Knowledge

Tensor product

Source 📝

9794: 8590: 9789:{\displaystyle {\begin{bmatrix}a_{1,1}&a_{1,2}\\a_{2,1}&a_{2,2}\\\end{bmatrix}}\otimes {\begin{bmatrix}b_{1,1}&b_{1,2}\\b_{2,1}&b_{2,2}\\\end{bmatrix}}={\begin{bmatrix}a_{1,1}{\begin{bmatrix}b_{1,1}&b_{1,2}\\b_{2,1}&b_{2,2}\\\end{bmatrix}}&a_{1,2}{\begin{bmatrix}b_{1,1}&b_{1,2}\\b_{2,1}&b_{2,2}\\\end{bmatrix}}\\a_{2,1}{\begin{bmatrix}b_{1,1}&b_{1,2}\\b_{2,1}&b_{2,2}\\\end{bmatrix}}&a_{2,2}{\begin{bmatrix}b_{1,1}&b_{1,2}\\b_{2,1}&b_{2,2}\\\end{bmatrix}}\\\end{bmatrix}}={\begin{bmatrix}a_{1,1}b_{1,1}&a_{1,1}b_{1,2}&a_{1,2}b_{1,1}&a_{1,2}b_{1,2}\\a_{1,1}b_{2,1}&a_{1,1}b_{2,2}&a_{1,2}b_{2,1}&a_{1,2}b_{2,2}\\a_{2,1}b_{1,1}&a_{2,1}b_{1,2}&a_{2,2}b_{1,1}&a_{2,2}b_{1,2}\\a_{2,1}b_{2,1}&a_{2,1}b_{2,2}&a_{2,2}b_{2,1}&a_{2,2}b_{2,2}\\\end{bmatrix}}.} 4002: 14669: 2774: 13921: 18129: 18476: 19934: 10115: 14310: 8585: 3721: 2544: 15000: 563:
that satisfy the property are isomorphic through a unique isomorphism that is compatible with the universal property. When this definition is used, the other definitions may be viewed as constructions of objects satisfying the universal property and as proofs that there are objects satisfying the
6814: 2185: 17855: 18320: 19774: 19351: 19767: 9947: 13684: 12960: 548:. There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined. 10893: 19039:. It captures the algebraic essence of tensoring, without making any specific reference to what is being tensored. Thus, all tensor products can be expressed as an application of the monoidal category to some particular setting, acting on some particular objects. 11616: 8378: 16714: 11103: 14718: 5815: 3413: 18938: 10311: 6728: 1564: 14664:{\displaystyle {\begin{aligned}&\forall a,a_{1},a_{2}\in A,\forall b,b_{1},b_{2}\in B,{\text{ for all }}r\in R:\\&(a_{1},b)+(a_{2},b)-(a_{1}+a_{2},b),\\&(a,b_{1})+(a,b_{2})-(a,b_{1}+b_{2}),\\&(ar,b)-(a,rb).\\\end{aligned}}} 10492: 7629: 4065:. It follows that this is a (non-constructive) way to define the tensor product of two vector spaces. In this context, the preceding constructions of tensor products may be viewed as proofs of existence of the tensor product so defined. 9866: 8216: 13301: 2769:{\displaystyle {\begin{aligned}x\otimes y&={\biggl (}\sum _{v\in B_{V}}x_{v}\,v{\biggr )}\otimes {\biggl (}\sum _{w\in B_{W}}y_{w}\,w{\biggr )}\\&=\sum _{v\in B_{V}}\sum _{w\in B_{W}}x_{v}y_{w}\,v\otimes w.\end{aligned}}} 5539: 5916: 11189: 16036: 6688: 5689: 1761: 19200: 19616: 15806: 2335: 19187: 4068:
A consequence of this approach is that every property of the tensor product can be deduced from the universal property, and that, in practice, one may forget the method that has been used to prove its existence.
12828: 12168: 3098:
A limitation of this definition of the tensor product is that, if one changes bases, a different tensor product is defined. However, the decomposition on one basis of the elements of the other basis defines a
10703: 7082: 18549:
of the algebraic tensor product discussed above. However, it does not satisfy the obvious analogue of the universal property defining tensor products; the morphisms for that property must be restricted to
15957: 1986: 17237: 11984: 18293: 11516: 3103:
between the two tensor products of vector spaces, which allows identifying them. Also, contrarily to the two following alternative definitions, this definition cannot be extended into a definition of the
2549: 18124:{\displaystyle \psi _{i}(x_{1},\ldots ,x_{n})=\sum _{j_{2}=1}^{n}\sum _{j_{3}=1}^{n}\cdots \sum _{j_{d}=1}^{n}a_{ij_{2}j_{3}\cdots j_{d}}x_{j_{2}}x_{j_{3}}\cdots x_{j_{d}}\;\;{\mbox{for }}i=1,\ldots ,n} 8109: 5033: 12043: 17850: 16417: 12615: 1076: 7870: 6483: 12299: 4762: 19504: 18471:{\displaystyle {\mbox{rank}}{\begin{pmatrix}x_{1}&x_{2}&\cdots &x_{n}\\\psi _{1}(\mathbf {x} )&\psi _{2}(\mathbf {x} )&\cdots &\psi _{n}(\mathbf {x} )\end{pmatrix}}\leq 1} 13631: 16574: 14723: 14315: 13689: 8023: 7793: 3418: 19929:{\displaystyle \operatorname {Sym} ^{n}V:=\underbrace {V\otimes \dots \otimes V} _{n}{\big /}(\dots \otimes v_{i}\otimes v_{i+1}\otimes \dots -\dots \otimes v_{i+1}\otimes v_{i}\otimes \dots )} 15110: 4179: 2956: 12234: 11433: 11015: 13036: 18579:
of subspaces. In such cases, the tensor product of two spaces can be decomposed into sums of products of the subspaces (in analogy to the way that multiplication distributes over addition).
17615: 15047: 13413: 4440: 121: 17557: 14205: 7680: 4375: 17678: 15425: 15313: 12660: 7439: 4330: 17067: 10110:{\displaystyle T_{s}^{r}(V)=\underbrace {V\otimes \cdots \otimes V} _{r}\otimes \underbrace {V^{*}\otimes \cdots \otimes V^{*}} _{s}=V^{\otimes r}\otimes \left(V^{*}\right)^{\otimes s}.} 7264: 6616: 6581: 17020: 16917: 18776: 13916:{\displaystyle {\begin{aligned}\varphi (a+a',b)&=\varphi (a,b)+\varphi (a',b)\\\varphi (a,b+b')&=\varphi (a,b)+\varphi (a,b')\\\varphi (ar,b)&=\varphi (a,rb)\end{aligned}}} 7396: 1981: 19538: 17751: 6723: 4951: 4899: 1456: 16089: 13675: 11297: 16789: 13082: 12746: 11895: 6081: 18731: 18676: 14085: 7163: 7123: 6544: 6434: 6397: 180: 10939: 5621: 13160: 11662: 11253: 5988: 5951: 5416: 5350: 5189: 5085: 4507:
Like the universal property above, the following characterization may also be used to determine whether or not a given vector space and given bilinear map form a tensor product.
2382: 19393: 17442: 6257: 6127: 3832: 3778: 1827: 1315: 19433: 15869: 13561: 12476: 12424: 12344: 11814: 2478: 1937: 1869: 1269: 969: 859: 14713: 6161: 4603: 4275: 1355: 13202: 3915: 488: 17794: 17173: 16563: 16349: 16295: 16131: 15619: 15487: 15363: 15251: 15202: 14051: 12088: 10696: 10656: 8580:{\displaystyle A={\begin{bmatrix}a_{1,1}&a_{1,2}\\a_{2,1}&a_{2,2}\\\end{bmatrix}},\qquad B={\begin{bmatrix}b_{1,1}&b_{1,2}\\b_{2,1}&b_{2,2}\\\end{bmatrix}},} 6320: 3310: 19576: 12819: 10384: 7511: 3716:{\displaystyle {\begin{aligned}(v_{1}+v_{2},w)&-(v_{1},w)-(v_{2},w),\\(v,w_{1}+w_{2})&-(v,w_{1})-(v,w_{2}),\\(sv,w)&-s(v,w),\\(v,sw)&-s(v,w),\end{aligned}}} 14305: 14240: 13448: 12385: 11774: 10578: 6032: 11008: 6733: 5694: 15702: 15662: 13108: 8337: 8311: 7899: 7465: 7321: 7293: 6954: 6913: 4233: 4125: 3978: 3045: 3008: 2233: 1897: 1197: 1104: 1001: 893: 812: 784: 749: 716: 682: 412: 370: 344: 303: 265: 234: 206: 61: 19112: 18506: 18201: 14270: 14010: 13960: 12781: 11718: 4205: 3176: 2982: 2410: 1227: 788:. This definition can be formalized in the following way (this formalization is rarely used in practice, as the preceding informal definition is generally sufficient): 449: 14107: 11108: 7968: 7934: 7731: 16223: 15966: 7538: 16157: 15584: 15550: 15164: 15136: 4494: 4466: 3860: 3273: 3245: 2846: 2811: 2539: 2513: 18171: 17359: 17309: 16252: 16190: 13982: 11848: 11480: 11333: 10979: 10537: 10379: 10346: 10142: 9933: 7012: 5216: 5116: 4635: 3950: 3378: 3342: 3219: 2902: 2873: 1618: 1591: 1451: 1424: 1166: 1137: 925: 648: 619: 10179: 9815: 1643: 18227: 7354: 6207: 4543: 6280: 18771: 18751: 18315: 18151: 17698: 17577: 17484: 17464: 17405: 17385: 17337: 17285: 17263: 17123: 17100: 12682: 11684: 11503: 11453: 7216: 7196: 6856: 6834: 6362: 6342: 6181: 6010: 5583: 5563: 5438: 5370: 5304: 5284: 5264: 5238: 5138: 4847: 4825: 4804: 4784: 4715: 4695: 4675: 4655: 4565: 3091: 3069: 2436: 2207: 1783: 1638: 1397: 1377: 20020:
However, these kinds of notation are not universally present in array languages. Other array languages may require explicit treatment of indices (for example,
14995:{\displaystyle {\begin{aligned}q(a_{1}+a_{2},b)&=q(a_{1},b)+q(a_{2},b),\\q(a,b_{1}+b_{2})&=q(a,b_{1})+q(a,b_{2}),\\q(ar,b)&=q(a,rb).\end{aligned}}} 8120: 20195: 15741: 2238: 19117: 7693: 6809:{\displaystyle {\begin{alignedat}{4}\;&&X\times Y&&\;\to \;&Z\\&&(f,g)&&\;\mapsto \;&f\otimes g\\\end{alignedat}}} 5445: 18561:. However, such a construction is no longer uniquely specified: in many cases, there are multiple natural topologies on the algebraic tensor product. 12095: 5820: 15874: 6621: 11902: 5626: 20283: 18557:
In situations where the imposition of an inner product is inappropriate, one can still attempt to complete the algebraic tensor product, as a
16356: 12555: 4061:
satisfied by the tensor product is described. As for every universal property, two objects that satisfy the property are related by a unique
19007:
It should be mentioned that, though called "tensor product", this is not a tensor product of graphs in the above sense; actually it is the
12239: 10897:
Thus, the components of the tensor product of two tensors are the ordinary product of the components of each tensor. Another example: let
19938:
That is, in the symmetric algebra two adjacent vectors (and therefore all of them) can be interchanged. The resulting objects are called
11355: 7022: 12967: 11727:
The interplay of evaluation and coevaluation can be used to characterize finite-dimensional vector spaces without referring to bases.
13353: 17180: 14148: 3095:. Therefore, the tensor product is a generalization of the outer product, that is, an abstraction of it beyond coordinate vectors. 21009: 20266: 20170: 18234: 10605: 19346:{\displaystyle V\wedge V:=V\otimes V{\big /}{\bigl \{}v_{1}\otimes v_{2}+v_{2}\otimes v_{1}\mid (v_{1},v_{2})\in V^{2}{\bigr \}}.} 19762:{\displaystyle V\odot V:=V\otimes V{\big /}{\bigl \{}v_{1}\otimes v_{2}-v_{2}\otimes v_{1}\mid (v_{1},v_{2})\in V^{2}{\bigr \}}.} 12429: 16960: 16857: 8034: 4958: 11989: 21158: 20436: 17799: 1011: 20605: 20583: 20523: 20386: 20353: 20134: 12955:{\displaystyle {\begin{cases}\mathrm {Hom} (U,V)\to U^{*}\otimes V\\F\mapsto \sum _{i}u_{i}^{*}\otimes F(u_{i}).\end{cases}}} 11258: 7804: 18570: 16719: 12689: 6441: 4722: 425:
The tensor product of two vector spaces captures the properties of all bilinear maps in the sense that a bilinear map from
19440: 13585: 10888:{\displaystyle (F\otimes G)_{i_{1}i_{2}\cdots i_{m+n}}=F_{i_{1}i_{2}\cdots i_{m}}G_{i_{m+1}i_{m+2}i_{m+3}\cdots i_{m+n}}.} 11219: 7978: 7748: 15052: 4132: 2909: 2180:{\displaystyle (v\otimes w)(x,y):=\sum _{v'\in B_{V}}\sum _{w'\in B_{W}}x_{v'}y_{w'}\,(v\otimes w)(v',w')=x_{v}\,y_{w}.} 21193: 20872: 20453: 13510: 12175: 8252:, then the same is true for all above defined linear maps. In particular, the tensor product with a vector space is an 13678: 13473: 11611:{\displaystyle {\begin{cases}K\to V\otimes V^{*}\\\lambda \mapsto \sum _{i}\lambda v_{i}\otimes v_{i}^{*}\end{cases}}} 21301: 20652: 20564: 20475: 20418: 20238: 18610: 18588: 17582: 15007: 4380: 88: 17493: 7639: 4337: 21074: 20187: 18538: 18529: 17620: 15374: 15262: 12620: 7406: 4288: 20341: 20029: 19052: 17754: 17033: 7228: 6586: 6551: 3868: 24: 15706:, as was mentioned above. For modules over a general (commutative) ring, not every module is free. For example, 21296: 20497: 18598: 7363: 4072:
The "universal-property definition" of the tensor product of two vector spaces is the following (recall that a
1942: 19511: 17707: 6693: 4904: 4852: 20925: 20857: 20515: 20345: 16045: 13636: 16709:{\displaystyle (a_{1}\otimes b_{1})\cdot (a_{2}\otimes b_{2})=(a_{1}\cdot a_{2})\otimes (b_{1}\cdot b_{2}).} 16481:
measure the defect of the tensor product being not left exact. All higher Tor functors are assembled in the
13041: 11857: 6037: 20950: 19072: 18681: 18626: 18551: 17316: 14058: 7130: 7090: 6490: 6404: 6367: 126: 18974: 11098:{\displaystyle \left(U\otimes V\right)^{\alpha }{}_{\beta }{}^{\gamma }=U^{\alpha }{}_{\beta }V^{\gamma }} 10912: 5588: 21188: 19955: 18542: 13113: 11621: 10581: 5958: 5921: 5375: 5309: 5148: 5044: 2344: 19358: 18546: 17412: 6212: 6088: 3785: 3731: 1788: 1276: 20999: 20819: 20125:
Hazewinkel, Michiel; Gubareni, Nadezhda Mikhaĭlovna; Gubareni, Nadiya; Kirichenko, Vladimir V. (2004).
20074: 19398: 18558: 18525: 17487: 16494: 15829: 12444: 12392: 12312: 11782: 6886: 2443: 1902: 1834: 1234: 934: 824: 497:
Tensor products are used in many application areas, including physics and engineering. For example, in
20319: 15497:)-bimodule, where the left and right actions are defined in the same way as the previous two examples. 14680: 6137: 4570: 4242: 1322: 20671: 19610: 19008: 14110: 13316: 8261: 3990: 3877: 3120:
A construction of the tensor product that is basis independent can be obtained in the following way.
3105: 2489:
is defined from their decomposition on the bases. More precisely, taking the basis decompositions of
461: 20: 21153: 17759: 17138: 16535: 16314: 16267: 16096: 15591: 15459: 15335: 15223: 15174: 14023: 12837: 12060: 11525: 10663: 10623: 6287: 5810:{\displaystyle (x,y)=\left(\left(x_{1},\ldots ,x_{m}\right),\left(y_{1},\ldots ,y_{n}\right)\right)} 3283: 21255: 21173: 21127: 20834: 20001:
may be functions instead of constants. This product of two functions is a derived function, and if
19959: 19551: 19002: 18991: 17701: 16812: 15811: 12786: 7486: 560: 18933:{\displaystyle (f\otimes g)(x_{1},\dots ,x_{k+m})=f(x_{1},\dots ,x_{k})g(x_{k+1},\dots ,x_{k+m}).} 16419:
is not usually injective. For example, tensoring the (injective) map given by multiplication with
14275: 14210: 13418: 12349: 11738: 10542: 7170:
This allows omitting parentheses in the tensor product of more than two vector spaces or vectors.
6015: 21225: 20912: 20829: 20799: 20216: 20010: 10986: 1559:{\displaystyle x=\sum _{v\in B_{V}}x_{v}\,v\quad {\text{and}}\quad y=\sum _{w\in B_{W}}y_{w}\,w,} 15681: 15641: 13087: 8316: 8290: 7878: 7624:{\displaystyle x_{1}\otimes \cdots \otimes x_{n}\mapsto x_{s(1)}\otimes \cdots \otimes x_{s(n)}} 7444: 7300: 7272: 6933: 6892: 4212: 4104: 3957: 3024: 2987: 2212: 1876: 1176: 1083: 980: 872: 791: 756: 721: 695: 661: 391: 349: 323: 282: 244: 213: 185: 40: 21306: 21183: 21039: 20994: 20173:
tensors, as well as tensors of mixed variance. Although in many cases such as when there is an
19975: 19091: 18508: 18485: 18179: 18174: 16845: 16482: 14249: 13989: 13939: 12753: 11691: 8230: 4184: 3278: 3179: 3155: 2961: 2415: 2389: 1206: 815: 592: 428: 373: 14092: 7941: 7907: 7704: 21265: 21220: 20700: 20645: 20025: 18980: 16524: 16195: 9861:{\displaystyle \operatorname {Tr} A\otimes B=\operatorname {Tr} A\times \operatorname {Tr} B} 3100: 16136: 15557: 15523: 15143: 15115: 4473: 4445: 3839: 3252: 3224: 2816: 2781: 2518: 2492: 21240: 21168: 21054: 20920: 20882: 20814: 20593: 20533: 20485: 20363: 20051: 19830: 19643: 19227: 19144: 18594: 18156: 17344: 17294: 17080: 16230: 16168: 13967: 13322: 11821: 11458: 11306: 11194: 10952: 10515: 10357: 10324: 10120: 9906: 8284: 6985: 5194: 5094: 5088: 4608: 3923: 3351: 3315: 3192: 2880: 2851: 1596: 1569: 1429: 1402: 1144: 1115: 898: 626: 597: 20541: 8: 21117: 20940: 20930: 20779: 20764: 20720: 18950:). Thus the components of the tensor product of multilinear forms can be computed by the 18206: 17103: 16925:
is interpreted as the same polynomial, but with its coefficients regarded as elements of
16300: 13480: 8265: 8211:{\displaystyle f\otimes g=(f\otimes Z)\circ (U\otimes g)=(V\otimes g)\circ (f\otimes W).} 7333: 6186: 4522: 4027: 3136: 2906:, as done above. It is then straightforward to verify that with this definition, the map 866: 585: 502: 79: 20255: 13350:
is defined in exactly the same way as the tensor product of vector spaces over a field:
13296:{\displaystyle \mathrm {Hom} (U\otimes V,W)\cong \mathrm {Hom} (U,\mathrm {Hom} (V,W)).} 7694:
Tensor product of modules § Tensor product of linear maps and a change of base ring
7692:"Tensor product of linear maps" redirects here. For the generalization for modules, see 6262: 21250: 21107: 20960: 20774: 20710: 20298: 20068: 19012: 18756: 18736: 18300: 18136: 17683: 17562: 17469: 17449: 17390: 17370: 17322: 17270: 17248: 17108: 17085: 14243: 13342: 12667: 11669: 11488: 11438: 11349: 7201: 7181: 6841: 6819: 6347: 6327: 6166: 5995: 5568: 5548: 5423: 5355: 5289: 5269: 5249: 5223: 5123: 4832: 4810: 4789: 4769: 4700: 4680: 4660: 4640: 4550: 4058: 3986: 3399:
that is spanned by the relations that the tensor product must satisfy. More precisely,
3109: 3076: 3054: 3011: 2421: 2192: 1768: 1623: 1382: 1362: 552: 498: 491: 16937:, the polynomial may become reducible, which brings in Galois theory. For example, if 10487:{\displaystyle (v_{1}\otimes f_{1})\otimes (v'_{1})=v_{1}\otimes v'_{1}\otimes f_{1}.} 21245: 21014: 20989: 20804: 20715: 20695: 20611: 20601: 20579: 20560: 20548: 20519: 20493: 20471: 20449: 20414: 20382: 20349: 20277: 20234: 20130: 20056: 19597: 19060: 19036: 19016: 18951: 18479: 17288: 17240: 10585: 10145: 9877:
is the special case of the tensor product between two vectors of the same dimension.
8340: 3150: 3018: 819: 5534:{\displaystyle \left\{T\left(x_{i},y_{j}\right):1\leq i\leq m,1\leq j\leq n\right\}} 21260: 20935: 20902: 20887: 20769: 20638: 20623: 20552: 20537: 20432: 20406: 19939: 19079: 19064: 19056: 19020: 18963: 18947: 18621: 16948: 13338: 5911:{\displaystyle \left(x_{i}y_{j}\right)_{\stackrel {i=1,\ldots ,m}{j=1,\ldots ,n}}} 3985:
It is straightforward to prove that the result of this construction satisfies the
21230: 21178: 21122: 21102: 21004: 20892: 20759: 20730: 20529: 20359: 13304: 11184:{\displaystyle (V\otimes U)^{\mu \nu }{}_{\sigma }=V^{\mu }U^{\nu }{}_{\sigma }.} 8222: 3392: 525: 16031:{\displaystyle M\otimes _{R}N=\operatorname {coker} \left(N^{J}\to N^{I}\right)} 4001: 21270: 21235: 21132: 20955: 20945: 20867: 20839: 20824: 20809: 20725: 20062: 19587: 19048: 11198: 9874: 8257: 7480: 6683:{\displaystyle Z:=\operatorname {span} \left\{f\otimes g:f\in X,g\in Y\right\}} 2338: 21215: 18537:
generalize finite-dimensional vector spaces to arbitrary dimensions. There is
5684:{\displaystyle T:\mathbb {C} ^{m}\times \mathbb {C} ^{n}\to \mathbb {C} ^{mn}} 21290: 21207: 21112: 21024: 20897: 20615: 20297:
Abo, H.; Seigal, A.; Sturmfels, B. (2015). "Eigenconfigurations of Tensors".
20174: 18593:
Vector spaces endowed with an additional multiplicative structure are called
18534: 16816: 13932: 13576: 10306:{\displaystyle T_{s}^{r}(V)\otimes _{K}T_{s'}^{r'}(V)\to T_{s+s'}^{r+r'}(V).} 8363:
above are all two-dimensional and bases have been fixed for all of them, and
8253: 6915:
is finite-dimensional, and its dimension is the product of the dimensions of
3048: 1756:{\displaystyle B(x,y)=\sum _{v\in B_{V}}\sum _{w\in B_{W}}x_{v}y_{w}\,B(v,w)} 1200: 506: 21275: 21079: 21064: 21029: 20877: 20862: 19068: 17312: 17130: 13681:(referred to as "the canonical middle linear map"); that is, it satisfies: 7468: 4073: 3277:. To get such a vector space, one can define it as the vector space of the 3187: 3132: 581: 517:
but with tensors instead of vectors), with one tensor at each point of the
514: 510: 83: 64: 17490:. The fixed points of nonlinear maps are the eigenvectors of tensors. Let 21163: 21137: 21059: 20748: 20687: 20463: 16478: 13451: 11777: 9807: 9803: 7522: 7219: 6977: 5306:-linearly disjoint if and only if for all linearly independent sequences 4062: 3989:
considered below. (A very similar construction can be used to define the
3404: 545: 318: 31: 16256:). Colloquially, this may be rephrased by saying that a presentation of 15801:{\displaystyle M\otimes _{\mathbf {Z} }\mathbf {Z} /n\mathbf {Z} =M/nM.} 14116: 9798:
The resultant rank is at most 4, and thus the resultant dimension is 4.
6183:
with addition and scalar multiplication defined pointwise (meaning that
2330:{\displaystyle B=\sum _{v\in B_{V}}\sum _{w\in B_{W}}B(v,w)(v\otimes w)} 21044: 20507: 20428: 19993:
J's treatment also allows the representation of some tensor fields, as
19197:
does not have characteristic 2, then this definition is equivalent to:
19182:{\displaystyle V\wedge V:=V\otimes V{\big /}\{v\otimes v\mid v\in V\}.} 18576: 17126: 12507: 11721: 10509: 10149: 8249: 4080: 518: 456: 16303:. It is not in general left exact, that is, given an injective map of 13479:
More generally, the tensor product can be defined even if the ring is
21019: 20970: 20518:, vol. 211 (Revised third ed.), New York: Springer-Verlag, 13582:
The universal property also carries over, slightly modified: the map
12046: 8245: 8226: 20124: 13507:-module, and instead of the last two relations above, the relation: 3014:
that any construction of the tensor product satisfies (see below).
21049: 21034: 20303: 19609:
The symmetric algebra is constructed in a similar manner, from the
15960: 521: 20077: – Tensor product constructions for topological vector spaces 12163:{\displaystyle \langle u(a),b\rangle =\langle a,u^{*}(b)\rangle .} 2778:
This definition is quite clearly derived from the coefficients of
1829:
is uniquely and totally determined by the values that it takes on
20743: 20705: 20045: 20033: 9810:
counts the number of degrees of freedom in the resulting array).
8271:
By choosing bases of all vector spaces involved, the linear maps
7077:{\displaystyle (U\otimes V)\otimes W\cong U\otimes (V\otimes W),} 18541:, also called the "tensor product," that makes Hilbert spaces a 8587:
respectively, then the tensor product of these two matrices is:
21069: 20661: 20021: 15952:{\displaystyle \sum _{j\in J}a_{ji}m_{i}=0,\qquad a_{ij}\in R,} 10589: 9935: 9886: 309:, and the tensor product of two vectors is sometimes called an 306: 17232:{\displaystyle \psi :\mathbb {P} ^{n-1}\to \mathbb {P} ^{n-1}} 11979:{\displaystyle u(a\otimes b)=u(a)\otimes b-a\otimes u^{*}(b),} 11816:
by means of the diagonal action: for simplicity let us assume
11509:, there is a canonical map in the other direction (called the 8781: 6956:
is formed by taking all tensor products of a basis element of
18571:
Graded vector space § Operations on graded vector spaces
18288:{\displaystyle \mathbf {x} =\left(x_{1},\ldots ,x_{n}\right)} 16299:. This is referred to by saying that the tensor product is a 10700:), then the components of their tensor product are given by: 6163:
is the vector space of all complex-valued functions on a set
2209:
as a (potentially infinite) formal linear combination of the
541: 20370: 7358:, the tensor product of vectors is not commutative; that is 3312:
that have a finite number of nonzero values and identifying
20093: 20091: 12948: 11604: 4829:, which by definition means that for all positive integers 20630: 18597:. The tensor product of such algebras is described by the 12822: 8264:
do not transform injections into injections, but they are
8104:{\displaystyle (f\otimes g)(u\otimes w)=f(u)\otimes g(w).} 7173: 5028:{\displaystyle \sum _{i=1}^{n}T\left(x_{i},y_{i}\right)=0} 20624:"Bibliography on the nonabelian tensor product of groups" 18564: 13310: 12038:{\displaystyle u^{*}\in \mathrm {End} \left(V^{*}\right)} 20088: 17845:{\displaystyle \mathbb {P} ^{n-1}\to \mathbb {P} ^{n-1}} 16412:{\displaystyle M_{1}\otimes _{R}N\to M_{2}\otimes _{R}N} 12610:{\displaystyle U^{*}\otimes V\cong \mathrm {Hom} (U,V),} 11204: 8313:
is vectorized, the matrix describing the tensor product
1229:
that are nonzero at only a finite number of elements of
1071:{\displaystyle \{v\otimes w\mid v\in B_{V},w\in B_{W}\}} 564:
universal property, that is that tensor products exist.
20108: 20106: 19035:
The most general setting for the tensor product is the
18957: 11482:
on which this map is to be applied must be specified.)
