Knowledge

Tensor algebra

Source 📝

3488: 3058: 3483:{\displaystyle {\begin{aligned}\Delta (v_{1}\otimes \cdots \otimes v_{m})&=\Delta (v_{1})\otimes \cdots \otimes \Delta (v_{m})\\&=\sum _{p=0}^{m}\left(v_{1}\otimes \cdots \otimes v_{p}\right)\;\omega \;\left(v_{p+1}\otimes \cdots \otimes v_{m}\right)\\&=\sum _{p=0}^{m}\;\sum _{\sigma \in \mathrm {Sh} (p,m-p)}\;\left(v_{\sigma (1)}\otimes \dots \otimes v_{\sigma (p)}\right)\boxtimes \left(v_{\sigma (p+1)}\otimes \dots \otimes v_{\sigma (m)}\right)\end{aligned}}} 9085: 3796: 7633: 4996: 7351: 3539: 2867: 4232: 7388: 4794: 7026: 1549:
obey the required consistency conditions for the definition of a bialgebra and Hopf algebra; this can be explicitly checked in the manner below. Whenever one has a product obeying these consistency conditions, the construction goes through; insofar as such a product gave rise to a quotient space, the
8041: 6308: 3791:{\displaystyle {\begin{aligned}\operatorname {Sh} (p,q)=\{\sigma :\{1,\dots ,p+q\}\to \{1,\dots ,p+q\}\;\mid \;&\sigma {\text{ is bijective}},\;\sigma (1)<\sigma (2)<\cdots <\sigma (p),\\&{\text{and }}\;\sigma (p+1)<\sigma (p+2)<\cdots <\sigma (m)\}.\end{aligned}}} 7170: 2451: 7133: 2686: 1359:; a sign must also be kept track of, when permuting elements of the exterior algebra. This correspondence also lasts through the definition of the bialgebra, and on to the definition of a Hopf algebra. That is, the exterior algebra can also be given a Hopf algebra structure. 4026: 7628:{\displaystyle {\begin{aligned}(\nabla \circ (S\boxtimes \mathrm {id} )\circ \Delta )(v)&=(\nabla \circ (S\boxtimes \mathrm {id} ))(v\boxtimes 1+1\boxtimes v)\\&=\nabla (-v\boxtimes 1+1\boxtimes v)\\&=-v\otimes 1+1\otimes v\\&=-v+v\\&=0\end{aligned}}} 5797: 5626: 4783: 486: 2253: 4991:{\displaystyle {\begin{aligned}((\mathrm {id} \boxtimes \epsilon )\circ \Delta )(x)&=(\mathrm {id} \boxtimes \epsilon )(1\boxtimes x+x\boxtimes 1)\\&=1\boxtimes \epsilon (x)+x\boxtimes \epsilon (1)\\&=0+x\boxtimes 1\\&\cong x\end{aligned}}} 6856: 8435: 909: 7882: 6217: 4403: 6112: 3043: 7346:{\displaystyle {\begin{aligned}(\nabla \circ (S\boxtimes \mathrm {id} )\circ \Delta )(k)&=(\nabla \circ (S\boxtimes \mathrm {id} ))(1\boxtimes k)\\&=\nabla (1\boxtimes k)\\&=1\otimes k\\&=k\end{aligned}}} 1255:
Because of the generality of the tensor algebra, many other algebras of interest can be constructed by starting with the tensor algebra and then imposing certain relations on the generators, i.e. by constructing certain
6029: 6484: 1490: 293: 2862:{\displaystyle {\begin{aligned}\Delta (v\otimes w)&=(v\boxtimes 1+1\boxtimes v)\otimes (w\boxtimes 1+1\boxtimes w)\\&=(v\otimes w)\boxtimes 1+v\boxtimes w+w\boxtimes v+1\boxtimes (v\otimes w)\end{aligned}}} 2675: 2334: 7042: 3949: 2126: 5908: 3879: 1821:
symbol. This is not done below, and the two symbols are used independently and explicitly, so as to show the proper location of each. The result is a bit more verbose, but should be easier to comprehend.
4227:{\displaystyle \Delta (v_{1}\otimes \cdots \otimes v_{n})=\sum _{S\subseteq \{1,\dots ,n\}}\left(\prod _{k=1 \atop k\in S}^{n}v_{k}\right)\boxtimes \left(\prod _{k=1 \atop k\notin S}^{n}v_{k}\right)\!,} 1931: 6845: 568: 5858: 5157: 4694: 5695: 5524: 4702: 7769: 7701: 362: 7393: 7175: 6861: 4799: 3544: 3063: 2691: 5210: 6358: 6209: 1308:
structure. The other structure, although simpler, cannot be extended to a bialgebra. The first structure is developed immediately below; the second structure is given in the section on the
8247: 2303: 1975: 5107: 2166: 1660: 7832:
One may proceed in a similar manner, by homomorphism, verifying that the antipode inserts the appropriate cancellative signs in the shuffle, starting with the compatibility condition on
1547: 1419: 2029: 2943: 5037: 8102: 6765: 4633: 4536: 4478: 2610: 5943: 8300: 1241: 7021:{\displaystyle {\begin{aligned}S(v_{1}\otimes \cdots \otimes v_{m})&=S(v_{m})\otimes \cdots \otimes S(v_{1})\\&=(-1)^{m}v_{m}\otimes \cdots \otimes v_{1}\end{aligned}}} 4446: 5418: 1878: 4296: 6679: 6596: 5687: 5658: 5476: 5380: 4578: 765: 8134: 648: 6387: 5330: 5230: 2896: 1819: 1737:
symbol is used to denote the "external" tensor product, needed for the definition of a coalgebra. It is being used to distinguish it from the "internal" tensor product
1735: 6522: 8470: 5512: 5441: 5290: 5250: 4598: 1799: 1779: 1755: 1384: 1357: 1161: 859: 8345: 7801: 6720: 5310: 5270: 3511: 2568: 2474: 2158: 1843: 1512: 1337: 8337: 7860: 7380: 7162: 6634: 4504: 1195: 4011: 1715: 1125: 6413: 7828: 4258: 3984: 2520: 2497: 2326: 1686: 6554: 6143: 2544: 2049: 8036:{\displaystyle \Delta (v_{1}\otimes \dots \otimes v_{k}):=\sum _{j=0}^{k}(v_{0}\otimes \dots \otimes v_{j})\boxtimes (v_{j+1}\otimes \dots \otimes v_{k+1})} 6303:{\displaystyle \Delta \circ \nabla =(\nabla \boxtimes \nabla )\circ (\mathrm {id} \boxtimes \tau \boxtimes \mathrm {id} )\circ (\Delta \boxtimes \Delta )} 4307: 6043: 2953: 4017:
in the riffle shuffle: the riffle shuffle merely splits the ordered sequence into two ordered sequences, one on the left, and one on the right.
5951: 5810:
The unit and counit, and multiplication and comultiplication, all have to satisfy compatibility conditions. It is straightforward to see that
2446:{\displaystyle ((\mathrm {id} _{TV}\boxtimes \Delta )\circ \Delta )(v)=v\boxtimes 1\boxtimes 1+1\boxtimes v\boxtimes 1+1\boxtimes 1\boxtimes v} 7128:{\displaystyle \nabla \circ (S\boxtimes \mathrm {id} )\circ \Delta =\eta \circ \epsilon =\nabla \circ (\mathrm {id} \boxtimes S)\circ \Delta } 6421: 1424: 225: 1600:
to each of these. Verifying that quotienting preserves the Hopf algebra structure is the same as verifying that the maps are indeed natural.
2618: 3884: 2057: 5869: 3820: 9478: 1761:, below, for further clarification on this issue). In order to avoid confusion between these two symbols, most texts will replace 1886: 6773: 9627: 5792:{\displaystyle \nabla \circ (\mathrm {id} _{TV}\boxtimes \eta )=\mathrm {id} _{TV}\otimes \eta =\mathrm {id} _{TV}\cdot \eta } 5621:{\displaystyle \nabla \circ (\eta \boxtimes \mathrm {id} _{TV})=\eta \otimes \mathrm {id} _{TV}=\eta \cdot \mathrm {id} _{TV}} 4778:{\displaystyle (\mathrm {id} \boxtimes \epsilon )\circ \Delta =\mathrm {id} =(\epsilon \boxtimes \mathrm {id} )\circ \Delta .} 505: 8571: 5816: 481:{\displaystyle T(V)=\bigoplus _{k=0}^{\infty }T^{k}V=K\oplus V\oplus (V\otimes V)\oplus (V\otimes V\otimes V)\oplus \cdots .} 5118: 4641: 3048:
Continuing in this fashion, one can obtain an explicit expression for the coproduct acting on a homogenous element of order
1366:
can also be given the structure of a Hopf algebra, in exactly the same fashion, by replacing everywhere the tensor product
7712: 7644: 1781:
by a plain dot, or even drop it altogether, with the understanding that it is implied from context. This then allows the
9662: 9341: 5165: 6316: 9121: 8601: 8536: 2248:{\displaystyle (\mathrm {id} _{TV}\boxtimes \Delta )\circ \Delta =(\Delta \boxtimes \mathrm {id} _{TV})\circ \Delta } 6148: 908: 9543: 8178: 2261: 1942: 8524: 5065: 1618: 8171:, the corresponding coalgebra is termed cocomplete co-free. With the usual product this is not a bialgebra. It 1517: 1389: 7876:
One may define a different coproduct on the tensor algebra, simpler than the one given above. It is given by
9394: 9326: 9039: 8559: 1983: 958:
a unique isomorphism), but this definition requires to prove that an object satisfying this property exists.
2901: 1880:
and then by homomorphically extending it to the whole algebra. A suitable choice for the coproduct is then
9770: 9419: 8887: 5443:
is "trivial": it is just part of the standard definition of the tensor product of vector spaces. That is,
5004: 1285: 1257: 126: 98: 8049: 6728: 4606: 4509: 4451: 2573: 9657: 5916: 5332:
is the one required in the definition of comultiplication in a coalgebra. These two tensor products are
3986:). The shuffle follows directly from the first axiom of a co-algebra: the relative order of the elements 342: 8256: 4696:
It is a straightforward matter to verify that this counit satisfies the needed axiom for the coalgebra:
2160:
It is straightforward to verify that this definition satisfies the axioms of a coalgebra: that is, that
1200: 9468: 9288: 9060: 8818: 4416: 5391: 1848: 9140: 972: 9622: 6415:
The verification is verbose but straightforward; it is not given here, except for the final result:
5272:; and notational sloppiness here would lead to utter chaos. To strengthen this: the tensor product 4263: 9724: 9642: 9596: 9303: 9065: 9055: 8764: 8140: 6642: 6559: 5663: 5634: 5446: 5350: 4541: 1066: 735: 8107: 611: 136:
structures; one simple one, which does not make it a bialgebra, but does lead to the concept of a
9694: 9381: 9298: 9268: 9070: 8774: 8664: 8303: 6363: 2547: 8430:{\displaystyle \Delta (v\otimes w)=1\boxtimes (v\otimes w)+v\boxtimes w+(v\otimes w)\boxtimes 1} 5315: 5215: 2898:
as this is just plain-old scalar multiplication in the algebra; that is, one trivially has that
2875: 1804: 1720: 9780: 9652: 9508: 9463: 8952: 8877: 8798: 8788: 8754: 8704: 6492: 4448:
is given by the projection of the field component out from the algebra. This can be written as
1591: 776: 8443: 5485: 5426: 5275: 5235: 4583: 1784: 1764: 1757:, which is already being used to denote multiplication in the tensor algebra (see the section 1740: 1369: 1342: 1130: 832: 9734: 9689: 9169: 9114: 8947: 8941: 8714: 8594: 7777: 6687: 5295: 5255: 3496: 2553: 2459: 2134: 1828: 1497: 1322: 8312: 7835: 7359: 7141: 6604: 4483: 1170: 9709: 9637: 9523: 9389: 9351: 9283: 8911: 8834: 8792: 8735: 8657: 8486: 8481: 3989: 880: 676: 658: 51: 6211:
The most difficult to verify is the compatibility of multiplication and comultiplication:
1691: 1101: 954:
can be defined as the unique algebra satisfying this property (specifically, it is unique
8: 9586: 9409: 9399: 9248: 9233: 9189: 8968: 8892: 8838: 8824: 8814: 8758: 8699: 8684: 8674: 8496: 6392: 5802:
where the right-hand side of these equations should be understood as the scalar product.
5515: 901: 784: 183: 159: 7810: 4240: 3966: 2502: 2479: 2308: 1668: 818:, which formally expresses the statement that it is the most general algebra containing 9719: 9576: 9429: 9243: 9179: 8927: 8844: 8748: 8679: 8647: 8626: 8621: 6539: 6128: 5051:
defines both multiplication, and comultiplication, and requires them to be compatible.
2529: 2456:
and likewise for the other side. At this point, one could invoke a lemma, and say that
2034: 1247:, as they take in a vector and give out a scalar (the given coordinate of the vector). 815: 87: 2570:
is a homomorphism. However, it is insightful to provide explicit expressions. So, for
1049:, another way of looking at the tensor algebra is as the "algebra of polynomials over 657:
The construction generalizes in a straightforward manner to the tensor algebra of any
9765: 9714: 9483: 9458: 9273: 9184: 9164: 9018: 8988: 8858: 8768: 8719: 8652: 8567: 8532: 8491: 8156: 7036:
Compatibility of the antipode with multiplication and comultiplication requires that
1363: 1300:
structures. One is compatible with the tensor product, and thus can be extended to a
1273: 802: 114: 79: 9775: 9729: 9404: 9371: 9356: 9238: 9107: 9088: 8973: 8642: 8587: 8514: 7871: 1316: 1309: 1277: 1269: 1244: 1084: 665: 137: 118: 110: 5112:
which, in this case, was already given as the "internal" tensor product. That is,
9699: 9647: 9591: 9571: 9473: 9361: 9228: 9199: 9008: 8998: 8917: 8744: 8669: 8563: 8528: 8518: 3514: 1554: 8309:
The difference between this, and the other coalgebra is most easily seen in the
4398:{\displaystyle \Delta :T^{m}V\to \bigoplus _{k=0}^{m}T^{k}V\boxtimes T^{(m-k)}V} 9739: 9704: 9601: 9434: 9424: 9414: 9336: 9308: 9293: 9278: 9012: 8931: 8782: 8694: 590: 208: 155: 63: 9684: 6107:{\displaystyle (\epsilon \circ \nabla )(x\boxtimes y)=\epsilon (x\otimes y)=0} 3038:{\displaystyle \Delta :T^{2}V\to \bigoplus _{k=0}^{2}T^{k}V\boxtimes T^{2-k}V} 9759: 9676: 9581: 9493: 9366: 8937: 8902: 6360:
exchanges elements. The compatibility condition only needs to be verified on
3518: 1080: 923: 82:
from algebras to vector spaces: it is the "most general" algebra containing
9744: 9548: 9533: 9498: 9346: 9331: 8921: 8854: 8828: 8709: 8168: 8139:
This coproduct gives rise to a coalgebra. It describes a coalgebra that is
6533: 6524:
an explicit expression for this was given in the coalgebra section, above.
