 15979: 15976: 15973: 15970: 15967: 15964: 15961: 15958: 15955: 15952: 15949: 15946: 15943: 15920: 15917: 15914: 15911: 15908: 15905: 15902: 15899: 15861:tensor algebra 15839: 15836: 15773: 15768: 15763: 15760: 15727: 15722: 15717: 15714: 15679: 15648: 15616: 15611: 15606: 15603: 15572: 15537: 15532: 15527: 15524: 15502: 15473: 15468: 15463: 15460: 15430: 15399: 15396: 15393: 15390: 15387: 15384: 15381: 15378: 15375: 15372: 15369: 15366: 15363: 15360: 15357: 15354: 15351: 15348: 15345: 15342: 15339: 15336: 15333: 15330: 15327: 15324: 15321: 15316: 15313: 15310: 15307: 15304: 15301: 15298: 15294: 15287: 15284: 15279: 15273: 15270: 15264: 15261: 15235: 15232: 15229: 15226: 15223: 15220: 15217: 15214: 15194: 15191: 15188: 15185: 15182: 15179: 15176: 15173: 15153: 15150: 15147: 15144: 15141: 15138: 15135: 15132: 15129: 15101: 15095: 15092: 15090: 15087: 15086: 15083: 15080: 15078: 15075: 15074: 15072: 15067: 15064: 15056: 15051: 15045: 15042: 15040: 15037: 15036: 15033: 15030: 15028: 15025: 15024: 15022: 15017: 15014: 15006: 15001: 14995: 14992: 14990: 14987: 14986: 14983: 14980: 14978: 14975: 14972: 14971: 14969: 14964: 14961: 14936: 14930: 14927: 14921: 14916: 14902: 14899: 14829: 14800: 14795: 14790: 14787: 14767: 14762: 14757: 14754: 14742: 14739: 14738: 14737: 14724: 14720: 14714: 14707: 14704: 14700: 14696: 14693: 14688: 14684: 14680: 14675: 14671: 14667: 14650: 14649: 14638: 14635: 14632: 14627: 14623: 14619: 14614: 14610: 14606: 14592: 14591: 14578: 14574: 14570: 14565: 14561: 14557: 14552: 14548: 14544: 14539: 14535: 14531: 14526: 14522: 14518: 14513: 14509: 14505: 14500: 14496: 14492: 14487: 14484: 14481: 14477: 14447: 14444: 14440: 14436: 14431: 14428: 14424: 14412: 14411: 14400: 14397: 14392: 14388: 14384: 14379: 14375: 14371: 14366: 14362: 14358: 14355: 14350: 14346: 14342: 14339: 14335: 14331: 14328: 14325: 14320: 14316: 14312: 14309: 14304: 14300: 14296: 14293: 14288: 14284: 14280: 14276: 14272: 14247: 14243: 14239: 14236: 14231: 14227: 14223: 14220: 14215: 14211: 14207: 14185: 14181: 14160: 14155: 14151: 14147: 14142: 14138: 14117: 14112: 14108: 14090: 14087: 14075: 14072: 14069: 14064: 14059: 14056: 14053: 14050: 14017: 14014: 14011: 14008: 14005: 14002: 13997: 13993: 13972: 13967: 13962: 13959: 13956: 13953: 13933: 13928: 13923: 13920: 13891: 13886: 13883: 13880: 13876: 13872: 13867: 13864: 13861: 13857: 13836: 13833: 13830: 13827: 13824: 13804: 13793: 13792: 13779: 13776: 13773: 13770: 13766: 13760: 13756: 13752: 13747: 13743: 13737: 13733: 13729: 13726: 13723: 13720: 13715: 13711: 13696: 13695: 13682: 13678: 13672: 13668: 13662: 13657: 13654: 13651: 13647: 13643: 13640: 13626: 13625: 13614: 13611: 13608: 13605: 13600: 13596: 13590: 13587: 13584: 13580: 13576: 13573: 13570: 13567: 13564: 13559: 13555: 13527: 13522: 13518: 13513: 13510: 13505: 13502: 13498: 13477: 13474: 13471: 13436: 13433: 13430: 13425: 13421: 13391: 13388: 13385: 13380: 13376: 13366:for which the 13333: 13328: 13323: 13320: 13309: 13308: 13295: 13291: 13287: 13284: 13281: 13276: 13272: 13266: 13261: 13258: 13255: 13251: 13247: 13244: 13239: 13235: 13231: 13228: 13225: 13222: 13219: 13188: 13184: 13172: 13171: 13160: 13155: 13150: 13147: 13144: 13141: 13136: 13131: 13128: 13098: 13097: 13084: 13080: 13074: 13070: 13064: 13059: 13056: 13053: 13049: 13045: 13042: 13039: 13036: 13033: 13030: 13027: 13024: 12983: 12980: 12976: 12935: 12932: 12912: 12909: 12904: 12899: 12896: 12893: 12890: 12868: 12865: 12862: 12858: 12837: 12832: 12829: 12825: 12799: 12796: 12792: 12780: 12779: 12766: 12762: 12758: 12753: 12749: 12743: 12740: 12736: 12732: 12727: 12724: 12721: 12717: 12702: 12701: 12688: 12684: 12678: 12671: 12668: 12664: 12660: 12657: 12652: 12648: 12644: 12639: 12635: 12631: 12617: 12616: 12605: 12602: 12597: 12594: 12591: 12588: 12584: 12578: 12571: 12568: 12564: 12560: 12557: 12554: 12549: 12546: 12543: 12540: 12536: 12530: 12523: 12520: 12516: 12512: 12507: 12504: 12501: 12498: 12494: 12488: 12481: 12478: 12474: 12450: 12447: 12444: 12439: 12436: 12433: 12429: 12425: 12422: 12419: 12391: 12386: 12383: 12378: 12372: 12367: 12363: 12339: 12336: 12333: 12330: 12326: 12305: 12283: 12280: 12277: 12274: 12270: 12249: 12238: 12237: 12224: 12220: 12216: 12213: 12210: 12205: 12201: 12197: 12192: 12188: 12182: 12179: 12176: 12173: 12169: 12165: 12160: 12157: 12154: 12150: 12126: 12104: 12100: 12073: 12069: 12042: 12039: 12034: 12029: 12026: 12006: 12001: 11996: 11993: 11971: 11942: 11937: 11932: 11929: 11907: 11887: 11886: 11871: 11868: 11865: 11862: 11859: 11856: 11853: 11850: 11847: 11844: 11841: 11838: 11835: 11832: 11829: 11827: 11825: 11822: 11819: 11816: 11813: 11810: 11807: 11804: 11801: 11798: 11795: 11792: 11789: 11787: 11785: 11782: 11779: 11776: 11773: 11770: 11767: 11764: 11761: 11758: 11755: 11751: 11749: 11746: 11743: 11740: 11737: 11734: 11731: 11728: 11725: 11722: 11719: 11716: 11715: 11689: 11667: 11654: 11653: 11642: 11639: 11636: 11633: 11630: 11627: 11624: 11621: 11618: 11615: 11612: 11609: 11606: 11603: 11600: 11597: 11594: 11591: 11588: 11585: 11582: 11579: 11576: 11573: 11570: 11567: 11538: 11514: 11509: 11504: 11499: 11496: 11469: 11466: 11461: 11456: 11453: 11433: 11428: 11423: 11420: 11393: 11363: 11360: 11355: 11350: 11347: 11338:we need it on 11327: 11322: 11296: 11290: 11260: 11257: 11254: 11251: 11248: 11243: 11231: 11228: 11225: 11222: 11219: 11216: 11196: 11191: 11186: 11183: 11163: 11158: 11153: 11150: 11147: 11144: 11141: 11138: 11135: 11132: 11129: 11126: 11123: 11120: 11100: 11097: 11092: 11087: 11084: 11081: 11078: 11055: 11052: 11047: 11042: 11039: 11036: 11033: 11003: 10981: 10978: 10973: 10968: 10965: 10943: 10921: 10918: 10913: 10908: 10905: 10885: 10882: 10877: 10872: 10869: 10866: 10863: 10843: 10840: 10835: 10830: 10827: 10805: 10783: 10778: 10773: 10770: 10750: 10747: 10742: 10737: 10734: 10731: 10728: 10707: 10704: 10687: 10682: 10677: 10674: 10646: 10591: 10590: 10579: 10574: 10569: 10566: 10563: 10558: 10553: 10550: 10536: 10535: 10524: 10519: 10513: 10507: 10502: 10498: 10494: 10491: 10488: 10485: 10482: 10479: 10474: 10468: 10462: 10457: 10453: 10449: 10446: 10441: 10435: 10429: 10424: 10418: 10412: 10409: 10384: 10378: 10372: 10367: 10361: 10347: 10346: 10335: 10330: 10324: 10318: 10315: 10312: 10309: 10304: 10298: 10292: 10289: 10286: 10283: 10278: 10272: 10266: 10261: 10255: 10249: 10246: 10212: 10207: 10202: 10199: 10173: 10143: 10138: 10133: 10130: 10104: 10086: 10083: 10066: 10035: 10013: 10009: 9997: 9996: 9985: 9982: 9979: 9976: 9972: 9966: 9962: 9956: 9952: 9947: 9943: 9940: 9937: 9934: 9931: 9928: 9925: 9922: 9919: 9905: 9904: 9891: 9888: 9885: 9882: 9879: 9874: 9870: 9867: 9864: 9861: 9858: 9855: 9852: 9849: 9845: 9840: 9833: 9830: 9826: 9821: 9815: 9812: 9808: 9802: 9796: 9792: 9786: 9782: 9777: 9773: 9770: 9766: 9762: 9759: 9756: 9753: 9750: 9747: 9744: 9741: 9738: 9735: 9701: 9696: 9691: 9688: 9664: 9659: 9654: 9651: 9631: 9628: 9625: 9622: 9619: 9616: 9613: 9610: 9607: 9585: 9582: 9577: 9572: 9569: 9566: 9563: 9560: 9557: 9546: 9545: 9534: 9531: 9528: 9525: 9522: 9519: 9516: 9513: 9510: 9507: 9504: 9501: 9498: 9495: 9492: 9489: 9466: 9444: 9440: 9417: 9413: 9401: 9400: 9389: 9384: 9379: 9376: 9373: 9370: 9365: 9360: 9357: 9354: 9351: 9328: 9323: 9318: 9315: 9289: 9285: 9262: 9258: 9237: 9217: 9212: 9208: 9204: 9201: 9179: 9175: 9152: 9148: 9127: 9122: 9117: 9114: 9091: 9067: 9062: 9057: 9054: 9027: 9022: 9017: 9014: 8994: 8989: 8984: 8981: 8961: 8956: 8951: 8948: 8936: 8933: 8931:is apparent.) 