7865:{\displaystyle (f\otimes W)(u\otimes w)=f(u)\otimes w.} 540:
of two vector spaces is a vector space that is defined
414:
is formed by all tensor products of a basis element of
18615: 18336: 18325: 18094: 11193:
Tensors equipped with their product operation form an
9224: 9125: 9019: 8911: 8805: 8690: 8599: 8491: 8393: 6478:{\displaystyle f\otimes g\in \mathbb {C} ^{S\times T}} 20065: – Universal construction in multilinear algebra 19777: 19619: 19554: 19514: 19443: 19401: 19361: 19203: 19120: 19094: 18779: 18759: 18739: 18684: 18629: 18488: 18323: 18303: 18237: 18209: 18182: 18159: 18139: 17858: 17802: 17762: 17710: 17686: 17623: 17585: 17565: 17496: 17472: 17452: 17415: 17393: 17373: 17347: 17325: 17297: 17273: 17251: 17183: 17141: 17111: 17088: 17036: 16963: 16860: 16722: 16577: 16538: 16359: 16317: 16270: 16233: 16198: 16171: 16139: 16099: 16048: 15969: 15877: 15832: 15744: 15684: 15644: 15594: 15560: 15526: 15462: 15377: 15338: 15265: 15226: 15177: 15146: 15118: 15055: 15010: 14721: 14683: 14673:
The universal property can be stated as follows. Let
14313: 14278: 14252: 14213: 14151: 14117:
Tensor product of modules over a non-commutative ring
14095: 14061: 14026: 13992: 13970: 13942: 13687: 13639: 13588: 13513: 13421: 13356: 13205: 13116: 13090: 13044: 12970: 12831: 12789: 12756: 12692: 12670: 12623: 12558: 12447: 12395: 12352: 12315: 12294:{\displaystyle (a\otimes b)(x)=\langle x,b\rangle a.} 12242: 12178: 12098: 12063: 11992: 11905: 11860: 11824: 11785: 11741: 11694: 11672: 11624: 11519: 11491: 11461: 11441: 11358: 11309: 11261: 11222: 11111: 11018: 10989: 10955: 10915: 10706: 10666: 10626: 10545: 10518: 10387: 10360: 10327: 10182: 10123: 9950: 9909: 9818: 8593: 8381: 8319: 8293: 8123: 8037: 7981: 7944: 7910: 7881: 7807: 7751: 7707: 7642: 7541: 7489: 7447: 7409: 7366: 7336: 7303: 7275: 7231: 7222:
in the sense that there is a canonical isomorphism:
7204: 7184: 7133: 7093: 7025: 6988: 6936: 6895: 6844: 6822: 6731: 6696: 6624: 6589: 6554: 6493: 6444: 6407: 6370: 6350: 6330: 6290: 6265: 6215: 6189: 6169: 6140: 6091: 6040: 6018: 5998: 5961: 5924: 5823: 5697: 5629: 5591: 5571: 5551: 5448: 5426: 5378: 5358: 5312: 5292: 5272: 5252: 5226: 5197: 5151: 5126: 5097: 5047: 4961: 4907: 4855: 4835: 4813: 4792: 4772: 4757:{\displaystyle \operatorname {span} \;T(X\times Y)=Z} 4725: 4703: 4683: 4663: 4643: 4611: 4573: 4553: 4525: 4476: 4448: 4383: 4340: 4291: 4245: 4215: 4187: 4135: 4107: 3960: 3926: 3880: 3842: 3788: 3734: 3416: 3354: 3318: 3286: 3255: 3227: 3195: 3158: 3079: 3057: 3027: 2990: 2964: 2912: 2883: 2854: 2819: 2784: 2547: 2521: 2495: 2446: 2438:
is nonzero at an only a finite number of elements of
2424: 2392: 2347: 2241: 2215: 2195: 1989: 1945: 1905: 1879: 1837: 1791: 1771: 1646: 1626: 1599: 1572: 1459: 1432: 1405: 1385: 1365: 1325: 1279: 1237: 1209: 1179: 1147: 1118: 1086: 1014: 983: 937: 901: 875: 827: 794: 759: 724: 698: 692:
is a vector space that has as a basis the set of all
664: 629: 600: 464: 431: 394: 352: 326: 285: 247: 216: 188: 129: 91: 43: 20598:
Topological Vector Spaces, Distributions and Kernels
20336:
Kadison, Richard V.; Ringrose, John R. (1997).
20320:"Non-existence of tensor products of Hilbert spaces" 20103: 19499:{\displaystyle v_{1}\wedge v_{2}=-v_{2}\wedge v_{1}} 18604: 18582: 18514: 15959:
the tensor product can be computed as the following
13626:{\displaystyle \varphi :A\times B\to A\otimes _{R}B} 13195:
the tensor product is linked to the vector space of
20152:, p. 244 defines the usage "tensor product of 11724:. This map does not depend on the choice of basis. 8018:{\displaystyle f\otimes g:U\otimes W\to V\otimes Z} 7788:{\displaystyle f\otimes W:U\otimes W\to V\otimes W} 2482:, and consider the subspace of such maps instead. 20296: 19928: 19761: 19570: 19532: 19498: 19427: 19387: 19345: 19181: 19106: 19024: 18932: 18765: 18745: 18725: 18670: 18500: 18470: 18309: 18287: 18221: 18195: 18165: 18145: 18123: 17844: 17788: 17745: 17692: 17672: 17609: 17571: 17551: 17478: 17458: 17436: 17399: 17379: 17353: 17331: 17303: 17279: 17257: 17231: 17167: 17117: 17094: 17061: 17014: 16911: 16783: 16708: 16557: 16411: 16343: 16289: 16246: 16217: 16184: 16151: 16125: 16083: 16030: 15951: 15863: 15800: 15696: 15656: 15613: 15578: 15544: 15481: 15419: 15357: 15307: 15245: 15196: 15158: 15130: 15105:{\displaystyle {\overline {q}}(a\otimes b)=q(a,b)} 15104: 15041: 14994: 14707: 14663: 14299: 14264: 14234: 14199: 14101: 14079: 14045: 14004: 13976: 13954: 13915: 13669: 13625: 13555: 13442: 13407: 13295: 13154: 13102: 13076: 13038:which automatically gives the important fact that 13030: 12954: 12813: 12775: 12740: 12676: 12654: 12609: 12470: 12418: 12379: 12338: 12293: 12228: 12162: 12082: 12037: 11978: 11889: 11842: 11808: 11768: 11712: 11678: 11656: 11610: 11497: 11474: 11447: 11427: 11327: 11291: 11247: 11183: 11097: 11002: 10973: 10933: 10887: 10690: 10650: 10572: 10531: 10486: 10373: 10340: 10315:It is defined by grouping all occurring "factors" 10305: 10136: 10109: 9927: 9860: 9788: 8579: 8331: 8305: 8210: 8103: 8017: 7962: 7928: 7893: 7864: 7787: 7725: 7674: 7623: 7505: 7459: 7433: 7390: 7348: 7315: 7287: 7258: 7210: 7190: 7157: 7117: 7076: 7006: 6948: 6907: 6850: 6828: 6808: 6717: 6682: 6610: 6575: 6538: 6477: 6428: 6391: 6356: 6336: 6314: 6274: 6251: 6201: 6175: 6155: 6121: 6075: 6026: 6004: 5982: 5945: 5910: 5809: 5683: 5615: 5577: 5557: 5533: 5432: 5410: 5364: 5344: 5298: 5278: 5258: 5232: 5210: 5183: 5132: 5110: 5079: 5027: 4945: 4893: 4841: 4819: 4798: 4778: 4756: 4709: 4689: 4669: 4649: 4629: 4597: 4559: 4537: 4488: 4460: 4434: 4369: 4324: 4269: 4227: 4199: 4174:{\displaystyle {\otimes }:(v,w)\mapsto v\otimes w} 4173: 4119: 3972: 3944: 3909: 3854: 3826: 3772: 3715: 3372: 3336: 3304: 3267: 3239: 3213: 3170: 3085: 3063: 3039: 3002: 2976: 2951:{\displaystyle {\otimes }:(x,y)\mapsto x\otimes y} 2950: 2896: 2867: 2840: 2805: 2768: 2533: 2507: 2472: 2430: 2404: 2376: 2329: 2227: 2201: 2179: 1975: 1931: 1891: 1863: 1821: 1777: 1755: 1632: 1612: 1585: 1558: 1445: 1418: 1391: 1371: 1349: 1309: 1263: 1221: 1191: 1160: 1131: 1098: 1070: 995: 963: 919: 887: 853: 806: 778: 743: 710: 676: 642: 613: 524:, and each belonging to the tensor product of the 482: 443: 406: 364: 338: 297: 259: 228: 200: 174: 115: 55: 18975:Vector bundle § Operations on vector bundles 18968: 17074: 12229:{\displaystyle T_{1}^{1}(V)\to \mathrm {End} (V)} 11428:{\displaystyle T_{s}^{r}(V)\to T_{s-1}^{r-1}(V).} 2668: 2624: 2614: 2570: 865:that have a finite number of nonzero values. The 551:The tensor product can also be defined through a 21288: 20547: 19958:may have this pattern built in. For example, in 19945: 15204:a module structure under some extra conditions: 13031:{\displaystyle \dim(U\otimes V)=\dim(U)\dim(V),} 9806:i.e. the number of requisite indices (while the 7687: 531: 20338:Fundamentals of the theory of operator algebras 20335: 18946:if they are seen as multilinear maps (see also 17610:{\displaystyle n\times n\times \cdots \times n} 15633: 15042:{\displaystyle {\overline {q}}:A\otimes B\to G} 13408:{\displaystyle A\otimes _{R}B:=F(A\times B)/G,} 13307:: the tensor product is "left adjoint" to Hom. 10502:is finite dimensional, then picking a basis of 4435:{\displaystyle h(v,w)={\tilde {h}}(v\otimes w)} 1620:'s are nonzero, and find by the bilinearity of 116:{\displaystyle V\times W\rightarrow V\otimes W} 19950: 18773:their tensor product is the multilinear form: 18519: 17552:{\displaystyle A=(a_{i_{1}i_{2}\cdots i_{d}})} 14200:{\displaystyle A\otimes _{R}B:=F(A\times B)/G} 12055:, that is, in terms of the obvious pairing on 7675:{\displaystyle V^{\otimes n}\to V^{\otimes n}} 6618:are vector subspaces then the vector subspace 4370:{\displaystyle h={\tilde {h}}\circ {\otimes }} 2418:, it only remains to add the requirement that 559:, below. As for every universal property, all 20646: 20573: 20265:(lecture notes), National Taiwan University, 20048: – Second order tensor in vector algebra 19751: 19650: 19335: 19234: 19078:The exterior algebra is constructed from the 16505:be a commutative ring. The tensor product of 16488: 6980:in the sense that, given three vector spaces 82:) is a vector space to which is associated a 20576:Monoidal functors, species and Hopf algebras 20071: – Operation in mathematics and physics 19173: 19149: 17673:{\displaystyle (a_{i_{1}i_{2}\cdots i_{d}})} 15420:{\displaystyle (a\otimes b)s:=a\otimes (bs)} 15308:{\displaystyle s(a\otimes b):=(sa)\otimes b} 13149: 13136: 13130: 13117: 13071: 13045: 12808: 12790: 12770: 12757: 12655:{\displaystyle f\otimes v\in U^{*}\otimes V} 12282: 12270: 12154: 12126: 12120: 12099: 11776:may be naturally viewed as a module for the 7434:{\displaystyle x\otimes y\mapsto y\otimes x} 5545:For example, it follows immediately that if 4325:{\displaystyle {\tilde {h}}:V\otimes W\to Z} 1065: 1015: 19395:in the exterior product is usually denoted 18996: 18985: 18478:and the eigenconfiguration is given by the 17062:{\displaystyle A^{\operatorname {deg} (f)}} 16854:, the tensor product can be calculated as: 12750:Its "inverse" can be defined using a basis 12488:Given two finite dimensional vector spaces 7259:{\displaystyle V\otimes W\cong W\otimes V,} 6930:This results from the fact that a basis of 6611:{\displaystyle Y\subseteq \mathbb {C} ^{T}} 6576:{\displaystyle X\subseteq \mathbb {C} ^{S}} 3867:Then, the tensor product is defined as the 20653: 20639: 20484: 20433:"How to lose your fear of tensor products" 20282:: CS1 maint: location missing publisher ( 20228: 20059: – Category admitting tensor products 18575:Some vector spaces can be decomposed into 18092: 18091: 17015:{\displaystyle A\otimes _{R}A\cong A/f(x)} 16912:{\displaystyle A\otimes _{R}B\cong B/f(x)} 12346:may be first viewed as an endomorphism of 8225:, this means that the tensor product is a 8028:is the unique linear map that satisfies: 6790: 6786: 6756: 6752: 6736: 6054: 6050: 4729: 4011:is bilinear, there is a unique linear map 3017:If arranged into a rectangular array, the 20302: 19978:the tensor product is the dyadic form of 19508:. Similar constructions are possible for 17826: 17805: 17418: 17213: 17192: 13569:is non-commutative, this is no longer an 12483: 11730: 7391:{\displaystyle v\otimes w\neq w\otimes v} 6699: 6598: 6563: 6459: 6416: 6379: 6143: 6023: 6019: 5970: 5933: 5668: 5653: 5638: 5600: 4005:Universal property of tensor product: if 2749: 2662: 2608: 2163: 2109: 1976:{\displaystyle v\otimes w:V\times W\to F} 1734: 1549: 1499: 19:For generalizations of this concept, see 21010:Covariance and contravariance of vectors 20448:. Springer Science+Business Media, LLC. 20405: 20149: 19533:{\displaystyle V\otimes \dots \otimes V} 19023:of the graphs. Compare also the section 18545:. It is essentially constructed as the 17746:{\displaystyle A\in (K^{n})^{\otimes d}} 16805:are fields containing a common subfield 12617:defined by an action of the pure tensor 7178:The tensor product of two vector spaces 6718:{\displaystyle \mathbb {C} ^{S\times T}} 4946:{\displaystyle y_{1},\ldots ,y_{n}\in Y} 4894:{\displaystyle x_{1},\ldots ,x_{n}\in X} 4000: 20443: 20317: 20177:defined, the distinction is irrelevant. 19047:A number of important subspaces of the 17680:lying in an algebraically closed field 16084:{\displaystyle N^{J}=\oplus _{j\in J}N} 13670:{\displaystyle (a,b)\mapsto a\otimes b} 13460:generated by the cartesian product and 13177:Furthermore, given three vector spaces 11292:{\displaystyle v\otimes f\mapsto f(v).} 11255:defined by its action on pure tensors: 10588:of a (tensor) product of two (or more) 7174:Commutativity as vector space operation 5372:and all linearly independent sequences 3344:with the function that takes the value 2414:. To instead have it be a proper Hamel 895:a vector space. The function that maps 556: 16:Mathematical operation on vector spaces 21289: 20592: 20462: 20381:. Universitext. Springer. p. 25. 20160:", elements of the respective modules. 20112: 20097: 19030: 18565:Tensor product of graded vector spaces 16784:{\displaystyle R\otimes _{R}R\cong R.} 15638:For vector spaces, the tensor product 13311:Tensor products of modules over a ring 13077:{\displaystyle \{u_{i}\otimes v_{j}\}} 12741:{\displaystyle (f\otimes v)(u)=f(u)v.} 12528:-vector space of all linear maps from 12387:and then viewed as an endomorphism of 11890:{\displaystyle u\in \mathrm {End} (V)} 6076:{\displaystyle x\otimes y\;:=\;T(x,y)} 3115: 2189:Then we can express any bilinear form 20634: 20600:. Mineola, N.Y.: Dover Publications. 18726:{\displaystyle g(x_{1},\dots ,x_{m})} 18671:{\displaystyle f(x_{1},\dots ,x_{k})} 18317:are the solutions of the constraint: 14715:that is bilinear, in the sense that: 14080:{\displaystyle \psi =f\circ \varphi } 12823:Evaluation map and tensor contraction 11205:Evaluation map and tensor contraction 8343:of the two matrices. For example, if 7158:{\displaystyle u\otimes (v\otimes w)} 7118:{\displaystyle (u\otimes v)\otimes w} 7016:, there is a canonical isomorphism: 6539:{\displaystyle (s,t)\mapsto f(s)g(t)} 6429:{\displaystyle g\in \mathbb {C} ^{T}} 6392:{\displaystyle f\in \mathbb {C} ^{S}} 6083:denotes this bilinear map's value at 3996: 1078:is then straightforwardly a basis of 175:{\displaystyle (v,w),\ v\in V,w\in W} 20506: 20254:Chen, Jungkai Alfred (Spring 2004), 20253: 19596:. The latter notion is the basis of 19042: 18958:Tensor product of sheaves of modules 18943: 16511:-modules applies, in particular, if 14137:-module. Then the tensor product of 11301:More generally, for tensors of type 10934:{\displaystyle U_{\beta }^{\alpha }} 8287:. Then, depending on how the tensor 7798:is the unique linear map such that: 7479:. More generally and as usual (see 5616:{\displaystyle Z:=\mathbb {C} ^{mn}} 4502: 4237:, such that, for every bilinear map 20247: 20188:"The Coevaluation on Vector Spaces" 19962:the tensor product is expressed as 18616:Tensor product of multilinear forms 16532:. In this case, the tensor product 15664:is quickly computed since bases of 13155:{\displaystyle \{u_{i}\},\{v_{j}\}} 11657:{\displaystyle v_{1},\ldots ,v_{n}} 11248:{\displaystyle V\otimes V^{*}\to K} 10172:There is a product map, called the 5983:{\displaystyle Y:=\mathbb {C} ^{n}} 5946:{\displaystyle X:=\mathbb {C} ^{m}} 5411:{\displaystyle y_{1},\ldots ,y_{n}} 5345:{\displaystyle x_{1},\ldots ,x_{m}} 5184:{\displaystyle y_{1},\ldots ,y_{n}} 5080:{\displaystyle x_{1},\ldots ,x_{n}} 3145:One considers first a vector space 2813:in the expansion by bilinearity of 2377:{\displaystyle {\text{Hom}}(V,W;F)} 372:is a sum of elementary tensors. If 346:in the sense that every element of 13: 20873:Tensors in curvilinear coordinates 20427: 20411:Elements of mathematics, Algebra I 20376: 19556: 19388:{\displaystyle v_{1}\otimes v_{2}} 17437:{\displaystyle \mathbb {P} ^{n-1}} 17339:correspond to the fixed points of 15826:, that is, a number of generators 15725:-module). The tensor product with 14360: 14319: 14109:within group isomorphism. See the 13268: 13265: 13262: 13248: 13245: 13242: 13213: 13210: 13207: 12847: 12844: 12841: 12585: 12582: 12579: 12455: 12452: 12449: 12403: 12400: 12397: 12323: 12320: 12317: 12213: 12210: 12207: 12013: 12010: 12007: 11874: 11871: 11868: 11793: 11790: 11787: 10381:for an element of the dual space: 9880: 7684:, which is called a braiding map. 6252:{\displaystyle s\mapsto f(s)+g(s)} 6122:{\displaystyle (x,y)\in X\times Y} 5191:are linearly independent then all 3827:{\displaystyle w,w_{1},w_{2}\in W} 3773:{\displaystyle v,v_{1},v_{2}\in V} 3407:the elements of one of the forms: 1822:{\displaystyle (x,y)\in V\times W} 1310:{\displaystyle (x,y)\in V\times W} 14: 21318: 20344:. Vol. I. Providence, R.I.: 20169:Analogous formulas also hold for 19428:{\displaystyle v_{1}\wedge v_{2}} 18611:Tensor product of quadratic forms 18605:Tensor product of quadratic forms 18589:Tensor product of representations 18583:Tensor product of representations 18515:Other examples of tensor products 16477:, which is not injective. Higher 15864:{\displaystyle m_{i}\in M,i\in I} 15676:immediately determine a basis of 13556:{\displaystyle (ar,b)\sim (a,rb)} 12471:{\displaystyle \mathrm {End} (V)} 12419:{\displaystyle \mathrm {End} (V)} 12339:{\displaystyle \mathrm {End} (V)} 12172:There is a canonical isomorphism 11809:{\displaystyle \mathrm {End} (V)} 10592:can be computed. For example, if 7634:induces a linear automorphism of 6725:together with the bilinear map: 6134:As another example, suppose that 4567:be complex vector spaces and let 3182:. That is, the basis elements of 2473:{\displaystyle B_{V}\times B_{W}} 1932:{\displaystyle B_{V}\times B_{W}} 1864:{\displaystyle B_{V}\times B_{W}} 1264:{\displaystyle B_{V}\times B_{W}} 964:{\displaystyle B_{V}\times B_{W}} 854:{\displaystyle B_{V}\times B_{W}} 20574:Aguiar, M.; Mahajan, S. (2010). 20468:Finite dimensional vector spaces 20439:from the original on 7 May 2021. 19435:and satisfies, by construction, 18530:Tensor product of Hilbert spaces 18447: 18419: 18396: 18239: 16262:gives rise to a presentation of 15774: 15761: 15754: 14708:{\displaystyle q:A\times B\to G} 14145:is an abelian group defined by: 10584:). In terms of these bases, the 10580:(this basis is described in the 8260:is mapped to an exact sequence ( 6971: 6156:{\displaystyle \mathbb {C} ^{S}} 4598:{\displaystyle T:X\times Y\to Z} 4270:{\displaystyle h:V\times W\to Z} 1765:Hence, we see that the value of 1350:{\displaystyle B:V\times W\to F} 20578:. CRM Monograph Series Vol 29. 20342:Graduate Studies in Mathematics 20329: 20318:Garrett, Paul (July 22, 2010). 20311: 20290: 20272:from the original on 2016-03-04 20198:from the original on 2017-02-02 15926: 14677:be an abelian group with a map 14089:, and this property determines 8479: 6485:denote the function defined by 4129:, together with a bilinear map 3910:{\displaystyle V\otimes W=L/R,} 2337:making these maps similar to a 1873:. This lets us extend the maps 1509: 1503: 483:{\displaystyle V\otimes W\to Z} 25:Tensor product (disambiguation) 20229:Hungerford, Thomas W. (1974). 20222: 20209: 20192:The Unapologetic Mathematician 20180: 20163: 20143: 20118: 19923: 19835: 19733: 19707: 19317: 19291: 19011:in the category of graphs and 18969:Tensor product of line bundles 18942:This is a special case of the 18924: 18880: 18874: 18842: 18833: 18795: 18792: 18780: 18720: 18688: 18665: 18633: 18451: 18443: 18423: 18415: 18400: 18392: 17901: 17869: 17821: 17789:{\displaystyle K^{n}\to K^{n}} 17773: 17731: 17717: 17667: 17624: 17579:-dimensional tensor of format 17546: 17503: 17208: 17168:{\displaystyle K^{n}\to K^{n}} 17152: 17075:Eigenconfigurations of tensors 17054: 17048: 17009: 17003: 16992: 16986: 16906: 16900: 16889: 16883: 16775: 16763: 16754: 16748: 16732: 16726: 16700: 16674: 16668: 16642: 16636: 16610: 16604: 16578: 16558:{\displaystyle A\otimes _{R}B} 16383: 16344:{\displaystyle M_{1}\to M_{2}} 16328: 16290:{\displaystyle M\otimes _{R}N} 16133:is determined by sending some 16126:{\displaystyle N^{J}\to N^{I}} 16110: 16010: 15614:{\displaystyle A\otimes _{R}B} 15482:{\displaystyle A\otimes _{R}B} 15414: 15405: 15390: 15378: 15358:{\displaystyle A\otimes _{R}B} 15296: 15287: 15281: 15269: 15246:{\displaystyle A\otimes _{R}B} 15197:{\displaystyle A\otimes _{R}B} 15099: 15087: 15078: 15066: 15033: 14982: 14967: 14954: 14939: 14926: 14907: 14898: 14879: 14866: 14834: 14821: 14802: 14793: 14774: 14761: 14729: 14699: 14651: 14636: 14630: 14615: 14602: 14570: 14564: 14545: 14539: 14520: 14507: 14475: 14469: 14450: 14444: 14425: 14294: 14282: 14229: 14217: 14186: 14174: 14046:{\displaystyle A\otimes _{R}B} 14014:, a unique group homomorphism 13925:The first two properties make 13906: 13891: 13878: 13863: 13853: 13836: 13827: 13815: 13802: 13779: 13769: 13752: 13743: 13731: 13718: 13695: 13655: 13652: 13640: 13604: 13550: 13535: 13529: 13514: 13437: 13425: 13391: 13379: 13287: 13284: 13272: 13252: 13235: 13217: 13022: 13016: 13007: 13001: 12989: 12977: 12939: 12926: 12892: 12866: 12863: 12851: 12729: 12723: 12714: 12708: 12705: 12693: 12601: 12589: 12465: 12459: 12413: 12407: 12374: 12368: 12333: 12327: 12303:Under this isomorphism, every 12264: 12258: 12255: 12243: 12223: 12217: 12203: 12200: 12194: 12151: 12145: 12111: 12105: 12083:{\displaystyle V\otimes V^{*}} 11970: 11964: 11936: 11930: 11921: 11909: 11884: 11878: 11803: 11797: 11763: 11757: 11557: 11531: 11419: 11413: 11383: 11380: 11374: 11322: 11310: 11283: 11277: 11271: 11239: 11125: 11112: 10968: 10956: 10720: 10707: 10691:{\displaystyle G\in T_{n}^{0}} 10651:{\displaystyle F\in T_{m}^{0}} 10567: 10561: 10436: 10420: 10414: 10388: 10297: 10291: 10251: 10248: 10242: 10204: 10198: 9972: 9966: 9922: 9910: 8202: 8190: 8184: 8172: 8166: 8154: 8148: 8136: 8095: 8089: 8080: 8074: 8065: 8053: 8050: 8038: 8003: 7954: 7920: 7850: 7844: 7835: 7823: 7820: 7808: 7773: 7717: 7656: 7616: 7610: 7588: 7582: 7571: 7419: 7152: 7140: 7106: 7094: 7068: 7056: 7038: 7026: 6787: 6780: 6768: 6753: 6533: 6527: 6521: 6515: 6509: 6506: 6494: 6315:{\displaystyle s\mapsto cf(s)} 6309: 6303: 6294: 6246: 6240: 6231: 6225: 6219: 6104: 6092: 6070: 6058: 5710: 5698: 5663: 4745: 4733: 4624: 4612: 4589: 4429: 4417: 4411: 4399: 4387: 4353: 4316: 4298: 4261: 4159: 4156: 4144: 3939: 3927: 3703: 3691: 3678: 3663: 3653: 3641: 3628: 3613: 3603: 3584: 3578: 3559: 3549: 3517: 3507: 3488: 3482: 3463: 3453: 3421: 3367: 3355: 3331: 3319: 3305:{\displaystyle V\times W\to F} 3296: 3208: 3196: 3051:of the coordinate vectors of 2936: 2933: 2921: 2835: 2823: 2800: 2788: 2371: 2353: 2324: 2312: 2309: 2297: 2147: 2125: 2122: 2110: 2017: 2005: 2002: 1990: 1967: 1804: 1792: 1750: 1738: 1662: 1650: 1566:where only a finite number of 1341: 1292: 1280: 914: 902: 474: 142: 130: 101: 1: 20926:Exterior covariant derivative 20858:Tensor (intrinsic definition) 20516:Graduate Texts in Mathematics 20399: 20346:American Mathematical Society 19946:Tensor product in programming 19571:{\displaystyle \Lambda ^{n}V} 19191:When the underlying field of 19025:Tensor product of linear maps 19015:. However it is actually the 16793:A particular example is when 15719:is not a free abelian group ( 12814:{\displaystyle \{u_{i}^{*}\}} 10582:article on Kronecker products 10539:naturally induces a basis of 7688:Tensor product of linear maps 7513:denote the tensor product of 7506:{\displaystyle V^{\otimes n}} 7328:On the other hand, even when 6885:are vectors spaces of finite 6863: 4099:is a vector space denoted as 2487:tensor product of two vectors 1939:as before into bilinear maps 567: 532:Definitions and constructions 20951:Raising and lowering indices 20379:An Introduction to Manifolds 19073:universal enveloping algebra 16571:-algebra itself by putting: 15634:Computing the tensor product 15504:is a commutative ring, then 15061: 15016: 14300:{\displaystyle F(A\times B)} 14235:{\displaystyle F(A\times B)} 13964:. For any middle linear map 13443:{\displaystyle F(A\times B)} 12380:{\displaystyle T_{1}^{1}(V)} 11769:{\displaystyle T_{s}^{r}(V)} 10573:{\displaystyle T_{s}^{r}(V)} 8233:of vector spaces to itself. 