1305: 1281: 1058: 798: 718: 573:
given by the tensor product, which is then extended by linearity to all of
324: 310: 179: 145: 122: 75: 67: 28: 9632: 9606: 9528: 9217: 9156: 8992: 8978: 8896: 8882: 8848: 6024:{\displaystyle (\Delta \circ \eta )(k)=\Delta (k)=k(1\boxtimes 1)\cong k} 2523: 1584:
taking vector spaces to the category of exterior algebras, and a functor
788: 20: 6479:{\displaystyle (\Delta \circ \nabla )(v\boxtimes w)=\Delta (v\otimes w)} 1485:{\displaystyle v\otimes _{\mathrm {Sym} }w=w\otimes _{\mathrm {Sym} }v.} 288:{\displaystyle T^{k}V=V^{\otimes k}=V\otimes V\otimes \cdots \otimes V.} 9513: 9002: 8982: 8907: 8551: 8501: 827: 768: 6389:; the full compatibility follows as a homomorphic extension to all of 2670:{\displaystyle \Delta :v\otimes w\mapsto \Delta (v)\otimes \Delta (w)} 9488: 9439: 5945:
in order to work; without this, one loses linearity. Component-wise,
5048: 3517:. This is expressed in the second summation, which is taken over all 1845:
is most easily built up in stages, first by defining it for elements
1609: 1301: 1297: 163: 141: 133: 97:
The tensor algebra is important because many other algebras arise as
3944:{\displaystyle v_{\sigma (p+1)}\otimes \dots \otimes v_{\sigma (m)}} 2121:{\displaystyle \Delta (k)=k(1\boxtimes 1)=k\boxtimes 1=1\boxtimes k} 9518: 9503: 8778: 8740: 8689: 8472:, which is clearly missing a shuffled term, as compared to before. 687: 5903:{\displaystyle \Delta \circ \eta =\eta \boxtimes \eta \cong \eta } 3874:{\displaystyle v_{\sigma (1)}\otimes \dots \otimes v_{\sigma (p)}} 1315:
The development provided below can be equally well applied to the
9212: 9174: 8610: 5312:
used in the definition of an algebra, whereas the tensor product
1558: 968: 729: 697:-modules because the iterated tensor products cannot be formed.) 190: 9538: 9130: 1494:
In each case, this is possible because the alternating product
55: 6639:
This is sometimes called the "anti-identity". The antipode on
5001:
where, for the last step, one has made use of the isomorphism
6145:, and otherwise, one has scalar multiplication on the field: 955: 3817:}}. It is also convenient to take the pure tensor products 2947:
The extension above preserves the algebra grading. That is,
581:). This multiplication rule implies that the tensor algebra 9099: 8579: 5039:, as is appropriate for the defining axiom of the counit. 1926:{\displaystyle \Delta :v\mapsto v\boxtimes 1+1\boxtimes v} 6840:{\displaystyle S(v\otimes w)=S(w)\otimes S(v)=w\otimes v} 5863:
Similarly, the unit is compatible with comultiplication:
6536:
adds an antipode to the bialgebra axioms. The antipode
6034:
with the right-hand side making use of the isomorphism.
5292:
of the tensor algebra corresponds to the multiplication
943:. As for other universal properties, the tensor algebra 563:{\displaystyle T^{k}V\otimes T^{\ell }V\to T^{k+\ell }V} 144:, and can be extended by giving an antipode to create a 5853:{\displaystyle \epsilon \circ \eta =\mathrm {id} _{K}.} 5518:
require the two homomorphisms (or commuting diagrams):
3513:
symbol, which should appear as ш, the sha, denotes the
2872:
In the above expansion, there is no need to ever write
1590:
taking vector spaces to symmetric algebras. There is a
1304:, and can be further be extended with an antipode to a 814:
Explicitly, the tensor algebra satisfies the following
8261: 5152:{\displaystyle \nabla :x\boxtimes y\mapsto x\otimes y} 4689:{\displaystyle x\in T^{1}V\oplus T^{2}V\oplus \cdots } 91: 8446: 8348: 8315: 8259: 8181: 8110: 8052: 7885: 7838: 7813: 7780: 7715: 7647: 7391: 7362: 7173: 7144: 7045: 6859: 6776: 6731: 6690: 6645: 6607: 6562: 6542: 6495: 6424: 6395: 6366: 6319: 6220: 6151: 6131: 6046: 5954: 5919: 5872: 5819: 5698: 5666: 5637: 5527: 5488: 5449: 5429: 5394: 5353: 5318: 5298: 5278: 5258: 5238: 5218: 5168: 5121: 5068: 5007: 4797: 4705: 4644: 4609: 4586: 4544: 4512: 4486: 4454: 4419: 4310: 4266: 4243: 4029: 3992: 3969: 3887: 3823: 3542: 3499: 3061: 2956: 2904: 2878: 2689: 2621: 2576: 2556: 2532: 2505: 2482: 2462: 2337: 2311: 2264: 2169: 2137: 2060: 2037: 1986: 1945: 1889: 1851: 1831: 1807: 1787: 1767: 1743: 1723: 1694: 1671: 1621: 1520: 1500: 1427: 1392: 1372: 1345: 1325: 1203: 1173: 1133: 1104: 835: 738: 614: 508: 365: 228: 7764:{\displaystyle (\eta \circ \epsilon )(x)=\eta (0)=0} 7696:{\displaystyle (\eta \circ \epsilon )(k)=\eta (k)=k} 5423:
That the unit is compatible with the tensor product
1550:
quotient space inherits the Hopf algebra structure.
700: 7138:This is straightforward to verify componentwise on 1578:-associative algebras. But there is also a functor 8464: 8429: 8331: 8294: 8241: 8128: 8096: 8035: 7854: 7822: 7795: 7763: 7695: 7627: 7374: 7345: 7156: 7127: 7020: 6839: 6759: 6714: 6673: 6628: 6590: 6548: 6516: 6478: 6407: 6381: 6352: 6302: 6203: 6137: 6106: 6023: 5937: 5902: 5852: 5791: 5681: 5652: 5620: 5506: 5470: 5435: 5412: 5374: 5324: 5304: 5284: 5264: 5244: 5224: 5204: 5151: 5101: 5031: 4990: 4777: 4688: 4627: 4592: 4572: 4530: 4498: 4472: 4440: 4397: 4290: 4252: 4226: 4005: 3978: 3943: 3873: 3790: 3505: 3482: 3037: 2937: 2890: 2861: 2669: 2604: 2562: 2538: 2514: 2491: 2468: 2445: 2320: 2297: 2247: 2152: 2120: 2043: 2023: 1969: 1925: 1872: 1837: 1813: 1793: 1773: 1749: 1729: 1709: 1680: 1654: 1541: 1506: 1484: 1413: 1378: 1351: 1331: 1235: 1189: 1155: 1119: 987:-algebras. This means that any linear map between 853: 759: 642: 562: 480: 287: 154:: In this article, all algebras are assumed to be 5205:{\displaystyle \nabla (x\boxtimes y)=x\otimes y.} 4220: 679:, one can still perform the construction for any 330:(as a one-dimensional vector space over itself). 9757: 6353:{\displaystyle \tau (x\boxtimes y)=y\boxtimes x} 162:. The unit is explicitly required to define the 8167:. In the same way that the tensor algebra is a 8046:Here, as before, one uses the notational trick 7865: 6204:{\displaystyle k_{1}\otimes k_{2}=k_{1}k_{2}.} 6037:Multiplication and the counit are compatible: 5913:The above requires the use of the isomorphism 1036: 9115: 8595: 8285: 8264: 8242:{\displaystyle v_{i}\cdot v_{j}=(i,j)v_{i+j}} 4301:As before, the algebra grading is preserved: 2298:{\displaystyle \mathrm {id} _{TV}:x\mapsto x} 1970:{\displaystyle \Delta :1\mapsto 1\boxtimes 1} 499:) is determined by the canonical isomorphism 140:, and a more complicated one, which yields a 16:Universal construction in multilinear algebra 8175:be turned into a bialgebra with the product 5102:{\displaystyle \nabla :TV\boxtimes TV\to TV} 4580:. By homomorphism under the tensor product 4285: 4267: 4100: 4082: 3778: 3634: 3610: 3604: 3580: 3571: 1655:{\displaystyle \Delta :TV\to TV\boxtimes TV} 637: 631: 604:subspace. This grading can be extended to a 62:(of any rank) with multiplication being the 4260:, and where the sum is over all subsets of 2612:, one has (by definition) the homomorphism 2476:extends trivially, by linearity, to all of 1065:, those become non-commuting variables (or 961:The above universal property implies that 9122: 9108: 8602: 8588: 8550: 3717: 3655: 3641: 3637: 3352: 3309: 3232: 3228: 1717:to avoid an explosion of parentheses. The 1542:{\displaystyle \otimes _{\mathrm {Sym} }} 1414:{\displaystyle \otimes _{\mathrm {Sym} }} 811:-algebra to its underlying vector space. 9479:Covariance and contravariance of vectors 8513: 1608:The coalgebra is obtained by defining a 1094:Note that the algebra of polynomials on 912:Universal property of the tensor algebra 5252:was actually one and the same thing as 5212:The above should make it clear why the 5059:Multiplication is given by an operator 2024:{\displaystyle 1\in K=T^{0}V\subset TV} 9758: 2938:{\displaystyle 1\otimes v=1\cdot v=v.} 9103: 8583: 8253:denotes the binomial coefficient for 5032:{\displaystyle TV\boxtimes K\cong TV} 3963:, respectively (the empty product in 1296:The tensor algebra has two different 1163:: a (homogeneous) linear function on 1057:non-commuting variables". If we take 8097:{\displaystyle v_{0}=v_{k+1}=1\in K} 6760:{\displaystyle v\otimes w\in T^{2}V} 4628:{\displaystyle \epsilon :x\mapsto 0} 4531:{\displaystyle \epsilon :k\mapsto k} 4473:{\displaystyle \epsilon :v\mapsto 0} 2605:{\displaystyle v\otimes w\in T^{2}V} 1079:), subject to no constraints beyond 86:, in the sense of the corresponding 5938:{\displaystyle K\boxtimes K\cong K} 13: 9342:Tensors in curvilinear coordinates 8349: 8295:{\displaystyle {\tbinom {i+j}{i}}} 8268: 7886: 7519: 7472: 7469: 7453: 7428: 7418: 7415: 7399: 7289: 7254: 7251: 7235: 7210: 7200: 7197: 7181: 7122: 7106: 7103: 7093: 7075: 7065: 7062: 7046: 7031: 6458: 6434: 6428: 6294: 6288: 6275: 6272: 6258: 6255: 6242: 6236: 6227: 6221: 6056: 5982: 5958: 5873: 5837: 5834: 5770: 5767: 5743: 5740: 5713: 5710: 5699: 5605: 5602: 5578: 5575: 5548: 5545: 5528: 5514:More verbosely, the axioms for an 5299: 5259: 5169: 5122: 5069: 4857: 4854: 4828: 4812: 4809: 4769: 4759: 4756: 4739: 4736: 4729: 4713: 4710: 4311: 4174: 4115: 4030: 3325: 3322: 3139: 3111: 3066: 2957: 2694: 2655: 2640: 2622: 2557: 2463: 2374: 2365: 2349: 2346: 2270: 2267: 2242: 2223: 2220: 2212: 2203: 2194: 2178: 2175: 2061: 2051:. By linearity, one obviously has 1946: 1890: 1832: 1801:symbol to be used in place of the 1622: 1572:-vector spaces to the category of 1533: 1530: 1527: 1470: 1467: 1464: 1443: 1440: 1437: 1405: 1402: 1399: 1386:by the symmetrized tensor product 1236:{\displaystyle x^{1},\dots ,x^{n}} 907: 783:-vector spaces to the category of 397: 14: 9792: 8302:. This bialgebra is known as the 5054: 4788:Working this explicitly, one has 4441:{\displaystyle \epsilon :TV\to K} 3801:By convention, one takes that Sh( 701:Adjunction and universal property 693:. (It does not work for ordinary 9084: 9083: 8562:, vol. 211 (3rd ed.), 6850:This extends homomorphically to 5805: 5413:{\displaystyle \eta :k\mapsto k} 1873:{\displaystyle v\in V\subset TV} 608:-grading by appending subspaces 132:The tensor algebra also has two 6527: 5385:is just the embedding, so that 1825:The definition of the operator 879:can be uniquely extended to an 169: 8418: 8406: 8388: 8376: 8364: 8352: 8220: 8208: 8030: 7986: 7980: 7948: 7921: 7889: 7752: 7746: 7737: 