8920: 8915: 8910: 8907: 8887: 8884: 8881: 8878: 8858: 8853: 8848: 8845: 8825: 8822: 8819: 8816: 8796: 8791: 8786: 8783: 8763: 8760: 8757: 8754: 8732: 8710: 8707: 8704: 8701: 8675: 8650: 8645: 8640: 8637: 8617: 8614: 8611: 8608: 8588: 8585: 8582: 8579: 8559: 8539: 8514: 8489: 8467: 8445: 8421: 8397: 8375: 8363: 8360: 8343: 8342:Other algebras 8340: 8327: 8324: 8319: 8314: 8311: 8291: 8286: 8281: 8278: 8275: 8272: 8248: 8243: 8238: 8235: 8232: 8229: 8224: 8219: 8216: 8196: 8193: 8188: 8183: 8180: 8160: 8155: 8150: 8147: 8120: 8117: 8112: 8107: 8104: 8082: 8075: 8071: 8043: 8038: 8033: 8030: 8010: 8005: 8000: 7997: 7986: 7985: 7974: 7971: 7968: 7965: 7962: 7959: 7956: 7953: 7950: 7946: 7942: 7937: 7932: 7929: 7926: 7923: 7918: 7913: 7910: 7887: 7882: 7877: 7874: 7852: 7847: 7842: 7838: 7815: 7808: 7804: 7774: 7767: 7763: 7740: 7733: 7729: 7706: 7699: 7696: 7693: 7689: 7666: 7659: 7655: 7629: 7622: 7619: 7616: 7612: 7589: 7582: 7578: 7555: 7548: 7544: 7521: 7514: 7511: 7508: 7504: 7481: 7474: 7470: 7444: 7437: 7433: 7406: 7399: 7395: 7372: 7365: 7361: 7338: 7331: 7327: 7315: 7314: 7301: 7294: 7291: 7288: 7284: 7279: 7273: 7266: 7262: 7258: 7253: 7246: 7242: 7216: 7213: 7208: 7203: 7200: 7178: 7171: 7167: 7146: 7143: 7138: 7133: 7130: 7110: 7105: 7100: 7097: 7071: 7068: 7063: 7058: 7055: 7036: 7035: 7024: 7021: 7016: 7009: 7005: 7001: 6998: 6995: 6990: 6983: 6979: 6975: 6970: 6965: 6962: 6933: 6926: 6922: 6901: 6896: 6877: 6876: 6863: 6858: 6855: 6852: 6847: 6842: 6837: 6830: 6827: 6823: 6819: 6814: 6807: 6803: 6788: 6787: 6774: 6767: 6763: 6759: 6756: 6753: 6748: 6741: 6737: 6733: 6728: 6723: 6720: 6717: 6712: 6705: 6701: 6675: 6672: 6667: 6662: 6659: 6637: 6630: 6626: 6609: 6606: 6585: 6580: 6558: 6553: 6523: 6518: 6513: 6510: 6473: 6470: 6467: 6464: 6461: 6458: 6455: 6444: 6443: 6430: 6426: 6422: 6419: 6416: 6411: 6407: 6403: 6398: 6394: 6370: 6365: 6360: 6357: 6331: 6326: 6321: 6318: 6307: 6306: 6295: 6290: 6286: 6282: 6279: 6276: 6273: 6270: 6267: 6262: 6258: 6254: 6251: 6248: 6245: 6240: 6236: 6232: 6229: 6226: 6223: 6218: 6214: 6210: 6207: 6204: 6199: 6195: 6191: 6186: 6182: 6178: 6175: 6152: 6130: 6126: 6105: 6100: 6095: 6092: 6089: 6084: 6079: 6076: 6056: 6053: 6050: 6047: 6044: 6018: 6015: 6011: 6007: 6004: 6001: 5998: 5993: 5989: 5968: 5965: 5962: 5959: 5954: 5950: 5917: 5914: 5893: 5888: 5883: 5880: 5865:Main article: 5862: 5859: 5838: 5837:Other algebras 5835: 5818: 5813: 5808: 5805: 5785: 5765: 5762: 5759: 5755: 5752: 5749: 5745: 5742: 5722: 5717: 5712: 5709: 5689: 5667: 5642: 5637: 5632: 5629: 5626: 5623: 5600: 5597: 5572: 5559: 5558: 5544: 5539: 5532: 5528: 5523: 5518: 5515: 5508: 5504: 5499: 5495: 5492: 5489: 5486: 5479: 5475: 5470: 5466: 5463: 5460: 5457: 5450: 5446: 5441: 5437: 5430: 5426: 5421: 5417: 5411: 5408: 5379: 5376: 5351: 5329: 5324: 5319: 5316: 5296: 5293: 5290: 5285: 5280: 5277: 5274: 5268: 5265: 5242: 5222: 5219: 5216: 5213: 5210: 5207: 5204: 5201: 5198: 5195: 5192: 5189: 5186: 5183: 5180: 5177: 5174: 5171: 5168: 5165: 5162: 5159: 5156: 5153: 5150: 5147: 5127: 5107: 5104: 5099: 5094: 5091: 5073:tensor algebra 5058: 5036: 5016: 5011: 5006: 5003: 5000: 4995: 4990: 4987: 4976: 4975: 4964: 4961: 4955: 4952: 4946: 4943: 4929: 4928: 4917: 4914: 4911: 4906: 4901: 4898: 4895: 4889: 4886: 4851: 4846: 4843: 4840: 4837: 4826: 4825: 4814: 4811: 4808: 4805: 4802: 4799: 4796: 4793: 4790: 4787: 4784: 4781: 4778: 4775: 4772: 4769: 4766: 4763: 4760: 4757: 4754: 4751: 4748: 4745: 4742: 4739: 4713: 4712: 4701: 4698: 4693: 4688: 4685: 4669:, possesses a 4658: 4653: 4648: 4645: 4642: 4637: 4632: 4629: 4617: 4614: 4553: 4552: 4541: 4538: 4535: 4532: 4529: 4526: 4523: 4520: 4517: 4514: 4511: 4508: 4505: 4502: 4499: 4496: 4493: 4490: 4487: 4484: 4481: 4478: 4475: 4472: 4469: 4466: 4454:and also that 4452: 4451: 4440: 4437: 4434: 4431: 4428: 4425: 4422: 4419: 4416: 4413: 4410: 4407: 4404: 4401: 4398: 4395: 4392: 4389: 4386: 4383: 4380: 4377: 4374: 4371: 4368: 4365: 4343: 4342: 4327: 4324: 4321: 4318: 4315: 4312: 4309: 4306: 4304: 4302: 4299: 4296: 4293: 4292: 4289: 4286: 4283: 4281: 4279: 4276: 4273: 4270: 4267: 4264: 4263: 4236: 4216: 4196: 4193: 4190: 4187: 4167: 4144: 4141: 4138: 4135: 4132: 4129: 4126: 4123: 4120: 4117: 4114: 4094: 4091: 4088: 4085: 4082: 4079: 4076: 4056: 4043: 4040: 4039: 4038: 4027: 4023: 4019: 4014: 4009: 4006: 4003: 4000: 3995: 3990: 3987: 3973: 3972: 3961: 3958: 3955: 3951: 3947: 3942: 3937: 3934: 3931: 3928: 3923: 3918: 3915: 3912: 3909: 3906: 3903: 3873: 3870: 3867: 3864: 3861: 3858: 3838: 3835: 3832: 3829: 3826: 3806: 3803: 3798: 3793: 3790: 3787: 3784: 3764: 3761: 3758: 3738: 3733: 3728: 3725: 3722: 3719: 3693: 3688: 3683: 3680: 3677: 3674: 3671: 3668: 3665: 3662: 3659: 3656: 3653: 3650: 3639: 3638: 3627: 3624: 3621: 3618: 3615: 3612: 3609: 3606: 3603: 3600: 3597: 3594: 3591: 3588: 3585: 3582: 3579: 3576: 3573: 3570: 3567: 3564: 3561: 3558: 3555: 3552: 3532: 3531: 3520: 3515: 3510: 3507: 3504: 3501: 3496: 3491: 3486: 3481: 3478: 3473: 3457: 3456: 3445: 3442: 3439: 3436: 3433: 3430: 3427: 3424: 3421: 3418: 3415: 3412: 3409: 3351: 3346: 3341: 3338: 3326: 3325: 3314: 3311: 3308: 3305: 3302: 3299: 3296: 3293: 3290: 3287: 3284: 3281: 3278: 3255: 3241: 3240: 3229: 3225: 3221: 3216: 3211: 3208: 3205: 3202: 3197: 3192: 3189: 3176:quotient space 3161: 3139: 3134: 3129: 3126: 3100:covering space 3087: 3082: 3077: 3074: 3054: 3051: 3046: 3041: 3038: 3026: 3025: 3014: 3011: 3008: 3005: 3002: 2999: 2996: 2993: 2990: 2987: 2984: 2981: 2978: 2975: 2972: 2969: 2966: 2963: 2960: 2957: 2954: 2951: 2948: 2934: 2933: 2922: 2919: 2916: 2913: 2910: 2907: 