7532:positive integers, the map: 6868: 6027:{\displaystyle \,\otimes \,} 4677:if and only if the image of 3952:in this quotient is denoted 2485:In either construction, the 7: 21189:Gluon field strength tensor 20660: 20444:Grillet, Pierre A. (2007). 20127:Algebras, rings and modules 20039: 19956:Array programming languages 19951:Array programming languages 18948:tensors as multilinear maps 18543:symmetric monoidal category 18520:Topological tensor products 15004:Then there is a unique map 12552:. There is an isomorphism: 11003:{\displaystyle V^{\gamma }} 10174:(tensor) product of tensors 8375:are given by the matrices: 7517:copies of the vector space 7467:to itself induces a linear 5585:are positive integers then 4083:in each of its arguments): 1173:We can equivalently define 455:factors uniquely through a 10: 21323: 21000:Cartan formalism (physics) 20820:Penrose graphical notation 20075:Topological tensor product 20024:), and/or may not support 19009:category-theoretic product 19000: 18989: 18978: 18972: 18961: 18608: 18599:Littlewood–Richardson rule 18586: 18568: 18559:topological tensor product 18526:Topological tensor product 18523: 16495:Tensor product of algebras 16492: 16489:Tensor product of algebras 15697:{\displaystyle V\otimes W} 15657:{\displaystyle V\otimes W} 13321:The tensor product of two 13314: 13103:{\displaystyle U\otimes V} 9891:For non-negative integers 9884: 8332:{\displaystyle f\otimes g} 8306:{\displaystyle v\otimes w} 8262:tensor products of modules 7894:{\displaystyle W\otimes f} 7691: 7460:{\displaystyle V\otimes V} 7316:{\displaystyle w\otimes v} 7288:{\displaystyle v\otimes w} 6949:{\displaystyle V\otimes W} 6908:{\displaystyle V\otimes W} 5541:are linearly independent. 4228:{\displaystyle V\otimes W} 4120:{\displaystyle V\otimes W} 3973:{\displaystyle v\otimes w} 3040:{\displaystyle x\otimes y} 3003:{\displaystyle V\otimes W} 2228:{\displaystyle v\otimes w} 1892:{\displaystyle v\otimes w} 1192:{\displaystyle V\otimes W} 1099:{\displaystyle V\otimes W} 996:{\displaystyle v\otimes w} 931:and the other elements of 888:{\displaystyle V\otimes W} 807:{\displaystyle V\otimes W} 779:{\displaystyle w\in B_{W}} 744:{\displaystyle v\in B_{V}} 711:{\displaystyle v\otimes w} 677:{\displaystyle V\otimes W} 528:at the point with itself. 451:into another vector space 407:{\displaystyle V\otimes W} 365:{\displaystyle V\otimes W} 339:{\displaystyle V\otimes W} 298:{\displaystyle V\otimes W} 260:{\displaystyle v\otimes w} 229:{\displaystyle v\otimes w} 201:{\displaystyle V\otimes W} 56:{\displaystyle V\otimes W} 18: 21206: 21146: 21095: 21088: 20980: 20911: 20848: 20792: 20739: 20686: 20679: 20672:Glossary of tensor theory 20668: 20129:. Springer. p. 100. 19546:factors), giving rise to 19107:{\displaystyle V\wedge V} 18552:Hilbert–Schmidt operators 18501:{\displaystyle 2\times 2} 18196:{\displaystyle \psi _{i}} 15871:together with relations: 15588:. By 3), we can conclude 15171:Furthermore, we can give 14272:and G is the subgroup of 14265:{\displaystyle A\times B} 14005:{\displaystyle A\times B} 13955:{\displaystyle A\times B} 13317:Tensor product of modules 13199:linear maps, as follows: 12776:{\displaystyle \{u_{i}\}} 11713:{\displaystyle v_{i}^{*}} 11348:, there is a map, called 7972:, their tensor product: 6816:form a tensor product of 5918:form a tensor product of 4200:{\displaystyle V\times W} 3991:tensor product of modules 3171:{\displaystyle V\times W} 3106:tensor product of modules 2977:{\displaystyle V\times W} 2405:{\displaystyle V\times W} 2384:of all bilinear forms on 1222:{\displaystyle V\times W} 557:§ Universal property 505:is described through the 444:{\displaystyle V\times W} 317:. The elementary tensors 21:Tensor product of modules 21302:Operations on structures 21256:Gregorio Ricci-Curbastro 21128:Riemann curvature tensor 20835:Van der Waerden notation 20081: 19017:Kronecker tensor product 19003:Tensor product of graphs 18997:Tensor product of graphs 18992:Tensor product of fields 18986:Tensor product of fields 16813:tensor product of fields 15810:More generally, given a 14307:generated by relations: 14102:{\displaystyle \varphi } 8256:; this means that every 7963:{\displaystyle g:W\to Z} 7929:{\displaystyle f:U\to V} 7726:{\displaystyle f:U\to V} 6364:be any sets and for any 4605:be a bilinear map. Then 21226:Elwin Bruno Christoffel 21159:Angular momentum tensor 20830:Tetrad (index notation) 20800:Abstract index notation 20217:Compact closed category 19088:, the exterior product 19082:. Given a vector space 18547:metric space completion 17177:, and thus linear maps 16218:{\displaystyle a_{ij}n} 10148:(which consists of all 6962:and a basis element of 4637:is a tensor product of 4026:that makes the diagram 2958:is a bilinear map from 418:and a basis element of 241:An element of the form 21040:Levi-Civita connection 20026:higher-order functions 19930: 19763: 19572: 19534: 19500: 19429: 19389: 19347: 19183: 19108: 19051:can be constructed as 18934: 18767: 18747: 18727: 18672: 18539:an analogous operation 18502: 18472: 18311: 18297:. The eigenvectors of 18289: 18223: 18197: 18175:homogeneous polynomial 18167: 18147: 18125: 17993: 17962: 17934: 17846: 17790: 17747: 17694: 17674: 17611: 17573: 17553: 17480: 17460: 17438: 17401: 17381: 17355: 17333: 17305: 17281: 17259: 17233: 17169: 17119: 17096: 17063: 17016: 16931:. In the larger field 16913: 16846:irreducible polynomial 16815:is closely related to 16785: 16710: 16559: 16483:derived tensor product 16413: 16353:, the tensor product: 16345: 16291: 16248: 16219: 16186: 16153: 16152:{\displaystyle n\in N} 16127: 16085: 16032: 15953: 15865: 15802: 15698: 15658: 15615: 15580: 15579:{\displaystyle br:=rb} 15546: 15545:{\displaystyle ra:=ar} 15483: 15421: 15359: 15309: 15247: 15198: 15160: 15159:{\displaystyle b\in B} 15132: 15131:{\displaystyle a\in A} 15106: 15043: 14996: 14709: 14665: 14301: 14266: 14236: 14201: 14103: 14081: 14047: 14006: 13978: 13956: 13931:a bilinear map of the 13917: 13671: 13627: 13557: 13444: 13409: 13303:This is an example of 13297: 13156: 13104: 13078: 13032: 12956: 12815: 12777: 12742: 12678: 12656: 12611: 12484:Linear maps as tensors 12472: 12430:adjoint representation 12420: 12381: 12340: 12295: 12230: 12164: 12084: 12039: 11980: 11891: 11844: 11810: 11770: 11731:Adjoint representation 11714: 11680: 11658: 11612: 11499: 11485:On the other hand, if 11476: 11449: 11429: 11329: 11293: 11249: 11185: 11099: 11004: 10975: 10935: 10889: 10692: 10652: 10574: 10533: 10508:and the corresponding 10488: 10375: 10342: 10307: 10138: 10111: 9929: 9862: 9790: 8581: 8333: 8307: 8283:can be represented by 8212: 8105: 8019: 7964: 7930: 7904:Given two linear maps 7901:is defined similarly. 7895: 7866: 7789: 7727: 7676: 7625: 7507: 7461: 7435: 7392: 7350: 7317: 7289: 7260: 7212: 7192: 7159: 7119: 7078: 7008: 6976:The tensor product is 6950: 6909: 6852: 6830: 6810: 6719: 6684: 6612: 6577: 6540: 6479: 6430: 6393: 6358: 6338: 6316: 6276: 6253: 6203: 6177: 6157: 6123: 6077: 6028: 6006: 5984: 5947: 5912: 5811: 5685: 5617: 5579: 5559: 5535: 5434: 5412: 5366: 5346: 5300: 5280: 5260: 5234: 5212: 5185: 5134: 5112: 5081: 5029: 4982: 4947: 4895: 4843: 4821: 4800: 4780: 4758: 4711: 4691: 4671: 4651: 4631: 4599: 4561: 4539: 4490: 4489:{\displaystyle w\in W} 4462: 4461:{\displaystyle v\in V} 4436: 4371: 4326: 4271: 4229: 4201: 4175: 4121: 4076:is a function that is 4054: 3974: 3946: 3911: 3856: 3855:{\displaystyle s\in F} 3828: 3774: 3717: 3374: 3338: 3306: 3269: 3268:{\displaystyle w\in W} 3241: 3240:{\displaystyle v\in V} 3215: 3172: 3087: 3065: 3041: 3004: 2978: 2952: 2898: 2869: 2842: 2841:{\displaystyle B(x,y)} 2807: 2806:{\displaystyle B(v,w)} 2770: 2535: 2534:{\displaystyle y\in W} 2509: 2508:{\displaystyle x\in V} 2474: 2432: 2406: 2378: 2331: 2229: 2203: 2181: 1977: 1933: 1893: 1865: 1823: 1779: 1757: 1634: 1614: 1587: 1560: 1447: 1420: 1393: 1373: 1351: 1311: 1265: 1223: 1193: 1162: 1133: 1108:, which is called the 1100: 1072: 997: 965: 921: 889: 855: 808: 780: 745: 712: 678: 644: 615: 484: 445: 408: 366: 340: 299: 261: 230: 202: 176: 117: 57: 21297:Operations on vectors 21266:Jan Arnoldus Schouten 21221:Augustin-Louis Cauchy 20701:Differential geometry 20486:Hungerford, Thomas W. 19931: 19764: 19573: 19535: 19501: 19430: 19390: 19348: 19184: 19109: 18981:Tensor product bundle 18935: 18768: 18748: 18728: 18673: 18503: 18473: 18312: 18290: 18224: 18198: 18168: 18166:{\displaystyle \psi } 18148: 18126: 17966: 17935: 17907: 17847: 17791: 17748: 17695: 17675: 17612: 17574: 17554: 17481: 17461: 17439: 17402: 17382: 17356: 17354:{\displaystyle \psi } 17334: 17306: 17304:{\displaystyle \psi } 17282: 17260: 17234: 17170: 17120: 17097: 17064: 17022:is isomorphic (as an 17017: 16914: 16848:with coefficients in 16786: 16711: 16560: 16414: 16346: 16292: 16249: 16247:{\displaystyle N^{I}} 16220: 16187: 16185:{\displaystyle N^{J}} 16154: 16128: 16086: 16033: 15954: 15866: 15803: 15699: 15659: 15616: 15581: 15547: 15484: 15422: 15360: 15310: 15248: 15199: 15161: 15133: 15107: 15044: 14997: 14710: 14666: 14302: 14267: 14237: 14202: 14104: 14082: 14048: 14007: 13979: 13977:{\displaystyle \psi } 13957: 13918: 13672: 13628: 13575:-module, but just an 13558: 13472:-module generated by 13445: 13410: 13298: 13157: 13105: 13079: 13033: 12964:This result implies: 12957: 12816: 12778: 12743: 12679: 12657: 12612: 12473: 12421: 12382: 12341: 12296: 12231: 12165: 12085: 12040: 11981: 11892: 11845: 11843:{\displaystyle r=s=1} 11811: 11771: 11715: 11681: 11659: 11613: 11500: 11477: 11475:{\displaystyle V^{*}} 11450: 11430: 11330: 11328:{\displaystyle (r,s)} 11294: 11250: 11213:there is a canonical 11186: 11100: 11005: 10976: 10974:{\displaystyle (1,0)} 10936: 10890: 10693: 10653: 10575: 10534: 10532:{\displaystyle V^{*}} 10489: 10376: 10374:{\displaystyle f_{i}} 10343: 10341:{\displaystyle v_{i}} 10308: 10139: 10137:{\displaystyle V^{*}} 10112: 9930: 9928:{\displaystyle (r,s)} 9863: 9791: 8582: 8334: 8308: 8213: 8106: 8020: 7965: 7931: 7896: 7867: 7790: 7735:, and a vector space 7728: 7677: 7626: 7508: 7462: 7436: 7393: 7351: 7318: 7290: 7261: 7213: 7193: 7160: 7120: 7079: 7009: 7007:{\displaystyle U,V,W} 6951: 6910: 6853: 6831: 6811: 6720: 6685: 6613: 6578: 6541: 6480: 6431: 6394: 6359: 6339: 6317: 6277: 6254: 6204: 6178: 6158: 6124: 6078: 6029: 6007: 5985: 5948: 5913: 5812: 5686: 5623:and the bilinear map 5618: 5580: 5560: 5536: 5435: 5413: 5367: 5347: 5301: 5281: 5261: 5235: 5213: 5211:{\displaystyle x_{i}} 5186: 5135: 5113: 5111:{\displaystyle y_{i}} 5082: 5030: 4962: 4948: 4896: 4844: 4822: 4801: 4781: 4759: 4712: 4692: 4672: 4652: 4632: 4630:{\displaystyle (Z,T)} 4600: 4562: 4540: 4491: 4463: 4437: 4372: 4327: 4272: 4230: 4202: 4176: 4122: 4091:of two vector spaces 4057:In this section, the 4004: 3975: 3947: 3945:{\displaystyle (v,w)} 3912: 3857: 3829: 3775: 3718: 3375: 3373:{\displaystyle (v,w)} 3339: 3337:{\displaystyle (v,w)} 3307: 3270: 3242: 3216: 3214:{\displaystyle (v,w)} 3173: 3101:canonical isomorphism 3088: 3066: 3042: 3005: 2979: 2953: 2899: 2897:{\displaystyle B_{W}} 2870: 2868:{\displaystyle B_{V}} 2843: 2808: 2771: 2536: 2510: 2475: 2433: 2407: 2379: 2341:for the vector space 2332: 2230: 2204: 2182: 1978: 1934: 1894: 1866: 1824: 1780: 1758: 1635: 1615: 1613:{\displaystyle y_{w}} 1588: 1586:{\displaystyle x_{v}} 1561: 1448: 1446:{\displaystyle B_{W}} 1421: 1419:{\displaystyle B_{V}} 1394: 1374: 1352: 1312: 1273:. To see this, given 1266: 1224: 1194: 1163: 1161:{\displaystyle B_{W}} 1134: 1132:{\displaystyle B_{V}} 1101: 1073: 998: 966: 922: 920:{\displaystyle (v,w)} 890: 856: 809: 781: 746: 713: 679: 645: 643:{\displaystyle B_{W}} 616: 614:{\displaystyle B_{V}} 485: 446: 409: 367: 341: 300: 262: 231: 203: 177: 118: 58: 21241:Carl Friedrich Gauss 21174:stress–energy tensor 21169:Cauchy stress tensor 20921:Covariant derivative 20883:Antisymmetric tensor 20815:Multi-index notation 20052:Extension of scalars 19775: 19617: 19552: 19512: 19441: 19399: 19359: 19201: 19118: 19092: 19055:: these include the 18777: 18757: 18737: 18682: 18627: 18486: 18321: 18301: 18235: 18207: 18180: 18157: 18137: 17856: 17800: 17760: 17708: 17704:zero. Such a tensor 17684: 17621: 17583: 17563: 17494: 17488:algebraically closed 17470: 17450: 17413: 17391: 17371: 17345: 17323: 17315:everywhere, and the 17295: 17271: 17249: 17181: 17139: 17109: 17086: 17034: 16961: 16858: 16720: 16575: 16536: 16452:yields the zero map 16357: 16315: 16268: 16231: 16196: 16169: 16137: 16097: 16046: 15967: 15875: 15830: 15742: 15682: 15642: 15592: 15558: 15524: 15460: 15375: 15336: 15263: 15224: 15175: 15144: 15116: 15053: 15008: 14719: 14681: 14311: 14276: 14250: 14211: 14149: 14093: 14059: 14024: 13990: 13968: 13940: 13685: 13637: 13586: 13511: 13419: 13354: 13203: 13114: 13088: 13042: 12968: 12829: 12787: 12754: 12690: 12668: 12621: 12556: 12500:over the same field 12445: 12428:. In fact it is the 12393: 12350: 12313: 12240: 12176: 12096: 12061: 11990: 11903: 11858: 11822: 11783: 11739: 11692: 11670: 11622: 11517: 11489: 11459: 11439: 11356: 11307: 11259: 11220: 11209:For tensors of type 11109: 11016: 10987: 10953: 10949:be a tensor of type 10913: 10903:be a tensor of type 10704: 10664: 10624: 10543: 10516: 10385: 10358: 10325: 10180: 10163:to the ground field 10121: 9948: 9907: 9816: 8591: 8379: 8317: 8291: 8266:right exact functors 8121: 8035: 7979: 7942: 7908: 7879: 7805: 7749: 7705: 7640: 7539: 7487: 7445: 7407: 7364: 7334: 7301: 7273: 7229: 7202: 7182: 7131: 7091: 7023: 6986: 6934: 6893: 6842: 6820: 6729: 6694: 6622: 6587: 6552: 6491: 6442: 6405: 6368: 6348: 6328: 6288: 6263: 6213: 6187: 6167: 6138: 6089: 6038: 6016: 5996: 5959: 5922: 5821: 5695: 5627: 5589: 5569: 5549: 5446: 5424: 5376: 5356: 5310: 5290: 5270: 5250: 5224: 5195: 5149: 5124: 5095: 5089:linearly independent 5045: 4959: 4905: 4853: 4833: 4811: 4790: 4770: 4723: 4701: 4681: 4661: 4641: 4609: 4571: 4551: 4523: 4474: 4446: 4381: 4338: 4289: 4243: 4213: 4185: 4133: 4105: 3958: 3924: 3878: 3840: 3786: 3732: 3414: 3352: 3316: 3284: 3253: 3225: 3193: 3156: 3077: 3055: 3025: 2988: 2962: 2910: 2881: 2852: 2817: 2782: 2545: 2519: 2493: 2444: 2422: 2390: 2345: 2239: 2213: 2193: 1987: 1943: 1903: 1877: 1835: 1789: 1769: 1644: 1624: 1597: 1570: 1457: 1430: 1403: 1383: 1363: 1359:, we can decompose 1323: 1317:and a bilinear form 1277: 1235: 1207: 1177: 1145: 1116: 1084: 1012: 981: 935: 899: 873: 867:pointwise operations 825: 792: 757: 722: 696: 662: 627: 598: 462: 429: 392: 350: 324: 283: 245: 214: 186: 127: 89: 41: 21118:Nonmetricity tensor 20973:(2nd-order tensors) 20941:Hodge star operator 20931:Exterior derivative 20780:Transport phenomena 20765:Continuum mechanics 20721:Multilinear algebra 20413:. Springer-Verlag. 20348:. Thm. 2.6.4. 20263:Advanced Algebra II 20100:, pp. 403–404. 20030:Jacobian derivative 20017:is differentiable. 19031:Monoidal categories 19013:graph homomorphisms 18222:{\displaystyle d-1} 16301:right exact functor 14403: for all  12919: 12821:as in the section " 12807: 12783:and its dual basis 12367: 12193: 11756: 11735:The tensor product 11709: 11600: 11412: 11373: 10930: 10687: 10647: 10620:respectively (i.e. 10560: 10467: 10435: 10290: 10241: 10197: 9965: 7875:The tensor product 7699:Given a linear map 7349:{\displaystyle V=W} 6202:{\displaystyle f+g} 6012:will be denoted by 5691:defined by sending 4538:{\displaystyle X,Y} 4515: —  3116:As a quotient space 2235:maps according to: 503:gravitational field 315:decomposable tensor 21251:Tullio Levi-Civita 21194:Metric tensor (GR) 21108:Levi-Civita symbol 20961:Tensor contraction 20775:General relativity 20711:Euclidean geometry 20377:Tu, L. W. (2010). 20069:Tensor contraction 19926: 19827: 19820: 19759: 19568: 19530: 19496: 19425: 19385: 19343: 19179: 19104: 19021:adjacency matrices 18944:product of tensors 18930: 18763: 18743: 18733:on a vector space 18723: 18668: 18498: 18468: 18456: 18329: 18307: 18285: 18219: 18193: 18163: 18143: 18121: 18098: 17852:with coordinates: 17842: 17786: 17743: 17690: 17670: 17607: 17569: 17549: 17476: 17456: 17434: 17397: 17377: 17365:eigenconfiguration 17351: 17329: 17301: 17277: 17255: 17229: 17165: 17115: 17102:with entries in a 17092: 17059: 17012: 16909: 16781: 16706: 16555: 16409: 16341: 16287: 16244: 16215: 16182: 16149: 16123: 16081: 16028: 15949: 15893: 15861: 15798: 15694: 15654: 15611: 15576: 15542: 15520:)-bimodules where 15479: 15417: 15355: 15305: 15243: 15194: 15156: 15128: 15102: 15039: 14992: 14990: 14705: 14661: 14659: 14297: 14262: 14244:free abelian group 14232: 14197: 14099: 14077: 14043: 14002: 13974: 13952: 13913: 13911: 13667: 13623: 13553: 13489:has to be a right- 13440: 13405: 13293: 13152: 13100: 13074: 13028: 12952: 12947: 12905: 12904: 12811: 12793: 12773: 12738: 12674: 12652: 12607: 12468: 12416: 12377: 12353: 12336: 12291: 12226: 12179: 12160: 12080: 12035: 11976: 11887: 11840: 11806: 11766: 11742: 11710: 11695: 11676: 11654: 11608: 11603: 11586: 11569: 11507:finite-dimensional 11495: 11472: 11445: 11425: 11386: 11359: 11350:tensor contraction 11325: 11289: 11245: 11181: 11095: 11000: 10971: 10931: 10916: 10885: 10688: 10673: 10648: 10633: 10608:tensors of orders 10570: 10546: 10529: 10484: 10455: 10423: 10371: 10348:for an element of 10338: 10321:together: writing 10303: 10254: 10217: 10183: 10134: 10107: 10056: 10049: 10008: 10001: 9951: 9944:is an element of: 9938:on a vector space 9925: 9858: 9786: 9777: 9210: 9202: 9096: 8988: 8882: 8767: 8676: 8577: 8568: 8470: 8329: 8303: 8208: 8101: 8015: 7960: 7926: 7891: 7862: 7785: 7723: 7672: 7621: 7503: 7457: 7431: 7388: 7346: 7313: 7285: 7256: 7208: 7188: 7155: 7115: 7074: 7004: 6946: 6905: 6848: 6826: 6806: 6804: 6715: 6680: 6608: 6573: 6536: 6475: 6426: 6389: 6354: 6334: 6312: 6275:{\displaystyle cf} 6272: 6249: 6199: 6173: 6153: 6119: 6073: 6024: 6002: 5992:. Often, this map 5980: 5943: 5908: 5807: 5681: 5613: 5575: 5555: 5531: 5430: 5408: 5362: 5342: 5296: 5276: 5256: 5230: 5208: 5181: 5130: 5108: 5077: 5025: 4943: 4891: 4839: 4827:-linearly disjoint 4817: 4796: 4776: 4754: 4707: 4687: 4667: 4647: 4627: 4595: 4557: 4535: 4513: 4486: 4458: 4432: 4367: 4322: 4267: 4225: 4197: 4171: 4117: 4059:universal property 4055: 3997:Universal property 3987:universal property 3970: 3942: 3907: 3852: 3824: 3770: 3713: 3711: 3370: 3334: 3302: 3265: 3237: 3211: 3168: 3083: 3061: 3037: 3012:universal property 3000: 2974: 2948: 2894: 2865: 2838: 2803: 2766: 2764: 2728: 2705: 2651: 2597: 2531: 2505: 2470: 2428: 2402: 2374: 2327: 2293: 2270: 2225: 2199: 2177: 2078: 2050: 1973: 1929: 1889: 1861: 1819: 1775: 1753: 1713: 1690: 1630: 1610: 1583: 1556: 1538: 1488: 1443: 1416: 1389: 1369: 1347: 1307: 1261: 1219: 1189: 1158: 1129: 1096: 1068: 993: 961: 917: 885: 851: 814:is the set of the 804: 776: 741: 708: 674: 640: 611: 591:, with respective 553:universal property 499:general relativity 492:Universal property 480: 441: 404: 362: 336: 295: 257: 226: 198: 172: 113: 53: 21284: 21283: 21246:Hermann Grassmann 21202: 21201: 21154:Moment of inertia 21015:Differential form 20990:Affine connection 20805:Einstein notation 20788: 20787: 20716:Exterior calculus 20696:Coordinate system 20607:978-0-486-45352-1 20585:978-0-8218-4776-3 20525:978-0-387-95385-4 20407:Bourbaki, Nicolas 20388:978-1-4419-7399-3 20355:978-0-8218-0819-1 20136:978-1-4020-2690-4 20057:Monoidal category 19940:symmetric tensors 19799: 19797: 19611:symmetric product 19061:symmetric algebra 19043:Quotient algebras 19037:monoidal category 18952:Kronecker product 18766:{\displaystyle K} 18746:{\displaystyle V} 18622:multilinear