7731: 7728: 7716: 7684: 7678: 7669: 7663: 7660: 7648: 7549: 7522: 7506: 7482: 7479: 7476: 7459: 7450: 7440: 7434: 7431: 7422: 7405: 7396: 7304: 7292: 7276: 7264: 7261: 7258: 7241: 7232: 7222: 7216: 7213: 7204: 7187: 7178: 7116: 7099: 7069: 7052: 6976: 6966: 6953: 6940: 6925: 6912: 6899: 6867: 6822: 6816: 6807: 6801: 6792: 6780: 6700: 6694: 6617: 6611: 6473: 6461: 6452: 6440: 6437: 6425: 6335: 6323: 6297: 6285: 6279: 6251: 6245: 6233: 6095: 6083: 6074: 6062: 6059: 6047: 6012: 6000: 5991: 5985: 5976: 5970: 5967: 5955: 5732: 5705: 5561: 5534: 5404: 5363: 5184: 5172: 5137: 5090: 4943: 4937: 4922: 4916: 4894: 4870: 4867: 4850: 4840: 4834: 4831: 4822: 4805: 4802: 4763: 4746: 4723: 4706: 4619: 4522: 4464: 4432: 4387: 4375: 4330: 4291:{\displaystyle \{1,\dots ,n\}} 4065: 4033: 3936: 3930: 3908: 3896: 3866: 3860: 3838: 3832: 3775: 3769: 3754: 3742: 3733: 3721: 3701: 3695: 3680: 3674: 3665: 3659: 3638: 3607: 3565: 3553: 3466: 3460: 3438: 3426: 3400: 3394: 3372: 3366: 3347: 3329: 3155: 3142: 3127: 3114: 3101: 3069: 2976: 2852: 2840: 2798: 2786: 2773: 2749: 2743: 2719: 2709: 2697: 2664: 2658: 2649: 2643: 2637: 2386: 2380: 2377: 2368: 2341: 2338: 2289: 2236: 2209: 2197: 2170: 2091: 2079: 2070: 2064: 1955: 1899: 1704: 1698: 1634: 1339:in place of the tensor symbol 1150: 1137: 1114: 1108: 900:as indicated by the following 845: 754: 748: 742: 538: 466: 448: 442: 430: 375: 369: 1: 9395:Exterior covariant derivative 9327:Tensor (intrinsic definition) 8560:Graduate Texts in Mathematics 8507: 7862:and proceeding by induction. 6674:{\displaystyle v\in V=T^{1}V} 6591:{\displaystyle k\in K=T^{0}V} 5682:{\displaystyle TV\boxtimes K} 5660:, and that symmetrically, on 5653:{\displaystyle K\boxtimes TV} 5471:{\displaystyle k\otimes x=kx} 5375:{\displaystyle \eta :K\to TV} 5232:symbol needs to be used: the 4573:{\displaystyle k\in K=T^{0}V} 1286:universal enveloping algebras 1268:). Examples of this are the 760:{\displaystyle V\mapsto T(V)} 127:universal enveloping algebras 9420:Raising and lowering indices 8888:Eigenvalues and eigenvectors 8143:to the algebra structure on 8129:{\displaystyle v\otimes 1=v} 5042: 1688:is used as a short-hand for 1603: 1291: 1250: 805:that sends each associative 643:{\displaystyle T^{k}V=\{0\}} 7: 9658:Gluon field strength tensor 9129: 8609: 8475: 7866:Cofree cocomplete coalgebra 6382:{\displaystyle V\subset TV} 1557:, one says that there is a 1037:Non-commutative polynomials 1011:-algebra homomorphism from 305:consists of all tensors on 10: 9797: 9469:Cartan formalism (physics) 9289:Penrose graphical notation 8339:term. Here, one has that 8304:divided power Hopf algebra 7869: 5325:{\displaystyle \boxtimes } 5225:{\displaystyle \boxtimes } 4237:where the products are in 2891:{\displaystyle 1\otimes v} 1814:{\displaystyle \boxtimes } 1730:{\displaystyle \boxtimes } 1514:and the symmetric product 1421:, i.e. that product where 867:to an associative algebra 732:; this means that the map 9675: 9615: 9564: 9557: 9449: 9380: 9317: 9261: 9208: 9155: 9148: 9141:Glossary of tensor theory 9137: 9079: 9048: 9032: 8961: 8868: 8807: 8728: 8635: 8617: 6517:{\displaystyle v,w\in V,} 5344:The unit for the algebra 4408: 2550:of the free algebra, and 2031:is the unit of the field 1319:, using the wedge symbol 973:category of vector spaces 9725:Gregorio Ricci-Curbastro 9597:Riemann curvature tensor 9304:Van der Waerden notation 8465:{\displaystyle v,w\in V} 5507:{\displaystyle x\in TV.} 5436:{\displaystyle \otimes } 5285:{\displaystyle \otimes } 5245:{\displaystyle \otimes } 4593:{\displaystyle \otimes } 1794:{\displaystyle \otimes } 1774:{\displaystyle \otimes } 1750:{\displaystyle \otimes } 1379:{\displaystyle \otimes } 1352:{\displaystyle \otimes } 1197:for example coordinates 1156:{\displaystyle T(V^{*})} 854:{\displaystyle f:V\to A} 74:, in the sense of being 9695:Elwin Bruno Christoffel 9628:Angular momentum tensor 9299:Tetrad (index notation) 9269:Abstract index notation 8962:Algebraic constructions 8665:Algebraic number theory 8525:Elements of Mathematics 8520:Algebra I. Chapters 1-3 7796:{\displaystyle x\in TV} 6715:{\displaystyle S(v)=-v} 5339: 5305:{\displaystyle \nabla } 5265:{\displaystyle \nabla } 3809:) equals {id: {1, ..., 3506:{\displaystyle \omega } 2563:{\displaystyle \Delta } 2469:{\displaystyle \Delta } 2305:is the identity map on 2153:{\displaystyle k\in K.} 1838:{\displaystyle \Delta } 1507:{\displaystyle \wedge } 1332:{\displaystyle \wedge } 787:. Similarly with other 9509:Levi-Civita connection 8705:Noncommutative algebra 8466: 8431: 8333: 8332:{\displaystyle T^{2}V} 8296: 8243: 8130: 8098: 8037: 7947: 7856: 7855:{\displaystyle T^{2}V} 7824: 7797: 7765: 7697: 7629: 7376: 7375:{\displaystyle v\in V} 7347: 7158: 7157:{\displaystyle k\in K} 7129: 7022: 6841: 6761: 6716: 6675: 6630: 6629:{\displaystyle S(k)=k} 6592: 6550: 6518: 6480: 6409: 6383: 6354: 6304: 6205: 6139: 6108: 6025: 5939: 5904: 5854: 5793: 5683: 5654: 5622: 5508: 5472: 5437: 5414: 5376: 5326: 5306: 5286: 5266: 5246: 5226: 5206: 5153: 5103: 5033: 4992: 4779: 4690: 4629: 4594: 4574: 4532: 4500: 4499:{\displaystyle v\in V} 4474: 4442: 4399: 4353: 4292: 4254: 4228: 4204: 4145: 4007: 3980: 3945: 3875: 3792: 3507: 3484: 3308: 3188: 3039: 2999: 2939: 2892: 2863: 2671: 2606: 2564: 2540: 2516: 2493: 2470: 2447: 2322: 2299: 2249: 2154: 2122: 2045: 2025: 1971: 1927: 1874: 1839: 1815: 1795: 1775: 1751: 1731: 1711: 1682: 1656: 1543: 1508: 1486: 1415: 1380: 1353: 1333: 1243:on a vector space are 1237: 1191: 1190:{\displaystyle V^{*},} 1157: 1121: 1005:extends uniquely to a 913: 855: 761: 650:for negative integers 644: 564: 491:The multiplication in 482: 401: 289: 189:. For any nonnegative 109:). These include the 9735:Jan Arnoldus Schouten 9690:Augustin-Louis Cauchy 9170:Differential geometry 8942:Orthogonal complement 8715:Representation theory 8467: 8432: 8334: 8297: 8244: 8131: 8099: 8038: 7927: 7857: 7825: 7798: 7766: 7698: 7630: 7377: 7348: 7159: 7130: 7023: 6842: 6762: 6717: 6676: 6631: 6593: 6551: 6519: 6481: 6410: 6384: 6355: 6305: 6206: 6140: 6109: 6026: 5940: 5905: 5855: 5794: 5684: 5655: 5623: 5509: 5473: 5438: 5415: 5377: 5327: 5307: 5287: 5267: 5247: 5227: 5207: 5154: 5104: 5034: 4993: 4780: 4691: 4630: 4595: 4575: 4533: 4501: 4475: 4443: 4400: 4333: 4293: 4255: 4229: 4169: 4110: 4008: 4006:{\displaystyle v_{k}} 3981: 3946: 3876: 3793: 3508: 3485: 3288: 3168: 3040: 2979: 2940: 2893: 2864: 2672: 2607: 2565: 2541: 2517: 2494: 2471: 2448: 2323: 2300: 2250: 2155: 2123: 2046: 2026: 1972: 1928: 1875: 1840: 1816: 1796: 1776: 1752: 1732: 1712: 1683: 1657: 1612:or diagonal operator 1566:from the category of 1544: 1509: 1487: 1416: 1381: 1354: 1334: 1238: 1192: 1158: 1122: 1045:has finite dimension 981:, to the category of 911: 856: 762: 645: 600:serving as the grade- 565: 483: 381: 290: 9710:Carl Friedrich Gauss 9643:stress–energy tensor 9638:Cauchy stress tensor 9390:Covariant derivative 9352:Antisymmetric tensor 9284:Multi-index notation 9040:Algebraic structures 8808:Algebraic structures 8793:Equivalence relation 8736:Algebraic expression 8487:Braided Hopf algebra 8482:Braided vector space 8444: 8346: 8313: 8257: 8179: 8108: 8050: 7883: 7836: 7811: 7778: 7713: 7645: 7389: 7360: 7171: 7142: 7043: 6857: 6774: 6729: 6688: 6643: 6605: 6560: 6540: 6493: 6422: 6393: 6364: 6317: 6218: 6149: 6129: 6125:are not elements of 6044: 5952: 5917: 5870: 5817: 5696: 5664: 5635: 5525: 5486: 5447: 5427: 5392: 5351: 5316: 5296: 5276: 5256: 5236: 5216: 5166: 5119: 5066: 5005: 4795: 4703: 4642: 4607: 4584: 4542: 4510: 4484: 4452: 4417: 4308: 4264: 4241: 4027: 3990: 3967: 3885: 3821: 3540: 3497: 3059: 2954: 2902: 2876: 2687: 2619: 2574: 2554: 2530: 2503: 2480: 2460: 2335: 2328:. Indeed, one gets 2309: 2262: 2167: 2135: 2058: 2035: 1984: 1943: 1887: 1849: 1829: 1805: 1785: 1765: 1741: 1721: 1710:{\displaystyle T(V)} 1692: 1669: 1619: 1518: 1498: 1425: 1390: 1370: 1343: 1323: 1201: 1171: 1131: 1120:{\displaystyle T(V)} 1102: 881:algebra homomorphism 833: 785:associative algebras 736: 722:on the vector space 677:non-commutative ring 612: 506: 363: 226: 9771:Multilinear algebra 9587:Nonmetricity tensor 9442:(2nd-order tensors) 9410:Hodge star operator 9400:Exterior derivative 9249:Transport phenomena 9234:Continuum mechanics 9190:Multilinear algebra 8969:Composition algebra 8893:Inner product space 8871:multilinear algebra 8759:Polynomial function 8700:Multilinear algebra 8685:Homological algebra 8675:Commutative algebra 8497:Multilinear algebra 6408:{\displaystyle TV.} 5516:associative algebra 4600:, this extends to 2680:Expanding, one has 1553:In the language of 924:canonical inclusion 902:commutative diagram 716:is also called the 705:The tensor algebra 9720:Tullio Levi-Civita 9663:Metric tensor (GR) 9577:Levi-Civita symbol 9430:Tensor contraction 9244:General relativity 9180:Euclidean geometry 8749:Quadratic equation 8680:Elementary algebra 8648:Algebraic geometry 8544:(See Chapter 3 §5) 8462: 8427: 8329: 8292: 8290: 8239: 8126: 8094: 8033: 7852: 7823:{\displaystyle K.