2904: 2901: 2898: 2895: 2892: 2889: 2886: 2883: 2880: 2877: 2874: 2871: 2868: 2865: 2862: 2859: 2856: 2830: 2827: 2818:for arbitrary 2807: 2802: 2797: 2792: 2788: 2765: 2760: 2755: 2750: 2747: 2742: 2737: 2732: 2728: 2716: 2715: 2704: 2701: 2698: 2695: 2692: 2689: 2686: 2683: 2680: 2677: 2674: 2671: 2668: 2643: 2638: 2633: 2628: 2623: 2594: 2589: 2584: 2581: 2578: 2575: 2570: 2565: 2562: 2559: 2556: 2551: 2546: 2543: 2528:skew-symmetric 2509: 2504: 2499: 2494: 2489: 2452: 2432: 2421: 2420: 2409: 2405: 2401: 2396: 2391: 2386: 2381: 2376: 2371: 2367: 2363: 2358: 2353: 2348: 2343: 2339: 2333: 2327: 2323: 2320: 2317: 2312: 2307: 2304: 2276: 2246: 2241: 2236: 2233: 2223:tensor algebra 2204: 2190: 2187: 2168: 2140: 2136: 2130: 2127: 2124: 2120: 2116: 2113: 2108: 2104: 2098: 2094: 2090: 2085: 2081: 2075: 2071: 2052:quotient space 2048:tensor product 2044:tensor algebra 2038: 2035: 2022: 2019: 2016: 1996: 1976: 1956: 1934: 1910: 1888: 1885: 1882: 1860: 1836: 1832: 1809: 1805: 1782: 1778: 1774: 1771: 1768: 1763: 1759: 1729: 1725: 1704: 1701: 1696: 1692: 1669: 1665: 1653: 1652: 1637: 1633: 1627: 1623: 1619: 1612: 1608: 1602: 1598: 1590: 1586: 1580: 1576: 1550: 1546: 1519: 1515: 1509: 1505: 1482: 1478: 1472: 1468: 1445: 1441: 1418: 1414: 1400: 1397: 1384: 1381: 1376: 1372: 1368: 1363: 1359: 1355: 1352: 1349: 1346: 1322: 1319: 1314: 1310: 1289: 1269: 1266: 1261: 1257: 1236: 1216: 1213: 1210: 1190: 1187: 1184: 1169: 1168: 1157: 1154: 1151: 1148: 1145: 1142: 1139: 1136: 1132: 1129: 1126: 1123: 1120: 1117: 1114: 1111: 1108: 1105: 1101: 1098: 1095: 1092: 1089: 1086: 1083: 1080: 1077: 1054: 1051: 1048: 1045: 1042: 1022: 1019: 1016: 1013: 1010: 1007: 1004: 984: 981: 978: 975: 972: 969: 966: 963: 960: 940: 937: 934: 931: 928: 925: 922: 919: 908: 907: 896: 888: 882: 879: 876: 874: 871: 870: 867: 864: 862: 859: 858: 856: 851: 848: 842: 836: 833: 831: 828: 827: 824: 821: 819: 816: 815: 813: 808: 805: 799: 793: 790: 788: 785: 784: 781: 778: 776: 773: 772: 770: 765: 762: 730: 713: 712: 699: 695: 689: 686: 683: 679: 673: 668: 665: 662: 658: 654: 649: 645: 639: 635: 631: 626: 622: 616: 612: 586: 582: 578: 575: 570: 566: 554: 553: 542: 537: 533: 527: 524: 521: 517: 511: 506: 503: 500: 496: 492: 489: 484: 480: 476: 471: 467: 463: 434: 431: 428: 424: 401: 397: 393: 390: 385: 381: 358: 344: 341: 326: 302: 278: 254: 230: 208: 205: 202: 199: 196: 174: 150: 126: 112: 109: 107:on the group. 82:quantum groups 45:algebra whose 15: 9: 6: 4: 3: 2: 16753: 16742: 16739: 16737: 16736:Hopf algebras 16734: 16732: 16729: 16728: 16726: 16717: 16715: 16710: 16707: 16704: 16703: 16698: 16695: 16692: 16688: 16684: 16678: 16674: 16670: 16669: 16663: 16660: 16656: 16652: 16648: 16644: 16638: 16634: 16630: 16626: 16622: 16617: 16614: 16608: 16604: 16599: 16596: 16592: 16588: 16582: 16578: 16574: 16570: 16569: 16564: 16560: 16559: 16552: 16548: 16542: 16534: 16530: 16526: 16522: 16518: 16514: 16510: 16509:Berezin, F.A. 16504: 16497: 16496:Helgason 2001 16492: 16485: 16484:Helgason 2001 16479: 16472: 16467: 16460: 16455: 16446: 16441: 16437: 16433: 16429: 16422: 16413: 16408: 16404: 16400: 16396: 16392: 16385: 16378: 16373: 16366: 16361: 16357: 16347: 16344: 16342: 16339: 16338: 16332: 16331:, for short. 16330: 16329:quantum group 16326: 16322: 16318: 16313: 16300: 16282: 16278: 16244: 16234: 16227: 16222: 16203: 16195: 16192: 16188: 16181: 16178: 16172: 16160: 16154: 16144: 16143: 16142: 16122: 16116: 16113: 16107: 16101: 16094: 16093: 16092: 16075: 16069: 16066: 16060: 16057: 16051: 16048: 16045: 16033: 16017: 16016: 16015: 15995: 15989: 15983: 15977: 15974: 15968: 15956: 15953: 15950: 15934: 15933: 15932: 15915: 15909: 15906: 15903: 15900: 15897: 15889: 15884: 15877: 15870: 15864: 15862: 15858: 15857:Hopf algebras 15854: 15849: 15845: 15844:group algebra 15835: 15833: 15828: 15826: 15822: 15817: 15811: 15808: 15802: 15798: 15794: 15791: 15790:distributions 15787: 15758: 15749: 15747: 15742: 15712: 15703: 15701: 15696: 15666: 15664: 15663:vector fields 15635: 15630: 15601: 15592: 15588: 15559: 15556: 15552:algebra over 15551: 15522: 15491: 15487: 15458: 15446: 15417: 15413: 15394: 15391: 15388: 15385: 15382: 15379: 15376: 15373: 15370: 15367: 15364: 15361: 15358: 15355: 15352: 15349: 15346: 15343: 15340: 15337: 15334: 15331: 15328: 15325: 15322: 15311: 15308: 15305: 15302: 15299: 15285: 15277: 15259: 15250: 15246: 15233: 15230: 15227: 15221: 15218: 15215: 15192: 15189: 15186: 15180: 15177: 15174: 15151: 15148: 15145: 15142: 15136: 15133: 15130: 15118: 15114: 15099: 15093: 15088: 15081: 15076: 15070: 15065: 15062: 15054: 15049: 15043: 15038: 15031: 15026: 15020: 15015: 15012: 15004: 14999: 14993: 14988: 14981: 14976: 14973: 14967: 14962: 14959: 14950: 14934: 14919: 14898: 14896: 14892: 14888: 14884: 14880: 14876: 14872: 14868: 14864: 14860: 14855: 14851: 14849: 14845: 14816: 14814: 14785: 14752: 14722: 14718: 14712: 14705: 14702: 14698: 14694: 14686: 14682: 14678: 14673: 14669: 14658: 14657: 14656: 14655: 14636: 14633: 14625: 14621: 14617: 14612: 14608: 14597: 14596: 14595: 14576: 14572: 14568: 14563: 14559: 14555: 14550: 14546: 14542: 14537: 14533: 14529: 14524: 14520: 14516: 14511: 14507: 14503: 14498: 14494: 14490: 14482: 14475: 14467: 14466: 14465: 14463: 14445: 14442: 14438: 14434: 14429: 14426: 14422: 14398: 14390: 14386: 14382: 14377: 14373: 14369: 14364: 14360: 14353: 14348: 14344: 14340: 14337: 14333: 14329: 14326: 14323: 14318: 14314: 14310: 14307: 14302: 14298: 14294: 14291: 14286: 14282: 14278: 14274: 14263: 14262: 14261: 14245: 14241: 14237: 14234: 14229: 14225: 14221: 14218: 14213: 14209: 14205: 14183: 14179: 14158: 14153: 14149: 14145: 14140: 14136: 14115: 14110: 14106: 14096: 14086: 14073: 14054: 14048: 14039: 14032: 14015: 14012: 14006: 14000: 13995: 13991: 13957: 13954: 13951: 13918: 13909: 13906: 13889: 13884: 13881: 13878: 13874: 13870: 13865: 13862: 13859: 13855: 13834: 13831: 13828: 13825: 13822: 13802: 13777: 13774: 13771: 13768: 13764: 13758: 13754: 13750: 13745: 13741: 13735: 13731: 13727: 13721: 13713: 13709: 13701: 13700: 13699: 13680: 13676: 13670: 13666: 13660: 13655: 13652: 13649: 13645: 13641: 13638: 13631: 13630: 13629: 13612: 13606: 13598: 13594: 13588: 13585: 13582: 13578: 13574: 13568: 13565: 13557: 13553: 13545: 13544: 13543: 13541: 13525: 13520: 13516: 13511: 13508: 13503: 13500: 13496: 13475: 13472: 13469: 13459: 13456: âˆ’  13455: 13450: 13431: 13423: 13419: 13409: 13406: 13386: 13378: 13374: 13364: 13358: 13353: 13348: 13331: 13321: 13318: 13311:for elements 13293: 13289: 13282: 13274: 13270: 13264: 13259: 