forms 18328: 18310:{\displaystyle A} 18146:{\displaystyle n} 18133:Thus each of the 18097: 17693:{\displaystyle K} 17572:{\displaystyle d} 17479:{\displaystyle K} 17459:{\displaystyle A} 17400:{\displaystyle n} 17380:{\displaystyle A} 17332:{\displaystyle A} 17280:{\displaystyle A} 17258:{\displaystyle K} 17241:projective spaces 17118:{\displaystyle K} 17095:{\displaystyle A} 17028:-algebra) to the 15878: 15456:)-bimodule, then 15332:)-bimodule, then 15220:)-bimodule, then 15064: 15019: 14404: 13679:middle linear map 13084:forms a basis of 12895: 12677:{\displaystyle U} 12662:on an element of 11852:, then, for each 11679:{\displaystyle V} 11560: 11498:{\displaystyle V} 11448:{\displaystyle V} 10146:dual vector space 10014: 10012: 9980: 9978: 9802:here denotes the 8341:Kronecker product 7471:that is called a 7211:{\displaystyle W} 7191:{\displaystyle V} 6851:{\displaystyle Y} 6829:{\displaystyle X} 6357:{\displaystyle T} 6337:{\displaystyle S} 6176:{\displaystyle S} 6005:{\displaystyle T} 5904: 5578:{\displaystyle n} 5558:{\displaystyle m} 5433:{\displaystyle Y} 5365:{\displaystyle X} 5299:{\displaystyle T} 5279:{\displaystyle Y} 5259:{\displaystyle X} 5233:{\displaystyle 0} 5133:{\displaystyle 0} 4849:and all elements 4842:{\displaystyle n} 4820:{\displaystyle T} 4799:{\displaystyle Y} 4779:{\displaystyle X} 4710:{\displaystyle Z} 4690:{\displaystyle T} 4670:{\displaystyle Y} 4650:{\displaystyle X} 4560:{\displaystyle Z} 4511: 4503:Linearly disjoint 4414: 4356: 4301: 3920:and the image of 3151:Cartesian product 3086:{\displaystyle y} 3064:{\displaystyle x} 3019:coordinate vector 2706: 2683: 2629: 2575: 2431:{\displaystyle B} 2351: 2271: 2248: 2202:{\displaystyle B} 2051: 2023: 1778:{\displaystyle B} 1691: 1668: 1633:{\displaystyle B} 1516: 1507: 1466: 1392:{\displaystyle y} 1372:{\displaystyle x} 1199:to be the set of 820:Cartesian product 311:elementary tensor 182:to an element of 150: 123:that maps a pair 21314: 21261:Bernhard Riemann 21093: 21092: 20936:Exterior product 20903:Two-point tensor 20888:Symmetric tensor 20770:Electromagnetism 20684: 20683: 20655: 20648: 20641: 20632: 20631: 20627: 20619: 20594:Trèves, François 20589: 20570: 20544: 20503: 20481: 20459: 20446:Abstract Algebra 20440: 20424: 20393: 20392: 20374: 20368: 20367: 20333: 20327: 20326: 20324: 20315: 20309: 20308: 20306: 20294: 20288: 20287: 20281: 20273: 20271: 20260: 20256:"Tensor product" 20251: 20245: 20244: 20226: 20220: 20213: 20207: 20206: 20204: 20203: 20184: 20178: 20167: 20161: 20147: 20141: 20140: 20122: 20116: 20110: 20101: 20095: 20016: 20008: 20004: 20000: 19996: 19989: 19985: 19981: 19973: 19969: 19965: 19935: 19933: 19932: 19927: 19916: 19915: 19903: 19902: 19872: 19871: 19853: 19852: 19834: 19833: 19826: 19821: 19816: 19787: 19786: 19771:More generally: 19768: 19766: 19765: 19760: 19755: 19754: 19748: 19747: 19732: 19731: 19719: 19718: 19703: 19702: 19690: 19689: 19677: 19676: 19664: 19663: 19654: 19653: 19647: 19646: 19603: 19595: 19585: 19579: 19577: 19575: 19574: 19569: 19564: 19563: 19545: 19539: 19537: 19536: 19531: 19507: 19505: 19503: 19502: 19497: 19495: 19494: 19482: 19481: 19466: 19465: 19453: 19452: 19434: 19432: 19431: 19426: 19424: 19423: 19411: 19410: 19394: 19392: 19391: 19386: 19384: 19383: 19371: 19370: 19352: 19350: 19349: 19344: 19339: 19338: 19332: 19331: 19316: 19315: 19303: 19302: 19287: 19286: 19274: 19273: 19261: 19260: 19248: 19247: 19238: 19237: 19231: 19230: 19196: 19188: 19186: 19185: 19180: 19148: 19147: 19113: 19111: 19110: 19105: 19087: 19080:exterior product 19065:Clifford algebra 19057:exterior algebra 18964:Sheaf of modules 18939: 18937: 18936: 18931: 18923: 18922: 18898: 18897: 18873: 18872: 18854: 18853: 18832: 18831: 18807: 18806: 18772: 18770: 18769: 18764: 18752: 18750: 18749: 18744: 18732: 18730: 18729: 18724: 18719: 18718: 18700: 18699: 18677: 18675: 18674: 18669: 18664: 18663: 18645: 18644: 18511:of this matrix. 18507: 18505: 18504: 18499: 18477: 18475: 18474: 18469: 18461: 18460: 18450: 18442: 18441: 18422: 18414: 18413: 18399: 18391: 18390: 18377: 18376: 18360: 18359: 18348: 18347: 18330: 18326: 18316: 18314: 18313: 18308: 18296: 18294: 18292: 18291: 18286: 18284: 18280: 18279: 18278: 18260: 18259: 18242: 18228: 18226: 18225: 18220: 18202: 18200: 18199: 18194: 18192: 18191: 18172: 18170: 18169: 18164: 18152: 18150: 18149: 18144: 18130: 18128: 18127: 18122: 18099: 18095: 18090: 18089: 18088: 18087: 18070: 18069: 18068: 18067: 18053: 18052: 18051: 18050: 18036: 18035: 18034: 18033: 18021: 18020: 18011: 18010: 17992: 17987: 17980: 17979: 17961: 17956: 17949: 17948: 17933: 17928: 17921: 17920: 17900: 17899: 17881: 17880: 17868: 17867: 17851: 17849: 17848: 17843: 17841: 17840: 17829: 17820: 17819: 17808: 17795: 17793: 17792: 17787: 17785: 17784: 17772: 17771: 17752: 17750: 17749: 17744: 17742: 17741: 17729: 17728: 17699: 17697: 17696: 17691: 17679: 17677: 17676: 17671: 17666: 17665: 17664: 17663: 17651: 17650: 17641: 17640: 17616: 17614: 17613: 17608: 17578: 17576: 17575: 17570: 17558: 17556: 17555: 17550: 17545: 17544: 17543: 17542: 17530: 17529: 17520: 17519: 17485: 17483: 17482: 17477: 17465: 17463: 17462: 17457: 17445: 17443: 17441: 17440: 17435: 17433: 17432: 17421: 17406: 17404: 17403: 17398: 17386: 17384: 17383: 17378: 17362: 17360: 17358: 17357: 17352: 17338: 17336: 17335: 17330: 17310: 17308: 17307: 17302: 17286: 17284: 17283: 17278: 17266: 17264: 17262: 17261: 17256: 17238: 17236: 17235: 17230: 17228: 17227: 17216: 17207: 17206: 17195: 17176: 17174: 17172: 17171: 17166: 17164: 17163: 17151: 17150: 17124: 17122: 17121: 17116: 17101: 17099: 17098: 17093: 17070: 17068: 17066: 17065: 17060: 17058: 17057: 17027: 17021: 17019: 17018: 17013: 16999: 16976: 16975: 16956: 16949:Galois extension 16946: 16936: 16930: 16924: 16918: 16916: 16915: 16910: 16896: 16873: 16872: 16853: 16843: 16837: 16810: 16804: 16798: 16790: 16788: 16787: 16782: 16744: 16743: 16715: 16713: 16712: 16707: 16699: 16698: 16686: 16685: 16667: 16666: 16654: 16653: 16635: 16634: 16622: 16621: 16603: 16602: 16590: 16589: 16570: 16564: 16562: 16561: 16556: 16551: 16550: 16529: 16522: 16516: 16510: 16504: 16476: 16451: 16438: 16424: 16418: 16416: 16415: 16410: 16405: 16404: 16395: 16394: 16379: 16378: 16369: 16368: 16352: 16350: 16348: 16347: 16342: 16340: 16339: 16327: 16326: 16308: 16298: 16296: 16294: 16293: 16288: 16283: 16282: 16261: 16255: 16253: 16251: 16250: 16245: 16243: 16242: 16224: 16222: 16221: 16216: 16211: 16210: 16191: 16189: 16188: 16183: 16181: 16180: 16164: 16158: 16156: 16155: 16150: 16132: 16130: 16129: 16124: 16122: 16121: 16109: 16108: 16092: 16090: 16088: 16087: 16082: 16077: 16076: 16058: 16057: 16037: 16035: 16034: 16029: 16027: 16023: 16022: 16021: 16009: 16008: 15982: 15981: 15958: 15956: 15955: 15950: 15939: 15938: 15916: 15915: 15906: 15905: 15892: 15870: 15868: 15867: 15862: 15842: 15841: 15825: 15819: 15807: 15805: 15804: 15799: 15788: 15777: 15769: 15764: 15759: 15758: 15757: 15737: 15724: 15718: 15705: 15703: 15701: 15700: 15695: 15675: 15669: 15663: 15661: 15660: 15655: 15620: 15618: 15617: 15612: 15607: 15606: 15587: 15585: 15583: 15582: 15577: 15551: 15549: 15548: 15543: 15488: 15486: 15485: 15480: 15475: 15474: 15428: 15426: 15424: 15423: 15418: 15364: 15362: 15361: 15356: 15351: 15350: 15316: 15314: 15312: 15311: 15306: 15252: 15250: 15249: 15244: 15239: 15238: 15203: 15201: 15200: 15195: 15190: 15189: 15167: 15165: 15163: 15162: 15157: 15137: 15135: 15134: 15129: 15111: 15109: 15108: 15103: 15065: 15057: 15048: 15046: 15045: 15040: 15020: 15012: 15001: 14999: 14998: 14993: 14991: 14925: 14924: 14897: 14896: 14865: 14864: 14852: 14851: 14814: 14813: 14786: 14785: 14754: 14753: 14741: 14740: 14714: 14712: 14711: 14706: 14670: 14668: 14667: 14662: 14660: 14611: 14601: 14600: 14588: 14587: 14563: 14562: 14538: 14537: 14516: 14500: 14499: 14487: 14486: 14462: 14461: 14437: 14436: 14421: 14405: 14402: 14391: 14390: 14378: 14377: 14350: 14349: 14337: 14336: 14317: 14306: 14304: 14303: 14298: 14271: 14269: 14268: 14263: 14241: 14239: 14238: 14233: 14206: 14204: 14203: 14198: 14193: 14164: 14163: 14108: 14106: 14105: 14100: 14088: 14086: 14084: 14083: 14078: 14052: 14050: 14049: 14044: 14039: 14038: 14019: 14013: 14011: 14009: 14008: 14003: 13983: 13981: 13980: 13975: 13963: 13961: 13959: 13958: 13953: 13930: 13922: 13920: 13919: 13914: 13912: 13852: 13801: 13762: 13711: 13676: 13674: 13673: 13668: 13632: 13630: 13629: 13624: 13619: 13618: 13574: 13568: 13562: 13560: 13559: 13554: 13506: 13500: 13494: 13488: 13471: 13465: 13457: 13449: 13447: 13446: 13441: 13414: 13412: 13411: 13406: 13398: 13369: 13368: 13349: 13335: 13329: 13305:adjoint functors 13302: 13300: 13299: 13294: 13271: 13251: 13216: 13194: 13188: 13182: 13173: 13167: 13161: 13159: 13158: 13153: 13148: 13147: 13129: 13128: 13109: 13107: 13106: 13101: 13083: 13081: 13080: 13075: 13070: 13069: 13057: 13056: 13037: 13035: 13034: 13029: 12961: 12959: 12958: 12953: 12951: 12950: 12938: 12937: 12918: 12913: 12903: 12878: 12877: 12850: 12820: 12818: 12817: 12812: 12806: 12801: 12782: 12780: 12779: 12774: 12769: 12768: 12747: 12745: 12744: 12739: 12685: 12683: 12681: 12680: 12675: 12661: 12659: 12658: 12653: 12645: 12644: 12616: 12614: 12613: 12608: 12588: 12568: 12567: 12551: 12539: 12533: 12527: 12521: 12515: 12505: 12499: 12493: 12479: 12477: 12475: 12474: 12469: 12458: 12438: 12427: 12425: 12423: 12422: 12417: 12406: 12386: 12384: 12383: 12378: 12366: 12361: 12345: 12343: 12342: 12337: 12326: 12308: 12300: 12298: 12297: 12292: 12235: 12233: 12232: 12227: 12216: 12192: 12187: 12169: 12167: 12166: 12161: 12144: 12143: 12091: 12089: 12087: 12086: 12081: 12079: 12078: 12054: 12044: 12042: 12041: 12036: 12034: 12030: 12029: 12016: 12002: 12001: 11985: 11983: 11982: 11977: 11963: 11962: 11898: 11896: 11894: 11893: 11888: 11877: 11851: 11849: 11847: 11846: 11841: 11815: 11813: 11812: 11807: 11796: 11775: 11773: 11772: 11767: 11755: 11750: 11719: 11717: 11716: 11711: 11708: 11703: 11687: 11685: 11683: 11682: 11677: 11664:is any basis of 11663: 11661: 11660: 11655: 11653: 11652: 11634: 11633: 11617: 11615: 11614: 11609: 11607: 11606: 11599: 11594: 11582: 11581: 11568: 11549: 11548: 11511:coevaluation map 11504: 11502: 11501: 11496: 11481: 11479: 11478: 11473: 11471: 11470: 11454: 11452: 11451: 11446: 11434: 11432: 11431: 11426: 11411: 11400: 11372: 11367: 11347: 11336: 11334: 11332: 11331: 11326: 11298: 11296: 11295: 11290: 11254: 11252: 11251: 11246: 11238: 11237: 11212: 11190: 11188: 11187: 11182: 11177: 11176: 11171: 11168: 11167: 11158: 11157: 11145: 11144: 11139: 11136: 11135: 11104: 11102: 11101: 11096: 11094: 11093: 11084: 11083: 11078: 11075: 11074: 11062: 11061: 11056: 11053: 11052: 11047: 11044: 11043: 11038: 11034: 11011: 11009: 11007: 11006: 11001: 10999: 10998: 10981:with components 10980: 10978: 10977: 10972: 10948: 10942: 10940: 10938: 10937: 10932: 10929: 10924: 10907:with components 10906: 10902: 10894: 10892: 10891: 10886: 10881: 10880: 10879: 10878: 10860: 10859: 10844: 10843: 10828: 10827: 10807: 10806: 10805: 10804: 10792: 10791: 10782: 10781: 10764: 10763: 10762: 10761: 10743: 10742: 10733: 10732: 10699: 10697: 10695: 10694: 10689: 10686: 10681: 10657: 10655: 10654: 10649: 10646: 10641: 10619: 10613: 10603: 10597: 10579: 10577: 10576: 10571: 10559: 10554: 10538: 10536: 10535: 10530: 10528: 10527: 10507: 10501: 10493: 10491: 10490: 10485: 10480: 10479: 10463: 10451: 10450: 10431: 10413: 10412: 10400: 10399: 10380: 10378: 10377: 10372: 10370: 10369: 10353: 10347: 10345: 10344: 10339: 10337: 10336: 10320: 10312: 10310: 10309: 10304: 10289: 10288: 10273: 10272: 10240: 10239: 10230: 10229: 10216: 10215: 10196: 10191: 10168: 10162: 10156: 10143: 10141: 10140: 10135: 10133: 10132: 10116: 10114: 10113: 10108: 10103: 10102: 10094: 10090: 10089: 10072: 10071: 10055: 10050: 10045: 10044: 10043: 10025: 10024: 10007: 10002: 9997: 9964: 9959: 9943: 9934: 9932: 9931: 9926: 9902: 9896: 9869: 9867: 9865: 9864: 9859: 9795: 9793: 9792: 9787: 9782: 9781: 9774: 9773: 9758: 9757: 9740: 9739: 9724: 9723: 9706: 9705: 9690: 9689: 9672: 9671: 9656: 9655: 9636: 9635: 9620: 9619: 9602: 9601: 9586: 9585: 9568: 9567: 9552: 9551: 9534: 9533: 9518: 9517: 9498: 9497: 9482: 9481: 9464: 9463: 9448: 9447: 9430: 9429: 9414: 9413: 9396: 9395: 9380: 9379: 9360: 9359: 9344: 9343: 9326: 9325: 9310: 9309: 9292: 9291: 9276: 9275: 9258: 9257: 9242: 9241: 9215: 9214: 9207: 9206: 9199: 9198: 9181: 9180: 9161: 9160: 9143: 9142: 9119: 9118: 9101: 9100: 9093: 9092: 9075: 9074: 9055: 9054: 9037: 9036: 9013: 9012: 8993: 8992: 8985: 8984: 8967: 8966: 8947: 8946: 8929: 8928: 8905: 8904: 8887: 8886: 8879: 8878: 8861: 8860: 8841: 8840: 8823: 8822: 8799: 8798: 8772: 8771: 8764: 8763: 8746: 8745: 8726: 8725: 8708: 8707: 8681: 8680: 8673: 8672: 8655: 8654: 8635: 8634: 8617: 8616: 8586: 8584: 8583: 8578: 8573: 8572: 8565: 8564: 8547: 8546: 8527: 8526: 8509: 8508: 8475: 8474: 8467: 8466: 8449: 8448: 8429: 8428: 8411: 8410: 8374: 8368: 8362: 8356: 8338: 8336: 8335: 8330: 8312: 8310: 8309: 8304: 8282: 8276: 8243: 8239: 8217: 8215: 8214: 8209: 8110: 8108: 8107: 8102: 8024: 8022: 8021: 8016: 7971: 7969: 7967: 7966: 7961: 7935: 7933: 7932: 7927: 7900: 7898: 7897: 7892: 7871: 7869: 7868: 7863: 7794: 7792: 7791: 7786: 7738: 7734: 7732: 7730: 7729: 7724: 7683: 7681: 7679: 7678: 7673: 7671: 7670: 7655: 7654: 7630: 7628: 7627: 7622: 7620: 7619: 7592: 7591: 7570: 7569: 7551: 7550: 7531: 7527: 7520: 7516: 7512: 7510: 7509: 7504: 7502: 7501: 7477: 7476: 7466: 7464: 7463: 7458: 7440: 7438: 7437: 7432: 7399: 7397: 7395: 7394: 7389: 7357: 7355: 7353: 7352: 7347: 7324: 7322: 7320: 7319: 7314: 7294: 7292: 7291: 7286: 7265: 7263: 7262: 7257: 7217: 7215: 7214: 7209: 7197: 7195: 7194: 7189: 7166: 7164: 7162: 7161: 7156: 7124: 7122: 7121: 7116: 7083: 7081: 7080: 7075: 7015: 7013: 7011: 7010: 7005: 6967: 6961: 6955: 6953: 6952: 6947: 6926: 6920: 6914: 6912: 6911: 6906: 6884: 6878: 6859: 6857: 6855: 6854: 6849: 6835: 6833: 6832: 6827: 6815: 6813: 6812: 6807: 6805: 6784: 6766: 6765: 6750: 6738: 6724: 6722: 6721: 6716: 6714: 6713: 6702: 6689: 6687: 6686: 6681: 6679: 6675: 6617: 6615: 6614: 6609: 6607: 6606: 6601: 6582: 6580: 6579: 6574: 6572: 6571: 6566: 6547: 6545: 6543: 6542: 6537: 6484: 6482: 6481: 6476: 6474: 6473: 6462: 6437: 6435: 6433: 6432: 6427: 6425: 6424: 6419: 6398: 6396: 6395: 6390: 6388: 6387: 6382: 6363: 6361: 6360: 6355: 6343: 6341: 6340: 6335: 6323: 6321: 6319: 6318: 6313: 6281: 6279: 6278: 6273: 6258: 6256: 6255: 6250: 6208: 6206: 6205: 6200: 6182: 6180: 6179: 6174: 6162: 6160: 6159: 6154: 6152: 6151: 6146: 6130: 6128: 6126: 6125: 6120: 6082: 6080: 6079: 6074: 6033: 6031: 6030: 6025: 6011: 6009: 6008: 6003: 5991: 5989: 5987: 5986: 5981: 5979: 5978: 5973: 5952: 5950: 5949: 5944: 5942: 5941: 5936: 5917: 5915: 5914: 5909: 5907: 5906: 5905: 5903: 5880: 5857: 5854: 5850: 5849: 5848: 5839: 5838: 5816: 5814: 5813: 5808: 5806: 5802: 5801: 5797: 5796: 5795: 5777: 5776: 5759: 5755: 5754: 5753: 5735: 5734: 5690: 5688: 5687: 5682: 5680: 5679: 5671: 5662: 5661: 5656: 5647: 5646: 5641: 5622: 5620: 5619: 5614: 5612: 5611: 5603: 5584: 5582: 5581: 5576: 5564: 5562: 5561: 5556: 5540: 5538: 5537: 5532: 5530: 5526: 5489: 5485: 5484: 5483: 5471: 5470: 5441: 5439: 5437: 5436: 5431: 5417: 5415: 5414: 5409: 5407: 5406: 5388: 5387: 5371: 5369: 5368: 5363: 5351: 5349: 5348: 5343: 5341: 5340: 5322: 5321: 5305: 5303: 5302: 5297: 5285: 5283: 5282: 5277: 5265: 5263: 5262: 5257: 5241: 5239: 5237: 5236: 5231: 5217: 5215: 5214: 5209: 5207: 5206: 5190: 5188: 5187: 5182: 5180: 5179: 5161: 5160: 5141: 5139: 5137: 5136: 5131: 5117: 5115: 5114: 5109: 5107: 5106: 5086: 5084: 5083: 5078: 5076: 5075: 5057: 5056: 5036: 5034: 5032: 5031: 5026: 5018: 5014: 5013: 5012: 5000: 4999: 4981: 4976: 4952: 4950: 4949: 4944: 4936: 4935: 4917: 4916: 4900: 4898: 4897: 4892: 4884: 4883: 4865: 4864: 4848: 4846: 4845: 4840: 4826: 4824: 4823: 4818: 4805: 4803: 4802: 4797: 4785: 4783: 4782: 4777: 4765: 4763: 4761: 4760: 4755: 4716: 4714: 4713: 4708: 4696: 4694: 4693: 4688: 4676: 4674: 4673: 4668: 4656: 4654: 4653: 4648: 4636: 4634: 4633: 4628: 4604: 4602: 4601: 4596: 4566: 4564: 4563: 4558: 4546: 4544: 4542: 4541: 4536: 4516: 4497: 4495: 4493: 4492: 4487: 4467: 4465: 4464: 4459: 4441: 4439: 4438: 4433: 4416: 4415: 4407: 4376: 4374: 4373: 4368: 4366: 4358: 4357: 4349: 4333: 4331: 4329: 4328: 4323: 4303: 4302: 4294: 4278: 4276: 4274: 4273: 4268: 4236: 4234: 4232: 4231: 4226: 4206: 4204: 4203: 4198: 4180: 4178: 4177: 4172: 4140: 4128: 4126: 4124: 4123: 4118: 4098: 4094: 4052: 4047: 4046: 4045: 4040: 4025: 4024: 4023: 4022: 4017: 4010: 3981: 3979: 3977: 3976: 3971: 3951: 3949: 3948: 3943: 3916: 3914: 3913: 3908: 3900: 3863: 3861: 3859: 3858: 3853: 3833: 3831: 3830: 3825: 3817: 3816: 3804: 3803: 3781: 3779: 3777: 3776: 3771: 3763: 3762: 3750: 3749: 3722: 3720: 3719: 3714: 3712: 3602: 3601: 3577: 3576: 3548: 3547: 3535: 3534: 3500: 3499: 3475: 3474: 3446: 3445: 3433: 3432: 3402: 3398: 3390: 3383: 3379: 3377: 3376: 3371: 3347: 3343: 3341: 3340: 3335: 3311: 3309: 3308: 3303: 3276: 3274: 3272: 3271: 3266: 3246: 3244: 3243: 3238: 3220: 3218: 3217: 3212: 3185: 3177: 3175: 3174: 3169: 3148: 3140: 3130: 3126: 3094: 3092: 3090: 3089: 3084: 3070: 3068: 3067: 3062: 3046: 3044: 3043: 3038: 3009: 3007: 3006: 3001: 2983: 2981: 2980: 2975: 2957: 2955: 2954: 2949: 2917: 2905: 2903: 2901: 2900: 2895: 2893: 2892: 2874: 2872: 2871: 2866: 2864: 2863: 2848:using the bases 2847: 2845: 2844: 2839: 2812: 2810: 2809: 2804: 2775: 2773: 2772: 2767: 2765: 2748: 2747: 2738: 2737: 2727: 2726: 2725: 2704: 2703: 2702: 2676: 2672: 2671: 2661: 2660: 2650: 2649: 2648: 2628: 2627: 2618: 2617: 2607: 2606: 2596: 2595: 2594: 2574: 2573: 2540: 2538: 2537: 2532: 2514: 2512: 2511: 2506: 2481: 2479: 2477: 2476: 2471: 2469: 2468: 2456: 2455: 2437: 2435: 2434: 2429: 2413: 2411: 2409: 2408: 2403: 2383: 2381: 2380: 2375: 2352: 2349: 2336: 2334: 2333: 2328: 2292: 2291: 2290: 2269: 2268: 2267: 2234: 2232: 2231: 2226: 2208: 2206: 2205: 2200: 2186: 2184: 2183: 2178: 2173: 2172: 2162: 2161: 2146: 2135: 2108: 2107: 2106: 2093: 2092: 2091: 2077: 2076: 2075: 2063: 2049: 2048: 2047: 2035: 1982: 1980: 1979: 1974: 1938: 1936: 1935: 1930: 1928: 1927: 1915: 1914: 1898: 1896: 1895: 1890: 1872: 1870: 1868: 1867: 1862: 1860: 1859: 1847: 1846: 1828: 1826: 1825: 1820: 1784: 1782: 1781: 1776: 1762: 1760: 1759: 1754: 1733: 1732: 1723: 1722: 1712: 1711: 1710: 1689: 1688: 1687: 1639: 1637: 1636: 1631: 1619: 1617: 1616: 1611: 1609: 1608: 1592: 1590: 1589: 1584: 1582: 1581: 1565: 1563: 1562: 1557: 1548: 1547: 1537: 1536: 1535: 1508: 1505: 1498: 1497: 1487: 1486: 1485: 1452: 1450: 1449: 1444: 1442: 1441: 1425: 1423: 1422: 1417: 1415: 1414: 1398: 1396: 1395: 1390: 1378: 1376: 1375: 1370: 1358: 1356: 1354: 1353: 1348: 1316: 1314: 1313: 1308: 1272: 1270: 1268: 1267: 1262: 1260: 1259: 1247: 1246: 1228: 1226: 1225: 1220: 1198: 1196: 1195: 1190: 1169: 1167: 1165: 1164: 1159: 1157: 1156: 1138: 1136: 1135: 1130: 1128: 1127: 1107: 1105: 1103: 1102: 1097: 1077: 1075: 1074: 1069: 1064: 1063: 1045: 1044: 1004: 1002: 1000: 999: 994: 974: 970: 968: 967: 962: 960: 959: 947: 946: 930: 926: 924: 923: 918: 894: 892: 891: 886: 864: 860: 858: 857: 852: 850: 849: 837: 836: 813: 811: 810: 805: 787: 785: 783: 782: 777: 775: 774: 750: 748: 747: 742: 740: 739: 717: 715: 714: 709: 691: 687: 683: 681: 680: 675: 651: 649: 647: 646: 641: 639: 638: 620: 618: 617: 612: 610: 609: 590: 579: 575: 489: 487: 486: 481: 454: 450: 448: 447: 442: 421: 417: 413: 411: 410: 405: 387: 381: 371: 369: 368: 363: 345: 343: 342: 337: 304: 302: 301: 296: 279:. An element of 278: 274: 266: 264: 263: 258: 237: 235: 233: 232: 227: 207: 205: 204: 199: 181: 179: 178: 173: 148: 122: 120: 119: 114: 77: 71: 62: 60: 59: 54: 21322: 21321: 21317: 21316: 21315: 21313: 21312: 21311: 21287: 21286: 21285: 21280: 21231:Albert Einstein 21198: 21179:Einstein tensor 21142: 21123:Ricci curvature 21103:Kronecker delta 21089:Notable tensors 21084: 21005:Connection form 20982: 20976: 20907: 20893:Tensor operator 20850: 20844: 20784: 20760:Computer vision 20753: 20735: 20731:Tensor calculus 20675: 20664: 20659: 20622: 20608: 20586: 20567: 20559:. AMS Chelsea. 20526: 20500: 20478: 20456: 20429:Gowers, Timothy 20421: 20402: 20397: 20396: 20389: 20375: 20371: 20356: 20334: 20330: 20322: 20316: 20312: 20295: 20291: 20275: 20274: 20269: 20258: 20252: 20248: 20241: 20227: 20223: 20214: 20210: 20201: 20199: 20186: 20185: 20181: 20168: 20164: 20150:Bourbaki (1989) 20148: 20144: 20137: 20123: 20119: 20115:, pp. 407. 