} 7820: 7793: 7761: 7693: 7625: 7623: 7372: 7343: 7341: 7154: 7125: 7018: 7016: 6837: 6757: 6712: 6671: 6626: 6588: 6546: 6514: 6476: 6405: 6379: 6350: 6300: 6201: 6135: 6104: 6021: 5935: 5900: 5850: 5789: 5679: 5650: 5618: 5504: 5478:for field element 5468: 5433: 5410: 5372: 5322: 5302: 5282: 5262: 5242: 5222: 5202: 5149: 5099: 5029: 4988: 4986: 4775: 4686: 4625: 4590: 4570: 4528: 4496: 4470: 4438: 4395: 4288: 4253:{\displaystyle TV} 4250: 4224: 4104: 4003: 3979:{\displaystyle TV} 3976: 3941: 3871: 3788: 3786: 3649: is bijective 3503: 3480: 3478: 3351: 3035: 2935: 2888: 2859: 2857: 2667: 2602: 2560: 2536: 2515:{\displaystyle TV} 2512: 2492:{\displaystyle TV} 2489: 2466: 2443: 2321:{\displaystyle TV} 2318: 2295: 2245: 2150: 2118: 2041: 2021: 1967: 1923: 1870: 1835: 1811: 1791: 1771: 1747: 1727: 1707: 1681:{\displaystyle TV} 1678: 1652: 1539: 1504: 1482: 1411: 1376: 1349: 1329: 1233: 1187: 1153: 1117: 914: 851: 816:universal property 789:free constructions 757: 640: 560: 478: 333:We then construct 285: 88:universal property 9753: 9752: 9715:Hermann Grassmann 9671: 9670: 9623:Moment of inertia 9484:Differential form 9459:Affine connection 9274:Einstein notation 9257: 9256: 9185:Exterior calculus 9165:Coordinate system 9097: 9096: 9019:Symmetric algebra 8989:Geometric algebra 8769:Linear inequality 8720:Universal algebra 8653:Algebraic variety 8573:978-0-387-95385-4 8515:Bourbaki, Nicolas 8492:Monoidal category 8283: 8157:dual vector space 6549:{\displaystyle S} 6138:{\displaystyle K} 4197: 4138: 4071: 3715: 3650: 3533:. The shuffle is 3310: 2539:{\displaystyle V} 2044:{\displaystyle K} 1364:symmetric algebra 1278:Clifford algebras 1274:symmetric algebra 1258:quotient algebras 1167:is an element of 803:forgetful functor 589:) is naturally a 119:Clifford algebras 115:symmetric algebra 99:quotient algebras 80:forgetful functor 9788: 9730:Bernhard Riemann 9562: 9561: 9405:Exterior product 9372:Two-point tensor 9357:Symmetric tensor 9239:Electromagnetism 9153: 9152: 9124: 9117: 9110: 9101: 9100: 9087: 9086: 8974:Exterior algebra 8643:Abstract algebra 8604: 8597: 8590: 8581: 8580: 8576: 8542: 8471: 8469: 8468: 8463: 8436: 8434: 8433: 8428: 8338: 8336: 8335: 8330: 8325: 8324: 8301: 8299: 8298: 8293: 8291: 8289: 8288: 8279: 8267: 8248: 8246: 8245: 8240: 8238: 8237: 8204: 8203: 8191: 8190: 8135: 8133: 8132: 8127: 8104:(recalling that 8103: 8101: 8100: 8095: 8081: 8080: 8062: 8061: 8042: 8040: 8039: 8034: 8029: 8028: 8004: 8003: 7979: 7978: 7960: 7959: 7946: 7941: 7920: 7919: 7901: 7900: 7872:Cofree coalgebra 7861: 7859: 7858: 7853: 7848: 7847: 7829: 7827: 7826: 7821: 7802: 7800: 7799: 7794: 7770: 7768: 7767: 7762: 7702: 7700: 7699: 7694: 7634: 7632: 7631: 7626: 7624: 7611: 7589: 7555: 7512: 7475: 7421: 7381: 7379: 7378: 7373: 7352: 7350: 7349: 7344: 7342: 7329: 7310: 7282: 7257: 7203: 7163: 7161: 7160: 7155: 7134: 7132: 7131: 7126: 7109: 7068: 7027: 7025: 7024: 7019: 7017: 7013: 7012: 6994: 6993: 6984: 6983: 6959: 6952: 6951: 6924: 6923: 6898: 6897: 6879: 6878: 6846: 6844: 6843: 6838: 6766: 6764: 6763: 6758: 6753: 6752: 6721: 6719: 6718: 6713: 6680: 6678: 6677: 6672: 6667: 6666: 6635: 6633: 6632: 6627: 6597: 6595: 6594: 6589: 6584: 6583: 6555: 6553: 6552: 6547: 6523: 6521: 6520: 6515: 6485: 6483: 6482: 6477: 6414: 6412: 6411: 6406: 6388: 6386: 6385: 6380: 6359: 6357: 6356: 6351: 6309: 6307: 6306: 6301: 6278: 6261: 6210: 6208: 6207: 6202: 6197: 6196: 6187: 6186: 6174: 6173: 6161: 6160: 6144: 6142: 6141: 6136: 6113: 6111: 6110: 6105: 6030: 6028: 6027: 6022: 5944: 5942: 5941: 5936: 5909: 5907: 5906: 5901: 5859: 5857: 5856: 5851: 5846: 5845: 5840: 5798: 5796: 5795: 5790: 5782: 5781: 5773: 5755: 5754: 5746: 5725: 5724: 5716: 5688: 5686: 5685: 5680: 5659: 5657: 5656: 5651: 5627: 5625: 5624: 5619: 5617: 5616: 5608: 5590: 5589: 5581: 5560: 5559: 5551: 5513: 5511: 5510: 5505: 5477: 5475: 5474: 5469: 5442: 5440: 5439: 5434: 5419: 5417: 5416: 5411: 5381: 5379: 5378: 5373: 5336:the same thing! 5331: 5329: 5328: 5323: 5311: 5309: 5308: 5303: 5291: 5289: 5288: 5283: 5271: 5269: 5268: 5263: 5251: 5249: 5248: 5243: 5231: 5229: 5228: 5223: 5211: 5209: 5208: 5203: 5158: 5156: 5155: 5150: 5108: 5106: 5105: 5100: 5038: 5036: 5035: 5030: 4997: 4995: 4994: 4989: 4987: 4974: 4949: 4900: 4860: 4815: 4784: 4782: 4781: 4776: 4762: 4742: 4716: 4695: 4693: 4692: 4687: 4676: 4675: 4660: 4659: 4634: 4632: 4631: 4626: 4599: 4597: 4596: 4591: 4579: 4577: 4576: 4571: 4566: 4565: 4537: 4535: 4534: 4529: 4505: 4503: 4502: 4497: 4479: 4477: 4476: 4471: 4447: 4445: 4444: 4439: 4404: 4402: 4401: 4396: 4391: 4390: 4363: 4362: 4352: 4347: 4326: 4325: 4297: 4295: 4294: 4289: 4259: 4257: 4256: 4251: 4233: 4231: 4230: 4225: 4219: 4215: 4214: 4213: 4203: 4198: 4196: 4185: 4160: 4156: 4155: 4154: 4144: 4139: 4137: 4126: 4103: 4064: 4063: 4045: 4044: 4012: 4010: 4009: 4004: 4002: 4001: 3985: 3983: 3982: 3977: 3950: 3948: 3947: 3942: 3940: 3939: 3912: 3911: 3880: 3878: 3877: 3872: 3870: 3869: 3842: 3841: 3797: 3795: 3794: 3789: 3787: 3716: 3713: 3710: 3651: 3648: 3512: 3510: 3509: 3504: 3489: 3487: 3486: 3481: 3479: 3475: 3471: 3470: 3469: 3442: 3441: 3409: 3405: 3404: 3403: 3376: 3375: 3350: 3328: 3307: 3302: 3281: 3277: 3273: 3272: 3271: 3253: 3252: 3227: 3223: 3222: 3221: 3203: 3202: 3187: 3182: 3161: 3154: 3153: 3126: 3125: 3100: 3099: 3081: 3080: 3044: 3042: 3041: 3036: 3031: 3030: 3009: 3008: 2998: 2993: 2972: 2971: 2944: 2942: 2941: 2936: 2897: 2895: 2894: 2889: 2868: 2866: 2865: 2860: 2858: 2779: 2676: 2674: 2673: 2668: 2611: 2609: 2608: 2603: 2598: 2597: 2569: 2567: 2566: 2561: 2545: 2543: 2542: 2537: 2521: 2519: 2518: 2513: 2498: 2496: 2495: 2490: 2475: 2473: 2472: 2467: 2452: 2450: 2449: 2444: 2361: 2360: 2352: 2327: 2325: 2324: 2319: 2304: 2302: 2301: 2296: 2282: 2281: 2273: 2254: 2252: 2251: 2246: 2235: 2234: 2226: 2190: 2189: 2181: 2159: 2157: 2156: 2151: 2127: 2125: 2124: 2119: 2050: 2048: 2047: 2042: 2030: 2028: 2027: 2022: 2008: 2007: 1976: 1974: 1973: 1968: 1932: 1930: 1929: 1924: 1879: 1877: 1876: 1871: 1844: 1842: 1841: 1836: 1820: 1818: 1817: 1812: 1800: 1798: 1797: 1792: 1780: 1778: 1777: 1772: 1756: 1754: 1753: 1748: 1736: 1734: 1733: 1728: 1716: 1714: 1713: 1708: 1687: 1685: 1684: 1679: 1661: 1659: 1658: 1653: 1599: 1589: 1583: 1577: 1571: 1565: 1548: 1546: 1545: 1540: 1538: 1537: 1536: 1513: 1511: 1510: 1505: 1491: 1489: 1488: 1483: 1475: 1474: 1473: 1448: 1447: 1446: 1420: 1418: 1417: 1412: 1410: 1409: 1408: 1385: 1383: 1382: 1377: 1358: 1356: 1355: 1350: 1338: 1336: 1335: 1330: 1317:exterior algebra 1312:, further down. 1310:cofree coalgebra 1270:exterior algebra 1242: 1240: 1239: 1234: 1232: 1231: 1213: 1212: 1196: 1194: 1193: 1188: 1183: 1182: 1162: 1160: 1159: 1154: 1149: 1148: 1126: 1124: 1123: 1118: 1085:distributive law 1032: 1021: 1010: 1004: 998: 992: 986: 980: 966: 953: 942: 931: 921: 899: 893: 878: 872: 866: 860: 858: 857: 852: 810: 796: 782: 766: 764: 763: 758: 727: 715: 649: 647: 646: 641: 624: 623: 569: 567: 566: 561: 556: 555: 534: 533: 518: 517: 487: 485: 484: 479: 411: 410: 400: 395: 316:. By convention 294: 292: 291: 286: 257: 256: 238: 237: 196:, we define the 138:cofree coalgebra 111:exterior algebra 9796: 9795: 9791: 9790: 9789: 9787: 9786: 9785: 9756: 9755: 9754: 9749: 9700:Albert Einstein 9667: 9648:Einstein tensor 9611: 9592:Ricci curvature 9572:Kronecker delta 9558:Notable tensors 9553: 9474:Connection form 9451: 9445: 9376: 9362:Tensor operator 9319: 9313: 9253: 9229:Computer vision 9222: 9204: 9200:Tensor calculus 9144: 9133: 9128: 9098: 9093: 9075: 9044: 9028: 9009:Quotient object 8999:Polynomial ring 8957: 8918:Linear subspace 8870: 8864: 8803: 8745:Linear equation 8724: 8670:Category theory 8631: 8613: 8608: 8574: 8564:Springer Verlag 8539: 8529:Springer-Verlag 8510: 8478: 8445: 8442: 8441: 8347: 8344: 8343: 8320: 8316: 8314: 8311: 8310: 8284: 8269: 8263: 8262: 8260: 8258: 8255: 8254: 8227: 8223: 8199: 8195: 8186: 8182: 8180: 8177: 8176: 8159:of linear maps 8109: 8106: 8105: 8070: 8066: 8057: 8053: 8051: 8048: 8047: 8018: 8014: 7993: 7989: 7974: 7970: 7955: 7951: 7942: 7931: 7915: 7911: 7896: 7892: 7884: 7881: 7880: 7874: 7868: 7843: 7839: 7837: 7834: 7833: 7812: 7809: 7808: 7779: 7776: 7775: 7714: 7711: 7710: 7646: 7643: 7642: 7622: 7621: 7609: 7608: 7587: 7586: 7553: 7552: 7510: 7509: 7468: 7443: 7414: 7392: 7390: 7387: 7386: 7361: 7358: 7357: 7340: 7339: 7327: 7326: 7308: 7307: 7280: 7279: 7250: 7225: 7196: 7174: 7172: 7169: 7168: 7143: 7140: 7139: 7102: 7061: 7044: 7041: 7040: 7034: 7015: 7014: 7008: 7004: 6989: 6985: 6979: 6975: 6957: 6956: 6947: 6943: 6919: 6915: 6902: 6893: 6889: 6874: 6870: 6860: 6858: 6855: 6854: 6775: 6772: 6771: 6748: 6744: 6730: 6727: 6726: 6689: 6686: 6685: 6662: 6658: 6644: 6641: 6640: 6606: 6603: 6602: 6579: 6575: 6561: 6558: 6557: 6541: 6538: 6537: 6530: 6494: 6491: 6490: 6423: 6420: 6419: 6394: 6391: 6390: 6365: 6362: 6361: 6318: 6315: 6314: 6271: 6254: 6219: 6216: 6215: 6192: 6188: 6182: 6178: 6169: 6165: 6156: 6152: 6150: 6147: 6146: 6130: 6127: 6126: 6045: 6042: 6041: 5953: 5950: 5949: 5918: 5915: 5914: 5871: 5868: 5867: 5841: 5833: 5832: 5818: 5815: 5814: 5808: 5774: 5766: 5765: 5747: 5739: 5738: 5717: 5709: 5708: 5697: 5694: 5693: 5665: 5662: 5661: 5636: 5633: 5632: 5609: 5601: 5600: 5582: 5574: 5573: 5552: 5544: 5543: 5526: 5523: 5522: 5487: 5484: 5483: 5448: 5445: 5444: 5428: 5425: 5424: 5393: 5390: 5389: 5352: 5349: 5348: 5342: 5317: 5314: 5313: 5297: 5294: 5293: 5277: 5274: 5273: 5257: 5254: 5253: 5237: 5234: 5233: 5217: 5214: 5213: 5167: 5164: 5163: 5120: 5117: 5116: 5067: 5064: 5063: 5057: 5045: 5006: 5003: 5002: 4985: 4984: 4972: 4971: 4947: 4946: 4898: 4897: 4853: 4843: 4808: 4798: 4796: 4793: 4792: 4755: 4735: 4709: 4704: 4701: 4700: 4671: 4667: 4655: 4651: 4643: 4640: 4639: 4608: 4605: 4604: 4585: 4582: 4581: 4561: 4557: 4543: 4540: 4539: 4511: 4508: 4507: 4485: 4482: 4481: 4453: 4450: 4449: 4418: 4415: 4414: 4411: 4374: 4370: 4358: 4354: 4348: 4337: 4321: 4317: 4309: 4306: 4305: 4265: 4262: 4261: 4242: 4239: 4238: 4209: 4205: 4199: 4186: 4175: 4173: 4168: 4164: 4150: 4146: 4140: 4127: 4116: 4114: 4109: 4105: 4075: 4059: 4055: 4040: 4036: 4028: 4025: 4024: 3997: 3993: 3991: 3988: 3987: 3968: 3965: 3964: 3951:to equal 1 for 3926: 3922: 3892: 3888: 3886: 3883: 3882: 3856: 3852: 3828: 3824: 3822: 3819: 3818: 3785: 3784: 3712: 3708: 3707: 3647: 3642: 3543: 3541: 3538: 3537: 3515:shuffle product 3498: 3495: 3494: 3477: 3476: 3456: 3452: 3422: 3418: 3417: 3413: 3390: 3386: 3362: 3358: 3357: 3353: 3321: 3314: 3303: 3292: 3279: 3278: 3267: 3263: 3242: 3238: 3237: 3233: 3217: 3213: 3198: 3194: 3193: 3189: 3183: 3172: 3159: 3158: 3149: 3145: 3121: 3117: 3104: 3095: 3091: 3076: 3072: 3062: 3060: 3057: 3056: 3020: 3016: 3004: 3000: 2994: 2983: 2967: 2963: 2955: 2952: 2951: 2903: 2900: 2899: 2877: 2874: 2873: 2856: 2855: 2777: 2776: 2712: 2690: 2688: 2685: 2684: 2620: 2617: 2616: 2593: 2589: 2575: 2572: 2571: 2555: 2552: 2551: 2531: 2528: 2527: 2504: 2501: 2500: 2481: 2478: 2477: 2461: 2458: 2457: 2353: 2345: 2344: 2336: 2333: 2332: 2310: 2307: 2306: 2274: 2266: 2265: 2263: 2260: 2259: 2227: 2219: 2218: 2182: 2174: 2173: 2168: 2165: 2164: 2136: 2133: 2132: 2059: 2056: 2055: 2036: 2033: 2032: 2003: 1999: 1985: 1982: 1981: 1944: 1941: 1940: 1888: 1885: 1884: 1850: 1847: 1846: 1830: 