13256: 13253: 13249: 13245: 13237: 13233: 13229: 13226: 13223: 13210: 13209: 13208: 13205: 13186: 13182: 13174:implies that 13145: 13142: 13129: 13126: 13119: 13118: 13117: 13114: 13109: 13104: 13082: 13078: 13072: 13068: 13062: 13057: 13054: 13051: 13047: 13043: 13037: 13034: 13031: 13028: 13015: 13014: 13013: 13010: 13005: 13000: 12981: 12978: 12974: 12965: 12961: 12956: 12950: 12945: 12941: 12931: 12929: 12924: 12894: 12888: 12863: 12856: 12835: 12830: 12827: 12823: 12815: 12797: 12794: 12790: 12764: 12760: 12756: 12751: 12747: 12741: 12738: 12734: 12730: 12722: 12715: 12707: 12706: 12705: 12686: 12682: 12676: 12669: 12666: 12662: 12658: 12650: 12646: 12642: 12637: 12633: 12622: 12621: 12620: 12603: 12600: 12595: 12592: 12589: 12586: 12582: 12576: 12569: 12566: 12562: 12558: 12555: 12552: 12547: 12544: 12541: 12538: 12534: 12528: 12521: 12518: 12514: 12510: 12505: 12502: 12499: 12496: 12492: 12486: 12479: 12476: 12472: 12464: 12463: 12462: 12448: 12445: 12434: 12427: 12423: 12420: 12409: 12405: 12389: 12384: 12381: 12376: 12365: 12361: 12337: 12334: 12331: 12328: 12324: 12303: 12281: 12278: 12275: 12272: 12268: 12247: 12222: 12218: 12214: 12211: 12208: 12203: 12199: 12195: 12190: 12186: 12180: 12177: 12174: 12171: 12167: 12163: 12155: 12148: 12140: 12139: 12138: 12137:has the form 12124: 12102: 12098: 12089: 12071: 12067: 12058: 12053: 12040: 12024: 11991: 11969: 11940: 11930: 11927: 11905: 11869: 11863: 11857: 11854: 11851: 11848: 11845: 11842: 11839: 11836: 11833: 11830: 11828: 11820: 11817: 11814: 11811: 11805: 11799: 11796: 11793: 11790: 11788: 11780: 11777: 11774: 11771: 11768: 11765: 11759: 11753: 11747: 11741: 11738: 11735: 11732: 11729: 11726: 11723: 11717: 11706: 11705: 11704: 11703: 11687: 11634: 11628: 11625: 11622: 11616: 11610: 11607: 11601: 11595: 11589: 11580: 11577: 11574: 11565: 11558: 11557: 11556: 11554: 11553:Leibniz's law 11497: 11494: 11485: 11483: 11467: 11451: 11418: 11410: 11361: 11345: 11325: 11310: 11294: 11258: 11255: 11249: 11241: 11229: 11223: 11220: 11217: 11194: 11184: 11181: 11148: 11145: 11142: 11139: 11136: 11133: 11130: 11127: 11124: 11121: 11118: 11082: 11076: 11067: 11037: 11031: 11023: 11019: 10979: 10963: 10919: 10903: 10867: 10861: 10841: 10825: 10768: 10732: 10726: 10719: 10713: 10703: 10701: 10672: 10664: 10663: 10659:is acting by 10633: 10631: 10627: 10626:Verma modules 10622: 10620: 10616: 10611: 10609: 10605: 10601: 10597: 10564: 10551: 10548: 10541: 10540: 10539: 10517: 10500: 10496: 10492: 10489: 10486: 10483: 10480: 10472: 10455: 10451: 10447: 10439: 10427: 10422: 10407: 10400: 10399: 10398: 10382: 10370: 10365: 10328: 10313: 10310: 10302: 10287: 10284: 10276: 10264: 10259: 10244: 10237: 10236: 10235: 10233: 10229: 10224: 10197: 10189: 10161: 10157: 10128: 10120: 10092: 10082: 10080: 10079:Moyal product 10064: 10056: 10052: 10047: 10033: 10011: 10007: 9983: 9980: 9977: 9974: 9970: 9964: 9960: 9954: 9950: 9945: 9941: 9938: 9935: 9929: 9926: 9923: 9917: 9910: 9909: 9908: 9889: 9886: 9883: 9880: 9877: 9872: 9865: 9859: 9853: 9847: 9843: 9838: 9831: 9819: 9813: 9800: 9794: 9790: 9784: 9780: 9775: 9771: 9768: 9760: 9754: 9748: 9745: 9739: 9733: 9726: 9725: 9724: 9721: 9719: 9715: 9686: 9678: 9649: 9626: 9620: 9617: 9611: 9605: 9596: 9583: 9567: 9564: 9561: 9558: 9555: 9529: 9523: 9520: 9514: 9508: 9505: 9499: 9496: 9493: 9487: 9480: 9479: 9478: 9464: 9442: 9438: 9415: 9411: 9374: 9355: 9352: 9349: 9342: 9341: 9340: 9313: 9305: 9287: 9283: 9260: 9256: 9235: 9210: 9206: 9199: 9177: 9173: 9150: 9146: 9112: 9103: 9089: 9081: 9052: 9045: 9041: 9012: 8979: 8946: 8932: 8905: 8882: 8876: 8843: 8820: 8814: 8781: 8758: 8752: 8705: 8699: 8691: 8662: 8635: 8612: 8606: 8583: 8577: 8557: 8537: 8528: 8503:operation on 8465: 8373: 8359: 8357: 8353: 8350:, yields the 8349: 8339: 8325: 8309: 8276: 8273: 8270: 8262: 8233: 8214: 8194: 8178: 8145: 8136: 8134: 8118: 8102: 8073: 8069: 8059: 8057: 8028: 7995: 7969: 7966: 7963: 7960: 7957: 7954: 7951: 7944: 7927: 7924: 7908: 7901: 7900: 7899: 7872: 7845: 7840: 7836: 7806: 7802: 7793: 7788: 7765: 7761: 7731: 7727: 7697: 7694: 7691: 7687: 7657: 7653: 7643: 7620: 7617: 7614: 7610: 7580: 7576: 7546: 7542: 7512: 7509: 7506: 7502: 7472: 7468: 7458: 7435: 7431: 7422: 7397: 7393: 7363: 7359: 7329: 7325: 7292: 7289: 7286: 7282: 7277: 7264: 7260: 7256: 7244: 7240: 7232: 7231: 7230: 7227: 7214: 7198: 7169: 7165: 7144: 7128: 7095: 7087: 7082: 7069: 7053: 7045: 7041: 7022: 7019: 7007: 7003: 6999: 6996: 6993: 6981: 6977: 6973: 6963: 6960: 6953: 6952: 6951: 6949: 6924: 6920: 6899: 6883: 6856: 6853: 6850: 6840: 6828: 6825: 6821: 6817: 6805: 6801: 6793: 6792: 6791: 6765: 6761: 6757: 6754: 6751: 6739: 6735: 6731: 6721: 6718: 6715: 6703: 6699: 6691: 6690: 6689: 6686: 6673: 6657: 6628: 6624: 6616: 6605: 6603: 6599: 6583: 6556: 6541: 6536: 6508: 6500: 6495: 6493: 6488: 6471: 6468: 6465: 6462: 6459: 6456: 6453: 6428: 6424: 6420: 6417: 6414: 6409: 6405: 6401: 6396: 6392: 6384: 6383: 6382: 6355: 6346: 6316: 6288: 6284: 6277: 6274: 6271: 6268: 6260: 6256: 6249: 6246: 6238: 6234: 6227: 6224: 6216: 6212: 6208: 6205: 6202: 6197: 6193: 6189: 6184: 6180: 6173: 6166: 6165: 6164: 6150: 6128: 6124: 6090: 6077: 6074: 6054: 6051: 6048: 6045: 6042: 6034: 6016: 6013: 6009: 6005: 5999: 5991: 5987: 5966: 5960: 5957: 5952: 5948: 5938: 5934:to the field 5932: 5927: 5923: 5913: 5911: 5907: 5878: 5868: 5858: 5856: 5852: 5848: 5844: 5834: 5832: 5803: 5783: 5760: 5743: 5740: 5707: 5687: 5654: 5627: 5624: 5621: 5598: 5595: 5537: 5530: 5526: 5521: 5516: 5506: 5502: 5497: 5490: 5487: 5477: 5473: 5468: 5461: 5458: 5448: 5444: 5439: 5435: 5428: 5424: 5419: 5409: 5406: 5396: 5395: 5394: 5377: 5374: 5314: 5294: 5275: 5272: 5266: 5263: 5240: 5217: 5211: 5205: 5199: 5196: 5190: 5184: 5178: 5172: 5169: 5160: 5157: 5154: 5145: 5125: 5105: 5092: 5089: 5080: 5078: 5074: 5034: 5001: 4988: 4985: 4962: 4959: 4953: 4950: 4944: 4941: 4934: 4933: 4932: 4915: 4896: 4893: 4887: 4884: 4874: 4873: 4872: 4871: 4867: 4844: 4841: 4838: 4835: 4809: 4803: 4797: 4791: 4788: 4782: 4776: 4770: 4764: 4761: 4752: 4749: 4746: 4737: 4730: 4729: 4728: 4725: 4719: 4699: 4686: 4683: 4676: 4675: 4674: 4672: 4643: 4630: 4627: 4613: 4611: 4607: 4603: 4598: 4596: 4592: 4588: 4584: 4580: 4576: 4571: 4569: 4564: 4562: 4558: 4536: 4533: 4530: 4524: 4521: 4518: 4515: 4512: 4509: 4503: 4500: 4497: 4491: 4488: 4482: 4479: 4476: 4473: 4470: 4464: 4457: 4456: 4455: 4438: 4435: 4429: 4426: 4423: 4417: 4414: 4408: 4405: 4402: 4396: 4393: 4390: 4387: 4381: 4378: 4375: 4372: 4369: 4363: 4356: 4355: 4354: 4353:, one writes 