20111: 20104: 20096: 20089: 20084: 20042: 20014: 20006: 20002: 19998: 19994: 19987: 19983: 19979: 19971: 19967: 19963: 19953: 19948: 19911: 19907: 19892: 19888: 19861: 19857: 19848: 19844: 19829: 19828: 19822: 19800: 19798: 19782: 19778: 19776: 19773: 19772: 19750: 19749: 19743: 19739: 19727: 19723: 19714: 19710: 19698: 19694: 19685: 19681: 19672: 19668: 19659: 19655: 19649: 19648: 19642: 19641: 19618: 19615: 19614: 19599: 19591: 19581: 19559: 19555: 19553: 19550: 19549: 19547: 19541: 19513: 19510: 19509: 19490: 19486: 19477: 19473: 19461: 19457: 19448: 19444: 19442: 19439: 19438: 19436: 19419: 19415: 19406: 19402: 19400: 19397: 19396: 19379: 19375: 19366: 19362: 19360: 19357: 19356: 19334: 19333: 19327: 19323: 19311: 19307: 19298: 19294: 19282: 19278: 19269: 19265: 19256: 19252: 19243: 19239: 19233: 19232: 19226: 19225: 19202: 19199: 19198: 19192: 19143: 19142: 19119: 19116: 19115: 19114:is defined as: 19093: 19090: 19089: 19083: 19045: 19033: 19005: 18999: 18994: 18988: 18983: 18977: 18971: 18966: 18960: 18912: 18908: 18887: 18883: 18868: 18864: 18849: 18845: 18821: 18817: 18802: 18798: 18778: 18775: 18774: 18758: 18755: 18754: 18753:over the field 18738: 18735: 18734: 18714: 18710: 18695: 18691: 18683: 18680: 18679: 18659: 18655: 18640: 18636: 18628: 18625: 18624: 18618: 18613: 18607: 18591: 18585: 18573: 18567: 18532: 18524:Main articles: 18522: 18517: 18487: 18484: 18483: 18455: 18454: 18446: 18437: 18433: 18431: 18426: 18418: 18409: 18405: 18403: 18395: 18386: 18382: 18379: 18378: 18372: 18368: 18366: 18361: 18355: 18351: 18349: 18343: 18339: 18332: 18331: 18324: 18322: 18319: 18318: 18302: 18299: 18298: 18274: 18270: 18255: 18251: 18250: 18246: 18238: 18236: 18233: 18232: 18230: 18208: 18205: 18204: 18187: 18183: 18181: 18178: 18177: 18158: 18155: 18154: 18153:coordinates of 18138: 18135: 18134: 18093: 18083: 18079: 18078: 18074: 18063: 18059: 18058: 18054: 18046: 18042: 18041: 18037: 18029: 18025: 18016: 18012: 18006: 18002: 17998: 17994: 17988: 17975: 17971: 17970: 17957: 17944: 17940: 17939: 17929: 17916: 17912: 17911: 17895: 17891: 17876: 17872: 17863: 17859: 17857: 17854: 17853: 17830: 17825: 17824: 17809: 17804: 17803: 17801: 17798: 17797: 17780: 17776: 17767: 17763: 17761: 17758: 17757: 17755:polynomial maps 17734: 17730: 17724: 17720: 17709: 17706: 17705: 17685: 17682: 17681: 17659: 17655: 17646: 17642: 17636: 17632: 17631: 17627: 17622: 17619: 17618: 17584: 17581: 17580: 17564: 17561: 17560: 17538: 17534: 17525: 17521: 17515: 17511: 17510: 17506: 17495: 17492: 17491: 17471: 17468: 17467: 17466:is generic and 17451: 17448: 17447: 17422: 17417: 17416: 17414: 17411: 17410: 17408: 17392: 17389: 17388: 17372: 17369: 17368: 17346: 17343: 17342: 17340: 17324: 17321: 17320: 17296: 17293: 17292: 17272: 17269: 17268: 17250: 17247: 17246: 17244: 17217: 17212: 17211: 17196: 17191: 17190: 17182: 17179: 17178: 17159: 17155: 17146: 17142: 17140: 17137: 17136: 17134: 17110: 17107: 17106: 17087: 17084: 17083: 17077: 17041: 17037: 17035: 17032: 17031: 17029: 17023: 16995: 16971: 16967: 16962: 16959: 16958: 16952: 16938: 16932: 16926: 16920: 16892: 16868: 16864: 16859: 16856: 16855: 16849: 16839: 16820: 16806: 16800: 16794: 16739: 16735: 16721: 16718: 16717: 16694: 16690: 16681: 16677: 16662: 16658: 16649: 16645: 16630: 16626: 16617: 16613: 16598: 16594: 16585: 16581: 16576: 16573: 16572: 16566: 16546: 16542: 16537: 16534: 16533: 16525: 16518: 16512: 16506: 16500: 16497: 16491: 16453: 16440: 16426: 16420: 16400: 16396: 16390: 16386: 16374: 16370: 16364: 16360: 16358: 16355: 16354: 16335: 16331: 16322: 16318: 16316: 16313: 16312: 16310: 16304: 16278: 16274: 16269: 16266: 16265: 16263: 16257: 16238: 16234: 16232: 16229: 16228: 16226: 16203: 16199: 16197: 16194: 16193: 16176: 16172: 16170: 16167: 16166: 16160: 16138: 16135: 16134: 16117: 16113: 16104: 16100: 16098: 16095: 16094: 16066: 16062: 16053: 16049: 16047: 16044: 16043: 16041: 16017: 16013: 16004: 16000: 15999: 15995: 15977: 15973: 15968: 15965: 15964: 15931: 15927: 15911: 15907: 15898: 15894: 15882: 15876: 15873: 15872: 15837: 15833: 15831: 15828: 15827: 15821: 15815: 15784: 15773: 15765: 15760: 15753: 15752: 15748: 15743: 15740: 15739: 15726: 15720: 15707: 15683: 15680: 15679: 15677: 15671: 15665: 15643: 15640: 15639: 15636: 15602: 15598: 15593: 15590: 15589: 15559: 15556: 15555: 15553: 15525: 15522: 15521: 15470: 15466: 15461: 15458: 15457: 15444:)-bimodule and 15376: 15373: 15372: 15370: 15369:-module, where 15346: 15342: 15337: 15334: 15333: 15264: 15261: 15260: 15258: 15257:-module, where 15234: 15230: 15225: 15222: 15221: 15185: 15181: 15176: 15173: 15172: 15145: 15142: 15141: 15139: 15117: 15114: 15113: 15056: 15054: 15051: 15050: 15011: 15009: 15006: 15005: 14989: 14988: 14957: 14933: 14932: 14920: 14916: 14892: 14888: 14869: 14860: 14856: 14847: 14843: 14828: 14827: 14809: 14805: 14781: 14777: 14764: 14749: 14745: 14736: 14732: 14722: 14720: 14717: 14716: 14682: 14679: 14678: 14658: 14657: 14609: 14608: 14596: 14592: 14583: 14579: 14558: 14554: 14533: 14529: 14514: 14513: 14495: 14491: 14482: 14478: 14457: 14453: 14432: 14428: 14419: 14418: 14401: 14386: 14382: 14373: 14369: 14345: 14341: 14332: 14328: 14314: 14312: 14309: 14308: 14277: 14274: 14273: 14251: 14248: 14247: 14212: 14209: 14208: 14189: 14159: 14155: 14150: 14147: 14146: 14119: 14094: 14091: 14090: 14060: 14057: 14056: 14054: 14034: 14030: 14025: 14022: 14021: 14015: 13991: 13988: 13987: 13985: 13969: 13966: 13965: 13941: 13938: 13937: 13935: 13926: 13910: 13909: 13881: 13857: 13856: 13845: 13805: 13794: 13773: 13772: 13755: 13721: 13704: 13688: 13686: 13683: 13682: 13638: 13635: 13634: 13614: 13610: 13587: 13584: 13583: 13570: 13564: 13563:is imposed. If 13512: 13509: 13508: 13502: 13496: 13490: 13484: 13483:. In this case 13481:non-commutative 13474:these relations 13467: 13461: 13453: 13420: 13417: 13416: 13394: 13364: 13360: 13355: 13352: 13351: 13345: 13331: 13325: 13319: 13313: 13261: 13241: 13206: 13204: 13201: 13200: 13190: 13184: 13178: 13169: 13163: 13143: 13139: 13124: 13120: 13115: 13112: 13111: 13089: 13086: 13085: 13065: 13061: 13052: 13048: 13043: 13040: 13039: 12969: 12966: 12965: 12946: 12945: 12933: 12929: 12914: 12909: 12899: 12886: 12885: 12873: 12869: 12840: 12833: 12832: 12830: 12827: 12826: 12802: 12797: 12788: 12785: 12784: 12764: 12760: 12755: 12752: 12751: 12691: 12688: 12687: 12669: 12666: 12665: 12663: 12640: 12636: 12622: 12619: 12618: 12578: 12563: 12559: 12557: 12554: 12553: 12541: 12535: 12529: 12523: 12517: 12511: 12501: 12495: 12489: 12486: 12448: 12446: 12443: 12442: 12440: 12432: 12396: 12394: 12391: 12390: 12388: 12362: 12357: 12351: 12348: 12347: 12316: 12314: 12311: 12310: 12304: 12241: 12238: 12237: 12206: 12188: 12183: 12177: 12174: 12173: 12139: 12135: 12097: 12094: 12093: 12074: 12070: 12062: 12059: 12058: 12056: 12050: 12025: 12021: 12017: 12006: 11997: 11993: 11991: 11988: 11987: 11958: 11954: 11904: 11901: 11900: 11867: 11859: 11856: 11855: 11853: 11823: 11820: 11819: 11817: 11786: 11784: 11781: 11780: 11751: 11746: 11740: 11737: 11736: 11733: 11704: 11699: 11693: 11690: 11689: 11671: 11668: 11667: 11665: 11648: 11644: 11629: 11625: 11623: 11620: 11619: 11602: 11601: 11595: 11590: 11577: 11573: 11564: 11551: 11550: 11544: 11540: 11521: 11520: 11518: 11515: 11514: 11490: 11487: 11486: 11466: 11462: 11460: 11457: 11456: 11440: 11437: 11436: 11435:(The copies of 11401: 11390: 11368: 11363: 11357: 11354: 11353: 11338: 11308: 11305: 11304: 11302: 11260: 11257: 11256: 11233: 11229: 11221: 11218: 11217: 11215:evaluation map: 11210: 11207: 11172: 11170: 11169: 11163: 11159: 11153: 11149: 11140: 11138: 11137: 11128: 11124: 11110: 11107: 11106: 11089: 11085: 11079: 11077: 11076: 11070: 11066: 11057: 11055: 11054: 11048: 11046: 11045: 11039: 11024: 11020: 11019: 11017: 11014: 11013: 10994: 10990: 10988: 10985: 10984: 10982: 10954: 10951: 10950: 10944: 10925: 10920: 10914: 10911: 10910: 10908: 10904: 10898: 10868: 10864: 10849: 10845: 10833: 10829: 10817: 10813: 10812: 10808: 10800: 10796: 10787: 10783: 10777: 10773: 10772: 10768: 10751: 10747: 10738: 10734: 10728: 10724: 10723: 10719: 10705: 10702: 10701: 10682: 10677: 10665: 10662: 10661: 10659: 10642: 10637: 10625: 10622: 10621: 10615: 10609: 10599: 10593: 10555: 10550: 10544: 10541: 10540: 10523: 10519: 10517: 10514: 10513: 10503: 10497: 10475: 10471: 10459: 10446: 10442: 10427: 10408: 10404: 10395: 10391: 10386: 10383: 10382: 10365: 10361: 10359: 10356: 10355: 10349: 10332: 10328: 10326: 10323: 10322: 10316: 10281: 10274: 10265: 10258: 10232: 10231: 10222: 10221: 10211: 10207: 10192: 10187: 10181: 10178: 10177: 10164: 10158: 10152: 10128: 10124: 10122: 10119: 10118: 10095: 10085: 10081: 10077: 10076: 10064: 10060: 10051: 10039: 10035: 10020: 10016: 10015: 10013: 10003: 9981: 9979: 9960: 9955: 9949: 9946: 9945: 9939: 9908: 9905: 9904: 9898: 9892: 9889: 9883: 9881:General tensors 9817: 9814: 9813: 9811: 9776: 9775: 9763: 9759: 9747: 9743: 9741: 9729: 9725: 9713: 9709: 9707: 9695: 9691: 9679: 9675: 9673: 9661: 9657: 9645: 9641: 9638: 9637: 9625: 9621: 9609: 9605: 9603: 9591: 9587: 9575: 9571: 9569: 9557: 9553: 9541: 9537: 9535: 9523: 9519: 9507: 9503: 9500: 9499: 9487: 9483: 9471: 9467: 9465: 9453: 9449: 9437: 9433: 9431: 9419: 9415: 9403: 9399: 9397: 9385: 9381: 9369: 9365: 9362: 9361: 9349: 9345: 9333: 9329: 9327: 9315: 9311: 9299: 9295: 9293: 9281: 9277: 9265: 9261: 9259: 9247: 9243: 9231: 9227: 9220: 9219: 9209: 9208: 9201: 9200: 9188: 9184: 9182: 9170: 9166: 9163: 9162: 9150: 9146: 9144: 9132: 9128: 9121: 9120: 9108: 9104: 9102: 9095: 9094: 9082: 9078: 9076: 9064: 9060: 9057: 9056: 9044: 9040: 9038: 9026: 9022: 9015: 9014: 9002: 8998: 8995: 8994: 8987: 8986: 8974: 8970: 8968: 8956: 8952: 8949: 8948: 8936: 8932: 8930: 8918: 8914: 8907: 8906: 8894: 8890: 8888: 8881: 8880: 8868: 8864: 8862: 8850: 8846: 8843: 8842: 8830: 8826: 8824: 8812: 8808: 8801: 8800: 8788: 8784: 8777: 8776: 8766: 8765: 8753: 8749: 8747: 8735: 8731: 8728: 8727: 8715: 8711: 8709: 8697: 8693: 8686: 8685: 8675: 8674: 8662: 8658: 8656: 8644: 8640: 8637: 8636: 8624: 8620: 8618: 8606: 8602: 8595: 8594: 8592: 8589: 8588: 8567: 8566: 8554: 8550: 8548: 8536: 8532: 8529: 8528: 8516: 8512: 8510: 8498: 8494: 8487: 8486: 8469: 8468: 8456: 8452: 8450: 8438: 8434: 8431: 8430: 8418: 8414: 8412: 8400: 8396: 8389: 8388: 8380: 8377: 8376: 8370: 8364: 8358: 8344: 8318: 8315: 8314: 8292: 8289: 8288: 8278: 8272: 8241: 8237: 8223:category theory 8122: 8119: 8118: 8036: 8033: 8032: 7980: 7977: 7976: 7943: 7940: 7939: 7937: 7909: 7906: 7905: 7880: 7877: 7876: 7806: 7803: 7802: 7750: 7747: 7746: 7741:tensor product: 7736: 7706: 7703: 7702: 7700: 7697: 7690: 7663: 7659: 7647: 7643: 7641: 7638: 7637: 7635: 7606: 7602: 7578: 7574: 7565: 7561: 7546: 7542: 7540: 7537: 7536: 7529: 7525: 7518: 7514: 7494: 7490: 7488: 7485: 7484: 7474: 7473: 7446: 7443: 7442: 7408: 7405: 7404: 7365: 7362: 7361: 7359: 7335: 7332: 7331: 7329: 7302: 7299: 7298: 7296: 7274: 7271: 7270: 7230: 7227: 7226: 7203: 7200: 7199: 7183: 7180: 7179: 7176: 7132: 7129: 7128: 7126: 7092: 7089: 7088: 7024: 7021: 7020: 6987: 6984: 6983: 6981: 6974: 6963: 6957: 6935: 6932: 6931: 6922: 6916: 6894: 6891: 6890: 6880: 6874: 6871: 6866: 6843: 6840: 6839: 6837: 6821: 6818: 6817: 6803: 6802: 6791: 6783: 6763: 6762: 6757: 6749: 6737: 6732: 6730: 6727: 6726: 6703: 6698: 6697: 6695: 6692: 6691: 6641: 6637: 6623: 6620: 6619: 6602: 6597: 6596: 6588: 6585: 6584: 6567: 6562: 6561: 6553: 6550: 6549: 6492: 6489: 6488: 6486: 6463: 6458: 6457: 6443: 6440: 6439: 6420: 6415: 6414: 6406: 6403: 6402: 6400: 6383: 6378: 6377: 6369: 6366: 6365: 6349: 6346: 6345: 6329: 6326: 6325: 6289: 6286: 6285: 6283: 6264: 6261: 6260: 6214: 6211: 6210: 6188: 6185: 6184: 6168: 6165: 6164: 6147: 6142: 6141: 6139: 6136: 6135: 6090: 6087: 6086: 6084: 6039: 6036: 6035: 6017: 6014: 6013: 5997: 5994: 5993: 5974: 5969: 5968: 5960: 5957: 5956: 5954: 5937: 5932: 5931: 5923: 5920: 5919: 5881: 5858: 5856: 5855: 5844: 5840: 5834: 5830: 5829: 5825: 5824: 5822: 5819: 5818: 5791: 5787: 5772: 5768: 5767: 5763: 5749: 5745: 5730: 5726: 5725: 5721: 5720: 5716: 5696: 5693: 5692: 5672: 5667: 5666: 5657: 5652: 5651: 5642: 5637: 5636: 5628: 5625: 5624: 5604: 5599: 5598: 5590: 5587: 5586: 5570: 5567: 5566: 5550: 5547: 5546: 5543: 5479: 5475: 5466: 5462: 5461: 5457: 5453: 5449: 5447: 5444: 5443: 5425: 5422: 5421: 5419: 5402: 5398: 5383: 5379: 5377: 5374: 5373: 5357: 5354: 5353: 5336: 5332: 5317: 5313: 5311: 5308: 5307: 5291: 5288: 5287: 5271: 5268: 5267: 5251: 5248: 5247: 5225: 5222: 5221: 5219: 5202: 5198: 5196: 5193: 5192: 5175: 5171: 5156: 5152: 5150: 5147: 5146: 5125: 5122: 5121: 5119: 5102: 5098: 5096: 5093: 5092: 5071: 5067: 5052: 5048: 5046: 5043: 5042: 5008: 5004: 4995: 4991: 4990: 4986: 4977: 4966: 4960: 4957: 4956: 4954: 4931: 4927: 4912: 4908: 4906: 4903: 4902: 4879: 4875: 4860: 4856: 4854: 4851: 4850: 4834: 4831: 4830: 4812: 4809: 4808: 4791: 4788: 4787: 4771: 4768: 4767: 4724: 4721: 4720: 4718: 4702: 4699: 4698: 4682: 4679: 4678: 4662: 4659: 4658: 4642: 4639: 4638: 4610: 4607: 4606: 4572: 4569: 4568: 4552: 4549: 4548: 4524: 4521: 4520: 4518: 4514: 4505: 4475: 4472: 4471: 4469: 4447: 4444: 4443: 4406: 4405: 4382: 4379: 4378: 4362: 4348: 4347: 4339: 4336: 4335: 4293: 4292: 4290: 4287: 4286: 4284: 4244: 4241: 4240: 4238: 4214: 4211: 4210: 4208: 4186: 4183: 4182: 4136: 4134: 4131: 4130: 4106: 4103: 4102: 4100: 4096: 4092: 4041: 4038: 4037: 4036: 4031: 4018: 4015: 4014: 4013: 4012: 4006: 3999: 3959: 3956: 3955: 3953: 3925: 3922: 3921: 3896: 3879: 3876: 3875: 3841: 3838: 3837: 3835: 3812: 3808: 3799: 3795: 3787: 3784: 3783: 3758: 3754: 3745: 3741: 3733: 3730: 3729: 3727: 3710: 3709: 3681: 3660: 3659: 3631: 3610: 3609: 3597: 3593: 3572: 3568: 3552: 3543: 3539: 3530: 3526: 3514: 3513: 3495: 3491: 3470: 3466: 3456: 3441: 3437: 3428: 3424: 3417: 3415: 3412: 3411: 3400: 3396: 3393:linear subspace 3388: 3381: 3353: 3350: 3349: 3345: 3317: 3314: 3313: 3285: 3282: 3281: 3254: 3251: 3250: 3248: 3226: 3223: 3222: 3194: 3191: 3190: 3183: 3157: 3154: 3153: 3146: 3138: 3128: 3124: 3118: 3078: 3075: 3074: 3072: 3056: 3053: 3052: 3026: 3023: 3022: 3010:satisfying the 2989: 2986: 2985: 2963: 2960: 2959: 2913: 2911: 2908: 2907: 2888: 2884: 2882: 2879: 2878: 2876: 2859: 2855: 2853: 2850: 2849: 2818: 2815: 2814: 2783: 2780: 2779: 2763: 2762: 2743: 2739: 2733: 2729: 2721: 2717: 2710: 2698: 2694: 2687: 2674: 2673: 2667: 2666: 2656: 2652: 2644: 2640: 2633: 2623: 2622: 2613: 2612: 2602: 2598: 2590: 2586: 2579: 2569: 2568: 2561: 2548: 2546: 2543: 2542: 2520: 2517: 2516: 2494: 2491: 2490: 2464: 2460: 2451: 2447: 2445: 2442: 2441: 2439: 2423: 2420: 2419: 2391: 2388: 2387: 2385: 2348: 2346: 2343: 2342: 2286: 2282: 2275: 2263: 2259: 2252: 2240: 2237: 2236: 2214: 2211: 2210: 2194: 2191: 2190: 2168: 2164: 2157: 2153: 2139: 2128: 2099: 2098: 2094: 2084: 2083: 2079: 2071: 2067: 2056: 2055: 2043: 2039: 2028: 2027: 1988: 1985: 1984: 1944: 1941: 1940: 1923: 1919: 1910: 1906: 1904: 1901: 1900: 1878: 1875: 1874: 1855: 1851: 1842: 1838: 1836: 1833: 1832: 1830: 1790: 1787: 1786: 1770: 1767: 1766: 1728: 1724: 1718: 1714: 1706: 1702: 1695: 1683: 1679: 1672: 1645: 1642: 1641: 1625: 1622: 1621: 1604: 1600: 1598: 1595: 1594: 1577: 1573: 1571: 1568: 1567: 1543: 1539: 1531: 1527: 1520: 1504: 1493: 1489: 1481: 1477: 1470: 1458: 1455: 1454: 1437: 1433: 1431: 1428: 1427: 1410: 1406: 1404: 1401: 1400: 1384: 1381: 1380: 1364: 1361: 1360: 1324: 1321: 1320: 1318: 1278: 1275: 1274: 1255: 1251: 1242: 1238: 1236: 1233: 1232: 1230: 1208: 1205: 1204: 1178: 1175: 1174: 1152: 1148: 1146: 1143: 1142: 1140: 1123: 1119: 1117: 1114: 1113: 1085: 1082: 1081: 1079: 1059: 1055: 1040: 1036: 1013: 1010: 1009: 982: 979: 978: 976: 972: 955: 951: 942: 938: 936: 933: 932: 928: 900: 897: 896: 874: 871: 870: 862: 845: 841: 832: 828: 826: 823: 822: 793: 790: 789: 770: 766: 758: 755: 754: 752: 735: 731: 723: 720: 719: 697: 694: 693: 689: 685: 663: 660: 659: 634: 630: 628: 625: 624: 622: 605: 601: 599: 596: 595: 588: 577: 573: 570: 534: 526:cotangent space 463: 460: 459: 452: 430: 427: 426: 419: 415: 393: 390: 389: 383: 377: 351: 348: 347: 325: 322: 321: 284: 281: 280: 276: 272: 246: 243: 242: 215: 212: 211: 209: 187: 184: 183: 128: 125: 124: 90: 87: 86: 78:(over the same 73: 67: 42: 39: 38: 28: 17: 12: 11: 5: 21320: 21310: 21309: 21304: 21299: 21282: 21281: 21279: 21278: 21273: 21271:Woldemar Voigt 21268: 21263: 21258: 21253: 21248: 21243: 21238: 21236:Leonhard Euler 21233: 21228: 21223: 21218: 21212: 21210: 21208:Mathematicians 21204: 21203: 21200: 21199: 21197: 21196: 21191: 21186: 21181: 21176: 21171: 21166: 21161: 21156: 21150: 21148: 21144: 21143: 21141: 21140: 21135: 21133:Torsion tensor 21130: 21125: 21120: 21115: 21110: 21105: 21099: 21097: 21090: 21086: 21085: 21083: 21082: 21077: 21072: 21067: 21062: 21057: 21052: 21047: 21042: 21037: 21032: 21027: 21022: 21017: 21012: 21007: 21002: 20997: 20992: 20986: 20984: 20978: 20977: 20975: 20974: 20968: 20966:Tensor product 20963: 20958: 20956:Symmetrization 20953: 20948: 20946:Lie derivative 20943: 20938: 20933: 20928: 20923: 20917: 20915: 20909: 20908: 20906: 20905: 20900: 20895: 20890: 20885: 20880: 20875: 20870: 20868:Tensor density 20865: 20860: 20854: 20852: 20846: 20845: 20843: 20842: 20840:Voigt notation 20837: 20832: 20827: 20825:Ricci calculus 20822: 20817: 20812: 20810:Index notation 20807: 20802: 20796: 20794: 20790: 20789: 20786: 20785: 20783: 20782: 20777: 20772: 20767: 20762: 20756: 20754: 20752: 20751: 20746: 20740: 20737: 20736: 20734: 20733: 20728: 20726:Tensor algebra 20723: 20718: 20713: 20708: 20706:Dyadic algebra 20703: 20698: 20692: 20690: 20681: 20677: 20676: 20669: 20666: 20665: 20658: 20657: 20650: 20643: 20635: 20629: 20628: 20620: 20606: 20590: 20584: 20571: 20565: 20545: 20524: 20504: 20498: 20482: 20476: 20460: 20455:978-0387715674 20454: 20441: 20425: 20419: 20401: 20398: 20395: 20394: 20387: 20369: 20354: 20328: 20310: 20289: 20246: 20239: 20221: 20208: 20194:. 2008-11-13. 20179: 20162: 20142: 20135: 20117: 20102: 20086: 20085: 20083: 20080: 20079: 20078: 20072: 20066: 20063:Tensor algebra 20060: 20054: 20049: 20041: 20038: 20032:(for example, 20011:differentiable 19952: 19949: 19947: 19944: 19925: 19922: 19919: 19914: 19910: 19906: 19901: 19898: 19895: 19891: 19887: 19884: 19881: 19878: 19875: 19870: 19867: 19864: 19860: 19856: 19851: 19847: 19843: 19840: 19837: 19832: 19825: 19819: 19815: 19812: 19809: 19806: 19803: 19796: 19793: 19790: 19785: 19781: 19758: 19753: 19746: 19742: 19738: 19735: 19730: 19726: 19722: 19717: 19713: 19709: 19706: 19701: 19697: 19693: 19688: 19684: 19680: 19675: 19671: 19667: 19662: 19658: 19652: 19645: 19640: 19637: 19634: 19631: 19628: 19625: 19622: 19588:exterior power 19567: 19562: 19558: 19529: 19526: 19523: 19520: 19517: 19493: 19489: 19485: 19480: 19476: 19472: 19469: 19464: 19460: 19456: 19451: 19447: 19422: 19418: 19414: 19409: 19405: 19382: 19378: 19374: 19369: 19365: 19342: 19337: 19330: 19326: 19322: 19319: 19314: 19310: 19306: 19301: 19297: 19293: 19290: 19285: 19281: 19277: 19272: 19268: 19264: 19259: 19255: 19251: 19246: 19242: 19236: 19229: 19224: 19221: 19218: 19215: 19212: 19209: 19206: 19178: 19175: 19172: 19169: 19166: 19163: 19160: 19157: 19154: 19151: 19146: 19141: 19138: 19135: 19132: 19129: 19126: 19123: 19103: 19100: 19097: 19049:tensor algebra 19044: 19041: 19032: 19029: 19001:Main article: 18998: 18995: 18990:Main article: 18987: 18984: 18973:Main article: 18970: 18967: 18962:Main article: 18959: 18956: 18929: 18926: 18921: 18918: 18915: 18911: 18907: 18904: 18901: 18896: 18893: 18890: 18886: 18882: 18879: 18876: 18871: 18867: 18863: 18860: 18857: 18852: 18848: 18844: 18841: 18838: 18835: 18830: 18827: 18824: 18820: 18816: 18813: 18810: 18805: 18801: 18797: 18794: 18791: 18788: 18785: 18782: 18762: 18742: 18722: 18717: 18713: 18709: 18706: 18703: 18698: 18694: 18690: 18687: 18667: 18662: 18658: 18654: 18651: 18648: 18643: 18639: 18635: 18632: 18617: 18614: 18609:Main article: 18606: 18603: 18587:Main article: 18584: 18581: 18569:Main article: 18566: 18563: 18535:Hilbert spaces 18521: 18518: 18516: 18513: 18497: 18494: 18491: 18467: 18464: 18459: 18453: 18449: 18445: 18440: 18436: 18432: 18430: 18427: 18425: 18421: 18417: 18412: 18408: 18404: 18402: 18398: 18394: 18389: 18385: 18381: 18380: 18375: 18371: 18367: 18365: 18362: 18358: 18354: 18350: 18346: 18342: 18338: 18337: 18335: 18306: 18283: 18277: 18273: 18269: 18266: 18263: 18258: 18254: 18249: 18245: 18241: 18218: 18215: 18212: 18190: 18186: 18162: 18142: 18120: 18117: 18114: 18111: 18108: 18105: 18102: 18086: 18082: 18077: 18073: 18066: 18062: 18057: 18049: 18045: 18040: 18032: 18028: 18024: 18019: 18015: 18009: 18005: 18001: 17997: 17991: 17986: 17983: 17978: 17974: 17969: 17965: 17960: 17955: 17952: 17947: 17943: 17938: 17932: 17927: 17924: 17919: 17915: 17910: 17906: 17903: 17898: 17894: 17890: 17887: 17884: 17879: 17875: 17871: 17866: 17862: 17839: 17836: 17833: 17828: 17823: 17818: 17815: 17812: 17807: 17783: 17779: 17775: 17770: 17766: 17740: 17737: 17733: 17727: 17723: 17719: 17716: 17713: 17702:characteristic 17689: 17669: 17662: 17658: 17654: 17649: 17645: 17639: 17635: 17630: 17626: 17606: 17603: 17600: 17597: 17594: 17591: 17588: 17568: 17548: 17541: 17537: 17533: 17528: 17524: 17518: 17514: 17509: 17505: 17502: 17499: 17475: 17455: 17431: 17428: 17425: 17420: 17396: 17376: 17350: 17328: 17300: 17276: 17254: 17226: 17223: 17220: 17215: 17210: 17205: 17202: 17199: 17194: 17189: 17186: 17162: 17158: 17154: 17149: 17145: 17114: 17091: 17076: 17073: 17056: 17053: 17050: 17047: 17044: 17040: 17011: 17008: 17005: 17002: 16998: 16994: 16991: 16988: 16985: 16982: 16979: 16974: 16970: 16966: 16908: 16905: 16902: 16899: 16895: 16891: 16888: 16885: 16882: 16879: 16876: 16871: 16867: 16863: 16780: 16777: 16774: 16771: 16768: 16765: 16762: 16759: 16756: 16753: 16750: 16747: 16742: 16738: 16734: 16731: 16728: 16725: 16705: 16702: 16697: 16693: 16689: 16684: 16680: 16676: 16673: 16670: 16665: 16661: 16657: 16652: 16648: 16644: 16641: 16638: 16633: 16629: 16625: 16620: 16616: 16612: 16609: 16606: 16601: 16597: 16593: 16588: 16584: 16580: 16554: 16549: 16545: 