1827: 1826: 1806: 1803: 1802: 1786: 1783: 1782: 1766: 1763: 1762: 1742: 1739: 1738: 1722: 1719: 1718: 1693: 1690: 1689: 1670: 1667: 1666: 1620: 1617: 1616: 1606: 1595: 1585: 1579: 1573: 1567: 1561: 1555:category theory 1526: 1525: 1521: 1519: 1516: 1515: 1499: 1496: 1495: 1463: 1462: 1458: 1436: 1435: 1431: 1426: 1423: 1422: 1398: 1397: 1393: 1391: 1388: 1387: 1371: 1368: 1367: 1362:Similarly, the 1344: 1341: 1340: 1324: 1321: 1320: 1294: 1253: 1227: 1223: 1208: 1204: 1202: 1199: 1198: 1178: 1174: 1172: 1169: 1168: 1144: 1140: 1132: 1129: 1128: 1103: 1100: 1099: 1039: 1023: 1012: 1006: 1000: 994: 993:-vector spaces 988: 982: 976: 962: 944: 933: 927: 917: 895: 884: 874: 868: 862: 834: 831: 830: 806: 792: 780: 737: 734: 733: 723: 706: 703: 619: 615: 613: 610: 609: 545: 541: 529: 525: 513: 509: 507: 504: 503: 406: 402: 396: 385: 364: 361: 360: 249: 245: 233: 229: 227: 224: 223: 201:th tensor power 172: 17: 12: 11: 5: 9794: 9784: 9783: 9778: 9773: 9768: 9751: 9750: 9748: 9747: 9742: 9740:Woldemar Voigt 9737: 9732: 9727: 9722: 9717: 9712: 9707: 9705:Leonhard Euler 9702: 9697: 9692: 9687: 9681: 9679: 9677:Mathematicians 9673: 9672: 9669: 9668: 9666: 9665: 9660: 9655: 9650: 9645: 9640: 9635: 9630: 9625: 9619: 9617: 9613: 9612: 9610: 9609: 9604: 9602:Torsion tensor 9599: 9594: 9589: 9584: 9579: 9574: 9568: 9566: 9559: 9555: 9554: 9552: 9551: 9546: 9541: 9536: 9531: 9526: 9521: 9516: 9511: 9506: 9501: 9496: 9491: 9486: 9481: 9476: 9471: 9466: 9461: 9455: 9453: 9447: 9446: 9444: 9443: 9437: 9435:Tensor product 9432: 9427: 9425:Symmetrization 9422: 9417: 9415:Lie derivative 9412: 9407: 9402: 9397: 9392: 9386: 9384: 9378: 9377: 9375: 9374: 9369: 9364: 9359: 9354: 9349: 9344: 9339: 9337:Tensor density 9334: 9329: 9323: 9321: 9315: 9314: 9312: 9311: 9309:Voigt notation 9306: 9301: 9296: 9294:Ricci calculus 9291: 9286: 9281: 9279:Index notation 9276: 9271: 9265: 9263: 9259: 9258: 9255: 9254: 9252: 9251: 9246: 9241: 9236: 9231: 9225: 9223: 9221: 9220: 9215: 9209: 9206: 9205: 9203: 9202: 9197: 9195:Tensor algebra 9192: 9187: 9182: 9177: 9175:Dyadic algebra 9172: 9167: 9161: 9159: 9150: 9146: 9145: 9138: 9135: 9134: 9127: 9126: 9119: 9112: 9104: 9095: 9094: 9092: 9091: 9080: 9077: 9076: 9074: 9073: 9068: 9063: 9061:Linear algebra 9058: 9052: 9050: 9046: 9045: 9043: 9042: 9036: 9034: 9030: 9029: 9027: 9026: 9024:Tensor algebra 9021: 9016: 9013:Quotient group 9006: 8996: 8986: 8976: 8971: 8965: 8963: 8959: 8958: 8956: 8955: 8950: 8945: 8935: 8932:Euclidean norm 8925: 8915: 8905: 8900: 8890: 8885: 8880: 8874: 8872: 8866: 8865: 8863: 8862: 8852: 8842: 8832: 8822: 8811: 8809: 8805: 8804: 8802: 8801: 8796: 8786: 8783:Multiplication 8772: 8762: 8752: 8738: 8732: 8730: 8729:Basic concepts 8726: 8725: 8723: 8722: 8717: 8712: 8707: 8702: 8697: 8695:Linear algebra 8692: 8687: 8682: 8677: 8672: 8667: 8662: 8661: 8660: 8655: 8645: 8639: 8637: 8633: 8632: 8630: 8629: 8624: 8618: 8615: 8614: 8607: 8606: 8599: 8592: 8584: 8578: 8577: 8572: 8547: 8546: 8537: 8509: 8506: 8505: 8504: 8499: 8494: 8489: 8484: 8477: 8474: 8461: 8458: 8455: 8452: 8449: 8438: 8437: 8426: 8423: 8420: 8417: 8414: 8411: 8408: 8405: 8402: 8399: 8396: 8393: 8390: 8387: 8384: 8381: 8378: 8375: 8372: 8369: 8366: 8363: 8360: 8357: 8354: 8351: 8328: 8323: 8319: 8287: 8282: 8278: 8275: 8272: 8266: 8236: 8233: 8230: 8226: 8222: 8219: 8216: 8213: 8210: 8207: 8202: 8198: 8194: 8189: 8185: 8125: 8122: 8119: 8116: 8113: 8093: 8090: 8087: 8084: 8079: 8076: 8073: 8069: 8065: 8060: 8056: 8044: 8043: 8032: 8027: 8024: 8021: 8017: 8013: 8010: 8007: 8002: 7999: 7996: 7992: 7988: 7985: 7982: 7977: 7973: 7969: 7966: 7963: 7958: 7954: 7950: 7945: 7940: 7937: 7934: 7930: 7926: 7923: 7918: 7914: 7910: 7907: 7904: 7899: 7895: 7891: 7888: 7870:Main article: 7867: 7864: 7851: 7846: 7842: 7819: 7816: 7792: 7789: 7786: 7783: 7772: 7771: 7760: 7757: 7754: 7751: 7748: 7745: 7742: 7739: 7736: 7733: 7730: 7727: 7724: 7721: 7718: 7704: 7703: 7692: 7689: 7686: 7683: 7680: 7677: 7674: 7671: 7668: 7665: 7662: 7659: 7656: 7653: 7650: 7636: 7635: 7620: 7617: 7614: 7612: 7610: 7607: 7604: 7601: 7598: 7595: 7592: 7590: 7588: 7585: 7582: 7579: 7576: 7573: 7570: 7567: 7564: 7561: 7558: 7556: 7554: 7551: 7548: 7545: 7542: 7539: 7536: 7533: 7530: 7527: 7524: 7521: 7518: 7515: 7513: 7511: 7508: 7505: 7502: 7499: 7496: 7493: 7490: 7487: 7484: 7481: 7478: 7474: 7471: 7467: 7464: 7461: 7458: 7455: 7452: 7449: 7446: 7444: 7442: 7439: 7436: 7433: 7430: 7427: 7424: 7420: 7417: 7413: 7410: 7407: 7404: 7401: 7398: 7395: 7394: 7371: 7368: 7365: 7356:Similarly, on 7354: 7353: 7338: 7335: 7332: 7330: 7328: 7325: 7322: 7319: 7316: 7313: 7311: 7309: 7306: 7303: 7300: 7297: 7294: 7291: 7288: 7285: 7283: 7281: 7278: 7275: 7272: 7269: 7266: 7263: 7260: 7256: 7253: 7249: 7246: 7243: 7240: 7237: 7234: 7231: 7228: 7226: 7224: 7221: 7218: 7215: 7212: 7209: 7206: 7202: 7199: 7195: 7192: 7189: 7186: 7183: 7180: 7177: 7176: 7153: 7150: 7147: 7136: 7135: 7124: 7121: 7118: 7115: 7112: 7108: 7105: 7101: 7098: 7095: 7092: 7089: 7086: 7083: 7080: 7077: 7074: 7071: 7067: 7064: 7060: 7057: 7054: 7051: 7048: 7033: 7030: 7029: 7028: 7011: 7007: 7003: 7000: 6997: 6992: 6988: 6982: 6978: 6974: 6971: 6968: 6965: 6962: 6960: 6958: 6955: 6950: 6946: 6942: 6939: 6936: 6933: 6930: 6927: 6922: 6918: 6914: 6911: 6908: 6905: 6903: 6901: 6896: 6892: 6888: 6885: 6882: 6877: 6873: 6869: 6866: 6863: 6862: 6848: 6847: 6836: 6833: 6830: 6827: 6824: 6821: 6818: 6815: 6812: 6809: 6806: 6803: 6800: 6797: 6794: 6791: 6788: 6785: 6782: 6779: 6756: 6751: 6747: 6743: 6740: 6737: 6734: 6723: 6722: 6711: 6708: 6705: 6702: 6699: 6696: 6693: 6670: 6665: 6661: 6657: 6654: 6651: 6648: 6637: 6636: 6625: 6622: 6619: 6616: 6613: 6610: 6587: 6582: 6578: 6574: 6571: 6568: 6565: 6545: 6529: 6526: 6513: 6510: 6507: 6504: 6501: 6498: 6487: 6486: 6475: 6472: 6469: 6466: 6463: 6460: 6457: 6454: 6451: 6448: 6445: 6442: 6439: 6436: 6433: 6430: 6427: 6404: 6401: 6398: 6378: 6375: 6372: 6369: 6349: 6346: 6343: 6340: 6337: 6334: 6331: 6328: 6325: 6322: 6311: 6310: 6299: 6296: 6293: 6290: 6287: 6284: 6281: 6277: 6274: 6270: 6267: 6264: 6260: 6257: 6253: 6250: 6247: 6244: 6241: 6238: 6235: 6232: 6229: 6226: 6223: 6200: 6195: 6191: 6185: 6181: 6177: 6172: 6168: 6164: 6159: 6155: 6134: 6115: 6114: 6103: 6100: 6097: 6094: 6091: 6088: 6085: 6082: 6079: 6076: 6073: 6070: 6067: 6064: 6061: 6058: 6055: 6052: 6049: 6032: 6031: 6020: 6017: 6014: 6011: 6008: 6005: 6002: 5999: 5996: 5993: 5990: 5987: 5984: 5981: 5978: 5975: 5972: 5969: 5966: 5963: 5960: 5957: 5934: 5931: 5928: 5925: 5922: 5911: 5910: 5899: 5896: 5893: 5890: 5887: 5884: 5881: 5878: 5875: 5861: 5860: 5849: 5844: 5839: 5836: 5831: 5828: 5825: 5822: 5807: 5804: 5800: 5799: 5788: 5785: 5780: 5777: 5772: 5769: 5764: 5761: 5758: 5753: 5750: 5745: 5742: 5737: 5734: 5731: 5728: 5723: 5720: 5715: 5712: 5707: 5704: 5701: 5678: 5675: 5672: 5669: 5649: 5646: 5643: 5640: 5629: 5628: 5615: 5612: 5607: 5604: 5599: 5596: 5593: 5588: 5585: 5580: 5577: 5572: 5569: 5566: 5563: 5558: 5555: 5550: 5547: 5542: 5539: 5536: 5533: 5530: 5503: 5500: 5497: 5494: 5491: 5467: 5464: 5461: 5458: 5455: 5452: 5432: 5421: 5420: 5409: 5406: 5403: 5400: 5397: 5383: 5382: 5371: 5368: 5365: 5362: 5359: 5356: 5341: 5338: 5321: 5301: 5281: 5261: 5241: 5221: 5201: 5198: 5195: 5192: 5189: 5186: 5183: 5180: 5177: 5174: 5171: 5160: 5159: 5148: 5145: 5142: 5139: 5136: 5133: 5130: 5127: 5124: 5110: 5109: 5098: 5095: 5092: 5089: 5086: 5083: 5080: 5077: 5074: 5071: 5056: 5055:Multiplication 5053: 5044: 5041: 5028: 5025: 5022: 5019: 5016: 5013: 5010: 4999: 4998: 4983: 4980: 4977: 4975: 4973: 4970: 4967: 4964: 4961: 4958: 4955: 4952: 4950: 4948: 4945: 4942: 4939: 4936: 4933: 4930: 4927: 4924: 4921: 4918: 4915: 4912: 4909: 4906: 4903: 4901: 4899: 4896: 4893: 4890: 4887: 4884: 4881: 4878: 4875: 4872: 4869: 4866: 4863: 4859: 4856: 4852: 4849: 4846: 4844: 4842: 4839: 4836: 4833: 4830: 4827: 4824: 4821: 4818: 4814: 4811: 4807: 4804: 4801: 4800: 4786: 4785: 4774: 4771: 4768: 4765: 4761: 4758: 4754: 4751: 4748: 4745: 4741: 4738: 4734: 4731: 4728: 4725: 4722: 4719: 4715: 4712: 4708: 4685: 4682: 4679: 4674: 4670: 4666: 4663: 4658: 4654: 4650: 4647: 4636: 4635: 4624: 4621: 4618: 4615: 4612: 4589: 4569: 4564: 4560: 4556: 4553: 4550: 4547: 4527: 4524: 4521: 4518: 4515: 4495: 4492: 4489: 4469: 4466: 4463: 4460: 4457: 4437: 4434: 4431: 4428: 4425: 4422: 4410: 4407: 4406: 4405: 4394: 4389: 4386: 4383: 4380: 4377: 4373: 4369: 4366: 4361: 4357: 4351: 4346: 4343: 4340: 4336: 4332: 4329: 4324: 4320: 4316: 4313: 4287: 4284: 4281: 4278: 4275: 4272: 4269: 4249: 4246: 4235: 4234: 4223: 4218: 4212: 4208: 4202: 4195: 4192: 4189: 4184: 4181: 4178: 4172: 4167: 4163: 4159: 4153: 4149: 4143: 4136: 4133: 4130: 4125: 4122: 4119: 4113: 4108: 4102: 4099: 4096: 4093: 4090: 4087: 4084: 4081: 4078: 4074: 4070: 4067: 4062: 4058: 4054: 4051: 4048: 4043: 4039: 4035: 4032: 4020:Equivalently, 4000: 3996: 3975: 3972: 3938: 3935: 3932: 3929: 3925: 3921: 3918: 3915: 3910: 3907: 3904: 3901: 3898: 3895: 3891: 3868: 3865: 3862: 3859: 3855: 3851: 3848: 3845: 3840: 3837: 3834: 3831: 3827: 3799: 3798: 3783: 3780: 3777: 3774: 3771: 3768: 3765: 3762: 3759: 3756: 3753: 3750: 3747: 3744: 3741: 3738: 3735: 3732: 3729: 3726: 3723: 3720: 3711: 3709: 3706: 3703: 3700: 3697: 3694: 3691: 3688: 3685: 3682: 3679: 3676: 3673: 3670: 3667: 3664: 3661: 3658: 3654: 3646: 3643: 3640: 3636: 3633: 3630: 3627: 3624: 3621: 3618: 3615: 3612: 3609: 3606: 3603: 3600: 3597: 3594: 3591: 3588: 3585: 3582: 3579: 3576: 3573: 3570: 3567: 3564: 3561: 3558: 3555: 3552: 3549: 3546: 3545: 3502: 3491: 3490: 3474: 3468: 3465: 3462: 3459: 3455: 3451: 3448: 3445: 3440: 3437: 3434: 3431: 3428: 3425: 3421: 3416: 3412: 3408: 3402: 3399: 3396: 3393: 3389: 3385: 3382: 3379: 3374: 3371: 3368: 3365: 3361: 3356: 3349: 3346: 3343: 3340: 3337: 3334: 3331: 3327: 3324: 3320: 3317: 3313: 3306: 3301: 3298: 3295: 3291: 3287: 3284: 3282: 3280: 3276: 3270: 3266: 3262: 3259: 3256: 3251: 3248: 3245: 3241: 3236: 3231: 3226: 3220: 3216: 3212: 3209: 3206: 3201: 3197: 3192: 3186: 3181: 3178: 3175: 3171: 3167: 3164: 3162: 3160: 3157: 3152: 3148: 3144: 3141: 3138: 3135: 3132: 3129: 3124: 3120: 3116: 