4352: 4351:By definition 4348: 4322: 4319: 4316: 4310: 4305: 4300: 4297: 4294: 4287: 4282: 4277: 4274: 4271: 4268: 4265: 4254: 4253: 4252: 4250: 4234: 4214: 4191: 4185: 4165: 4157: 4142: 4136: 4133: 4130: 4124: 4118: 4115: 4112: 4092: 4086: 4083: 4080: 4077: 4074: 4054: 4025: 4021: 4004: 4001: 3985: 3978: 3977: 3976: 3959: 3953: 3949: 3932: 3913: 3907: 3901: 3894: 3893: 3892: 3891: 3887: 3871: 3868: 3865: 3862: 3859: 3856: 3836: 3833: 3830: 3827: 3824: 3804: 3788: 3785: 3782: 3762: 3759: 3756: 3723: 3720: 3717: 3708: 3691: 3681: 3678: 3675: 3672: 3669: 3666: 3663: 3660: 3657: 3654: 3651: 3648: 3625: 3622: 3619: 3616: 3613: 3604: 3601: 3598: 3592: 3589: 3586: 3583: 3580: 3577: 3574: 3571: 3565: 3562: 3559: 3556: 3553: 3550: 3543: 3542: 3541: 3538: 3505: 3502: 3489: 3476: 3462: 3461: 3460: 3440: 3437: 3434: 3428: 3425: 3422: 3419: 3416: 3413: 3410: 3407: 3400: 3399: 3398: 3395: 3391: 3386: 3384: 3383:string theory 3380: 3376: 3371: 3369: 3365: 3336: 3309: 3306: 3303: 3297: 3294: 3291: 3288: 3285: 3282: 3279: 3276: 3269: 3268: 3267: 3253: 3246: 3227: 3223: 3206: 3203: 3187: 3180: 3179: 3178: 3177: 3124: 3116: 3112: 3108: 3103: 3101: 3072: 3052: 3036: 3009: 3006: 3003: 2997: 2994: 2991: 2988: 2985: 2979: 2976: 2973: 2967: 2961: 2958: 2955: 2952: 2949: 2939: 2938: 2937: 2936:and likewise 2920: 2917: 2911: 2908: 2905: 2899: 2893: 2890: 2887: 2881: 2878: 2875: 2869: 2866: 2863: 2860: 2857: 2847: 2846: 2845: 2844: 2828: 2825: 2790: 2786: 2758: 2748: 2730: 2726: 2699: 2696: 2693: 2687: 2684: 2681: 2678: 2675: 2672: 2669: 2666: 2659: 2658: 2657: 2626: 2611: 2606: 2579: 2560: 2557: 2541: 2533: 2529: 2525: 2492: 2475: 2471: 2466: 2450: 2430: 2407: 2403: 2389: 2379: 2365: 2351: 2337: 2325: 2321: 2318: 2302: 2295: 2294: 2293: 2290: 2264: 2260: 2231: 2224: 2220: 2186: 2184: 2156: 2138: 2134: 2128: 2125: 2122: 2118: 2111: 2106: 2102: 2096: 2092: 2088: 2083: 2079: 2073: 2069: 2060: 2057: 2053: 2049: 2045: 2034: 2020: 2017: 2014: 1994: 1974: 1954: 1886: 1883: 1880: 1834: 1830: 1807: 1803: 1780: 1776: 1772: 1769: 1766: 1761: 1757: 1747: 1745: 1727: 1723: 1702: 1699: 1694: 1690: 1667: 1663: 1635: 1631: 1625: 1621: 1617: 1610: 1606: 1600: 1596: 1588: 1584: 1578: 1574: 1566: 1565: 1564: 1548: 1544: 1535: 1517: 1513: 1507: 1503: 1480: 1476: 1470: 1466: 1443: 1439: 1416: 1412: 1396: 1382: 1379: 1374: 1370: 1366: 1361: 1357: 1353: 1350: 1347: 1344: 1336: 1320: 1317: 1312: 1308: 1287: 1267: 1264: 1259: 1255: 1234: 1214: 1211: 1208: 1188: 1185: 1182: 1174: 1155: 1152: 1149: 1146: 1143: 1140: 1137: 1134: 1130: 1127: 1124: 1121: 1118: 1115: 1112: 1109: 1106: 1103: 1099: 1096: 1093: 1090: 1087: 1084: 1081: 1078: 1075: 1068: 1067: 1066: 1052: 1049: 1046: 1043: 1040: 1020: 1017: 1011: 1008: 1005: 982: 979: 976: 973: 967: 964: 961: 938: 935: 932: 926: 923: 920: 894: 886: 880: 877: 872: 865: 860: 854: 849: 846: 840: 834: 829: 822: 817: 811: 806: 803: 797: 791: 786: 779: 774: 768: 763: 760: 753: 752: 751: 749: 744: 718: 697: 693: 687: 684: 681: 677: 671: 666: 663: 660: 656: 652: 647: 643: 637: 633: 629: 624: 620: 614: 610: 602: 601: 600: 584: 580: 576: 573: 568: 564: 540: 535: 531: 525: 522: 519: 515: 509: 504: 501: 498: 494: 490: 482: 478: 474: 469: 465: 454: 453: 452: 450: 432: 429: 426: 422: 399: 395: 391: 388: 383: 379: 340: 206: 203: 200: 197: 194: 108: 106: 101: 99: 95: 91: 87: 83: 79: 75: 71: 67: 63: 62:Verma modules 59: 54: 52: 48: 44: 41: 37: 33: 29: 22: 16713: 16702:Lie algebras 16700: 16667: 16620: 16602: 16567: 16550: 16541: 16516: 16512: 16503: 16491: 16478: 16473:Theorem 9.10 16466: 16454: 16435: 16431: 16421: 16394: 16390: 16384: 16372: 16360: 16324: 16314: 16232: 16225: 16218: 16140: 16090: 16013: 15882: 15875: 15868: 15865: 15846:for a given 15841: 15829: 15825:Weyl algebra 15815: 15812: 15806: 15800: 15795:only at the 15750: 15740: 15704: 15694: 15667: 15633: 15590: 15560: 15554: 15490:vector space 15444: 15418: 15415: 15252: 15248: 15120: 15116: 14952: 14904: 14856: 14852: 14817: 14744: 14651: 14593: 14413: 14092: 14037: 14030: 13910: 13904: 13794: 13697: 13627: 13457: 13453: 13410: 13404: 13362: 13356: 13346: 13310: 13203: 13173: 13112: 13102: 13099: 13008: 12998: 12954: 12948: 12937: 12925: 12814:Killing form 12781: 12703: 12618: 12239: 12054: 11888: 11701: 11655: 11551:if it obeys 11486: 11444:and thus to 11068: 10715: 10660: 10634: 10623: 10612: 10592: 10537: 10348: 10225: 10088: 10055:Weyl algebra 10048: 9998: 9906: 9722: 9713: 9597: 9547: 9402: 9303: 9104: 9043: 9039: 8938: 8663: 8529: 8365: 8355: 8345: 8137: 8131:This is the 8060: 8055: 7987: 7789: 7644: 7460:Quotienting 7459: 7420: 7316: 7228: 7083: 7037: 6881: 6878: 6789: 6687: 6611: 6602:Lyndon words 6537: 6496: 6486: 6445: 6381:has a basis 6344: 6308: 5936: 5930: 5919: 5906:vector basis 5870: 5840: 5655: 5560: 5081: 5077:quotient map 4977: 4930: 4865: 4827: 4723: 4717: 4714: 4619: 4606:Bol algebras 4599: 4585:; it is the 4572: 4565: 4561:free algebra 4557:free objects 4554: 4453: 4350: 4347:homomorphism 4344: 4248: 4155: 4045: 3974: 3706: 3640: 3536: 3533: 3458: 3393: 3387: 3379:Hopf algebra 3372: 3367: 3327: 3266:is given by 3242: 3114: 3104: 3027: 2935: 2842: 2717: 2609: 2607: 2476: 2469: 2422: 2291: 2259:free algebra 2219:vector space 2192: 2055: 2040: 1748: 1742:occur.) The 1654: 1402: 1172: 1170: 909: 745: 716: 714: 555: 346: 114: 102: 55: 31: 25: 16731:Ring theory 16461:Theorem 9.7 16397:: 379–393. 16379:Section 9.3 16367:Section 9.5 15788:algebra of 15786:convolution 15705:The center 13911:The center 13795:that is, a 13352:root system 13350:) form the 12960:determinant 11069:The center 5138:satisfying 2183:Lie bracket 2037:Formalities 43:associative 36:Lie algebra 28:mathematics 16725:Categories 16691:1255.17001 16352:References 15888:C*-algebra 15550:polynomial 14863:Riemannian 13983:for which 13451:of degree 11984:acting on 11409:derivation 10710:See also: 10608:9j-symbols 10188:isomorphic 7421:not at all 6948:filtration 6615:filtration 6598:Hall words 5979:such that 5585:, the map 5364:, the map 4931:such that 3243:where the 3109:. It is a 2465:direct sum 1247:satisfies 90:C* algebra 16659:120016227 16565:(1996) , 16549:" (2005) 16533:122356554 16519:(2): 91. 