16541: 16493:Main article: 16490: 16487: 16408: 16403: 16399: 16393: 16389: 16385: 16382: 16377: 16373: 16367: 16363: 16338: 16334: 16330: 16325: 16321: 16286: 16281: 16277: 16273: 16241: 16237: 16214: 16209: 16206: 16202: 16179: 16175: 16148: 16145: 16142: 16120: 16116: 16112: 16107: 16103: 16093:, and the map 16080: 16075: 16072: 16069: 16065: 16061: 16056: 16052: 16026: 16020: 16016: 16012: 16007: 16003: 15998: 15994: 15991: 15988: 15985: 15980: 15976: 15972: 15948: 15945: 15942: 15937: 15934: 15930: 15925: 15922: 15919: 15914: 15910: 15904: 15901: 15897: 15891: 15888: 15885: 15881: 15860: 15857: 15854: 15851: 15848: 15845: 15840: 15836: 15797: 15794: 15791: 15787: 15783: 15780: 15776: 15772: 15768: 15763: 15756: 15751: 15747: 15693: 15690: 15687: 15653: 15650: 15647: 15635: 15632: 15631: 15630: 15610: 15605: 15601: 15597: 15575: 15572: 15569: 15566: 15563: 15541: 15538: 15535: 15532: 15529: 15498: 15478: 15473: 15469: 15465: 15430: 15416: 15413: 15410: 15407: 15404: 15401: 15398: 15395: 15392: 15389: 15386: 15383: 15380: 15354: 15349: 15345: 15341: 15318: 15304: 15301: 15298: 15295: 15292: 15289: 15286: 15283: 15280: 15277: 15274: 15271: 15268: 15242: 15237: 15233: 15229: 15193: 15188: 15184: 15180: 15155: 15152: 15149: 15127: 15124: 15121: 15101: 15098: 15095: 15092: 15089: 15086: 15083: 15080: 15077: 15074: 15071: 15068: 15063: 15060: 15038: 15035: 15032: 15029: 15026: 15023: 15018: 15015: 14987: 14984: 14981: 14978: 14975: 14972: 14969: 14966: 14963: 14960: 14958: 14956: 14953: 14950: 14947: 14944: 14941: 14938: 14935: 14934: 14931: 14928: 14923: 14919: 14915: 14912: 14909: 14906: 14903: 14900: 14895: 14891: 14887: 14884: 14881: 14878: 14875: 14872: 14870: 14868: 14863: 14859: 14855: 14850: 14846: 14842: 14839: 14836: 14833: 14830: 14829: 14826: 14823: 14820: 14817: 14812: 14808: 14804: 14801: 14798: 14795: 14792: 14789: 14784: 14780: 14776: 14773: 14770: 14767: 14765: 14763: 14760: 14757: 14752: 14748: 14744: 14739: 14735: 14731: 14728: 14725: 14724: 14704: 14701: 14698: 14695: 14692: 14689: 14686: 14656: 14653: 14650: 14647: 14644: 14641: 14638: 14635: 14632: 14629: 14626: 14623: 14620: 14617: 14614: 14612: 14610: 14607: 14604: 14599: 14595: 14591: 14586: 14582: 14578: 14575: 14572: 14569: 14566: 14561: 14557: 14553: 14550: 14547: 14544: 14541: 14536: 14532: 14528: 14525: 14522: 14519: 14517: 14515: 14512: 14509: 14506: 14503: 14498: 14494: 14490: 14485: 14481: 14477: 14474: 14471: 14468: 14465: 14460: 14456: 14452: 14449: 14446: 14443: 14440: 14435: 14431: 14427: 14424: 14422: 14420: 14417: 14414: 14411: 14408: 14400: 14397: 14394: 14389: 14385: 14381: 14376: 14372: 14368: 14365: 14362: 14359: 14356: 14353: 14348: 14344: 14340: 14335: 14331: 14327: 14324: 14321: 14318: 14316: 14296: 14293: 14290: 14287: 14284: 14281: 14261: 14258: 14255: 14231: 14228: 14225: 14222: 14219: 14216: 14196: 14192: 14188: 14185: 14182: 14179: 14176: 14173: 14170: 14167: 14162: 14158: 14154: 14118: 14115: 14098: 14076: 14073: 14070: 14067: 14064: 14042: 14037: 14033: 14029: 14001: 13998: 13995: 13973: 13951: 13948: 13945: 13908: 13905: 13902: 13899: 13896: 13893: 13890: 13887: 13884: 13882: 13880: 13877: 13874: 13871: 13868: 13865: 13862: 13859: 13858: 13855: 13851: 13848: 13844: 13841: 13838: 13835: 13832: 13829: 13826: 13823: 13820: 13817: 13814: 13811: 13808: 13806: 13804: 13800: 13797: 13793: 13790: 13787: 13784: 13781: 13778: 13775: 13774: 13771: 13768: 13765: 13761: 13758: 13754: 13751: 13748: 13745: 13742: 13739: 13736: 13733: 13730: 13727: 13724: 13722: 13720: 13717: 13714: 13710: 13707: 13703: 13700: 13697: 13694: 13691: 13690: 13666: 13663: 13660: 13657: 13654: 13651: 13648: 13645: 13642: 13622: 13617: 13613: 13609: 13606: 13603: 13600: 13597: 13594: 13591: 13552: 13549: 13546: 13543: 13540: 13537: 13534: 13531: 13528: 13525: 13522: 13519: 13516: 13439: 13436: 13433: 13430: 13427: 13424: 13404: 13401: 13397: 13393: 13390: 13387: 13384: 13381: 13378: 13375: 13372: 13367: 13363: 13359: 13315:Main article: 13312: 13309: 13292: 13289: 13286: 13283: 13280: 13277: 13274: 13270: 13267: 13264: 13260: 13257: 13254: 13250: 13247: 13244: 13240: 13237: 13234: 13231: 13228: 13225: 13222: 13219: 13215: 13212: 13209: 13151: 13146: 13142: 13138: 13135: 13132: 13127: 13123: 13119: 13099: 13096: 13093: 13073: 13068: 13064: 13060: 13055: 13051: 13047: 13027: 13024: 13021: 13018: 13015: 13012: 13009: 13006: 13003: 13000: 12997: 12994: 12991: 12988: 12985: 12982: 12979: 12976: 12973: 12949: 12944: 12941: 12936: 12932: 12928: 12925: 12922: 12917: 12912: 12908: 12902: 12898: 12894: 12891: 12888: 12887: 12884: 12881: 12876: 12872: 12868: 12865: 12862: 12859: 12856: 12853: 12849: 12846: 12843: 12839: 12838: 12836: 12810: 12805: 12800: 12796: 12792: 12772: 12767: 12763: 12759: 12737: 12734: 12731: 12728: 12725: 12722: 12719: 12716: 12713: 12710: 12707: 12704: 12701: 12698: 12695: 12673: 12651: 12648: 12643: 12639: 12635: 12632: 12629: 12626: 12606: 12603: 12600: 12597: 12594: 12591: 12587: 12584: 12581: 12577: 12574: 12571: 12566: 12562: 12485: 12482: 12467: 12464: 12461: 12457: 12454: 12451: 12415: 12412: 12409: 12405: 12402: 12399: 12376: 12373: 12370: 12365: 12360: 12356: 12335: 12332: 12329: 12325: 12322: 12319: 12290: 12287: 12284: 12281: 12278: 12275: 12272: 12269: 12266: 12263: 12260: 12257: 12254: 12251: 12248: 12245: 12225: 12222: 12219: 12215: 12212: 12209: 12205: 12202: 12199: 12196: 12191: 12186: 12182: 12159: 12156: 12153: 12150: 12147: 12142: 12138: 12134: 12131: 12128: 12125: 12122: 12119: 12116: 12113: 12110: 12107: 12104: 12101: 12077: 12073: 12069: 12066: 12033: 12028: 12024: 12020: 12015: 12012: 12009: 12005: 12000: 11996: 11975: 11972: 11969: 11966: 11961: 11957: 11953: 11950: 11947: 11944: 11941: 11938: 11935: 11932: 11929: 11926: 11923: 11920: 11917: 11914: 11911: 11908: 11886: 11883: 11880: 11876: 11873: 11870: 11866: 11863: 11839: 11836: 11833: 11830: 11827: 11805: 11802: 11799: 11795: 11792: 11789: 11765: 11762: 11759: 11754: 11749: 11745: 11732: 11729: 11707: 11702: 11698: 11675: 11651: 11647: 11643: 11640: 11637: 11632: 11628: 11605: 11598: 11593: 11589: 11585: 11580: 11576: 11572: 11567: 11563: 11559: 11556: 11553: 11552: 11547: 11543: 11539: 11536: 11533: 11530: 11527: 11526: 11524: 11508: 11494: 11469: 11465: 11444: 11424: 11421: 11418: 11415: 11410: 11407: 11404: 11399: 11396: 11393: 11389: 11385: 11382: 11379: 11376: 11371: 11366: 11362: 11324: 11321: 11318: 11315: 11312: 11288: 11285: 11282: 11279: 11276: 11273: 11270: 11267: 11264: 11244: 11241: 11236: 11232: 11228: 11225: 11206: 11203: 11199:tensor algebra 11180: 11175: 11166: 11162: 11156: 11152: 11148: 11143: 11134: 11131: 11127: 11123: 11120: 11117: 11114: 11092: 11088: 11082: 11073: 11069: 11065: 11060: 11051: 11042: 11037: 11033: 11030: 11027: 11023: 10997: 10993: 10970: 10967: 10964: 10961: 10958: 10928: 10923: 10919: 10884: 10877: 10874: 10871: 10867: 10863: 10858: 10855: 10852: 10848: 10842: 10839: 10836: 10832: 10826: 10823: 10820: 10816: 10811: 10803: 10799: 10795: 10790: 10786: 10780: 10776: 10771: 10767: 10760: 10757: 10754: 10750: 10746: 10741: 10737: 10731: 10727: 10722: 10718: 10715: 10712: 10709: 10685: 10680: 10676: 10672: 10669: 10645: 10640: 10636: 10632: 10629: 10569: 10566: 10563: 10558: 10553: 10549: 10526: 10522: 10483: 10478: 10474: 10470: 10466: 10462: 10458: 10454: 10449: 10445: 10441: 10438: 10434: 10430: 10426: 10422: 10419: 10416: 10411: 10407: 10403: 10398: 10394: 10390: 10368: 10364: 10335: 10331: 10302: 10299: 10296: 10293: 10287: 10284: 10280: 10277: 10271: 10268: 10264: 10261: 10257: 10253: 10250: 10247: 10244: 10238: 10235: 10228: 10225: 10220: 10214: 10210: 10206: 10203: 10200: 10195: 10190: 10186: 10175: 10131: 10127: 10106: 10101: 10098: 10093: 10088: 10084: 10080: 10075: 10070: 10067: 10063: 10059: 10054: 10048: 10042: 10038: 10034: 10031: 10028: 10023: 10019: 10011: 10006: 10000: 9996: 9993: 9990: 9987: 9984: 9977: 9974: 9971: 9968: 9963: 9958: 9954: 9924: 9921: 9918: 9915: 9912: 9882: 9879: 9875:dyadic product 9857: 9854: 9851: 9848: 9845: 9842: 9839: 9836: 9833: 9830: 9827: 9824: 9821: 9801: 9785: 9780: 9772: 9769: 9766: 9762: 9756: 9753: 9750: 9746: 9742: 9738: 9735: 9732: 9728: 9722: 9719: 9716: 9712: 9708: 9704: 9701: 9698: 9694: 9688: 9685: 9682: 9678: 9674: 9670: 9667: 9664: 9660: 9654: 9651: 9648: 9644: 9640: 9639: 9634: 9631: 9628: 9624: 9618: 9615: 9612: 9608: 9604: 9600: 9597: 9594: 9590: 9584: 9581: 9578: 9574: 9570: 9566: 9563: 9560: 9556: 9550: 9547: 9544: 9540: 9536: 9532: 9529: 9526: 9522: 9516: 9513: 9510: 9506: 9502: 9501: 9496: 9493: 9490: 9486: 9480: 9477: 9474: 9470: 9466: 9462: 9459: 9456: 9452: 9446: 9443: 9440: 9436: 9432: 9428: 9425: 9422: 9418: 9412: 9409: 9406: 9402: 9398: 9394: 9391: 9388: 9384: 9378: 9375: 9372: 9368: 9364: 9363: 9358: 9355: 9352: 9348: 9342: 9339: 9336: 9332: 9328: 9324: 9321: 9318: 9314: 9308: 9305: 9302: 9298: 9294: 9290: 9287: 9284: 9280: 9274: 9271: 9268: 9264: 9260: 9256: 9253: 9250: 9246: 9240: 9237: 9234: 9230: 9226: 9225: 9223: 9218: 9213: 9205: 9197: 9194: 9191: 9187: 9183: 9179: 9176: 9173: 9169: 9165: 9164: 9159: 9156: 9153: 9149: 9145: 9141: 9138: 9135: 9131: 9127: 9126: 9124: 9117: 9114: 9111: 9107: 9103: 9099: 9091: 9088: 9085: 9081: 9077: 9073: 9070: 9067: 9063: 9059: 9058: 9053: 9050: 9047: 9043: 9039: 9035: 9032: 9029: 9025: 9021: 9020: 9018: 9011: 9008: 9005: 9001: 8997: 8996: 8991: 8983: 8980: 8977: 8973: 8969: 8965: 8962: 8959: 8955: 8951: 8950: 8945: 8942: 8939: 8935: 8931: 8927: 8924: 8921: 8917: 8913: 8912: 8910: 8903: 8900: 8897: 8893: 8889: 8885: 8877: 8874: 8871: 8867: 8863: 8859: 8856: 8853: 8849: 8845: 8844: 8839: 8836: 8833: 8829: 8825: 8821: 8818: 8815: 8811: 8807: 8806: 8804: 8797: 8794: 8791: 8787: 8783: 8782: 8780: 8775: 8770: 8762: 8759: 8756: 8752: 8748: 8744: 8741: 8738: 8734: 8730: 8729: 8724: 8721: 8718: 8714: 8710: 8706: 8703: 8700: 8696: 8692: 8691: 8689: 8684: 8679: 8671: 8668: 8665: 8661: 8657: 8653: 8650: 8647: 8643: 8639: 8638: 8633: 8630: 8627: 8623: 8619: 8615: 8612: 8609: 8605: 8601: 8600: 8598: 8576: 8571: 8563: 8560: 8557: 8553: 8549: 8545: 8542: 8539: 8535: 8531: 8530: 8525: 8522: 8519: 8515: 8511: 8507: 8504: 8501: 8497: 8493: 8492: 8490: 8485: 8482: 8478: 8473: 8465: 8462: 8459: 8455: 8451: 8447: 8444: 8441: 8437: 8433: 8432: 8427: 8424: 8421: 8417: 8413: 8409: 8406: 8403: 8399: 8395: 8394: 8392: 8387: 8384: 8328: 8325: 8322: 8302: 8299: 8296: 8258:exact sequence 8219: 8218: 8207: 8204: 8201: 8198: 8195: 8192: 8189: 8186: 8183: 8180: 8177: 8174: 8171: 8168: 8165: 8162: 8159: 8156: 8153: 8150: 8147: 8144: 8141: 8138: 8135: 8132: 8129: 8126: 8112: 8111: 8100: 8097: 8094: 8091: 8088: 8085: 8082: 8079: 8076: 8073: 8070: 8067: 8064: 8061: 8058: 8055: 8052: 8049: 8046: 8043: 8040: 8026: 8025: 8014: 8011: 8008: 8005: 8002: 7999: 7996: 7993: 7990: 7987: 7984: 7959: 7956: 7953: 7950: 7947: 7925: 7922: 7919: 7916: 7913: 7890: 7887: 7884: 7873: 7872: 7861: 7858: 7855: 7852: 7849: 7846: 7843: 7840: 7837: 7834: 7831: 7828: 7825: 7822: 7819: 7816: 7813: 7810: 7796: 7795: 7784: 7781: 7778: 7775: 7772: 7769: 7766: 7763: 7760: 7757: 7754: 7722: 7719: 7716: 7713: 7710: 7689: 7686: 7669: 7666: 7662: 7658: 7653: 7650: 7646: 7632: 7631: 7618: 7615: 7612: 7609: 7605: 7601: 7598: 7595: 7590: 7587: 7584: 7581: 7577: 7573: 7568: 7564: 7560: 7557: 7554: 7549: 7545: 7500: 7497: 7493: 7481:tensor algebra 7456: 7453: 7450: 7430: 7427: 7424: 7421: 7418: 7415: 7412: 7400:, in general. 7387: 7384: 7381: 7378: 7375: 7372: 7369: 7345: 7342: 7339: 7312: 7309: 7306: 7284: 7281: 7278: 7267: 7266: 7255: 7252: 7249: 7246: 7243: 7240: 7237: 7234: 7207: 7187: 7175: 7172: 7154: 7151: 7148: 7145: 7142: 7139: 7136: 7114: 7111: 7108: 7105: 7102: 7099: 7096: 7085: 7084: 7073: 7070: 7067: 7064: 7061: 7058: 7055: 7052: 7049: 7046: 7043: 7040: 7037: 7034: 7031: 7028: 7003: 7000: 6997: 6994: 6991: 6973: 6970: 6945: 6942: 6939: 6904: 6901: 6898: 6870: 6867: 6865: 6862: 6847: 6825: 6801: 6798: 6795: 6792: 6789: 6785: 6782: 6779: 6776: 6773: 6770: 6767: 6764: 6761: 6758: 6755: 6751: 6748: 6745: 6742: 6739: 6735: 6734: 6712: 6709: 6706: 6701: 6678: 6674: 6671: 6668: 6665: 6662: 6659: 6656: 6653: 6650: 6647: 6644: 6640: 6636: 6633: 6630: 6627: 6605: 6600: 6595: 6592: 6570: 6565: 6560: 6557: 6535: 6532: 6529: 6526: 6523: 6520: 6517: 6514: 6511: 6508: 6505: 6502: 6499: 6496: 6472: 6469: 6466: 6461: 6456: 6453: 6450: 6447: 6423: 6418: 6413: 6410: 6386: 6381: 6376: 6373: 6353: 6333: 6311: 6308: 6305: 6302: 6299: 6296: 6293: 6271: 6268: 6248: 6245: 6242: 6239: 6236: 6233: 6230: 6227: 6224: 6221: 6218: 6198: 6195: 6192: 6172: 6150: 6145: 6118: 6115: 6112: 6109: 6106: 6103: 6100: 6097: 6094: 6072: 6069: 6066: 6063: 6060: 6057: 6053: 6049: 6046: 6043: 6022: 6001: 5977: 5972: 5967: 5964: 5940: 5935: 5930: 5927: 5902: 5899: 5896: 5893: 5890: 5887: 5884: 5879: 5876: 5873: 5870: 5867: 5864: 5861: 5853: 5847: 5843: 5837: 5833: 5828: 5805: 5800: 5794: 5790: 5786: 5783: 5780: 5775: 5771: 5766: 5762: 5758: 5752: 5748: 5744: 5741: 5738: 5733: 5729: 5724: 5719: 5715: 5712: 5709: 5706: 5703: 5700: 5678: 5675: 5670: 5665: 5660: 5655: 5650: 5645: 5640: 5635: 5632: 5610: 5607: 5602: 5597: 5594: 5574: 5554: 5529: 5525: 5522: 5519: 5516: 5513: 5510: 5507: 5504: 5501: 5498: 5495: 5492: 5488: 5482: 5478: 5474: 5469: 5465: 5460: 5456: 5452: 5442:, the vectors 5429: 5405: 5401: 5397: 5394: 5391: 5386: 5382: 5361: 5339: 5335: 5331: 5328: 5325: 5320: 5316: 5295: 5275: 5255: 5246:Equivalently, 5244: 5243: 5229: 5205: 5201: 5178: 5174: 5170: 5167: 5164: 5159: 5155: 5143: 5129: 5105: 5101: 5074: 5070: 5066: 5063: 5060: 5055: 5051: 5024: 5021: 5017: 5011: 5007: 5003: 4998: 4994: 4989: 4985: 4980: 4975: 4972: 4969: 4965: 4942: 4939: 4934: 4930: 4926: 4923: 4920: 4915: 4911: 4890: 4887: 4882: 4878: 4874: 4871: 4868: 4863: 4859: 4838: 4828: 4816: 4795: 4775: 4753: 4750: 4747: 4744: 4741: 4738: 4735: 4732: 4728: 4706: 4686: 4666: 4646: 4626: 4623: 4620: 4617: 4614: 4594: 4591: 4588: 4585: 4582: 4579: 4576: 4556: 4534: 4531: 4528: 4509: 4504: 4501: 4500: 4499: 4485: 4482: 4479: 4457: 4454: 4451: 4431: 4428: 4425: 4422: 4419: 4413: 4410: 4404: 4401: 4398: 4395: 4392: 4389: 4386: 4365: 4361: 4355: 4352: 4346: 4343: 4321: 4318: 4315: 4312: 4309: 4306: 4300: 4297: 4266: 4263: 4260: 4257: 4254: 4251: 4248: 4224: 4221: 4218: 4196: 4193: 4190: 4170: 4167: 4164: 4161: 4158: 4155: 4152: 4149: 4146: 4143: 4139: 4116: 4113: 4110: 4089:tensor product 3998: 3995: 3969: 3966: 3963: 3941: 3938: 3935: 3932: 3929: 3918: 3917: 3906: 3903: 3899: 3895: 3892: 3889: 3886: 3883: 3869:quotient space 3851: 3848: 3845: 3823: 3820: 3815: 3811: 3807: 3802: 3798: 3794: 3791: 3769: 3766: 3761: 3757: 3753: 3748: 3744: 3740: 3737: 3724: 3723: 3708: 3705: 3702: 3699: 3696: 3693: 3690: 3687: 3684: 3682: 3680: 3677: 3674: 3671: 3668: 3665: 3662: 3661: 3658: 3655: 3652: 3649: 3646: 3643: 3640: 3637: 3634: 3632: 3630: 3627: 3624: 3621: 3618: 3615: 3612: 3611: 3608: 3605: 3600: 3596: 3592: 3589: 3586: 3583: 3580: 3575: 3571: 3567: 3564: 3561: 3558: 3555: 3553: 3551: 3546: 3542: 3538: 3533: 3529: 3525: 3522: 3519: 3516: 3515: 3512: 3509: 3506: 3503: 3498: 3494: 3490: 3487: 3484: 3481: 3478: 3473: 3469: 3465: 3462: 3459: 3457: 3455: 3452: 3449: 3444: 3440: 3436: 3431: 3427: 3423: 3420: 3419: 3369: 3366: 3363: 3360: 3357: 3333: 3330: 3327: 3324: 3321: 3301: 3298: 3295: 3292: 3289: 3264: 3261: 3258: 3236: 3233: 3230: 3210: 3207: 3204: 3201: 3198: 3167: 3164: 3161: 3117: 3114: 3082: 3060: 3036: 3033: 3030: 2999: 2996: 2993: 2973: 2970: 2967: 2947: 2944: 2941: 2938: 2935: 2932: 2929: 2926: 2923: 2920: 2916: 2891: 2887: 2862: 2858: 2837: 2834: 2831: 2828: 2825: 2822: 2802: 2799: 2796: 2793: 2790: 2787: 2761: 2758: 2755: 2752: 2746: 2742: 2736: 2732: 2724: 2720: 2716: 2713: 2709: 2701: 2697: 2693: 2690: 2686: 2682: 2679: 2677: 2675: 2670: 2665: 2659: 2655: 2647: 2643: 2639: 2636: 2632: 2626: 2621: 2616: 2611: 2605: 2601: 2593: 2589: 2585: 2582: 2578: 2572: 2567: 2564: 2562: 2560: 2557: 2554: 2551: 2550: 2530: 2527: 2524: 2504: 2501: 2498: 2467: 2463: 2459: 2454: 2450: 2427: 2401: 2398: 2395: 2373: 2370: 2367: 2364: 2361: 2358: 2355: 2339:Schauder basis 2326: 2323: 2320: 2317: 2314: 2311: 2308: 2305: 2302: 2299: 2296: 2289: 2285: 2281: 2278: 2274: 2266: 2262: 2258: 2255: 2251: 2247: 2244: 2224: 2221: 2218: 2198: 2176: 2171: 2167: 2160: 2156: 2152: 2149: 2145: 2142: 2138: 2134: 2131: 2127: 2124: 2121: 2118: 2115: 2112: 2105: 2102: 2097: 2090: 2087: 2082: 2074: 2070: 2066: 2062: 2059: 2054: 2046: 2042: 2038: 2034: 2031: 2026: 2022: 2019: 2016: 2013: 2010: 2007: 2004: 2001: 1998: 1995: 1992: 1983:, by letting: 1972: 1969: 1966: 1963: 1960: 1957: 1954: 1951: 1948: 1926: 1922: 1918: 1913: 1909: 1888: 1885: 1882: 1858: 1854: 1850: 1845: 1841: 1818: 1815: 1812: 1809: 1806: 1803: 1800: 1797: 1794: 1774: 1752: 1749: 1746: 1743: 1740: 1737: 1731: 1727: 1721: 1717: 1709: 1705: 1701: 1698: 1694: 1686: 1682: 1678: 1675: 1671: 1667: 1664: 1661: 1658: 1655: 1652: 1649: 1629: 1607: 1603: 1580: 1576: 1555: 1552: 1546: 1542: 1534: 1530: 1526: 1523: 1519: 1515: 1512: 1502: 1496: 1492: 1484: 1480: 1476: 1473: 1469: 1465: 1462: 1440: 1436: 1413: 1409: 1388: 1368: 1346: 1343: 1340: 1337: 1334: 1331: 1328: 1306: 1303: 1300: 1297: 1294: 1291: 1288: 1285: 1282: 1258: 1254: 1250: 1245: 1241: 1218: 1215: 1212: 1201:bilinear forms 1188: 1185: 1182: 1155: 1151: 1126: 1122: 1110:tensor product 1095: 1092: 1089: 1067: 1062: 1058: 1054: 1051: 1048: 1043: 1039: 1035: 1032: 1029: 1026: 1023: 1020: 1017: 992: 989: 986: 958: 954: 950: 945: 941: 916: 913: 910: 907: 904: 884: 881: 878: 848: 844: 840: 835: 831: 803: 800: 797: 773: 769: 765: 762: 738: 734: 730: 727: 707: 704: 701: 673: 670: 667: 657:tensor product 637: 633: 608: 604: 569: 566: 538:tensor product 533: 530: 479: 476: 473: 470: 467: 440: 437: 434: 403: 400: 397: 376:are given for 361: 358: 355: 335: 332: 329: 294: 291: 288: 269:tensor product 267:is called the 256: 253: 250: 225: 222: 219: 197: 194: 191: 171: 168: 165: 162: 159: 156: 153: 147: 144: 141: 138: 135: 132: 112: 109: 106: 103: 100: 97: 94: 52: 49: 46: 36:tensor product 15: 9: 6: 4: 3: 2: 21319: 21308: 21307:Bilinear maps 21305: 21303: 21300: 21298: 21295: 21294: 21292: 21277: 21274: 21272: 21269: 21267: 21264: 21262: 21259: 21257: 21254: 21252: 21249: 21247: 21244: 21242: 21239: 21237: 21234: 21232: 21229: 21227: 21224: 21222: 21219: 21217: 21214: 21213: 21211: 21209: 21205: 21195: 21192: 21190: 21187: 21185: 21182: 21180: 21177: 21175: 21172: 21170: 21167: 21165: 21162: 21160: 21157: 21155: 21152: 21151: 21149: 21145: 21139: 21136: 21134: 21131: 21129: 21126: 21124: 21121: 21119: 21116: 21114: 21113:Metric tensor 21111: 21109: 21106: 21104: 21101: 21100: 21098: 21094: 21091: 21087: 21081: 21078: 21076: 21073: 21071: 21068: 21066: 21063: 21061: 21058: 21056: 21053: 21051: 21048: 21046: 21043: 21041: 21038: 21036: 21033: 21031: 21028: 21026: 21025:Exterior form 21023: 21021: 21018: 21016: 21013: 21011: 21008: 21006: 21003: 21001: 20998: 20996: 20993: 20991: 20988: 20987: 20985: 20979: 20972: 20969: 20967: 20964: 20962: 20959: 20957: 20954: 20952: 20949: 20947: 20944: 20942: 20939: 20937: 20934: 20932: 20929: 20927: 20924: 20922: 20919: 20918: 20916: 20914: 20910: 20904: 20901: 20899: 20898:Tensor bundle 20896: 20894: 20891: 20889: 20886: 20884: 20881: 20879: 20876: 20874: 20871: 20869: 20866: 20864: 20861: 20859: 20856: 20855: 20853: 20847: 20841: 20838: 20836: 20833: 20831: 20828: 20826: 20823: 20821: 20818: 20816: 20813: 20811: 20808: 20806: 20803: 20801: 20798: 20797: 20795: 20791: 20781: 20778: 20776: 20773: 20771: 20768: 20766: 20763: 20761: 20758: 20757: 20755: 20750: 20747: 20745: 20742: 20741: 20738: 20732: 20729: 20727: 20724: 20722: 20719: 20717: 20714: 20712: 20709: 20707: 20704: 20702: 20699: 20697: 20694: 20693: 20691: 20689: 20685: 20682: 20678: 20674: 20673: 20667: 20663: 20656: 20651: 20649: 20644: 20642: 20637: 20636: 20633: 20625: 20621: 20617: 20613: 20609: 20603: 20599: 20595: 20591: 20587: 20581: 20577: 20572: 20568: 20566:0-8218-1646-2 20562: 20558: 20554: 20550: 20546: 20543: 20539: 20535: 20531: 20527: 20521: 20517: 20513: 20509: 20505: 20501: 20495: 20491: 20487: 20483: 20479: 20477:0-387-90093-4 20473: 20469: 20465: 20461: 20457: 20451: 20447: 20442: 20438: 20434: 20430: 20426: 20422: 20420:3-540-64243-9 20416: 20412: 20408: 20404: 20403: 20390: 20384: 20380: 20373: 20365: 20361: 20357: 20351: 20347: 20343: 20339: 20332: 20321: 20314: 20305: 20300: 20293: 20285: 20279: 20268: 20264: 20257: 20250: 20242: 20240:0-387-90518-9 20236: 20232: 20225: 20218: 20212: 20197: 20193: 20189: 20183: 20176: 20175:inner product 20172: 20171:contravariant 20166: 20159: 20155: 20151: 20146: 20138: 20132: 20128: 20121: 20114: 20109: 20107: 20099: 20094: 20092: 20087: 20076: 20073: 20070: 20067: 20064: 20061: 20058: 20055: 20053: 20050: 20047: 20044: 20043: 20037: 20035: 20031: 20027: 20023: 20018: 20012: 19991: 19982:(for example 19977: 19972:A ○.× B ○.