3113: 3110: 3107: 3105: 3103: 3098: 3094: 3090: 3087: 3084: 3079: 3075: 3071: 3068: 3065: 3064: 3046: 3045: 3034: 3029: 3026: 3023: 3019: 3015: 3012: 3007: 3003: 2997: 2992: 2989: 2986: 2982: 2978: 2975: 2970: 2966: 2962: 2959: 2934: 2931: 2928: 2925: 2922: 2919: 2916: 2913: 2910: 2907: 2887: 2884: 2881: 2870: 2869: 2854: 2851: 2848: 2845: 2842: 2839: 2836: 2833: 2830: 2827: 2824: 2821: 2818: 2815: 2812: 2809: 2806: 2803: 2800: 2797: 2794: 2791: 2788: 2785: 2782: 2780: 2778: 2775: 2772: 2769: 2766: 2763: 2760: 2757: 2754: 2751: 2748: 2745: 2742: 2739: 2736: 2733: 2730: 2727: 2724: 2721: 2718: 2715: 2713: 2711: 2708: 2705: 2702: 2699: 2696: 2693: 2692: 2678: 2677: 2666: 2663: 2660: 2657: 2654: 2651: 2648: 2645: 2642: 2639: 2636: 2633: 2630: 2627: 2624: 2601: 2596: 2592: 2588: 2585: 2582: 2579: 2559: 2535: 2511: 2508: 2488: 2485: 2465: 2454: 2453: 2442: 2439: 2436: 2433: 2430: 2427: 2424: 2421: 2418: 2415: 2412: 2409: 2406: 2403: 2400: 2397: 2394: 2391: 2388: 2385: 2382: 2379: 2376: 2373: 2370: 2367: 2364: 2359: 2356: 2351: 2348: 2343: 2340: 2317: 2314: 2294: 2291: 2288: 2285: 2280: 2277: 2272: 2269: 2256: 2255: 2244: 2241: 2238: 2233: 2230: 2225: 2222: 2217: 2214: 2211: 2208: 2205: 2202: 2199: 2196: 2193: 2188: 2185: 2180: 2177: 2172: 2149: 2146: 2143: 2140: 2129: 2128: 2117: 2114: 2111: 2108: 2105: 2102: 2099: 2096: 2093: 2090: 2087: 2084: 2081: 2078: 2075: 2072: 2069: 2066: 2063: 2040: 2020: 2017: 2014: 2011: 2006: 2002: 1998: 1995: 1992: 1989: 1978: 1977: 1966: 1963: 1960: 1957: 1954: 1951: 1948: 1934: 1933: 1922: 1919: 1916: 1913: 1910: 1907: 1904: 1901: 1898: 1895: 1892: 1869: 1866: 1863: 1860: 1857: 1854: 1834: 1810: 1790: 1770: 1759:Multiplication 1746: 1726: 1706: 1703: 1700: 1697: 1677: 1674: 1663: 1662: 1651: 1648: 1645: 1642: 1639: 1636: 1633: 1630: 1627: 1624: 1605: 1602: 1535: 1532: 1529: 1524: 1503: 1481: 1478: 1472: 1469: 1466: 1461: 1457: 1454: 1451: 1445: 1442: 1439: 1434: 1430: 1407: 1404: 1401: 1396: 1375: 1348: 1328: 1293: 1290: 1252: 1249: 1230: 1226: 1222: 1219: 1216: 1211: 1207: 1186: 1181: 1177: 1152: 1147: 1143: 1139: 1136: 1116: 1113: 1110: 1107: 1068:indeterminates 1038: 1035: 906: 905: 850: 847: 844: 841: 838: 791:, the functor 771:for forming a 756: 753: 750: 747: 744: 741: 702: 699: 639: 636: 633: 630: 627: 622: 618: 591:graded algebra 571: 570: 559: 554: 551: 548: 544: 540: 537: 532: 528: 524: 521: 516: 512: 489: 488: 477: 474: 471: 468: 465: 462: 459: 456: 453: 450: 447: 444: 441: 438: 435: 432: 429: 426: 423: 420: 417: 414: 409: 405: 399: 394: 391: 388: 384: 380: 377: 374: 371: 368: 296: 295: 284: 281: 278: 275: 272: 269: 266: 263: 260: 255: 252: 248: 244: 241: 236: 232: 209:tensor product 171: 168: 64:tensor product 25:tensor algebra 15: 9: 6: 4: 3: 2: 9793: 9782: 9781:Hopf algebras 9779: 9777: 9774: 9772: 9769: 9767: 9764: 9763: 9761: 9746: 9743: 9741: 9738: 9736: 9733: 9731: 9728: 9726: 9723: 9721: 9718: 9716: 9713: 9711: 9708: 9706: 9703: 9701: 9698: 9696: 9693: 9691: 9688: 9686: 9683: 9682: 9680: 9678: 9674: 9664: 9661: 9659: 9656: 9654: 9651: 9649: 9646: 9644: 9641: 9639: 9636: 9634: 9631: 9629: 9626: 9624: 9621: 9620: 9618: 9614: 9608: 9605: 9603: 9600: 9598: 9595: 9593: 9590: 9588: 9585: 9583: 9582:Metric tensor 9580: 9578: 9575: 9573: 9570: 9569: 9567: 9563: 9560: 9556: 9550: 9547: 9545: 9542: 9540: 9537: 9535: 9532: 9530: 9527: 9525: 9522: 9520: 9517: 9515: 9512: 9510: 9507: 9505: 9502: 9500: 9497: 9495: 9494:Exterior form 9492: 9490: 9487: 9485: 9482: 9480: 9477: 9475: 9472: 9470: 9467: 9465: 9462: 9460: 9457: 9456: 9454: 9448: 9441: 9438: 9436: 9433: 9431: 9428: 9426: 9423: 9421: 9418: 9416: 9413: 9411: 9408: 9406: 9403: 9401: 9398: 9396: 9393: 9391: 9388: 9387: 9385: 9383: 9379: 9373: 9370: 9368: 9367:Tensor bundle 9365: 9363: 9360: 9358: 9355: 9353: 9350: 9348: 9345: 9343: 9340: 9338: 9335: 9333: 9330: 9328: 9325: 9324: 9322: 9316: 9310: 9307: 9305: 9302: 9300: 9297: 9295: 9292: 9290: 9287: 9285: 9282: 9280: 9277: 9275: 9272: 9270: 9267: 9266: 9264: 9260: 9250: 9247: 9245: 9242: 9240: 9237: 9235: 9232: 9230: 9227: 9226: 9224: 9219: 9216: 9214: 9211: 9210: 9207: 9201: 9198: 9196: 9193: 9191: 9188: 9186: 9183: 9181: 9178: 9176: 9173: 9171: 9168: 9166: 9163: 9162: 9160: 9158: 9154: 9151: 9147: 9143: 9142: 9136: 9132: 9125: 9120: 9118: 9113: 9111: 9106: 9105: 9102: 9090: 9082: 9081: 9078: 9072: 9069: 9067: 9064: 9062: 9059: 9057: 9054: 9053: 9051: 9047: 9041: 9038: 9037: 9035: 9031: 9025: 9022: 9020: 9017: 9014: 9010: 9007: 9004: 9000: 8997: 8994: 8990: 8987: 8984: 8980: 8977: 8975: 8972: 8970: 8967: 8966: 8964: 8960: 8954: 8951: 8949: 8946: 8943: 8939: 8938:Orthogonality 8936: 8933: 8929: 8926: 8923: 8919: 8916: 8913: 8909: 8906: 8904: 8903:Hilbert space 8901: 8898: 8894: 8891: 8889: 8886: 8884: 8881: 8879: 8876: 8875: 8873: 8867: 8860: 8856: 8853: 8850: 8846: 8843: 8840: 8836: 8833: 8830: 8826: 8823: 8820: 8816: 8813: 8812: 8810: 8806: 8800: 8797: 8794: 8790: 8787: 8784: 8780: 8776: 8773: 8770: 8766: 8763: 8760: 8756: 8753: 8750: 8746: 8742: 8739: 8737: 8734: 8733: 8731: 8727: 8721: 8718: 8716: 8713: 8711: 8708: 8706: 8703: 8701: 8698: 8696: 8693: 8691: 8688: 8686: 8683: 8681: 8678: 8676: 8673: 8671: 8668: 8666: 8663: 8659: 8656: 8654: 8651: 8650: 8649: 8646: 8644: 8641: 8640: 8638: 8634: 8628: 8625: 8623: 8620: 8619: 8616: 8612: 8605: 8600: 8598: 8593: 8591: 8586: 8585: 8582: 8575: 8569: 8565: 8561: 8557: 8553: 8549: 8548: 8545: 8540: 8538:3-540-64243-9 8534: 8530: 8526: 8522: 8521: 8516: 8512: 8511: 8503: 8500: 8498: 8495: 8493: 8490: 8488: 8485: 8483: 8480: 8479: 8473: 8459: 8456: 8453: 8450: 8447: 8424: 8421: 8415: 8412: 8409: 8403: 8400: 8397: 8394: 8391: 8385: 8382: 8379: 8373: 8370: 8367: 8361: 8358: 8355: 8342: 8341: 8340: 8326: 8321: 8317: 8307: 8305: 8280: 8276: 8273: 8270: 8252: 8234: 8231: 8228: 8224: 8217: 8214: 8211: 8205: 8200: 8196: 8192: 8187: 8183: 8174: 8170: 8166: 8162: 8158: 8154: 8150: 8146: 8142: 8137: 8123: 8120: 8117: 8114: 8111: 8091: 8088: 8085: 8082: 8077: 8074: 8071: 8067: 8063: 8058: 8054: 8025: 8022: 8019: 8015: 8011: 8008: 8005: 8000: 7997: 7994: 7990: 7983: 7975: 7971: 7967: 7964: 7961: 7956: 7952: 7943: 7938: 7935: 7932: 7928: 7924: 7916: 7912: 7908: 7905: 7902: 7897: 7893: 7879: 7878: 7877: 7873: 7863: 7849: 7844: 7840: 7830: 7817: 7814: 7806: 7790: 7787: 7784: 7781: 7758: 7755: 7749: 7743: 7740: 7734: 7725: 7722: 7719: 7709: 7708: 7707: 7690: 7687: 7681: 7675: 7672: 7666: 7657: 7654: 7651: 7641: 7640: 7639: 7618: 7615: 7613: 7605: 7602: 7599: 7596: 7593: 7591: 7583: 7580: 7577: 7574: 7571: 7568: 7565: 7562: 7559: 7557: 7546: 7543: 7540: 7537: 7534: 7531: 7528: 7525: 7516: 7514: 7503: 7500: 7497: 7494: 7491: 7488: 7485: 7465: 7462: 7456: 7447: 7445: 7437: 7425: 7411: 7408: 7402: 7385: 7384: 7383: 7369: 7366: 7363: 7336: 7333: 7331: 7323: 7320: 7317: 7314: 7312: 7301: 7298: 7295: 7286: 7284: 7273: 7270: 7267: 7247: 7244: 7238: 7229: 7227: 7219: 7207: 7193: 7190: 7184: 7167: 7166: 7165: 7151: 7148: 7145: 7119: 7113: 7110: 7096: 7090: 7087: 7084: 7081: 7078: 7072: 7058: 7055: 7049: 7039: 7038: 7037: 7032:Compatibility 7009: 7005: 7001: 6998: 6995: 6990: 6986: 6980: 6972: 6969: 6963: 6961: 6948: 6944: 6937: 6934: 6931: 6928: 6920: 6916: 6909: 6906: 6904: 6894: 6890: 6886: 6883: 6880: 6875: 6871: 6864: 6853: 6852: 6851: 6834: 6831: 6828: 6825: 6819: 6813: 6810: 6804: 6798: 6795: 6789: 6786: 6783: 6777: 6770: 6769: 6768: 6754: 6749: 6745: 6741: 6738: 6735: 6732: 6709: 6706: 6703: 6697: 6691: 6684: 6683: 6682: 6668: 6663: 6659: 6655: 6652: 6649: 6646: 6623: 6620: 6614: 6608: 6601: 6600: 6599: 6585: 6580: 6576: 6572: 6569: 6566: 6563: 6543: 6535: 6525: 6511: 6508: 6505: 6502: 6499: 6496: 6470: 6467: 6464: 6455: 6449: 6446: 6443: 6431: 6418: 6417: 6416: 6402: 6399: 6396: 6376: 6373: 6370: 6367: 6347: 6344: 6341: 6338: 6332: 6329: 6326: 6320: 6291: 6282: 6268: 6265: 6262: 6248: 6239: 6230: 6224: 6214: 6213: 6212: 6198: 6193: 6189: 6183: 6179: 6175: 6170: 6166: 6162: 6157: 6153: 6132: 6124: 6120: 6101: 6098: 6092: 6089: 6086: 6080: 6077: 6071: 6068: 6065: 6053: 6050: 6040: 6039: 6038: 6035: 6018: 6015: 6009: 6006: 6003: 5997: 5994: 5988: 5979: 5973: 5964: 5961: 5948: 5947: 5946: 5932: 5929: 5926: 5923: 5920: 5897: 5894: 5891: 5888: 5885: 5882: 5879: 5876: 5866: 5865: 5864: 5847: 5842: 5829: 5826: 5823: 5820: 5813: 5812: 5811: 5806:Compatibility 5803: 5786: 5783: 5778: 5775: 5762: 5759: 5756: 5751: 5748: 5735: 5729: 5726: 5721: 5718: 5702: 5692: 5691: 5690: 5676: 5673: 5670: 5667: 5647: 5644: 5641: 5638: 5613: 5610: 5597: 5594: 5591: 5586: 5583: 5570: 5567: 5564: 5556: 5553: 5540: 5537: 5531: 5521: 5520: 5519: 5517: 5501: 5498: 5495: 5492: 5489: 5481: 5465: 5462: 5459: 5456: 5453: 5450: 5430: 5407: 5401: 5398: 5395: 5388: 5387: 5386: 5369: 5366: 5360: 5357: 5354: 5347: 5346: 5345: 5337: 5335: 5319: 5279: 5239: 5219: 5199: 5196: 5193: 5190: 5187: 5181: 5178: 5175: 5146: 5143: 5140: 5134: 5131: 5128: 5125: 5115: 5114: 5113: 5096: 5093: 5087: 5084: 5081: 5078: 5075: 5072: 5062: 5061: 5060: 5052: 5050: 5040: 5026: 5023: 5020: 5017: 5014: 5011: 5008: 4981: 4978: 4976: 4968: 4965: 4962: 4959: 4956: 4953: 4951: 4940: 4934: 4931: 4928: 4925: 4919: 4913: 4910: 4907: 4904: 4902: 4891: 4888: 4885: 4882: 4879: 4876: 4873: 4864: 4861: 4847: 4845: 4837: 4825: 4819: 4816: 4791: 4790: 4789: 4772: 4766: 4752: 4749: 4743: 4732: 4726: 4720: 4717: 4699: 4698: 4697: 4683: 4680: 4677: 4672: 4668: 4664: 4661: 4656: 4652: 4648: 4645: 4622: 4616: 4613: 4610: 4603: 4602: 4601: 4587: 4567: 4562: 4558: 4554: 4551: 4548: 4545: 4525: 4519: 4516: 4513: 4493: 4490: 4487: 4467: 4461: 4458: 4455: 4435: 4429: 4426: 4423: 4420: 4392: 4384: 4381: 4378: 4371: 4367: 4364: 4359: 4355: 4349: 4344: 4341: 4338: 4334: 4327: 4322: 4318: 4314: 4304: 4303: 4302: 4299: 4282: 4279: 4276: 4273: 4270: 4247: 4244: 4221: 4216: 4210: 4206: 4200: 4193: 4190: 4187: 4182: 4179: 4176: 4170: 4165: 4161: 4157: 4151: 4147: 4141: 4134: 4131: 4128: 4123: 4120: 4117: 4111: 4106: 4097: 4094: 4091: 4088: 4085: 4079: 4076: 4072: 4068: 4060: 4056: 4052: 4049: 4046: 4041: 4037: 4023: 4022: 4021: 4018: 4016: 3998: 3994: 3973: 3970: 3962: 3958: 3954: 3933: 3927: 3923: 3919: 3916: 3913: 3905: 3902: 3899: 3893: 3889: 