16471:Hall 2015 16459:Hall 2015 16377:Hall 2015 16365:Hall 2015 16283:∗ 16219:Now, the 16193:− 16182:φ 16161:φ 16117:φ 16108:φ 16102:ε 16061:φ 16049:⊗ 16034:φ 16028:Δ 15990:ψ 15978:φ 15957:ψ 15951:φ 15945:∇ 15907:∈ 15904:ψ 15898:φ 15793:supported 15587:Lie group 15383:− 15365:− 15356:− 15329:− 15315:⟩ 15297:⟨ 15231:− 15146:− 14974:− 14879:Laplacian 14875:SO (P, Q) 14859:isometric 14699:ε 14569:⊗ 14543:⊗ 14517:⊗ 14439:δ 14423:κ 14354:− 14341:− 14324:− 14001:⁡ 13955:∈ 13832:− 13803:κ 13775:⋯ 13765:κ 13751:⋯ 13646:∑ 13586:− 13473:∈ 13322:∈ 13250:∑ 13230:− 13146:⁡ 13140:→ 13048:∑ 13035:− 12979:⊗ 12824:κ 12791:κ 12757:⊗ 12735:κ 12593:⋯ 12583:κ 12556:⋯ 12545:⋯ 12535:κ 12503:⋯ 12493:κ 12382:⊗ 12335:⋯ 12325:κ 12279:⋯ 12269:κ 12215:⊗ 12212:⋯ 12209:⊗ 12196:⊗ 12178:⋯ 12168:κ 11931:∈ 11858:δ 11855:⊗ 11852:⋯ 11849:⊗ 11843:⊗ 11834:⋯ 11818:⊗ 11815:⋯ 11812:⊗ 11800:δ 11797:⊗ 11778:⊗ 11775:⋯ 11772:⊗ 11766:⊗ 11754:δ 11739:⊗ 11736:⋯ 11733:⊗ 11727:⊗ 11718:δ 11629:δ 11596:δ 11566:δ 11508:→ 11495:δ 11185:∈ 11146:∈ 11140:⊗ 11137:⋯ 11134:⊗ 11128:⊗ 10698:act like 10562:→ 10493:⊗ 10487:⊕ 10481:⊗ 10428:⊕ 10311:⊗ 10285:≅ 10265:⊕ 10065:⋆ 9981:− 9975:− 9942:⁡ 9829:∂ 9825:∂ 9811:∂ 9807:∂ 9772:⁡ 9746:⋆ 9618:⊗ 9568:⋆ 9565:∈ 9521:⊗ 9497:⋆ 9465:⋆ 9372:→ 9356:⋆ 9090:⋆ 9053:⋆ 8274:⁡ 8231:→ 7967:⊗ 7961:− 7955:⊗ 7846:⁡ 7695:− 7618:− 7510:− 7290:− 7023:⋯ 7020:⊂ 7000:⊂ 6997:⋯ 6994:⊂ 6974:⊂ 6964:⊂ 6857:⊗ 6854:⋯ 6851:⊗ 6826:⊗ 6758:⊕ 6755:⋯ 6752:⊕ 6732:⊕ 6722:⊕ 6469:≤ 6466:⋯ 6463:≤ 6457:≤ 6421:⊗ 6418:⋯ 6415:⊗ 6402:⊗ 6275:⊗ 6272:⋯ 6269:⊗ 6247:⊗ 6209:⊗ 6206:⋯ 6203:⊗ 6190:⊗ 6088:→ 6052:∈ 6010:δ 5964:→ 5912:fashion. 5625:∈ 5599:^ 5596:φ 5538:∈ 5491:φ 5488:⋯ 5462:φ 5436:⋯ 5410:^ 5407:φ 5378:^ 5375:φ 5292:→ 5267:^ 5264:φ 5241:φ 5212:φ 5200:φ 5197:− 5185:φ 5173:φ 5146:φ 5103:→ 5093:: 5090:φ 5071:into its 4999:→ 4960:∘ 4954:^ 4951:φ 4942:φ 4913:→ 4894:: 4888:^ 4885:φ 4845:∈ 4804:φ 4792:φ 4789:− 4777:φ 4765:φ 4738:φ 4697:→ 4684:φ 4641:→ 4631:: 4591:naturally 4522:⊗ 4510:⊗ 4480:⊗ 4436:⊗ 4394:⊗ 4373:⊗ 4308:↦ 4298:⊗ 4285:→ 4275:⊗ 4122:↦ 4116:× 4090:→ 4084:× 3957:→ 3930:→ 3911:→ 3905:→ 3866:∈ 3860:⊗ 3834:∈ 3828:⊗ 3786:∈ 3760:∈ 3721:⊂ 3682:∈ 3641:for some 3626:⋯ 3620:⊗ 3614:⊗ 3593:− 3587:⊗ 3581:− 3575:⊗ 3566:⊗ 3563:⋯ 3560:⊗ 3554:⊗ 3503:⊂ 3490:⊗ 3477:⊕ 3429:− 3423:⊗ 3417:− 3411:⊗ 3292:⊗ 3286:− 3280:⊗ 3254:∼ 3228:∼ 2998:⊗ 2986:⊗ 2959:⊗ 2918:⊗ 2882:⊗ 2861:⊗ 2759:⊗ 2682:⊗ 2676:− 2670:⊗ 2637:→ 2627:⊗ 2577:→ 2558:⊗ 2503:→ 2493:× 2451:⊕ 2431:⊗ 2408:⋯ 2404:⊕ 2390:⊗ 2380:⊗ 2366:⊕ 2352:⊗ 2338:⊕ 2326:⊕ 2115:Σ 2112:− 2089:− 2018:× 1884:× 1770:… 1655:with the 1618:⋯ 1383:… 1212:× 1186:× 1141:− 1122:− 1110:− 1082:− 977:− 878:− 657:∑ 630:− 577:… 495:∑ 392:… 201:− 16699:(2004), 16335:See also 15451:), then 14028:for all 11702:defining 10026:is just 8366:Suppose 5733:. (Take 5307:. Since 4828:for all 3368:smallest 3115:smallest 2843:defining 2610:defining 2524:bilinear 2522:that is 2056:smallest 96:between 16711:at the 16651:1834454 16595:0498740 15784:as the 15637:; with 15594:, then 15488:of the 15445:abelian 12962:is the 10628:of the 10610:, etc. 10158:of all 10119:modules 10053:is the 7679:lie in 6946:form a 6879:is the 6031:is the 5233:, then 4868:unital 4249:exactly 2463:is the 2181:with a 1536:of the 1532:plus a 1335:§ below 1227:matrix 748:sl(2,C) 447:be the 38:is the 16689:  16679:  16657:  16649:  16639:  16609:  16593:  16583:  16531:  15823:. See 15205:, and 15059:  15009:  14889:. The 13100:For a 12782:where 11889:Since 11656:(When 11020:, the 10718:center 10538:where 9907:where 9304:symbol 6790:where 6446:where 6163:to be 6067:. Let 4978:where 4866:unique 4178:up to 3886:kernel 2423:where 1173:is not 995:, and 892:  414:. Let 80:, the 40:unital 30:, the 16655:S2CID 16529:S2CID 16482:E.g. 16327:, or 15848:group 15486:basis 14871:SO(N) 14171:with 13201:is a 11407:is a 10956:into 10121:over 8898:with 7044:limit 3817:then 3364:coset 34:of a 16677:ISBN 16637:ISBN 16607:ISBN 16581:ISBN 14873:and 14093:The 13447:are 13411:The 12934:Rank 12017:and 10716:The 10606:and 9999:and 9275:for 9005:and 8061:The 6912:The 6035:for 4608:and 3849:and 3775:and 1987:and 715:and 347:Let 74:dual 16716:Lab 16687:Zbl 16629:doi 16521:doi 16440:doi 16436:284 16407:hdl 16399:doi 16395:272 15804:of 15561:If 15443:is 15419:If 14905:If 14865:or 14271:det 13538:By 13218:det 13143:End 13110:is 13023:det 13012:as 13006:of 12966:on 11311:on 10818:in 10761:of 10186:is 10162:of 10093:of 9939:log 9769:exp 9430:by 8056:and 7837:Sym 7494:by 7419:is 7121:to 3150:of 2656:as 2007:as 219:in 26:In 16727:: 16685:, 16675:, 16653:, 16647:MR 16645:, 16635:, 16627:, 16591:MR 16589:, 16579:, 16571:, 16527:. 16515:. 16434:. 16430:. 16405:. 16393:. 16231:C( 15874:C( 15834:. 15810:. 15164:, 14850:. 13992:ad 13875:ad 13856:ad 13517:ad 13497:ad 13234:ad 13183:ad 13127:ad 12930:. 12366:ad 11964:ad 11900:ad 11555:: 11484:. 11385:ad 11282:ad 11259:0. 11236:ad 10632:. 10621:. 10604:6j 10234:: 10223:. 10081:. 8661:. 8356:an 8271:gr 6950:: 5857:. 4612:. 4604:, 4349:. 4156:If 2526:, 1967:, 951:, 743:. 339:. 16714:n 16631:: 16553:. 16535:. 16523:: 16517:1 16448:. 16442:: 16415:. 16409:: 16401:: 16301:. 16298:) 16293:g 16288:( 16279:U 16258:) 16253:g 16248:( 16245:U 16235:) 16233:G 16226:G 16204:. 16201:) 16196:1 16189:x 16185:( 16179:= 16176:) 16173:x 16170:( 16167:) 16164:) 16158:( 16155:S 16152:( 16126:) 16123:e 16120:( 16114:= 16111:) 16105:( 16076:, 16073:) 16070:y 16067:x 16064:( 16058:= 16055:) 16052:y 16046:x 16043:( 16040:) 16037:) 16031:( 16025:( 15999:) 15996:x 15993:( 15987:) 15984:x 15981:( 15975:= 15972:) 15969:x 15966:( 15963:) 15960:) 15954:, 15948:( 15942:( 15919:) 15916:G 15913:( 15910:C 15901:, 15883:G 15878:) 15876:G 15869:G 15816:n 15807:G 15801:e 15772:) 15767:g 15762:( 15759:U 15741:G 15726:) 15721:g 15716:( 15713:Z 15695:V 15678:g 15647:g 15634:G 15615:) 15610:g 15605:( 15602:U 15591:G 15571:g 15555:K 15536:) 15531:g 15526:( 15523:U 15501:g 15472:) 15467:g 15462:( 15459:U 15449:0 15429:g 15398:) 15395:x 15392:+ 15389:y 15386:z 15380:z 15377:y 15374:, 15371:z 15368:2 15362:x 15359:z 15353:z 15350:x 15347:, 15344:y 15341:2 15338:+ 15335:x 15332:y 15326:y 15323:x 15320:( 15312:z 15309:, 15306:y 15303:, 15300:x 15293:C 15286:= 15283:) 15278:2 15272:l 15269:s 15263:( 15260:U 15234:H 15228:= 15225:] 15222:F 15219:, 15216:E 15213:[ 15193:F 15190:2 15187:= 15184:] 15181:F 15178:, 15175:H 15172:[ 15152:E 15149:2 15143:= 15140:] 15137:E 15134:, 15131:H 15128:[ 15100:) 15094:0 15089:1 15082:0 15077:0 15071:( 15066:= 15063:F 15055:, 15050:) 15044:0 15039:0 15032:1 15027:0 15021:( 15016:= 15013:E 15005:, 15000:) 14994:1 14989:0 14982:0 14977:1 14968:( 14963:= 14960:H 14935:2 14929:l 14926:s 14920:= 14915:g 14828:g 14799:) 14794:g 14789:( 14786:U 14766:) 14761:g 14756:( 14753:U 14723:k 14719:e 14713:k 14706:j 14703:i 14695:= 14692:] 14687:j 14683:e 14679:, 14674:i 14670:e 14666:[ 14637:0 14634:= 14631:] 14626:k 14622:e 14618:, 14613:2 14609:L 14605:[ 14577:3 14573:e 14564:3 14560:e 14556:+ 14551:2 14547:e 14538:2 14534:e 14530:+ 14525:1 14521:e 14512:1 14508:e 14504:= 14499:2 14495:L 14491:= 14486:) 14483:2 14480:( 14476:C 14446:j 14443:i 14435:= 14430:j 14427:i 14399:t 14396:) 14391:2 14387:z 14383:+ 14378:2 14374:y 14370:+ 14365:2 14361:x 14357:( 14349:3 14345:t 14338:= 14334:) 14330:I 14327:t 14319:3 14315:L 14311:z 14308:+ 14303:2 14299:L 14295:y 14292:+ 14287:1 14283:L 14279:x 14275:( 14246:3 14242:L 14238:z 14235:+ 14230:2 14226:L 14222:y 14219:+ 14214:1 14210:L 14206:x 14184:i 14180:L 14159:, 14154:i 14150:L 14146:= 14141:i 14137:e 14116:. 