× C 19966:(for example 19961: 19957: 19943: 19941: 19936: 19920: 19917: 19912: 19908: 19904: 19899: 19896: 19893: 19889: 19885: 19882: 19879: 19876: 19873: 19868: 19865: 19862: 19858: 19854: 19849: 19845: 19841: 19838: 19823: 19817: 19813: 19810: 19807: 19804: 19801: 19794: 19791: 19788: 19783: 19779: 19769: 19756: 19744: 19740: 19736: 19728: 19724: 19720: 19715: 19711: 19704: 19699: 19695: 19691: 19686: 19682: 19678: 19673: 19669: 19665: 19660: 19656: 19638: 19635: 19632: 19629: 19626: 19623: 19620: 19612: 19607: 19605: 19602: 19598:differential 19594: 19589: 19584: 19565: 19560: 19544: 19527: 19524: 19521: 19518: 19515: 19491: 19487: 19483: 19478: 19474: 19470: 19467: 19462: 19458: 19454: 19449: 19445: 19420: 19416: 19412: 19407: 19403: 19380: 19376: 19372: 19367: 19363: 19355:The image of 19353: 19340: 19328: 19324: 19320: 19312: 19308: 19304: 19299: 19295: 19288: 19283: 19279: 19275: 19270: 19266: 19262: 19257: 19253: 19249: 19244: 19240: 19222: 19219: 19216: 19213: 19210: 19207: 19204: 19195: 19189: 19176: 19170: 19167: 19164: 19161: 19158: 19155: 19152: 19139: 19136: 19133: 19130: 19127: 19124: 19121: 19101: 19098: 19095: 19086: 19081: 19076: 19074: 19070: 19066: 19062: 19058: 19054: 19050: 19040: 19038: 19028: 19026: 19022: 19018: 19014: 19010: 19004: 18993: 18982: 18976: 18965: 18955: 18953: 18949: 18945: 18940: 18927: 18919: 18916: 18913: 18909: 18905: 18902: 18899: 18894: 18891: 18888: 18884: 18877: 18869: 18865: 18861: 18858: 18855: 18850: 18846: 18839: 18836: 18828: 18825: 18822: 18818: 18814: 18811: 18808: 18803: 18799: 18789: 18786: 18783: 18760: 18740: 18715: 18711: 18707: 18704: 18701: 18696: 18692: 18685: 18660: 18656: 18652: 18649: 18646: 18641: 18637: 18630: 18623: 18612: 18602: 18600: 18596: 18590: 18580: 18578: 18572: 18562: 18560: 18555: 18553: 18548: 18544: 18540: 18536: 18531: 18527: 18512: 18510: 18495: 18492: 18489: 18481: 18465: 18462: 18457: 18438: 18434: 18428: 18410: 18406: 18387: 18383: 18373: 18369: 18363: 18356: 18352: 18344: 18340: 18333: 18304: 18281: 18275: 18271: 18267: 18264: 18261: 18256: 18252: 18247: 18243: 18216: 18213: 18210: 18188: 18184: 18176: 18160: 18140: 18131: 18118: 18115: 18112: 18109: 18106: 18103: 18100: 18084: 18080: 18075: 18071: 18064: 18060: 18055: 18047: 18043: 18038: 18030: 18026: 18022: 18017: 18013: 18007: 18003: 17999: 17995: 17989: 17984: 17981: 17976: 17972: 17967: 17963: 17958: 17953: 17950: 17945: 17941: 17936: 17930: 17925: 17922: 17917: 17913: 17908: 17904: 17896: 17892: 17888: 17885: 17882: 17877: 17873: 17864: 17860: 17837: 17834: 17831: 17816: 17813: 17810: 17781: 17777: 17768: 17764: 17756: 17738: 17735: 17725: 17721: 17714: 17711: 17703: 17687: 17660: 17656: 17652: 17647: 17643: 17637: 17633: 17628: 17617:with entries 17604: 17601: 17598: 17595: 17592: 17589: 17586: 17566: 17539: 17535: 17531: 17526: 17522: 17516: 17512: 17507: 17500: 17497: 17489: 17473: 17453: 17429: 17426: 17423: 17394: 17374: 17366: 17348: 17326: 17318: 17314: 17298: 17290: 17274: 17252: 17242: 17224: 17221: 17218: 17203: 17200: 17197: 17187: 17184: 17160: 17156: 17147: 17143: 17132: 17131:vector spaces 17128: 17112: 17105: 17089: 17082: 17072: 17051: 17045: 17042: 17038: 17026: 17006: 17000: 16996: 16989: 16983: 16980: 16977: 16972: 16968: 16964: 16955: 16950: 16945: 16941: 16935: 16929: 16923: 16903: 16897: 16893: 16886: 16880: 16877: 16874: 16869: 16865: 16861: 16852: 16847: 16842: 16835: 16831: 16827: 16823: 16818: 16817:Galois theory 16814: 16809: 16803: 16797: 16791: 16778: 16772: 16769: 16766: 16760: 16757: 16751: 16745: 16740: 16736: 16729: 16723: 16716:For example: 16703: 16695: 16691: 16687: 16682: 16678: 16671: 16663: 16659: 16655: 16650: 16646: 16639: 16631: 16627: 16623: 16618: 16614: 16607: 16599: 16595: 16591: 16586: 16582: 16569: 16552: 16547: 16543: 16539: 16531: 16528: 16521: 16515: 16509: 16503: 16496: 16486: 16484: 16480: 16475: 16472: 16468: 16464: 16461: 16457: 16450: 16447: 16443: 16437: 16433: 16429: 16423: 16406: 16401: 16397: 16391: 16387: 16380: 16375: 16371: 16365: 16361: 16336: 16332: 16323: 16319: 16307: 16302: 16284: 16279: 16275: 16271: 16260: 16239: 16235: 16212: 16207: 16204: 16200: 16177: 16173: 16163: 16146: 16143: 16140: 16118: 16114: 16105: 16101: 16078: 16073: 16070: 16067: 16063: 16059: 16054: 16050: 16038: 16024: 16018: 16014: 16005: 16001: 15996: 15992: 15989: 15986: 15983: 15978: 15974: 15970: 15962: 15946: 15943: 15940: 15935: 15932: 15928: 15923: 15920: 15917: 15912: 15908: 15902: 15899: 15895: 15889: 15886: 15883: 15879: 15858: 15855: 15852: 15849: 15846: 15843: 15838: 15834: 15824: 15818: 15813: 15808: 15795: 15792: 15789: 15785: 15781: 15778: 15770: 15766: 15749: 15745: 15738:is given by: 15736: 15733: 15729: 15723: 15717: 15714: 15710: 15691: 15688: 15685: 15674: 15668: 15651: 15648: 15645: 15628: 15624: 15608: 15603: 15599: 15595: 15573: 15570: 15567: 15564: 15561: 15539: 15536: 15533: 15530: 15527: 15519: 15515: 15511: 15507: 15503: 15499: 15496: 15492: 15476: 15471: 15467: 15463: 15455: 15451: 15447: 15443: 15439: 15435: 15431: 15411: 15408: 15402: 15399: 15396: 15393: 15387: 15384: 15381: 15368: 15352: 15347: 15343: 15339: 15331: 15327: 15323: 15319: 15302: 15299: 15293: 15290: 15284: 15278: 15275: 15272: 15266: 15256: 15240: 15235: 15231: 15227: 15219: 15215: 15211: 15207: 15206: 15205: 15191: 15186: 15182: 15178: 15169: 15153: 15150: 15147: 15125: 15122: 15119: 15096: 15093: 15090: 15084: 15081: 15075: 15072: 15069: 15058: 15036: 15030: 15027: 15024: 15021: 15013: 15002: 14985: 14979: 14976: 14973: 14970: 14964: 14961: 14959: 14951: 14948: 14945: 14942: 14936: 14929: 14921: 14917: 14913: 14910: 14904: 14901: 14893: 14889: 14885: 14882: 14876: 14873: 14871: 14861: 14857: 14853: 14848: 14844: 14840: 14837: 14831: 14824: 14818: 14815: 14810: 14806: 14799: 14796: 14790: 14787: 14782: 14778: 14771: 14768: 14766: 14758: 14755: 14750: 14746: 14742: 14737: 14733: 14726: 14702: 14696: 14693: 14690: 14687: 14684: 14676: 14671: 14654: 14648: 14645: 14642: 14639: 14633: 14627: 14624: 14621: 14618: 14613: 14605: 14597: 14593: 14589: 14584: 14580: 14576: 14573: 14567: 14559: 14555: 14551: 14548: 14542: 14534: 14530: 14526: 14523: 14518: 14510: 14504: 14501: 14496: 14492: 14488: 14483: 14479: 14472: 14466: 14463: 14458: 14454: 14447: 14441: 14438: 14433: 14429: 14423: 14415: 14412: 14409: 14406: 14398: 14395: 14392: 14387: 14383: 14379: 14374: 14370: 14366: 14363: 14357: 14354: 14351: 14346: 14342: 14338: 14333: 14329: 14325: 14322: 14291: 14288: 14285: 14279: 14259: 14256: 14253: 14245: 14226: 14223: 14220: 14214: 14194: 14190: 14183: 14180: 14177: 14171: 14168: 14165: 14160: 14156: 14152: 14144: 14140: 14136: 14132: 14128: 14124: 14114: 14113:for details. 14112: 14096: 14074: 14071: 14068: 14065: 14062: 14040: 14035: 14031: 14027: 14018: 13999: 13996: 13993: 13971: 13949: 13946: 13943: 13934: 13933:abelian group 13929: 13923: 13903: 13900: 13897: 13894: 13888: 13885: 13883: 13875: 13872: 13869: 13866: 13860: 13849: 13846: 13842: 13839: 13833: 13830: 13824: 13821: 13818: 13812: 13809: 13807: 13798: 13795: 13791: 13788: 13785: 13782: 13776: 13766: 13763: 13759: 13756: 13749: 13746: 13740: 13737: 13734: 13728: 13725: 13723: 13715: 13712: 13708: 13705: 13701: 13698: 13692: 13680: 13664: 13661: 13658: 13649: 13646: 13643: 13620: 13615: 13611: 13607: 13601: 13598: 13595: 13592: 13589: 13580: 13578: 13577:abelian group 13573: 13567: 13547: 13544: 13541: 13538: 13532: 13526: 13523: 13520: 13517: 13505: 13499: 13493: 13487: 13482: 13477: 13475: 13470: 13464: 13459: 13456: 13434: 13431: 13428: 13422: 13402: 13399: 13395: 13388: 13385: 13382: 13376: 13373: 13370: 13365: 13361: 13357: 13348: 13344: 13341: 13340: 13334: 13328: 13324: 13318: 13308: 13306: 13290: 13281: 13278: 13275: 13258: 13255: 13238: 13232: 13229: 13226: 13223: 13220: 13198: 13193: 13187: 13181: 13175: 13172: 13166: 13162:are bases of 13144: 13140: 13133: 13125: 13121: 13097: 13094: 13091: 13066: 13062: 13058: 13053: 13049: 13025: 13019: 13013: 13010: 13004: 12998: 12995: 12992: 12986: 12983: 12980: 12974: 12971: 12962: 12942: 12934: 12930: 12923: 12920: 12915: 12910: 12906: 12900: 12896: 12889: 12882: 12879: 12874: 12870: 12860: 12857: 12854: 12834: 12824: 12803: 12798: 12794: 12765: 12761: 12748: 12735: 12732: 12726: 12720: 12717: 12711: 12702: 12699: 12696: 12671: 12649: 12646: 12641: 12637: 12633: 12630: 12627: 12624: 12604: 12598: 12595: 12592: 12575: 12572: 12569: 12564: 12560: 12549: 12545: 12538: 12532: 12526: 12520: 12514: 12509: 12506:, denote the 12504: 12498: 12492: 12481: 12462: 12436: 12431: 12410: 12371: 12363: 12358: 12354: 12330: 12307: 12301: 12288: 12285: 12279: 12276: 12273: 12267: 12261: 12252: 12249: 12246: 12220: 12197: 12189: 12184: 12180: 12170: 12157: 12148: 12140: 12136: 12132: 12129: 12123: 12117: 12114: 12108: 12102: 12075: 12071: 12067: 12064: 12053: 12048: 12031: 12026: 12022: 12018: 12003: 11998: 11994: 11973: 11967: 11959: 11955: 11951: 11948: 11945: 11942: 11939: 11933: 11927: 11924: 11918: 11915: 11912: 11906: 11881: 11864: 11861: 11837: 11834: 11831: 11828: 11825: 11800: 11779: 11760: 11752: 11747: 11743: 11728: 11725: 11723: 11705: 11700: 11696: 11673: 11649: 11645: 11641: 11638: 11635: 11630: 11626: 11596: 11591: 11587: 11583: 11578: 11574: 11570: 11565: 11561: 11554: 11545: 11541: 11537: 11534: 11528: 11522: 11512: 11506: 11492: 11483: 11467: 11463: 11442: 11422: 11416: 11408: 11405: 11402: 11397: 11394: 11391: 11387: 11377: 11369: 11364: 11360: 11351: 11345: 11341: 11319: 11316: 11313: 11299: 11286: 11280: 11274: 11268: 11265: 11262: 11242: 11234: 11230: 11226: 11223: 11216: 11202: 11200: 11197:, called the 11196: 11191: 11178: 11173: 11164: 11160: 11154: 11150: 11146: 11141: 11132: 11129: 11121: 11118: 11115: 11090: 11086: 11080: 11071: 11067: 11063: 11058: 11049: 11040: 11035: 11031: 11028: 11025: 11021: 10995: 10991: 10965: 10962: 10959: 10947: 10926: 10921: 10917: 10901: 10895: 10882: 10875: 10872: 10869: 10865: 10861: 10856: 10853: 10850: 10846: 10840: 10837: 10834: 10830: 10824: 10821: 10818: 10814: 10809: 10801: 10797: 10793: 10788: 10784: 10778: 10774: 10769: 10765: 10758: 10755: 10752: 10748: 10744: 10739: 10735: 10729: 10725: 10716: 10713: 10710: 10683: 10678: 10674: 10670: 10667: 10643: 10638: 10634: 10630: 10627: 10618: 10612: 10607: 10602: 10596: 10591: 10587: 10583: 10564: 10556: 10551: 10547: 10524: 10520: 10511: 10506: 10500: 10494: 10481: 10476: 10472: 10468: 10464: 10460: 10456: 10452: 10447: 10443: 10439: 10432: 10428: 10424: 10417: 10409: 10405: 10401: 10396: 10392: 10366: 10362: 10352: 10333: 10329: 10319: 10313: 10300: 10294: 10285: 10282: 10278: 10275: 10269: 10266: 10262: 10259: 10255: 10245: 10236: 10233: 10226: 10223: 10218: 10212: 10208: 10201: 10193: 10188: 10184: 10173: 10170: 10167: 10161: 10155: 10151: 10147: 10129: 10125: 10104: 10099: 10096: 10091: 10086: 10082: 10078: 10073: 10068: 10065: 10061: 10057: 10052: 10046: 10040: 10036: 10032: 10029: 10026: 10021: 10017: 10009: 10004: 9998: 9994: 9991: 9988: 9985: 9982: 9975: 9969: 9961: 9956: 9952: 9942: 9937: 9919: 9916: 9913: 9901: 9895: 9888: 9878: 9876: 9871: 9855: 9852: 9849: 9846: 9843: 9840: 9837: 9834: 9831: 9828: 9825: 9822: 9819: 9809: 9805: 9799: 9796: 9783: 9778: 9770: 9767: 9764: 9760: 9754: 9751: 9748: 9744: 9736: 9733: 9730: 9726: 9720: 9717: 9714: 9710: 9702: 9699: 9696: 9692: 9686: 9683: 9680: 9676: 9668: 9665: 9662: 9658: 9652: 9649: 9646: 9642: 9632: 9629: 9626: 9622: 9616: 9613: 9610: 9606: 9598: 9595: 9592: 9588: 9582: 9579: 9576: 9572: 9564: 9561: 9558: 9554: 9548: 9545: 9542: 9538: 9530: 9527: 9524: 9520: 9514: 9511: 9508: 9504: 9494: 9491: 9488: 9484: 9478: 9475: 9472: 9468: 9460: 9457: 9454: 9450: 9444: 9441: 9438: 9434: 9426: 9423: 9420: 9416: 9410: 9407: 9404: 9400: 9392: 9389: 9386: 9382: 9376: 9373: 9370: 9366: 9356: 9353: 9350: 9346: 9340: 9337: 9334: 9330: 9322: 9319: 9316: 9312: 9306: 9303: 9300: 9296: 9288: 9285: 9282: 9278: 9272: 9269: 9266: 9262: 9254: 9251: 9248: 9244: 9238: 9235: 9232: 9228: 9221: 9216: 9211: 9203: 9195: 9192: 9189: 9185: 9177: 9174: 9171: 9167: 9157: 9154: 9151: 9147: 9139: 9136: 9133: 9129: 9122: 9115: 9112: 9109: 9105: 9097: 9089: 9086: 9083: 9079: 9071: 9068: 9065: 9061: 9051: 9048: 9045: 9041: 9033: 9030: 9027: 9023: 9016: 9009: 9006: 9003: 8999: 8989: 8981: 8978: 8975: 8971: 8963: 8960: 8957: 8953: 8943: 8940: 8937: 8933: 8925: 8922: 8919: 8915: 8908: 8901: 8898: 8895: 8891: 8883: 8875: 8872: 8869: 8865: 8857: 8854: 8851: 8847: 8837: 8834: 8831: 8827: 8819: 8816: 8813: 8809: 8802: 8795: 8792: 8789: 8785: 8778: 8773: 8768: 8760: 8757: 8754: 8750: 8742: 8739: 8736: 8732: 8722: 8719: 8716: 8712: 8704: 8701: 8698: 8694: 8687: 8682: 8677: 8669: 8666: 8663: 8659: 8651: 8648: 8645: 8641: 8631: 8628: 8625: 8621: 8613: 8610: 8607: 8603: 8596: 8574: 8569: 8561: 8558: 8555: 8551: 8543: 8540: 8537: 8533: 8523: 8520: 8517: 8513: 8505: 8502: 8499: 8495: 8488: 8483: 8480: 8476: 8471: 8463: 8460: 8457: 8453: 8445: 8442: 8439: 8435: 8425: 8422: 8419: 8415: 8407: 8404: 8401: 8397: 8390: 8385: 8382: 8373: 8367: 8361: 8355: 8351: 8347: 8342: 8326: 8323: 8320: 8300: 8297: 8294: 8286: 8281: 8275: 8269: 8267: 8263: 8259: 8255: 8254:exact functor 8251: 8247: 8234: 8232: 8228: 8224: 8205: 8199: 8196: 8193: 8187: 8181: 8178: 8175: 8169: 8163: 8160: 8157: 8151: 8145: 8142: 8139: 8133: 8130: 8127: 8124: 8117: 8116: 8115: 8098: 8092: 8086: 8083: 8077: 8071: 8068: 8062: 8059: 8056: 8047: 8044: 8041: 8031: 8030: 8029: 8012: 8009: 8006: 8000: 7997: 7994: 7991: 7988: 7985: 7982: 7975: 7974: 7973: 7957: 7951: 7948: 7945: 7923: 7917: 7914: 7911: 7902: 7888: 7885: 7882: 7859: 7856: 7853: 7847: 7841: 7838: 7832: 7829: 7826: 7817: 7814: 7811: 7801: 7800: 7799: 7782: 7779: 7776: 7770: 7767: 7764: 7761: 7758: 7755: 7752: 7745: 7744: 7743: 7742: 7720: 7714: 7711: 7708: 7695: 7685: 7667: 7664: 7660: 7651: 7648: 7644: 7613: 7607: 7603: 7599: 7596: 7593: 7585: 7579: 7575: 7566: 7562: 7558: 7555: 7552: 7547: 7543: 7535: 7534: 7533: 7528:of the first 7524: 7498: 7495: 7491: 7482: 7478: 7470: 7454: 7451: 7448: 7428: 7425: 7422: 7416: 7413: 7410: 7401: 7385: 7382: 7379: 7376: 7373: 7370: 7367: 7343: 7340: 7337: 7326: 7310: 7307: 7304: 7282: 7279: 7276: 7253: 7250: 7247: 7244: 7241: 7238: 7235: 7232: 7225: 7224: 7223: 7221: 7205: 7185: 7171: 7168: 7149: 7146: 7143: 7137: 7134: 7112: 7109: 7103: 7100: 7097: 7071: 7065: 7062: 7059: 7053: 7050: 7047: 7044: 7041: 7035: 7032: 7029: 7019: 7018: 7017: 7001: 6998: 6995: 6992: 6989: 6979: 6972:Associativity 6969: 6966: 6960: 6943: 6940: 6937: 6928: 6925: 6919: 6902: 6899: 6896: 6888: 6883: 6877: 6861: 6845: 6823: 6799: 6796: 6793: 6777: 6774: 6771: 6759: 6746: 6743: 6740: 6710: 6707: 6704: 6676: 6672: 6669: 6666: 6663: 6660: 6657: 6654: 6651: 6648: 6645: 6642: 6638: 6634: 6631: 6628: 6625: 6603: 6593: 6590: 6568: 6558: 6555: 6530: 6524: 6518: 6512: 6503: 6500: 6497: 6470: 6467: 6464: 6454: 6451: 6448: 6445: 6421: 6411: 6408: 6384: 6374: 6371: 6351: 6331: 6306: 6300: 6297: 6291: 6269: 6266: 6243: 6237: 6234: 6228: 6222: 6216: 6196: 6193: 6190: 6170: 6148: 6132: 6116: 6113: 6110: 6107: 6101: 6098: 6095: 6067: 6064: 6061: 6055: 6051: 6047: 6044: 6041: 6020: 5999: 5975: 5965: 5962: 5938: 5928: 5925: 5900: 5897: 5894: 5891: 5888: 5885: 5882: 5877: 5874: 5871: 5868: 5865: 5862: 5859: 5851: 5845: 5841: 5835: 5831: 5826: 5803: 5798: 5792: 5788: 5784: 5781: 5778: 5773: 5769: 5764: 5760: 5756: 5750: 5746: 5742: 5739: 5736: 5731: 5727: 5722: 5717: 5713: 5707: 5704: 5701: 5676: 5673: 5658: 5648: 5643: 5633: 5630: 5608: 5605: 5595: 5592: 5572: 5552: 5542: 5527: 5523: 5520: 5517: 5514: 5511: 5508: 5505: 5502: 5499: 5496: 5493: 5490: 5486: 5480: 5476: 5472: 5467: 5463: 5458: 5454: 5450: 5427: 5403: 5399: 5395: 5392: 5389: 5384: 5380: 5359: 5337: 5333: 5329: 5326: 5323: 5318: 5314: 5293: 5273: 5253: 5227: 5203: 5199: 5176: 5172: 5168: 5165: 5162: 5157: 5153: 5144: 5127: 5103: 5099: 5090: 5072: 5068: 5064: 5061: 5058: 5053: 5049: 5040: 5039: 5038: 5022: 5019: 5015: 5009: 5005: 5001: 4996: 4992: 4987: 4983: 4978: 4973: 4970: 4967: 4963: 4940: 4937: 4932: 4928: 4924: 4921: 4918: 4913: 4909: 4888: 4885: 4880: 4876: 4872: 4869: 4866: 4861: 4857: 4836: 4814: 4807: 4793: 4773: 4751: 4748: 4742: 4739: 4736: 4730: 4726: 4704: 4697:spans all of 4684: 4664: 4644: 4621: 4618: 4615: 4592: 4586: 4583: 4580: 4577: 4574: 4554: 4532: 4529: 4526: 4508: 4483: 4480: 4477: 4455: 4452: 4449: 4426: 4423: 4420: 4408: 4402: 4396: 4393: 4390: 4384: 4363: 4359: 4350: 4344: 4341: 4319: 4313: 4310: 4307: 4304: 4295: 4282: 4279:, there is a 4264: 4258: 4255: 4252: 4249: 4246: 4222: 4219: 4216: 4194: 4191: 4188: 4168: 4165: 4162: 4153: 4150: 4147: 4141: 4137: 4114: 4111: 4108: 4090: 4086: 4085: 4084: 4082: 4079: 4075: 4070: 4066: 4064: 4060: 4051: 4044: 4034: 4029: 4021: 4009: 4003: 3994: 3992: 3988: 3983: 3967: 3964: 3961: 3936: 3933: 3930: 3904: 3901: 3897: 3893: 3890: 3887: 3884: 3881: 3874: 3873: 3872: 3870: 3865: 3849: 3846: 3843: 3821: 3818: 3813: 3809: 3805: 3800: 3796: 3792: 3789: 3767: 3764: 3759: 3755: 3751: 3746: 3742: 3738: 3735: 3706: 3700: 3697: 3694: 3688: 3685: 3683: 3675: 3672: 3669: 3666: 3656: 3650: 3647: 3644: 3638: 3635: 3633: 3625: 3622: 3619: 3616: 3606: 3598: 3594: 3590: 3587: 3581: 3573: 3569: 3565: 3562: 3556: 3554: 3544: 3540: 3536: 3531: 3527: 3523: 3520: 3510: 3504: 3501: 3496: 3492: 3485: 3479: 3476: 3471: 3467: 3460: 3458: 3450: 3447: 3442: 3438: 3434: 3429: 3425: 3410: 3409: 3408: 3406: 3394: 3385: 3364: 3361: 3358: 3328: 3325: 3322: 3299: 3293: 3290: 3287: 3280: 3262: 3259: 3256: 3234: 3231: 3228: 3205: 3202: 3199: 3189: 3181: 3165: 3162: 3159: 3152: 3149:that has the 3143: 3141: 3134: 3133:vector spaces 3121: 3113: 3111: 3107: 3102: 3096: 3080: 3058: 3050: 3049:outer product 3034: 3031: 3028: 3020: 3015: 3013: 2997: 2994: 2991: 2971: 2968: 2965: 2945: 2942: 2939: 2930: 2927: 2924: 2918: 2914: 2889: 2885: 2860: 2856: 2832: 2829: 2826: 2820: 2797: 2794: 2791: 2785: 2776: 2759: 2756: 2753: 2750: 2744: 2740: 2734: 2730: 2722: 2718: 2714: 2711: 2707: 2699: 2695: 2691: 2688: 2684: 2680: 2678: 2663: 2657: 2653: 2645: 2641: 2637: 2634: 2630: 2619: 2609: 2603: 2599: 2591: 2587: 2583: 2580: 2576: 2565: 2563: 2558: 2555: 2552: 2528: 2525: 2522: 2502: 2499: 2496: 2488: 2483: 2465: 2461: 2457: 2452: 2448: 2425: 2417: 2399: 2396: 2393: 2368: 2365: 2362: 2359: 2356: 2340: 2321: 2318: 2315: 2306: 2303: 2300: 2294: 2287: 2283: 2279: 2276: 2272: 2264: 2260: 2256: 2253: 2249: 2245: 2242: 2222: 2219: 2216: 2196: 2187: 2174: 2169: 2165: 2158: 2154: 2150: 2143: 2140: 2136: 2132: 2129: 2119: 2116: 2113: 2103: 2100: 2095: 2088: 2085: 2080: 2072: 2068: 2064: 2060: 2057: 2052: 2044: 2040: 2036: 2032: 2029: 2024: 2020: 2014: 2011: 2008: 1999: 1996: 1993: 1970: 1964: 1961: 1958: 1955: 1952: 1949: 1946: 1924: 1920: 1916: 1911: 1907: 1886: 1883: 1880: 1856: 1852: 1848: 1843: 1839: 1816: 1813: 1810: 1807: 1801: 1798: 1795: 1772: 1763: 1747: 1744: 1741: 1735: 1729: 1725: 1719: 1715: 1707: 1703: 1699: 1696: 1692: 1684: 1680: 1676: 1673: 1669: 1665: 1659: 1656: 1653: 1647: 1627: 1605: 1601: 1578: 1574: 1553: 1550: 1544: 1540: 1532: 1528: 1524: 1521: 1517: 1513: 1510: 1500: 1494: 1490: 1482: 1478: 1474: 1471: 1467: 1463: 1460: 1438: 1434: 1411: 1407: 1399:in the bases 1386: 1366: 1344: 1338: 1335: 1332: 1329: 1326: 1304: 1301: 1298: 1295: 1289: 1286: 1283: 1256: 1252: 1248: 1243: 1239: 1216: 1213: 1210: 1202: 1186: 1183: 1180: 1171: 1153: 1149: 1124: 1120: 1112:of the bases 1111: 1093: 1090: 1087: 1060: 1056: 1052: 1049: 1046: 1041: 1037: 1033: 1030: 1027: 1024: 1021: 1018: 1006: 990: 987: 984: 956: 952: 948: 943: 939: 911: 908: 905: 882: 879: 876: 868: 846: 842: 838: 833: 829: 821: 817: 801: 798: 795: 771: 767: 763: 760: 736: 732: 728: 725: 705: 702: 699: 671: 668: 665: 658: 653: 635: 631: 606: 602: 594: 587: 583: 582:vector spaces 565: 562: 558: 554: 549: 547: 543: 539: 529: 527: 523: 520: 516: 512: 509:, which is a 508: 507:metric tensor 504: 500: 495: 493: 477: 471: 468: 465: 458: 438: 435: 432: 423: 401: 398: 395: 388:, a basis of 386: 380: 375: 359: 356: 353: 333: 330: 327: 320: 316: 312: 308: 292: 289: 286: 270: 254: 251: 248: 239: 223: 220: 217: 195: 192: 189: 169: 166: 163: 160: 157: 154: 151: 145: 139: 136: 133: 110: 107: 104: 98: 95: 92: 85: 81: 76: 70: 66: 65:vector spaces 50: 47: 44: 37: 33: 26: 22: 21276:Hermann Weyl 21080:Vector space 21065:Pseudotensor 21030:Fiber bundle 20983:abstractions 20965: 20878:Mixed tensor 20863:Tensor field 20670: 20597: 20575: 20556: 20553:Birkhoff, G. 20549:Mac Lane, S. 20511: 20492:. Springer. 20489: 20470:. Springer. 20467: 20464:Halmos, Paul 20445: 20410: 20378: 20372: 20337: 20331: 20313: 20292: 20262: 20249: 20233:. Springer. 20230: 20224: 20211: 20200:. Retrieved 20191: 20182: 20165: 20157: 20153: 20145: 20126: 20120: 20028:such as the 20019: 19992: 19954: 19937: 19770: 19608: 19600: 19592: 19582: 19542: 19354: 19193: 19190: 19084: 19077: 19075:in general. 