3863: 3857: 3853: 3849: 3846: 3843: 3835: 3829: 3825: 3816: 3813:} → {1, ..., 3812: 3808: 3804: 3781: 3772: 3766: 3763: 3760: 3757: 3751: 3748: 3745: 3739: 3736: 3730: 3727: 3724: 3718: 3704: 3698: 3692: 3689: 3686: 3683: 3677: 3671: 3668: 3662: 3656: 3652: 3644: 3631: 3628: 3625: 3622: 3619: 3616: 3613: 3601: 3598: 3595: 3592: 3589: 3586: 3583: 3577: 3574: 3568: 3562: 3559: 3556: 3550: 3547: 3536: 3535: 3534: 3532: 3530: 3526: 3522: 3516: 3500: 3472: 3463: 3457: 3453: 3449: 3446: 3443: 3435: 3432: 3429: 3423: 3419: 3414: 3410: 3406: 3397: 3391: 3387: 3383: 3380: 3377: 3369: 3363: 3359: 3354: 3344: 3341: 3338: 3335: 3332: 3318: 3315: 3311: 3304: 3299: 3296: 3293: 3289: 3285: 3283: 3274: 3268: 3264: 3260: 3257: 3254: 3249: 3246: 3243: 3239: 3234: 3229: 3224: 3218: 3214: 3210: 3207: 3204: 3199: 3195: 3190: 3184: 3179: 3176: 3173: 3169: 3165: 3163: 3150: 3146: 3136: 3133: 3130: 3122: 3118: 3108: 3106: 3096: 3092: 3088: 3085: 3082: 3077: 3073: 3055: 3054: 3053: 3051: 3032: 3027: 3024: 3021: 3017: 3013: 3010: 3005: 3001: 2995: 2990: 2987: 2984: 2980: 2973: 2968: 2964: 2960: 2950: 2949: 2948: 2945: 2932: 2929: 2926: 2923: 2920: 2917: 2914: 2911: 2908: 2905: 2885: 2882: 2879: 2849: 2846: 2843: 2837: 2834: 2831: 2828: 2825: 2822: 2819: 2816: 2813: 2810: 2807: 2804: 2801: 2795: 2792: 2789: 2783: 2781: 2770: 2767: 2764: 2761: 2758: 2755: 2752: 2746: 2740: 2737: 2734: 2731: 2728: 2725: 2722: 2716: 2714: 2706: 2703: 2700: 2683: 2682: 2681: 2661: 2652: 2646: 2634: 2631: 2628: 2625: 2615: 2614: 2613: 2599: 2594: 2590: 2586: 2583: 2580: 2577: 2549: 2533: 2525: 2509: 2506: 2486: 2483: 2440: 2437: 2434: 2431: 2428: 2425: 2422: 2419: 2416: 2413: 2410: 2407: 2404: 2401: 2398: 2395: 2392: 2389: 2383: 2371: 2362: 2357: 2354: 2331: 2330: 2329: 2315: 2312: 2292: 2286: 2283: 2278: 2275: 2239: 2231: 2228: 2215: 2206: 2200: 2191: 2186: 2183: 2163: 2162: 2161: 2147: 2144: 2141: 2138: 2115: 2112: 2109: 2106: 2103: 2100: 2097: 2094: 2088: 2085: 2082: 2076: 2073: 2067: 2054: 2053: 2052: 2038: 2018: 2015: 2012: 2009: 2004: 2000: 1996: 1993: 1990: 1987: 1964: 1961: 1958: 1952: 1949: 1939: 1938: 1937: 1920: 1917: 1914: 1911: 1908: 1905: 1902: 1896: 1893: 1883: 1882: 1881: 1867: 1864: 1861: 1858: 1855: 1852: 1823: 1808: 1788: 1768: 1760: 1744: 1724: 1701: 1695: 1675: 1672: 1649: 1646: 1643: 1640: 1637: 1631: 1628: 1625: 1615: 1614: 1613: 1611: 1601: 1598: 1593: 1588: 1582: 1576: 1570: 1564: 1560: 1556: 1551: 1522: 1501: 1492: 1479: 1476: 1459: 1455: 1452: 1449: 1432: 1428: 1394: 1373: 1365: 1360: 1346: 1326: 1318: 1313: 1311: 1307: 1303: 1299: 1289: 1287: 1283: 1279: 1275: 1271: 1267: 1263: 1259: 1248: 1246: 1228: 1224: 1220: 1217: 1214: 1209: 1205: 1184: 1179: 1175: 1166: 1145: 1141: 1134: 1127:, but rather 1111: 1105: 1097: 1092: 1090: 1086: 1082: 1081:associativity 1078: 1074: 1070: 1069: 1064: 1060: 1059:basis vectors 1056: 1052: 1048: 1044: 1034: 1030: 1026: 1019: 1015: 1009: 1003: 997: 991: 985: 979: 974: 970: 965: 959: 957: 951: 947: 940: 936: 930: 925: 920: 910: 903: 898: 891: 887: 882: 877: 871: 865: 848: 842: 839: 836: 829: 825: 824: 823: 821: 817: 812: 809: 804: 800: 795: 790: 786: 778: 774: 770: 751: 745: 739: 731: 726: 721: 720: 713: 709: 698: 696: 692: 689: 686: 682: 678: 674: 670: 668: 663: 660: 655: 653: 634: 628: 625: 620: 616: 607: 603: 599: 596: 592: 588: 584: 580: 576: 557: 552: 549: 546: 542: 535: 530: 526: 522: 519: 514: 510: 502: 501: 500: 498: 494: 475: 472: 469: 463: 460: 457: 454: 451: 445: 439: 436: 433: 427: 424: 421: 418: 415: 412: 407: 403: 392: 389: 386: 382: 378: 372: 366: 359: 358: 357: 355: 351: 348: 344: 340: 336: 331: 329: 326: 322: 319: 315: 312: 308: 304: 301: 282: 279: 276: 273: 270: 267: 264: 261: 258: 253: 250: 246: 242: 239: 234: 230: 222: 221: 220: 218: 214: 210: 206: 202: 200: 195: 192: 188: 185: 181: 177: 167: 165: 161: 157: 153: 149: 147: 143: 139: 135: 130: 128: 124: 120: 116: 112: 108: 104: 100: 95: 93: 89: 85: 81: 77: 73: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 30: 26: 22: 9745:Hermann Weyl 9549:Vector space 9534:Pseudotensor 9499:Fiber bundle 9452:abstractions 9347:Mixed tensor 9332:Tensor field 9194: 9139: 9066:Order theory 9056:Field theory 9023: 8922:Affine space 8855:Vector space 8710:Order theory 8555: 8543: 8519: 8439: 8308: 8250: 8172: 8169:free algebra 8164: 8160: 8155:denotes the 8152: 8148: 8144: 8138: 8136:trivially). 8045: 7875: 7831: 7804: 7773: 7705: 7638:Recall that 7637: 7355: 7137: 7035: 6849: 6724: 6681:is given by 6638: 6598:is given by 6534:Hopf algebra 6531: 6528:Hopf algebra 6488: 6312: 6122: 6118: 6116: 6036: 6033: 5912: 5862: 5809: 5801: 5630: 5479: 5422: 5384: 5343: 5333: 5161: 5111: 5058: 5046: 5000: 4787: 4637: 4412: 4300: 4236: 4019: 4014: 3960: 3956: 3952: 3814: 3810: 3806: 3805:0) and Sh(0, 3802: 3800: 3528: 3524: 3520: 3492: 3049: 3047: 2946: 2871: 2679: 2455: 2257: 2130: 1979: 1935: 1824: 1758: 1664: 1607: 1596: 1586: 1580: 1574: 1568: 1562: 1552: 1493: 1361: 1314: 1306:Hopf algebra 1295: 1282:Weyl algebra 1265: 1261: 1254: 1164: 1095: 1093: 1091:-linearity. 1088: 1076: 1072: 1067: 1062: 1054: 1050: 1046: 1042: 1040: 1028: 1024: 1017: 1013: 1007: 1001: 995: 989: 983: 977: 963: 960: 949: 945: 938: 934: 928: 918: 915: 896: 889: 885: 875: 869: 863: 819: 813: 807: 799:left adjoint 793: 772: 724: 719:free algebra 717: 711: 707: 704: 694: 690: 684: 680: 672: 666: 661: 656: 651: 605: 601: 597: 594: 586: 582: 578: 574: 572: 496: 492: 490: 353: 349: 346: 338: 334: 332: 327: 325:ground field 320: 317: 313: 306: 302: 299: 297: 216: 215:with itself 212: 204: 198: 197: 193: 186: 180:vector space 175: 173: 170:Construction 151: 150: 146:Hopf algebra 131: 123:Weyl algebra 106: 102: 96: 83: 76:left adjoint 71: 68:free algebra 66:. It is the 59: 47: 43: 39: 35: 31: 29:vector space 24: 18: 9685:Élie Cartan 9633:Spin tensor 9607:Weyl tensor 9565:Mathematics 9529:Multivector 9320:definitions 9218:Engineering 9157:Mathematics 9071:Ring theory 9033:Topic lists 8993:Multivector 8979:Free object 8897:Dot product 8883:Determinant 8869:Linear and 4413:The counit 2524:free object 1592:natural map 769:linear maps 767:extends to 667:commutative 160:associative 148:structure. 21:mathematics 9760:Categories 9514:Linear map 9382:Operations 9049:Glossaries 9003:Polynomial 8983:Free group 8908:Linear map 8765:Inequality 8552:Serge Lang 8508:References 8502:Fock space 7706:and that 3531:)-shuffles 3493:where the 2499:, because 971:from the 828:linear map 730:functorial 356:= 0,1,2,… 343:direct sum 207:to be the 50:), is the 34:, denoted 9653:EM tensor 9489:Dimension 9440:Transpose 8775:Operation 8457:∈ 8422:⊠ 8413:⊗ 8398:⊠ 8383:⊗ 8374:⊠ 8359:⊗ 8350:Δ 8193:⋅ 8151:), where 8115:⊗ 8089:∈ 8012:⊗ 8009:⋯ 8006:⊗ 7984:⊠ 7968:⊗ 7965:⋯ 7962:⊗ 7929:∑ 7909:⊗ 7906:⋯ 7903:⊗ 7887:Δ 7785:∈ 7744:η 7726:ϵ 7723:∘ 7720:η 7676:η 7658:ϵ 7655:∘ 7652:η 7597:− 7581:⊗ 7569:⊗ 7563:− 7544:⊠ 7532:⊠ 7526:− 7520:∇ 7501:⊠ 7489:⊠ 7466:⊠ 7457:∘ 7454:∇ 7429:Δ 7426:∘ 7412:⊠ 7403:∘ 7400:∇ 7367:∈ 7321:⊗ 7299:⊠ 7290:∇ 7271:⊠ 7248:⊠ 7239:∘ 7236:∇ 7211:Δ 7208:∘ 7194:⊠ 7185:∘ 7182:∇ 7149:∈ 7123:Δ 7120:∘ 7111:⊠ 7097:∘ 7094:∇ 7088:ϵ 7085:∘ 7082:η 7076:Δ 7073:∘ 7059:⊠ 7050:∘ 7047:∇ 7002:⊗ 6999:⋯ 6996:⊗ 6970:− 6935:⊗ 6932:⋯ 6929:⊗ 6887:⊗ 6884:⋯ 6881:⊗ 6832:⊗ 6811:⊗ 6787:⊗ 6742:∈ 6736:⊗ 6707:− 6650:∈ 6567:∈ 6506:∈ 6468:⊗ 6459:Δ 6447:⊠ 6435:∇ 6432:∘ 6429:Δ 6371:⊂ 6345:⊠ 6330:⊠ 6321:τ 6295:Δ 6292:⊠ 6289:Δ 6283:∘ 6269:⊠ 6266:τ 6263:⊠ 6249:∘ 6243:∇ 6240:⊠ 6237:∇ 6228:∇ 6225:∘ 6222:Δ 6163:⊗ 6117:whenever 6090:⊗ 6081:ϵ 6069:⊠ 6057:∇ 6054:∘ 6051:ϵ 6016:≅ 6007:⊠ 5983:Δ 5965:η 5962:∘ 5959:Δ 5930:≅ 5924:⊠ 5898:η 5895:≅ 5892:η 5889:⊠ 5886:η 5880:η 5877:∘ 5874:Δ 5827:η 5824:∘ 5821:ϵ 5787:η 5784:⋅ 5760:η 5757:⊗ 5730:η 5727:⊠ 5703:∘ 5700:∇ 5674:⊠ 5642:⊠ 5598:⋅ 5595:η 5571:⊗ 5568:η 5541:⊠ 5538:η 5532:∘ 5529:∇ 5493:∈ 5454:⊗ 5431:⊗ 5405:↦ 5396:η 5364:→ 5355:η 5320:⊠ 5300:∇ 5280:⊗ 5260:∇ 5240:⊗ 5220:⊠ 5194:⊗ 5179:⊠ 5170:∇ 5162:That is, 5144:⊗ 5138:↦ 5132:⊠ 5123:∇ 5091:→ 5082:⊠ 5070:∇ 5049:bialgebra 5043:Bialgebra 5021:≅ 5015:⊠ 4979:≅ 4966:⊠ 4935:ϵ 4932:⊠ 4914:ϵ 4911:⊠ 4889:⊠ 4877:⊠ 4865:ϵ 4862:⊠ 4829:Δ 4826:∘ 4820:ϵ 4817:⊠ 4770:Δ 4767:∘ 4753:⊠ 4750:ϵ 4730:Δ 4727:∘ 4721:ϵ 4718:⊠ 4684:⋯ 4681:⊕ 4665:⊕ 4649:∈ 4620:↦ 4611:ϵ 4588:⊗ 4549:∈ 4523:↦ 4514:ϵ 4491:∈ 4465:↦ 4456:ϵ 4433:→ 4421:ϵ 4382:− 4368:⊠ 4335:⨁ 4331:→ 4312:Δ 4277:… 4191:∉ 4171:∏ 4162:⊠ 4132:∈ 4112:∏ 4092:… 4080:⊆ 4073:∑ 4053:⊗ 4050:⋯ 4047:⊗ 4031:Δ 4015:preserved 3928:σ 3920:⊗ 3917:⋯ 3914:⊗ 3894:σ 3858:σ 3850:⊗ 3847:⋯ 3844:⊗ 3830:σ 3767:σ 3761:⋯ 3740:σ 3719:σ 3714:and  3693:σ 3687:⋯ 3672:σ 3657:σ 3645:σ 3639:∣ 3620:… 3608:→ 3590:… 3575:σ 3551:⁡ 3501:ω 3458:σ 3450:⊗ 3447:⋯ 3444:⊗ 3424:σ 3411:⊠ 3392:σ 3384:⊗ 3381:⋯ 3378:⊗ 3364:σ 3342:− 3319:∈ 3316:σ 3312:∑ 3290:∑ 3261:⊗ 3258:⋯ 3255:⊗ 3230:ω 3211:⊗ 3208:⋯ 3205:⊗ 3170:∑ 3140:Δ 3137:⊗ 3134:⋯ 3131:⊗ 3112:Δ 3089:⊗ 3086:⋯ 3083:⊗ 3067:Δ 3025:− 3014:⊠ 2981:⨁ 2977:→ 2958:Δ 2921:⋅ 2909:⊗ 2883:⊗ 2847:⊗ 2838:⊠ 2826:⊠ 2814:⊠ 2802:⊠ 2793:⊗ 2768:⊠ 2756:⊠ 2747:⊗ 2738:⊠ 2726:⊠ 2704:⊗ 2695:Δ 2656:Δ 2653:⊗ 2641:Δ 2638:↦ 2632:⊗ 2623:Δ 2587:∈ 2581:⊗ 2558:Δ 2548:generator 2464:Δ 2438:⊠ 2432:⊠ 2420:⊠ 2414:⊠ 2402:⊠ 2396:⊠ 2375:Δ 2372:∘ 2366:Δ 2363:⊠ 2290:↦ 2243:Δ 2240:∘ 2216:⊠ 2213:Δ 2204:Δ 2201:∘ 2195:Δ 2192:⊠ 2142:∈ 2113:⊠ 2101:⊠ 2086:⊠ 2062:Δ 2013:⊂ 1991:∈ 1962:⊠ 1956:↦ 1947:Δ 1918:⊠ 1906:⊠ 1900:↦ 1891:Δ 1862:⊂ 1856:∈ 1833:Δ 1809:⊠ 1789:⊗ 1769:⊗ 1745:⊗ 1725:⊠ 1644:⊠ 1635:→ 1623:Δ 1610:coproduct 1604:Coproduct 1523:⊗ 1502:∧ 1460:⊗ 1433:⊗ 1395:⊗ 1374:⊗ 1347:⊗ 1327:∧ 1302:bialgebra 1298:coalgebra 1292:Coalgebra 1251:Quotients 1245:covectors 1218:… 1180:∗ 1146:∗ 846:→ 775:from the 743:↦ 728:, and is 553:ℓ 539:→ 531:ℓ 523:⊗ 473:⋯ 470:⊕ 461:⊗ 455:⊗ 446:⊕ 437:⊗ 428:⊕ 422:⊕ 398:∞ 383:⨁ 341:) as the 298:That is, 277:⊗ 274:⋯ 271:⊗ 265:⊗ 251:⊗ 164:coproduct 142:bialgebra 134:coalgebra 9766:Algebras 9519:Manifold 9504:Geodesic 9262:Notation 9089:Category 8799:Variable 8789:Relation 8779:Addition 8755:Function 8741:Equation 8690:K-theory 8554:(2002), 8517:(1989). 