14111:1 14107:A 14074:. 14071:) 14068:) 14063:g 14058:( 14055:U 14052:( 14049:Z 14038:r 14033:; 14031:x 14016:0 14013:= 14010:) 14007:z 14004:( 13996:x 13971:) 13966:g 13961:( 13958:Z 13952:z 13932:) 13927:g 13922:( 13919:Z 13907:. 13905:m 13890:, 13885:x 13882:+ 13879:y 13871:= 13866:y 13863:+ 13860:x 13835:n 13829:d 13826:= 13823:m 13778:c 13772:b 13769:a 13759:c 13755:x 13746:b 13742:x 13736:a 13732:x 13728:= 13725:) 13722:x 13719:( 13714:n 13710:p 13681:i 13677:e 13671:i 13667:x 13661:d 13656:1 13653:= 13650:i 13642:= 13639:x 13613:. 13610:) 13607:x 13604:( 13599:n 13595:p 13589:n 13583:d 13579:k 13575:= 13572:) 13569:x 13566:k 13563:( 13558:n 13554:p 13526:. 13521:x 13512:k 13509:= 13504:x 13501:k 13476:K 13470:k 13460:. 13458:n 13454:d 13435:) 13432:x 13429:( 13424:n 13420:p 13407:. 13405:r 13390:) 13387:x 13384:( 13379:n 13375:p 13363:n 13357:r 13347:x 13332:. 13327:g 13319:x 13294:n 13290:t 13286:) 13283:x 13280:( 13275:n 13271:p 13265:d 13260:0 13257:= 13254:n 13246:= 13243:) 13238:x 13227:I 13224:t 13221:( 13204:d 13187:x 13159:) 13154:g 13149:( 13135:g 13130:: 13113:d 13103:d 13083:n 13079:t 13073:n 13069:p 13063:d 13058:0 13055:= 13052:n 13044:= 13041:) 13038:M 13032:I 13029:t 13026:( 13009:M 12999:M 12982:d 12975:V 12955:V 12949:d 12911:) 12908:) 12903:g 12898:( 12895:U 12892:( 12889:Z 12867:) 12864:2 12861:( 12857:C 12836:. 12831:j 12828:i 12798:j 12795:i 12765:j 12761:e 12752:i 12748:e 12742:j 12739:i 12731:= 12726:) 12723:2 12720:( 12716:C 12687:k 12683:e 12677:k 12670:j 12667:i 12663:f 12659:= 12656:] 12651:j 12647:e 12643:, 12638:i 12634:e 12630:[ 12604:0 12601:= 12596:j 12590:l 12587:k 12577:m 12570:j 12567:i 12563:f 12559:+ 12553:+ 12548:m 12542:j 12539:k 12529:l 12522:j 12519:i 12515:f 12511:+ 12506:m 12500:l 12497:j 12487:k 12480:j 12477:i 12473:f 12449:0 12446:= 12443:] 12438:) 12435:m 12432:( 12428:C 12424:, 12421:x 12418:[ 12390:. 12385:m 12377:) 12371:g 12362:( 12338:c 12332:b 12329:a 12304:m 12282:c 12276:b 12273:a 12248:m 12223:c 12219:e 12204:b 12200:e 12191:a 12187:e 12181:c 12175:b 12172:a 12164:= 12159:) 12156:m 12153:( 12149:C 12125:m 12103:a 12099:e 12072:a 12068:e 12041:. 12038:) 12033:g 12028:( 12025:U 12005:) 12000:g 11995:( 11992:T 11970:x 11941:, 11936:g 11928:x 11906:x 11870:. 11867:) 11864:u 11861:( 11846:w 11840:v 11837:+ 11831:+ 11821:u 11809:) 11806:w 11803:( 11794:v 11791:+ 11781:u 11769:w 11763:) 11760:v 11757:( 11748:= 11745:) 11742:u 11730:w 11724:v 11721:( 11688:G 11666:g 11641:] 11638:) 11635:w 11632:( 11626:, 11623:v 11620:[ 11617:+ 11614:] 11611:w 11608:, 11605:) 11602:v 11599:( 11593:[ 11590:= 11587:) 11584:] 11581:w 11578:, 11575:v 11572:[ 11569:( 11537:g 11513:g 11503:g 11498:: 11468:. 11465:) 11460:g 11455:( 11452:U 11432:) 11427:g 11422:( 11419:T 11392:g 11362:. 11359:) 11354:g 11349:( 11346:U 11326:; 11321:g 11295:. 11289:g 11256:= 11253:) 11250:z 11247:( 11242:x 11230:= 11227:] 11224:x 11221:, 11218:z 11215:[ 11195:; 11190:g 11182:x 11162:) 11157:g 11152:( 11149:U 11143:u 11131:w 11125:v 11122:= 11119:z 11099:) 11096:) 11091:g 11086:( 11083:U 11080:( 11077:Z 11054:) 11051:) 11046:g 11041:( 11038:U 11035:( 11032:Z 11002:g 10980:. 10977:) 10972:g 10967:( 10964:U 10942:g 10920:, 10917:) 10912:g 10907:( 10904:U 10884:) 10881:) 10876:g 10871:( 10868:U 10865:( 10862:Z 10842:. 10839:) 10834:g 10829:( 10826:U 10804:g 10782:) 10777:g 10772:( 10769:U 10749:) 10746:) 10741:g 10736:( 10733:U 10730:( 10727:Z 10686:) 10681:g 10676:( 10673:U 10645:g 10578:) 10573:g 10568:( 10565:U 10557:g 10552:: 10549:i 10523:) 10518:2 10512:g 10506:( 10501:2 10497:i 10490:1 10484:1 10478:) 10473:1 10467:g 10461:( 10456:1 10452:i 10448:= 10445:) 10440:2 10434:g 10423:1 10417:g 10411:( 10408:i 10383:2 10377:g 10371:, 10366:1 10360:g 10334:) 10329:2 10323:g 10317:( 10314:U 10308:) 10303:1 10297:g 10291:( 10288:U 10282:) 10277:2 10271:g 10260:1 10254:g 10248:( 10245:U 10211:) 10206:g 10201:( 10198:U 10172:g 10142:) 10137:g 10132:( 10129:U 10103:g 10034:m 10012:i 10008:m 9984:B 9978:A 9971:) 9965:B 9961:e 9955:A 9951:e 9946:( 9936:= 9933:) 9930:B 9927:, 9924:A 9921:( 9918:m 9890:t 9887:= 9884:v 9881:= 9878:u 9873:| 9869:) 9866:v 9863:( 9860:q 9857:) 9854:u 9851:( 9848:p 9844:) 9839:) 9832:v 9820:, 9814:u 9801:( 9795:i 9791:m 9785:i 9781:t 9776:( 9761:= 9758:) 9755:t 9752:( 9749:q 9743:) 9740:t 9737:( 9734:p 9700:) 9695:g 9690:( 9687:U 9663:) 9658:g 9653:( 9650:U 9630:) 9627:q 9624:( 9621:w 9615:) 9612:p 9609:( 9606:w 9584:. 9581:) 9576:g 9571:( 9562:q 9559:, 9556:p 9533:) 9530:q 9527:( 9524:w 9518:) 9515:p 9512:( 9509:w 9506:= 9503:) 9500:q 9494:p 9491:( 9488:w 9443:i 9439:e 9416:i 9412:t 9388:) 9383:g 9378:( 9375:U 9369:) 9364:g 9359:( 9353:: 9350:w 9327:) 9322:g 9317:( 9314:S 9288:i 9284:e 9261:i 9257:t 9236:K 9216:] 9211:i 9207:t 9203:[ 9200:K 9178:i 9174:t 9151:i 9147:e 9126:) 9121:g 9116:( 9113:S 9066:) 9061:g 9056:( 9026:) 9021:g 9016:( 9013:S 8993:) 8988:g 8983:( 8980:U 8960:) 8955:g 8950:( 8947:S 8919:) 8914:g 8909:( 8906:U 8886:) 8883:G 8880:( 8877:D 8857:) 8852:g 8847:( 8844:U 8824:) 8821:G 8818:( 8815:D 8795:) 8790:g 8785:( 8782:U 8762:) 8759:G 8756:( 8753:D 8731:g 8709:) 8706:G 8703:( 8700:D 8674:g 8649:) 8644:g 8639:( 8636:U 8616:) 8613:G 8610:( 8607:D 8587:) 8584:G 8581:( 8578:D 8558:G 8538:A 8513:g 8488:g 8466:G 8444:g 8420:g 8396:g 8374:G 8326:, 8323:) 8318:g 8313:( 8310:G 8290:) 8285:g 8280:( 8277:U 8247:) 8242:g 8237:( 8234:G 8228:) 8223:g 8218:( 8215:S 8195:. 8192:) 8187:g 8182:( 8179:U 8159:) 8154:g 8149:( 8146:G 8119:. 8116:) 8111:g 8106:( 8103:G 8081:g 8074:m 8070:G 8042:) 8037:g 8032:( 8029:S 8009:) 8004:g 7999:( 7996:G 7973:) 7970:a 7964:b 7958:b 7952:a 7949:( 7945:/ 7941:) 7936:g 7931:( 7928:T 7925:= 7922:) 7917:g 7912:( 7909:S 7886:) 7881:g 7876:( 7873:S 7851:g 7841:m 7814:g 7807:m 7803:S 7773:g 7766:m 7762:G 7739:g 7732:m 7728:G 7705:g 7698:1 7692:m 7688:U 7665:g 7658:m 7654:U 7628:g 7621:1 7615:m 7611:U 7588:g 7581:m 7577:U 7554:g 7547:m 7543:U 7520:g 7513:1 7507:m 7503:U 7480:g 7473:m 7469:U 7443:g 7436:m 7432:U 7405:g 7398:m 7394:G 7371:g 7364:n 7360:U 7337:g 7330:m 7326:U 7300:g 7293:1 7287:m 7283:U 7278:/ 7272:g 7265:m 7261:U 7257:= 7252:g 7245:m 7241:G 7215:. 7212:) 7207:g 7202:( 7199:U 7177:g 7170:m 7166:U 7145:. 7142:) 7137:g 7132:( 7129:U 7109:) 7104:g 7099:( 7096:T 7070:. 7067:) 7062:g 7057:( 7054:T 7015:g 7008:m 7004:T 6989:g 6982:2 6978:T 6969:g 6961:K 6932:g 6925:m 6921:T 6900:. 6895:g 6882:m 6862:g 6846:g 6841:= 6836:g 6829:m 6822:T 6818:= 6813:g 6806:m 6802:T 6773:g 6766:m 6762:T 6747:g 6740:2 6736:T 6727:g 6719:K 6716:= 6711:g 6704:m 6700:T 6674:. 6671:) 6666:g 6661:( 6658:U 6636:g 6629:m 6625:U 6584:. 6579:g 6557:. 6552:g 6522:) 6517:g 6512:( 6509:U 6487:X 6472:c 6460:b 6454:a 6429:c 6425:e 6410:b 6406:e 6397:a 6393:e 6369:) 6364:g 6359:( 6356:U 6345:X 6330:) 6325:g 6320:( 6317:U 6294:) 6289:c 6285:e 6281:( 6278:h 6266:) 6261:b 6257:e 6253:( 6250:h 6244:) 6239:a 6235:e 6231:( 6228:h 6225:= 6222:) 6217:c 6213:e 6198:b 6194:e 6185:a 6181:e 6177:( 6174:h 6151:h 6129:a 6125:e 6104:) 6099:g 6094:( 6091:T 6083:g 6078:: 6075:h 6055:X 6049:b 6046:, 6043:a 6017:b 6014:a 6006:= 6003:) 6000:b 5997:( 5992:a 5988:e 5967:K 5961:X 5958:: 5953:a 5949:e 5937:K 5931:X 5892:) 5887:g 5882:( 5879:U 5817:) 5812:g 5807:( 5804:U 5784:V 5764:) 5761:V 5758:( 5754:d 5751:n 5748:E 5744:= 5741:A 5721:) 5716:g 5711:( 5708:U 5688:V 5666:g 5641:) 5636:g 5631:( 5628:U 5622:x 5571:g 5557:. 5543:g 5531:j 5527:i 5522:X 5517:, 5514:) 5507:N 5503:i 5498:X 5494:( 5485:) 5478:1 5474:i 5469:X 5465:( 5459:= 5456:) 5449:N 5445:i 5440:X 5429:1 5425:i 5420:X 5416:( 5350:g 5328:) 5323:g 5318:( 5315:U 5295:A 5289:) 5284:g 5279:( 5276:U 5273:: 5221:) 5218:X 5215:( 5209:) 5206:Y 5203:( 5194:) 5191:Y 5188:( 5182:) 5179:X 5176:( 5170:= 5167:) 5164:] 5161:Y 5158:, 5155:X 5152:[ 5149:( 5126:A 5106:A 5098:g 5057:g 5035:h 5015:) 5010:g 5005:( 5002:U 4994:g 4989:: 4986:h 4963:h 4945:= 4916:A 4910:) 4905:g 4900:( 4897:U 4850:g 4842:Y 4839:, 4836:X 4813:) 4810:X 4807:( 4801:) 4798:Y 4795:( 4786:) 4783:Y 4780:( 4774:) 4771:X 4768:( 4762:= 4759:) 4756:] 4753:Y 4750:, 4747:X 4744:[ 4741:( 4724:A 4718:A 4700:A 4692:g 4687:: 4657:) 4652:g 4647:( 4644:U 4636:g 4628:h 4540:) 4537:c 4534:, 4531:a 4528:( 4525:m 4519:b 4516:+ 4513:c 4507:) 4504:b 4501:, 4498:a 4495:( 4492:m 4489:= 4486:) 4483:c 4477:b 4474:, 4471:a 4468:( 4465:m 4439:b 4433:) 4430:c 4427:, 4424:a 4421:( 4418:m 4415:+ 4412:) 4409:c 4406:, 4403:b 4400:( 4397:m 4391:a 4388:= 4385:) 4382:c 4379:, 4376:b 4370:a 4367:( 4364:m 4326:) 4323:b 4320:, 4317:a 4314:( 4311:m 4301:b 4295:a 4288:V 4278:V 4272:V 4269:: 4266:m 4235:m 4215:m 4195:) 4192:V 4189:( 4186:T 4166:m 4143:. 4140:) 4137:b 4134:, 4131:a 4128:( 4125:m 4119:b 4113:a 4093:V 4087:V 4081:V 4078:: 4075:m 4055:V 4026:I 4022:/ 4018:) 4013:g 4008:( 4005:T 4002:= 3999:) 3994:g 3989:( 3986:U 3960:0 3954:I 3950:/ 3946:) 3941:g 3936:( 3933:T 3927:) 3922:g 3917:( 3914:T 3908:I 3902:0 3872:. 3869:I 3863:j 3857:x 3837:I 3831:x 3825:j 3805:, 3802:) 3797:g 3792:( 3789:T 3783:x 3763:I 3757:j 3737:) 3732:g 3727:( 3724:T 3718:I 3707:I 3692:. 3687:g 3679:g 3676:, 3673:f 3670:, 3667:d 3664:, 3661:c 3658:, 3655:b 3652:, 3649:a 3623:g 3617:f 3611:) 3608:] 3605:b 3602:, 3599:a 3596:[ 3590:a 3584:b 3578:b 3572:a 3569:( 3557:d 3551:c 3537:I 3519:) 3514:g 3509:( 3506:T 3500:) 3495:g 3485:g 3480:( 3472:g 3444:] 3441:b 3438:, 3435:a 3432:[ 3426:a 3420:b 3414:b 3408:a 3394:I 3350:) 3345:g 3340:( 3337:U 3313:] 3310:b 3307:, 3304:a 3301:[ 3298:= 3295:a 3289:b 3283:b 3277:a 3224:/ 3220:) 3215:g 3210:( 3207:T 3204:= 3201:) 3196:g 3191:( 3188:U 3160:g 3138:) 3133:g 3128:( 3125:U 3086:) 3081:g 3076:( 3073:T 3053:; 3050:) 3045:g 3040:( 3037:T 3013:] 3010:c 3007:, 3004:a 3001:[ 2995:b 2992:+ 2989:c 2983:] 2980:b 2977:, 2974:a 2971:[ 2968:= 2965:] 2962:c 2956:b 2953:, 2950:a 2947:[ 2921:b 2915:] 2912:c 2909:, 2906:a 2903:[ 2900:+ 2897:] 2894:c 2891:, 2888:b 2885:[ 2879:a 2876:= 2873:] 2870:c 2867:, 2864:b 2858:a 2855:[ 2829:. 2826:n 2806:) 2801:g 2796:( 2791:n 2787:T 2764:g 2754:g 2749:= 2746:) 2741:g 2736:( 2731:2 2727:T 2703:] 2700:b 2697:, 2694:a 2691:[ 2688:= 2685:a 2679:b 2673:b 2667:a 2642:g 2632:g 2622:g 2593:) 2588:g 2583:( 2580:T 2574:) 2569:g 2564:( 2561:T 2555:) 2550:g 2545:( 2542:T 2508:g 2498:g 2488:g 2470:K 2400:) 2395:g 2385:g 2375:g 2370:( 2362:) 2357:g 2347:g 2342:( 2332:g 2322:K 2319:= 2316:) 2311:g 2306:( 2303:T 2275:g 2245:) 2240:g 2235:( 2232:T 2203:g 2167:g 2139:k 2135:x 2129:k 2126:j 2123:i 2119:c 2107:i 2103:x 2097:j 2093:x 2084:j 2080:x 2074:i 2070:x 2021:2 2015:2 1995:H 1975:F 1955:E 1933:g 1909:g 1887:n 1881:n 1859:g 1835:j 1831:X 1808:j 1804:x 1781:n 1777:x 1773:, 1767:, 1762:1 1758:x 1728:j 1724:x 1703:0 1700:= 1695:j 1691:k 1668:j 1664:k 1636:n 1632:k 1626:n 1622:x 1611:2 1607:k 1601:2 1597:x 1589:1 1585:k 1579:1 1575:x 1549:j 1545:x 1518:2 1514:x 1508:1 1504:x 1481:1 1477:x 1471:2 1467:x 1444:2 1440:x 1417:1 1413:x 1380:, 1375:3 1371:e 1367:, 1362:2 1358:e 1354:, 1351:e 1348:, 1345:1 1321:0 1318:= 1313:2 1309:e 1288:x 1268:0 1265:= 1260:2 1256:E 1235:E 1215:2 1209:2 1189:2 1183:2 1156:, 1153:h 1150:= 1147:e 1144:f 1138:f 1135:e 1131:, 1128:f 1125:2 1119:= 1116:h 1113:f 1107:f 1104:h 1100:, 1097:e 1094:2 1091:= 1088:h 1085:e 1079:e 1076:h 1053:h 1050:, 1047:f 1044:, 1041:e 1021:H 1018:= 1015:] 1012:F 1009:, 1006:E 1003:[ 983:F 980:2 974:= 971:] 968:F 965:, 962:H 959:[ 939:E 936:2 933:= 930:] 927:E 924:, 921:H 918:[ 895:, 887:) 881:1 873:0 866:0 861:1 855:( 850:= 847:H 841:) 835:0 830:1 823:0 818:0 812:( 807:= 804:F 798:) 792:0 787:0 780:1 775:0 769:( 764:= 761:E 729:g 698:k 694:x 688:k 685:j 682:i 678:c 672:n 667:1 664:= 661:k 653:= 648:i 644:x 638:j 634:x 625:j 621:x 615:i 611:x 585:n 581:x 574:, 569:1 565:x 541:. 536:k 532:X 526:k 523:j 520:i 516:c 510:n 505:1 502:= 499:k 491:= 488:] 483:j 479:X 475:, 470:i 466:X 462:[ 433:k 430:j 427:i 423:c 400:n 396:X 389:, 384:1 380:X 357:g 325:g 301:A 277:g 253:A 229:A 207:x 204:y 198:y 195:x 173:g 149:A 125:g 23:.

Index

Sherman–Takeda theorem
mathematics
Lie algebra
unital
associative
representations
representations
representation theory
Verma modules
Casimir operators
differential algebra
dual
non-commutative geometry
quantum groups
Gelfand–Naimark theorem
C* algebra
Tannaka–Krein duality
compact topological groups
left-invariant differential operators
structure constants
sl(2,C)
§ below
linear combination
Poincaré–Birkhoff–Witt theorem
tensor algebra
tensor product
quotient space
two-sided ideal
unital associative algebra
Lie bracket

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