8476:See also 7803:that is 7774:for any 5482:and any 4638:for all 3955:= 0 and 2131:for all 777:category 688:bimodule 9776:Tensors 9616:Physics 9450:Related 9213:Physics 9131:Tensors 9001: ( 8991: ( 8857: ( 8847: ( 8837: ( 8827: ( 8817: ( 8627:History 8622:Outline 8611:Algebra 8556:Algebra 6725:and on 5689:, that 1559:functor 1098:is not 969:functor 922:is the 801:to the 773:functor 664:over a 323:is the 219:times: 191:integer 182:over a 78:to the 56:tensors 52:algebra 9544:Vector 9539:Spinor 9524:Matrix 9318:Tensor 9015:, ...) 8985:, ...) 8912:Matrix 8859:Vector 8849:theory 8839:theory 8835:Module 8829:theory 8819:theory 8658:Scheme 8570:  8535:  8249:where 6313:where 4409:Counit 2258:where 1980:where 1665:Here, 1280:, the 1272:, the 1083:, the 659:module 156:unital 121:, the 113:, the 23:, the 9464:Basis 9149:Scope 8953:Trace 8878:Basis 8825:Group 8815:Field 8636:Areas 8251:(i,j) 2546:is a 2522:is a 1594:from 1071:) in 975:over 967:is a 956:up to 932:into 916:Here 883:from 873:over 861:from 675:is a 671:. If 593:with 311:order 184:field 178:be a 92:below 90:(see 42:) or 27:of a 8948:Rank 8928:Norm 8845:Ring 8568:ISBN 8533:ISBN 8440:for 8141:dual 6532:The 6489:For 5340:Unit 4538:for 4506:and 4480:for 3881:and 3764:< 3758:< 3737:< 3690:< 3684:< 3669:< 2526:and 1936:and 1284:and 1087:and 1061:for 999:and 826:Any 669:ring 352:for 174:Let 158:and 152:Note 125:and 8173:can 7807:in 7805:not 6767:by 6556:on 6121:or 5631:on 5334:not 4013:is 1587:Sym 1260:of 1053:in 1041:If 1022:to 926:of 894:to 797:is 779:of 345:of 309:of 211:of 203:of 101:of 94:). 70:on 58:on 54:of 19:In 9762:: 8781:, 8747:, 8566:, 8558:, 8531:. 8527:. 8523:. 8306:. 8163:→ 7925::= 7382:: 7164:: 5047:A 4298:. 3959:= 3803:m, 3548:Sh 3527:− 3523:, 3052:: 1288:. 1276:, 1033:. 822:: 654:. 166:. 129:. 117:, 9123:e 9116:t 9109:v 9011:( 9005:) 8995:) 8981:( 8944:) 8940:( 8934:) 8930:( 8924:) 8920:( 8914:) 8910:( 8899:) 8895:( 8861:) 8851:) 8841:) 8831:) 8821:) 8795:) 8791:( 8785:) 8777:( 8771:) 8767:( 8761:) 8757:( 8751:) 8743:( 8603:e 8596:t 8589:v 8541:. 8460:V 8454:w 8451:, 8448:v 8425:1 8419:) 8416:w 8410:v 8407:( 8404:+ 8401:w 8395:v 8392:+ 8389:) 8386:w 8380:v 8377:( 8371:1 8368:= 8365:) 8362:w 8356:v 8353:( 8327:V 8322:2 8318:T 8286:) 8281:i 8277:j 8274:+ 8271:i 8265:( 8235:j 8232:+ 8229:i 8225:v 8221:) 8218:j 8215:, 8212:i 8209:( 8206:= 8201:j 8197:v 8188:i 8184:v 8165:F 8161:V 8153:V 8149:V 8147:( 8145:T 8124:v 8121:= 8118:1 8112:v 8092:K 8086:1 8083:= 8078:1 8075:+ 8072:k 8068:v 8064:= 8059:0 8055:v 8031:) 8026:1 8023:+ 8020:k 8016:v 8001:1 7998:+ 7995:j 7991:v 7987:( 7981:) 7976:j 7972:v 7957:0 7953:v 7949:( 7944:k 7939:0 7936:= 7933:j 7922:) 7917:k 7913:v 7898:1 7894:v 7890:( 7850:V 7845:2 7841:T 7818:. 7815:K 7791:V 7788:T 7782:x 7759:0 7756:= 7753:) 7750:0 7747:( 7741:= 7738:) 7735:x 7732:( 7729:) 7717:( 7691:k 7688:= 7685:) 7682:k 7679:( 7673:= 7670:) 7667:k 7664:( 7661:) 7649:( 7619:0 7616:= 7606:v 7603:+ 7600:v 7594:= 7584:v 7578:1 7575:+ 7572:1 7566:v 7560:= 7550:) 7547:v 7541:1 7538:+ 7535:1 7529:v 7523:( 7517:= 7507:) 7504:v 7498:1 7495:+ 7492:1 7486:v 7483:( 7480:) 7477:) 7473:d 7470:i 7463:S 7460:( 7451:( 7448:= 7441:) 7438:v 7435:( 7432:) 7423:) 7419:d 7416:i 7409:S 7406:( 7397:( 7370:V 7364:v 7337:k 7334:= 7324:k 7318:1 7315:= 7305:) 7302:k 7296:1 7293:( 7287:= 7277:) 7274:k 7268:1 7265:( 7262:) 7259:) 7255:d 7252:i 7245:S 7242:( 7233:( 7230:= 7223:) 7220:k 7217:( 7214:) 7205:) 7201:d 7198:i 7191:S 7188:( 7179:( 7152:K 7146:k 7117:) 7114:S 7107:d 7104:i 7100:( 7091:= 7079:= 7070:) 7066:d 7063:i 7056:S 7053:( 7010:1 7006:v 6991:m 6987:v 6981:m 6977:) 6973:1 6967:( 6964:= 6954:) 6949:1 6945:v 6941:( 6938:S 6926:) 6921:m 6917:v 6913:( 6910:S 6907:= 6900:) 6895:m 6891:v 6876:1 6872:v 6868:( 6865:S 6835:v 6829:w 6826:= 6823:) 6820:v 6817:( 6814:S 6808:) 6805:w 6802:( 6799:S 6796:= 6793:) 6790:w 6784:v 6781:( 6778:S 6755:V 6750:2 6746:T 6739:w 6733:v 6710:v 6704:= 6701:) 6698:v 6695:( 6692:S 6669:V 6664:1 6660:T 6656:= 6653:V 6647:v 6624:k 6621:= 6618:) 6615:k 6612:( 6609:S 6586:V 6581:0 6577:T 6573:= 6570:K 6564:k 6544:S 6512:, 6509:V 6503:w 6500:, 6497:v 6474:) 6471:w 6465:v 6462:( 6456:= 6453:) 6450:w 6444:v 6441:( 6438:) 6426:( 6403:. 6400:V 6397:T 6377:V 6374:T 6368:V 6348:x 6342:y 6339:= 6336:) 6333:y 6327:x 6324:( 6298:) 6286:( 6280:) 6276:d 6273:i 6259:d 6256:i 6252:( 6246:) 6234:( 6231:= 6199:. 6194:2 6190:k 6184:1 6180:k 6176:= 6171:2 6167:k 6158:1 6154:k 6133:K 6123:y 6119:x 6102:0 6099:= 6096:) 6093:y 6087:x 6084:( 6078:= 6075:) 6072:y 6066:x 6063:( 6060:) 6048:( 6019:k 6013:) 6010:1 6004:1 6001:( 5998:k 5995:= 5992:) 5989:k 5986:( 5980:= 5977:) 5974:k 5971:( 5968:) 5956:( 5933:K 5927:K 5921:K 5883:= 5848:. 5843:K 5838:d 5835:i 5830:= 5779:V 5776:T 5771:d 5768:i 5763:= 5752:V 5749:T 5744:d 5741:i 5736:= 5733:) 5722:V 5719:T 5714:d 5711:i 5706:( 5677:K 5671:V 5668:T 5648:V 5645:T 5639:K 5614:V 5611:T 5606:d 5603:i 5592:= 5587:V 5584:T 5579:d 5576:i 5565:= 5562:) 5557:V 5554:T 5549:d 5546:i 5535:( 5502:. 5499:V 5496:T 5490:x 5480:k 5466:x 5463:k 5460:= 5457:x 5451:k 5408:k 5402:k 5399:: 5370:V 5367:T 5361:K 5358:: 5200:. 5197:y 5191:x 5188:= 5185:) 5182:y 5176:x 5173:( 5147:y 5141:x 5135:y 5129:x 5126:: 5097:V 5094:T 5088:V 5085:T 5079:V 5076:T 5073:: 5027:V 5024:T 5018:K 5012:V 5009:T 4982:x 4969:1 4963:x 4960:+ 4957:0 4954:= 4944:) 4941:1 4938:( 4929:x 4926:+ 4923:) 4920:x 4917:( 4908:1 4905:= 4895:) 4892:1 4886:x 4883:+ 4880:x 4874:1 4871:( 4868:) 4858:d 4855:i 4851:( 4848:= 4841:) 4838:x 4835:( 4832:) 4823:) 4813:d 4810:i 4806:( 4803:( 4773:. 4764:) 4760:d 4757:i 4747:( 4744:= 4740:d 4737:i 4733:= 4724:) 4714:d 4711:i 4707:( 4678:V 4673:2 4669:T 4662:V 4657:1 4653:T 4646:x 4623:0 4617:x 4614:: 4568:V 4563:0 4559:T 4555:= 4552:K 4546:k 4526:k 4520:k 4517:: 4494:V 4488:v 4468:0 4462:v 4459:: 4436:K 4430:V 4427:T 4424:: 4393:V 4388:) 4385:k 4379:m 4376:( 4372:T 4365:V 4360:k 4356:T 4350:m 4345:0 4342:= 4339:k 4328:V 4323:m 4319:T 4315:: 4286:} 4283:n 4280:, 4274:, 4271:1 4268:{ 4248:V 4245:T 4222:, 4217:) 4211:k 4207:v 4201:n 4194:S 4188:k 4183:1 4180:= 4177:k 4166:( 4158:) 4152:k 4148:v 4142:n 4135:S 4129:k 4124:1 4121:= 4118:k 4107:( 4101:} 4098:n 4095:, 4089:, 4086:1 4083:{ 4077:S 4069:= 4066:) 4061:n 4057:v 4042:1 4038:v 4034:( 3999:k 3995:v 3974:V 3971:T 3961:m 3957:p 3953:p 3937:) 3934:m 3931:( 3924:v 3909:) 3906:1 3903:+ 3900:p 3897:( 3890:v 3867:) 3864:p 3861:( 3854:v 3839:) 3836:1 3833:( 3826:v 3815:m 3811:m 3807:m 3782:. 3779:} 3776:) 3773:m 3770:( 3755:) 3752:2 3749:+ 3746:p 3743:( 3734:) 3731:1 3728:+ 3725:p 3722:( 3705:, 3702:) 3699:p 3696:( 3681:) 3678:2 3675:( 3666:) 3663:1 3660:( 3653:, 3635:} 3632:q 3629:+ 3626:p 3623:, 3617:, 3614:1 3611:{ 3605:} 3602:q 3599:+ 3596:p 3593:, 3587:, 3584:1 3581:{ 3578:: 3572:{ 3569:= 3566:) 3563:q 3560:, 3557:p 3554:( 3529:p 3525:m 3521:p 3519:( 3473:) 3467:) 3464:m 3461:( 3454:v 3439:) 3436:1 3433:+ 3430:p 3427:( 3420:v 3415:( 3407:) 3401:) 3398:p 3395:( 3388:v 3373:) 3370:1 3367:( 3360:v 3355:( 3348:) 3345:p 3339:m 3336:, 3333:p 3330:( 3326:h 3323:S 3305:m 3300:0 3297:= 3294:p 3286:= 3275:) 3269:m 3265:v 3250:1 3247:+ 3244:p 3240:v 3235:( 3225:) 3219:p 3215:v 3200:1 3196:v 3191:( 3185:m 3180:0 3177:= 3174:p 3166:= 3156:) 3151:m 3147:v 3143:( 3128:) 3123:1 3119:v 3115:( 3109:= 3102:) 3097:m 3093:v 3078:1 3074:v 3070:( 3050:m 3033:V 3028:k 3022:2 3018:T 3011:V 3006:k 3002:T 2996:2 2991:0 2988:= 2985:k 2974:V 2969:2 2965:T 2961:: 2933:. 2930:v 2927:= 2924:v 2918:1 2915:= 2912:v 2906:1 2886:v 2880:1 2853:) 2850:w 2844:v 2841:( 2835:1 2832:+ 2829:v 2823:w 2820:+ 2817:w 2811:v 2808:+ 2805:1 2799:) 2796:w 2790:v 2787:( 2784:= 2774:) 2771:w 2765:1 2762:+ 2759:1 2753:w 2750:( 2744:) 2741:v 2735:1 2732:+ 2729:1 2723:v 2720:( 2717:= 2710:) 2707:w 2701:v 2698:( 2665:) 2662:w 2659:( 2650:) 2647:v 2644:( 2635:w 2629:v 2626:: 2600:V 2595:2 2591:T 2584:w 2578:v 2534:V 2510:V 2507:T 2487:V 2484:T 2441:v 2435:1 2429:1 2426:+ 2423:1 2417:v 2411:1 2408:+ 2405:1 2399:1 2393:v 2390:= 2387:) 2384:v 2381:( 2378:) 2369:) 2358:V 2355:T 2350:d 2347:i 2342:( 2339:( 2316:V 2313:T 2293:x 2287:x 2284:: 2279:V 2276:T 2271:d 2268:i 2237:) 2232:V 2229:T 2224:d 2221:i 2210:( 2207:= 2198:) 2187:V 2184:T 2179:d 2176:i 2171:( 2148:. 2145:K 2139:k 2116:k 2110:1 2107:= 2104:1 2098:k 2095:= 2092:) 2089:1 2083:1 2080:( 2077:k 2074:= 2071:) 2068:k 2065:( 2039:K 2019:V 2016:T 2010:V 2005:0 2001:T 1997:= 1994:K 1988:1 1965:1 1959:1 1953:1 1950:: 1921:v 1915:1 1912:+ 1909:1 1903:v 1897:v 1894:: 1868:V 1865:T 1859:V 1853:v 1705:) 1702:V 1699:( 1696:T 1676:V 1673:T 1650:V 1647:T 1641:V 1638:T 1632:V 1629:T 1626:: 1597:T 1581:Λ 1575:K 1569:K 1563:T 1534:m 1531:y 1528:S 1480:. 1477:v 1471:m 1468:y 1465:S 1456:w 1453:= 1450:w 1444:m 1441:y 1438:S 1429:v 1406:m 1403:y 1400:S 1266:V 1264:( 1262:T 1229:n 1225:x 1221:, 1215:, 1210:1 1206:x 1185:, 1176:V 1165:V 1151:) 1142:V 1138:( 1135:T 1115:) 1112:V 1109:( 1106:T 1096:V 1089:K 1077:V 1075:( 1073:T 1063:V 1055:n 1051:K 1047:n 1043:V 1031:) 1029:W 1027:( 1025:T 1020:) 1018:U 1016:( 1014:T 1008:K 1002:W 996:U 990:K 984:K 978:K 964:T 952:) 950:V 948:( 946:T 941:) 939:V 937:( 935:T 929:V 919:i 904:: 897:A 892:) 890:V 888:( 886:T 876:K 870:A 864:V 849:A 843:V 840:: 837:f 820:V 808:K 794:T 781:K 755:) 752:V 749:( 746:T 740:V 725:V 714:) 712:V 710:( 708:T 695:R 691:M 685:R 683:- 681:R 673:R 662:M 652:k 638:} 635:0 632:{ 629:= 626:V 621:k 617:T 606:Z 602:k 598:V 595:T 587:V 585:( 583:T 579:V 577:( 575:T 558:V 550:+ 547:k 543:T 536:V 527:T 520:V 515:k 511:T 497:V 495:( 493:T 476:. 467:) 464:V 458:V 452:V 449:( 443:) 440:V 434:V 431:( 425:V 419:K 416:= 413:V 408:k 404:T 393:0 390:= 387:k 379:= 376:) 373:V 370:( 367:T 354:k 350:V 347:T 339:V 337:( 335:T 328:K 321:V 318:T 314:k 307:V 303:V 300:T 283:. 280:V 268:V 262:V 259:= 254:k 247:V 243:= 240:V 235:k 231:T 217:k 213:V 205:V 199:k 194:k 187:K 176:V 107:V 105:( 103:T 84:V 72:V 60:V 48:V 46:( 44:T 40:V 38:( 36:T 32:V

Index

mathematics
vector space
algebra
tensors
tensor product
free algebra
left adjoint
forgetful functor
universal property
below
quotient algebras
exterior algebra
symmetric algebra
Clifford algebras
Weyl algebra
universal enveloping algebras
coalgebra
cofree coalgebra
bialgebra
Hopf algebra
unital
associative
coproduct
vector space
field
integer
tensor product
order
ground field
direct sum

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.