19069:Weyl algebra 19046: 19034: 19006: 18941: 18619: 18592: 18574: 18556: 18533: 18132: 17387:consists of 17364: 17317:eigenvectors 17313:well-defined 17078: 17024: 16953: 16943: 16939: 16933: 16927: 16921: 16850: 16840: 16833: 16829: 16825: 16821: 16807: 16801: 16795: 16792: 16567: 16526: 16519: 16513: 16507: 16501: 16498: 16479:Tor functors 16473: 16470: 16466: 16462: 16459: 16455: 16448: 16445: 16441: 16435: 16431: 16427: 16421: 16305: 16258: 16161: 16039: 15822: 15816: 15812:presentation 15809: 15734: 15731: 15727: 15721: 15715: 15712: 15708: 15672: 15666: 15637: 15626: 15622: 15517: 15513: 15509: 15505: 15501: 15494: 15490: 15453: 15449: 15445: 15441: 15437: 15433: 15366: 15329: 15325: 15321: 15254: 15217: 15213: 15209: 15170: 15003: 14674: 14672: 14142: 14138: 14134: 14130: 14129:-module and 14126: 14122: 14120: 14111:main article 14016: 13927: 13924: 13581: 13571: 13565: 13503: 13497: 13495:-module and 13491: 13485: 13478: 13468: 13462: 13454: 13346: 13337: 13332: 13326: 13320: 13196: 13191: 13185: 13179: 13176: 13170: 13164: 12963: 12749: 12547: 12543: 12536: 12530: 12524: 12518: 12512: 12502: 12496: 12490: 12487: 12434: 12305: 12302: 12171: 12051: 11734: 11726: 11510: 11484: 11343: 11339: 11300: 11214: 11208: 11192: 10945: 10899: 10896: 10616: 10610: 10600: 10594: 10504: 10498: 10495: 10350: 10317: 10314: 10171: 10165: 10159: 10153: 9940: 9899: 9893: 9890: 9872: 9797: 8371: 8365: 8359: 8353: 8349: 8345: 8279: 8273: 8270: 8235: 8221:In terms of 8220: 8113: 8027: 7903: 7874: 7797: 7740: 7698: 7633: 7521:. For every 7475:braiding map 7472: 7469:automorphism 7402: 7327: 7268: 7220:commutative 7177: 7169: 7086: 6975: 6964: 6958: 6929: 6923: 6917: 6881: 6875: 6872: 6133: 5544: 5245: 4766:), and also 4510: 4506: 4334:, such that 4280: 4088: 4077: 4074:bilinear map 4071: 4067: 4056: 4049: 4042: 4032: 4019: 4007: 3984: 3919: 3866: 3725: 3386: 3144: 3122: 3119: 3097: 3016: 2777: 2486: 2484: 2188: 1764: 1172: 1109: 1007: 656: 654: 571: 550: 537: 535: 515:vector field 513:(so like an 511:tensor field 496: 424: 384: 378: 314: 310: 268: 240: 84:bilinear map 74: 68: 35: 29: 21216:Élie Cartan 21164:Spin tensor 21138:Weyl tensor 21096:Mathematics 21060:Multivector 20851:definitions 20749:Engineering 20688:Mathematics 20508:Lang, Serge 20113:Trèves 2006 20098:Trèves 2006 19988:a */ b */ c 18577:direct sums 17446:, provided 17289:nonsingular 17127:linear maps 16819:: if, say, 16165:th copy of 15629:)-bimodule. 15365:is a right 14125:be a right 13633:defined by 13339:commutative 11778:Lie algebra 10150:linear maps 9808:matrix rank 9804:tensor rank 7523:permutation 6978:associative 6282:is the map 6209:is the map 4283:linear map 4063:isomorphism 4028:commutative 3384:otherwise. 2541:as before: 1899:defined on 975:is denoted 546:isomorphism 32:mathematics 21291:Categories 21045:Linear map 20913:Operations 20542:0984.00001 20499:0387905189 20400:References 20304:1505.05729 20202:2017-01-26 19071:, and the 18979:See also: 18620:Given two 18203:of degree 17407:points in 17125:represent 16919:where now 15253:is a left 15049:such that 14133:be a left 14053:satisfies 13501:is a left- 13415:where now 12522:, and the 12508:dual space 12236:given by: 11722:dual basis 10943:, and let 10586:components 10510:dual basis 9885:See also: 8250:surjective 8114:One has: 7269:that maps 7087:that maps 6864:Properties 4953:such that 4717:(that is, 4442:for every 4377:(that is, 4078:separately 4030:(that is, 3405:spanned by 568:From bases 519:space-time 457:linear map 21184:EM tensor 21020:Dimension 20971:Transpose 20616:853623322 20596:(2006) . 19921:… 19918:⊗ 19905:⊗ 19886:⊗ 19883:⋯ 19880:− 19877:⋯ 19874:⊗ 19855:⊗ 19842:⊗ 19839:⋯ 19818:⏟ 19811:⊗ 19808:⋯ 19805:⊗ 19789:⁡ 19737:∈ 19705:∣ 19692:⊗ 19679:− 19666:⊗ 19636:⊗ 19624:⊙ 19557:Λ 19525:⊗ 19522:⋯ 19519:⊗ 19484:∧ 19471:− 19455:∧ 19413:∧ 19373:⊗ 19321:∈ 19289:∣ 19276:⊗ 19250:⊗ 19220:⊗ 19208:∧ 19168:∈ 19162:∣ 19156:⊗ 19137:⊗ 19125:∧ 19099:∧ 19053:quotients 18903:… 18859:… 18812:… 18787:⊗ 18705:… 18650:… 18493:× 18463:≤ 18435:ψ 18429:⋯ 18407:ψ 18384:ψ 18364:⋯ 18265:… 18214:− 18185:ψ 18161:ψ 18113:… 18096:for  18072:⋯ 18023:⋯ 17968:∑ 17964:⋯ 17937:∑ 17909:∑ 17886:… 17861:ψ 17835:− 17822:→ 17814:− 17774:→ 17736:⊗ 17715:∈ 17653:⋯ 17602:× 17599:⋯ 17596:× 17590:× 17532:⋯ 17427:− 17349:ψ 17299:ψ 17222:− 17209:→ 17201:− 17185:ψ 17153:→ 17046:⁡ 16981:≅ 16969:⊗ 16878:≅ 16866:⊗ 16758:≅ 16737:⊗ 16688:⋅ 16672:⊗ 16656:⋅ 16624:⊗ 16608:⋅ 16592:⊗ 16544:⊗ 16530:-algebras 16454:0 : 16398:⊗ 16384:→ 16372:⊗ 16329:→ 16309:-modules 16276:⊗ 16144:∈ 16111:→ 16071:∈ 16064:⊕ 16011:→ 15993:⁡ 15975:⊗ 15941:∈ 15887:∈ 15880:∑ 15856:∈ 15844:∈ 15750:⊗ 15689:⊗ 15649:⊗ 15600:⊗ 15468:⊗ 15403:⊗ 15385:⊗ 15344:⊗ 15300:⊗ 15276:⊗ 15232:⊗ 15183:⊗ 15151:∈ 15123:∈ 15073:⊗ 15062:¯ 15034:→ 15028:⊗ 15017:¯ 14700:→ 14694:× 14634:− 14568:− 14473:− 14410:∈ 14393:∈ 14361:∀ 14352:∈ 14320:∀ 14289:× 14257:× 14224:× 14181:× 14157:⊗ 14097:φ 14075:φ 14072:∘ 14063:ψ 14032:⊗ 13997:× 13972:ψ 13947:× 13889:φ 13861:φ 13834:φ 13813:φ 13777:φ 13750:φ 13729:φ 13693:φ 13662:⊗ 13656:↦ 13612:⊗ 13605:→ 13599:× 13590:φ 13533:∼ 13432:× 13386:× 13362:⊗ 13239:≅ 13224:⊗ 13095:⊗ 13059:⊗ 13014:⁡ 12999:⁡ 12984:⊗ 12975:⁡ 12921:⊗ 12916:∗ 12897:∑ 12893:↦ 12880:⊗ 12875:∗ 12867:→ 12825:" above: 12804:∗ 12700:⊗ 12647:⊗ 12642:∗ 12634:∈ 12628:⊗ 12576:≅ 12570:⊗ 12565:∗ 12283:⟩ 12271:⟨ 12250:⊗ 12204:→ 12155:⟩ 12141:∗ 12127:⟨ 12121:⟩ 12100:⟨ 12076:∗ 12068:⊗ 12047:transpose 12027:∗ 12004:∈ 11999:∗ 11960:∗ 11952:⊗ 11946:− 11940:⊗ 11916:⊗ 11865:∈ 11706:∗ 11639:… 11597:∗ 11584:⊗ 11571:λ 11562:∑ 11558:↦ 11555:λ 11546:∗ 11538:⊗ 11532:→ 11468:∗ 11406:− 11395:− 11384:→ 11272:↦ 11266:⊗ 11240:→ 11235:∗ 11227:⊗ 11174:σ 11165:ν 11155:μ 11142:σ 11133:ν 11130:μ 11119:⊗ 11091:γ 11081:β 11072:α 11059:γ 11050:β 11041:α 11029:⊗ 10996:γ 10927:α 10922:β 10862:⋯ 10794:⋯ 10745:⋯ 10714:⊗ 10671:∈ 10631:∈ 10606:covariant 10525:∗ 10469:⊗ 10453:⊗ 10418:⊗ 10402:⊗ 10252:→ 10209:⊗ 10130:∗ 10097:⊗ 10087:∗ 10074:⊗ 10066:⊗ 10047:⏟ 10041:∗ 10033:⊗ 10030:⋯ 10027:⊗ 10022:∗ 10010:⊗ 9999:⏟ 9992:⊗ 9989:⋯ 9986:⊗ 9853:⁡ 9847:× 9841:⁡ 9829:⊗ 9823:⁡ 8683:⊗ 8324:⊗ 8298:⊗ 8246:injective 8244:are both 8229:from the 8227:bifunctor 8197:⊗ 8188:∘ 8179:⊗ 8161:⊗ 8152:∘ 8143:⊗ 8128:⊗ 8084:⊗ 8060:⊗ 8045:⊗ 8010:⊗ 8004:→ 7998:⊗ 7986:⊗ 7955:→ 7921:→ 7886:⊗ 7854:⊗ 7830:⊗ 7815:⊗ 7780:⊗ 7774:→ 7768:⊗ 7756:⊗ 7718:→ 7665:⊗ 7657:→ 7649:⊗ 7600:⊗ 7597:⋯ 7594:⊗ 7572:↦ 7559:⊗ 7556:⋯ 7553:⊗ 7496:⊗ 7452:⊗ 7426:⊗ 7420:↦ 7414:⊗ 7383:⊗ 7377:≠ 7371:⊗ 7308:⊗ 7280:⊗ 7248:⊗ 7242:≅ 7236:⊗ 7147:⊗ 7138:⊗ 7110:⊗ 7101:⊗ 7063:⊗ 7054:⊗ 7048:≅ 7042:⊗ 7033:⊗ 6941:⊗ 6900:⊗ 6887:dimension 6869:Dimension 6797:⊗ 6788:↦ 6754:→ 6744:× 6708:× 6670:∈ 6658:∈ 6646:⊗ 6635:⁡ 6594:⊆ 6559:⊆ 6510:↦ 6468:× 6455:∈ 6449:⊗ 6412:∈ 6375:∈ 6295:↦ 6220:↦ 6114:× 6108:∈ 6045:⊗ 6021:⊗ 5895:… 5872:… 5782:… 5740:… 5664:→ 5649:× 5521:≤ 5515:≤ 5503:≤ 5497:≤ 5393:… 5327:… 5166:… 5091:then all 5062:… 4964:∑ 4938:∈ 4922:… 4886:∈ 4870:… 4740:× 4590:→ 4584:× 4481:∈ 4453:∈ 4424:⊗ 4412:~ 4364:⊗ 4360:∘ 4354:~ 4317:→ 4311:⊗ 4299:~ 4262:→ 4256:× 4220:⊗ 4192:× 4166:⊗ 4160:↦ 4138:⊗ 4112:⊗ 3965:⊗ 3885:⊗ 3847:∈ 3819:∈ 3765:∈ 3686:− 3636:− 3582:− 3557:− 3486:− 3461:− 3297:→ 3291:× 3279:functions 3260:∈ 3232:∈ 3163:× 3032:⊗ 2995:⊗ 2969:× 2943:⊗ 2937:↦ 2915:⊗ 2754:⊗ 2715:∈ 2708:∑ 2692:∈ 2685:∑ 2638:∈ 2631:∑ 2620:⊗ 2584:∈ 2577:∑ 2556:⊗ 2526:∈ 2500:∈ 2458:× 2397:× 2319:⊗ 2280:∈ 2273:∑ 2257:∈ 2250:∑ 2220:⊗ 2117:⊗ 2065:∈ 2053:∑ 2037:∈ 2025:∑ 1997:⊗ 1968:→ 1962:× 1950:⊗ 1917:× 1884:⊗ 1849:× 1814:× 1808:∈ 1700:∈ 1693:∑ 1677:∈ 1670:∑ 1525:∈ 1518:∑ 1475:∈ 1468:∑ 1342:→ 1336:× 1302:× 1296:∈ 1249:× 1214:× 1184:⊗ 1091:⊗ 1053:∈ 1034:∈ 1028:∣ 1022:⊗ 988:⊗ 949:× 880:⊗ 839:× 818:from the 816:functions 799:⊗ 764:∈ 729:∈ 703:⊗ 669:⊗ 475:→ 469:⊗ 436:× 399:⊗ 357:⊗ 331:⊗ 290:⊗ 252:⊗ 221:⊗ 193:⊗ 167:∈ 155:∈ 108:⊗ 102:→ 96:× 48:⊗ 21050:Manifold 21035:Geodesic 20793:Notation 20555:(1999). 20510:(2002), 20488:(2003). 20466:(1974). 20437:Archived 20409:(1989). 20278:citation 20267:archived 20196:Archived 20040:See also 18595:algebras 17753:defines 17081:matrices 16957:, then: 16844:is some 16838:, where 16430: : 15961:cokernel 15820:-module 15814:of some 15112:for all 13850:′ 13799:′ 13760:′ 13709:′ 11012:. Then: 10604:are two 10465:′ 10433:′ 10286:′ 10270:′ 10237:′ 10227:′ 8285:matrices 8231:category 7403:The map 6034:so that 3186:are the 2144:′ 2133:′ 2104:′ 2089:′ 2061:′ 2033:′ 1785:for any 1008:The set 522:manifold 208:denoted 21147:Physics 20981:Related 20744:Physics 20662:Tensors 20557:Algebra 20534:1878556 20512:Algebra 20490:Algebra 20364:1468229 20231:Algebra 20046:Dyadics 20036:/APL). 20034:Fortran 20013:, then 19968:A ○.× B 19578:⁠ 19548:⁠ 19506:⁠ 19437:⁠ 19027:above. 19019:of the 18482:of the 18480:variety 18295:⁠ 18231:⁠ 17444:⁠ 17409:⁠ 17361:⁠ 17341:⁠ 17265:⁠ 17245:⁠ 17175:⁠ 17135:⁠ 17079:Square 17069:⁠ 17030:⁠ 16351:⁠ 16311:⁠ 16297:⁠ 16264:⁠ 16254:⁠ 16227:⁠ 16159:in the 16091:⁠ 16042:⁠ 15704:⁠ 15678:⁠ 15586:⁠ 15554:⁠ 15427:⁠ 15371:⁠ 15315:⁠ 15259:⁠ 15166:⁠ 15140:⁠ 14087:⁠ 14055:⁠ 14012:⁠ 13986:⁠ 13962:⁠ 13936:⁠ 13466:is the 13458:-module 13450:is the 13336:over a 13323:modules 12684:⁠ 12664:⁠ 12478:⁠ 12441:⁠ 12426:⁠ 12389:⁠ 12090:⁠ 12057:⁠ 12045:is the 11897:⁠ 11854:⁠ 11850:⁠ 11818:⁠ 11720:is its 11686:⁠ 11666:⁠ 11337:, with 11335:⁠ 11303:⁠ 11195:algebra 11010:⁠ 10983:⁠ 10941:⁠ 10909:⁠ 10698:⁠ 10660:⁠ 10590:tensors 10144:is the 9903:a type 9868:⁠ 9812:⁠ 8339:is the 7970:⁠ 7938:⁠ 7733:⁠ 7701:⁠ 7682:⁠ 7636:⁠ 7483:), let 7398:⁠ 7360:⁠ 7356:⁠ 7330:⁠ 7323:⁠ 7297:⁠ 7165:⁠ 7127:⁠ 7014:⁠ 6982:⁠ 6889:, then 6858:⁠ 6838:⁠ 6546:⁠ 6487:⁠ 6436:⁠ 6401:⁠ 6324:). Let 6322:⁠ 6284:⁠ 6129:⁠ 6085:⁠ 5990:⁠ 5955:⁠ 5440:⁠ 5420:⁠ 5240:⁠ 5220:⁠ 5145:if all 5140:⁠ 5120:⁠ 5041:if all 5035:⁠ 4955:⁠ 4764:⁠ 4719:⁠ 4545:⁠ 4519:⁠ 4512:Theorem 4496:⁠ 4470:⁠ 4332:⁠ 4285:⁠ 4277:⁠ 4239:⁠ 4235:⁠ 4209:⁠ 4127:⁠ 4101:⁠ 3980:⁠ 3954:⁠ 3862:⁠ 3836:⁠ 3780:⁠ 3728:⁠ 3391:be the 3275:⁠ 3249:⁠ 3135:over a 3131:be two 3108:over a 3093:⁠ 3073:⁠ 3047:is the 2904:⁠ 2877:⁠ 2480:⁠ 2440:⁠ 2412:⁠ 2386:⁠ 1871:⁠ 1831:⁠ 1593:'s and 1357:⁠ 1319:⁠ 1271:⁠ 1231:⁠ 1168:⁠ 1141:⁠ 1106:⁠ 1080:⁠ 1003:⁠ 977:⁠ 786:⁠ 753:⁠ 650:⁠ 623:⁠ 584:over a 580:be two 561:objects 236:⁠ 210:⁠ 63:of two 21075:Vector 21070:Spinor 21055:Matrix 20849:Tensor 20614:  20604:  20582:  20563:  20540:  20532:  20522:  20496:  20474:  20452:  20417:  20385:  20362:  20352:  20237:  20133:  20022:MATLAB 20015:a */ b 19984:a */ b 19974:). In 19604:-forms 19580:, the 19067:, the 19063:, the 19059:, the 18509:minors 17363:. The 17133:, say 16811:. The 16565:is an 15621:is a ( 15489:is a ( 15448:is a ( 15436:is a ( 15324:is a ( 15212:is a ( 14207:where 13110:where 11986:where 11688:, and 11618:where 11346:> 0 11211:(1, 1) 10905:(1, 1) 9936:tensor 9887:Tensor 8357:, and 7739:, the 6548:. If 6438:, let 4547:, and 4281:unique 4081:linear 3726:where 3137:field 1640:that: 555:; see 501:, the 307:tensor 149:  34:, the 20995:Basis 20680:Scope 20323:(PDF) 20299:arXiv 20270:(PDF) 20259:(PDF) 20082:Notes 18173:is a 17559:be a 17291:then 17267:. If 17243:over 17104:field 16947:is a 16439:with 16040:Here 15990:coker 15512:are ( 14246:over 14242:is a 13677:is a 13452:free 11105:and: 10157:from 10117:Here 7441:from 5142:, and 4181:from 3221:with 3188:pairs 3180:basis 3178:as a 2416:basis 869:make 718:with 593:bases 586:field 542:up to 490:(see 374:bases 313:or a 305:is a 80:field 20612:OCLC 20602:ISBN 20580:ISBN 20561:ISBN 20520:ISBN 20494:ISBN 20472:ISBN 20450:ISBN 20415:ISBN 20383:ISBN 20350:ISBN 20284:link 20235:ISBN 20215:See 20156:and 20131:ISBN 20009:are 20005:and 19997:and 18678:and 18528:and 18327:rank 17796:and 16799:and 16523:are 16517:and 16499:Let 16225:(in 15552:and 15508:and 15138:and 14141:and 14121:Let 13343:ring 13330:and 13168:and 12542:Hom( 11455:and 10658:and 10614:and 10598:and 10354:and 9897:and 9800:rank 8369:and 8277:and 8240:and 7936:and 7198:and 6921:and 6879:and 6836:and 6632:span 6583:and 6399:and 6344:and 6259:and 5953:and 5565:and 5286:are 5266:and 5218:are 5118:are 5087:are 4901:and 4806:are 4786:and 4727:span 4657:and 4517:Let 4468:and 4095:and 4087:The 3834:and 3387:Let 3380:and 3247:and 3127:and 3123:Let 3110:ring 3071:and 2875:and 2515:and 1453:as: 1426:and 1379:and 1139:and 751:and 688:and 655:The 621:and 576:and 572:Let 536:The 382:and 319:span 275:and 72:and 23:and 20538:Zbl 19990:). 19986:or 19970:or 19964:○.× 19960:APL 19780:Sym 19590:of 19586:th 18229:in 17700:of 17486:is 17367:of 17319:of 17311:is 17287:is 17239:of 17129:of 17043:deg 16951:of 16192:to 15670:of 15500:If 15432:If 15320:If 15208:If 14020:of 13984:of 13197:all 13011:dim 12996:dim 12972:dim 12540:as 12534:to 12516:as 12510:of 12439:of 12433:ad( 12309:in 12049:of 11513:): 11505:is 10512:of 10496:If 10169:). 8268:). 8248:or 8236:If 7295:to 7218:is 7125:to 6873:If 6690:of 5817:to 5418:in 5352:in 5037:, 4207:to 3993:.) 3403:is 3395:of 3348:on 3142:. 3021:of 2984:to 2350:Hom 1506:and 1203:on 971:to 927:to 861:to 684:of 544:an 494:). 271:of 30:In 21293:: 20610:. 20551:; 20536:, 20530:MR 20528:, 20514:, 20435:. 20431:. 20360:MR 20358:. 20340:. 20280:}} 20276:{{ 20261:, 20190:. 20105:^ 20090:^ 19980:*/ 19942:. 19795::= 19630::= 19613:: 19606:. 19214::= 19131::= 18954:. 18601:. 18554:. 17071:. 16942:= 16828:/ 16824:= 16485:. 16465:→ 16434:→ 16425:, 15963:: 15568::= 15534::= 15397::= 15285::= 15168:. 14169::= 13579:. 13476:. 13374::= 13189:, 13183:, 13174:. 12686:, 12519:U* 12494:, 12480:. 12092:, 11899:, 11352:: 11342:, 11201:. 10176:: 9873:A 9870:. 9850:Tr 9838:Tr 9820:Tr 8352:, 8348:, 7325:. 7167:. 6968:. 6927:. 6860:. 6629::= 6131:. 6052::= 5966::= 5929::= 5596::= 4498:). 4053:). 4048:∘ 4035:= 3982:. 3871:: 3864:. 3782:, 3112:. 2021::= 1170:. 1005:. 652:. 422:. 238:. 20654:e 20647:t 20640:v 20626:. 20618:. 20588:. 20569:. 20502:. 20480:. 20458:. 20423:. 20391:. 20366:. 20325:. 20307:. 20301:: 20286:) 20243:. 20219:. 20205:. 20158:y 20154:x 20139:. 20007:b 20003:a 19999:b 19995:a 19976:J 19924:) 19913:i 19909:v 19900:1 19897:+ 19894:i 19890:v 19869:1 19866:+ 19863:i 19859:v 19850:i 19846:v 19836:( 19831:/ 19824:n 19814:V 19802:V 19792:V 19784:n 19757:. 19752:} 19745:2 19741:V 19734:) 19729:2 19725:v 19721:, 19716:1 19712:v 19708:( 19700:1 19696:v 19687:2 19683:v 19674:2 19670:v 19661:1 19657:v 19651:{ 19644:/ 19639:V 19633:V 19627:V 19621:V 19601:n 19593:V 19583:n 19566:V 19561:n 19543:n 19540:( 19528:V 19516:V 19492:1 19488:v 19479:2 19475:v 19468:= 19463:2 19459:v 19450:1 19446:v 19421:2 19417:v 19408:1 19404:v 19381:2 19377:v 19368:1 19364:v 19341:. 19336:} 19329:2 19325:V 19318:) 19313:2 19309:v 19305:, 19300:1 19296:v 19292:( 19284:1 19280:v 19271:2 19267:v 19263:+ 19258:2 19254:v 19245:1 19241:v 19235:{ 19228:/ 19223:V 19217:V 19211:V 19205:V 19194:V 19177:. 19174:} 19171:V 19165:v 19159:v 19153:v 19150:{ 19145:/ 19140:V 19134:V 19128:V 19122:V 19102:V 19096:V 19085:V 18928:. 18925:) 18920:m 18917:+ 18914:k 18910:x 18906:, 18900:, 18895:1 18892:+ 18889:k 18885:x 18881:( 18878:g 18875:) 18870:k 18866:x 18862:, 18856:, 18851:1 18847:x 18843:( 18840:f 18837:= 18834:) 18829:m 18826:+ 18823:k 18819:x 18815:, 18809:, 18804:1 18800:x 18796:( 18793:) 18790:g 18784:f 18781:( 18761:K 18741:V 18721:) 18716:m 18712:x 18708:, 18702:, 18697:1 18693:x 18689:( 18686:g 18666:) 18661:k 18657:x 18653:, 18647:, 18642:1 18638:x 18634:( 18631:f 18496:2 18490:2 18466:1 18458:) 18452:) 18448:x 18444:( 18439:n 18424:) 18420:x 18416:( 18411:2 18401:) 18397:x 18393:( 18388:1 18374:n 18370:x 18357:2 18353:x 18345:1 18341:x 18334:( 18305:A 18282:) 18276:n 18272:x 18268:, 18262:, 18257:1 18253:x 18248:( 18244:= 18240:x 18217:1 18211:d 18189:i 18141:n 18119:n 18116:, 18110:, 18107:1 18104:= 18101:i 18085:d 18081:j 18076:x 18065:3 18061:j 18056:x 18048:2 18044:j 18039:x 18031:d 18027:j 18018:3 18014:j 18008:2 18004:j 18000:i 17996:a 17990:n 17985:1 17982:= 17977:d 17973:j 17959:n 17954:1 17951:= 17946:3 17942:j 17931:n 17926:1 17923:= 17918:2 17914:j 17905:= 17902:) 17897:n 17893:x 17889:, 17883:, 17878:1 17874:x 17870:( 17865:i 17838:1 17832:n 17827:P 17817:1 17811:n 17806:P 17782:n 17778:K 17769:n 17765:K 17739:d 17732:) 17726:n 17722:K 17718:( 17712:A 17688:K 17668:) 17661:d 17657:i 17648:2 17644:i 17638:1 17634:i 17629:a 17625:( 17605:n 17593:n 17587:n 17567:d 17547:) 17540:d 17536:i 17527:2 17523:i 17517:1 17513:i 17508:a 17504:( 17501:= 17498:A 17474:K 17454:A 17430:1 17424:n 17419:P 17395:n 17375:A 17327:A 17275:A 17253:K 17225:1 17219:n 17214:P 17204:1 17198:n 17193:P 17188:: 17161:n 17157:K 17148:n 17144:K 17113:K 17090:A 17055:) 17052:f 17049:( 17039:A 17025:A 17010:) 17007:x 17004:( 17001:f 16997:/ 16993:] 16990:x 16987:[ 16984:A 16978:A 16973:R 16965:A 16954:R 16944:B 16940:A 16934:B 16928:B 16922:f 16907:) 16904:x 16901:( 16898:f 16894:/ 16890:] 16887:x 16884:[ 16881:B 16875:B 16870:R 16862:A 16851:R 16841:f 16836:) 16834:x 16832:( 16830:f 16826:R 16822:A 16808:R 16802:B 16796:A 16779:. 16776:] 16773:y 16770:, 16767:x 16764:[ 16761:R 16755:] 16752:y 16749:[ 16746:R 16741:R 16733:] 16730:x 16727:[ 16724:R 16704:. 16701:) 16696:2 16692:b 16683:1 16679:b 16675:( 16669:) 16664:2 16660:a 16651:1 16647:a 16643:( 16640:= 16637:) 16632:2 16628:b 16619:2 16615:a 16611:( 16605:) 16600:1 16596:b 16587:1 16583:a 16579:( 16568:R 16553:B 16548:R 16540:A 16527:R 16520:B 16514:A 16508:R 16502:R 16474:Z 16471:n 16469:/ 16467:Z 16463:Z 16460:n 16458:/ 16456:Z 16449:Z 16446:n 16444:/ 16442:Z 16436:Z 16432:Z 16428:n 16422:n 16407:N 16402:R 16392:2 16388:M 16381:N 16376:R 16366:1 16362:M 16337:2 16333:M 16324:1 16320:M 16306:R 16285:N 16280:R 16272:M 16259:M 16240:I 16236:N 16213:n 16208:j 16205:i 16201:a 16178:J 16174:N 16162:j 16147:N 16141:n 16119:I 16115:N 16106:J 16102:N 16079:N 16074:J 16068:j 16060:= 16055:J 16051:N 16025:) 16019:I 16015:N 16006:J 16002:N 15997:( 15987:= 15984:N 15979:R 15971:M 15947:, 15944:R 15936:j 15933:i 15929:a 15924:, 15921:0 15918:= 15913:i 15909:m 15903:i 15900:j 15896:a 15890:J 15884:j 15859:I 15853:i 15850:, 15847:M 15839:i 15835:m 15823:M 15817:R 15796:. 15793:M 15790:n 15786:/ 15782:M 15779:= 15775:Z 15771:n 15767:/ 15762:Z 15755:Z 15746:M 15735:Z 15732:n 15730:/ 15728:Z 15722:Z 15716:Z 15713:n 15711:/ 15709:Z 15692:W 15686:V 15673:W 15667:V 15652:W 15646:V 15627:R 15625:, 15623:R 15609:B 15604:R 15596:A 15574:b 15571:r 15565:r 15562:b 15540:r 15537:a 15531:a 15528:r 15518:R 15516:, 15514:R 15510:B 15506:A 15502:R 15495:T 15493:, 15491:S 15477:B 15472:R 15464:A 15454:T 15452:, 15450:R 15446:B 15442:R 15440:, 15438:S 15434:A 15429:. 15415:) 15412:s 15409:b 15406:( 15400:a 15394:s 15391:) 15388:b 15382:a 15379:( 15367:S 15353:B 15348:R 15340:A 15330:S 15328:, 15326:R 15322:B 15317:. 15303:b 15297:) 15294:a 15291:s 15288:( 15282:) 15279:b 15273:a 15270:( 15267:s 15255:S 15241:B 15236:R 15228:A 15218:R 15216:, 15214:S 15210:A 15192:B 15187:R 15179:A 15154:B 15148:b 15126:A 15120:a 15100:) 15097:b 15094:, 15091:a 15088:( 15085:q 15082:= 15079:) 15076:b 15070:a 15067:( 15059:q 15037:G 15031:B 15025:A 15022:: 15014:q 14986:. 14983:) 14980:b 14977:r 14974:, 14971:a 14968:( 14965:q 14962:= 14955:) 14952:b 14949:, 14946:r 14943:a 14940:( 14937:q 14930:, 14927:) 14922:2 14918:b 14914:, 14911:a 14908:( 14905:q 14902:+ 14899:) 14894:1 14890:b 14886:, 14883:a 14880:( 14877:q 14874:= 14867:) 14862:2 14858:b 14854:+ 14849:1 14845:b 14841:, 14838:a 14835:( 14832:q 14825:, 14822:) 14819:b 14816:, 14811:2 14807:a 14803:( 14800:q 14797:+ 14794:) 14791:b 14788:, 14783:1 14779:a 14775:( 14772:q 14769:= 14762:) 14759:b 14756:, 14751:2 14747:a 14743:+ 14738:1 14734:a 14730:( 14727:q 14703:G 14697:B 14691:A 14688:: 14685:q 14675:G 14655:. 14652:) 14649:b 14646:r 14643:, 14640:a 14637:( 14631:) 14628:b 14625:, 14622:r 14619:a 14616:( 14606:, 14603:) 14598:2 14594:b 14590:+ 14585:1 14581:b 14577:, 14574:a 14571:( 14565:) 14560:2 14556:b 14552:, 14549:a 14546:( 14543:+ 14540:) 14535:1 14531:b 14527:, 14524:a 14521:( 14511:, 14508:) 14505:b 14502:, 14497:2 14493:a 14489:+ 14484:1 14480:a 14476:( 14470:) 14467:b 14464:, 14459:2 14455:a 14451:( 14448:+ 14445:) 14442:b 14439:, 14434:1 14430:a 14426:( 14416:: 14413:R 14407:r 14399:, 14396:B 14388:2 14384:b 14380:, 14375:1 14371:b 14367:, 14364:b 14358:, 14355:A 14347:2 14343:a 14339:, 14334:1 14330:a 14326:, 14323:a 14295:) 14292:B 14286:A 14283:( 14280:F 14260:B 14254:A 14230:) 14227:B 14221:A 14218:( 14215:F 14195:G 14191:/ 14187:) 14184:B 14178:A 14175:( 14172:F 14166:B 14161:R 14153:A 14143:B 14139:A 14135:R 14131:B 14127:R 14123:A 14069:f 14066:= 14041:B 14036:R 14028:A 14017:f 14000:B 13994:A 13950:B 13944:A 13928:φ 13907:) 13904:b 13901:r 13898:, 13895:a 13892:( 13886:= 13879:) 13876:b 13873:, 13870:r 13867:a 13864:( 13854:) 13847:b 13843:, 13840:a 13837:( 13831:+ 13828:) 13825:b 13822:, 13819:a 13816:( 13810:= 13803:) 13796:b 13792:+ 13789:b 13786:, 13783:a 13780:( 13770:) 13767:b 13764:, 13757:a 13753:( 13747:+ 13744:) 13741:b 13738:, 13735:a 13732:( 13726:= 13719:) 13716:b 13713:, 13706:a 13702:+ 13699:a 13696:( 13665:b 13659:a 13653:) 13650:b 13647:, 13644:a 13641:( 13621:B 13616:R 13608:A 13602:B 13596:A 13593:: 13572:R 13566:R 13551:) 13548:b 13545:r 13542:, 13539:a 13536:( 13530:) 13527:b 13524:, 13521:r 13518:a 13515:( 13504:R 13498:B 13492:R 13486:A 13469:R 13463:G 13455:R 13438:) 13435:B 13429:A 13426:( 13423:F 13403:, 13400:G 13396:/ 13392:) 13389:B 13383:A 13380:( 13377:F 13371:B 13366:R 13358:A 13347:R 13333:B 13327:A 13291:. 13288:) 13285:) 13282:W 13279:, 13276:V 13273:( 13269:m 13266:o 13263:H 13259:, 13256:U 13253:( 13249:m 13246:o 13243:H 13236:) 13233:W 13230:, 13227:V 13221:U 13218:( 13214:m 13211:o 13208:H 13192:W 13186:V 13180:U 13171:V 13165:U 13150:} 13145:j 13141:v 13137:{ 13134:, 13131:} 13126:i 13122:u 13118:{ 13098:V 13092:U 13072:} 13067:j 13063:v 13054:i 13050:u 13046:{ 13026:, 13023:) 13020:V 13017:( 13008:) 13005:U 13002:( 12993:= 12990:) 12987:V 12981:U 12978:( 12943:. 12940:) 12935:i 12931:u 12927:( 12924:F 12911:i 12907:u 12901:i 12890:F 12883:V 12871:U 12864:) 12861:V 12858:, 12855:U 12852:( 12848:m 12845:o 12842:H 12835:{ 12809:} 12799:i 12795:u 12791:{ 12771:} 12766:i 12762:u 12758:{ 12736:. 12733:v 12730:) 12727:u 12724:( 12721:f 12718:= 12715:) 12712:u 12709:( 12706:) 12703:v 12697:f 12694:( 12672:U 12650:V 12638:U 12631:v 12625:f 12605:, 12602:) 12599:V 12596:, 12593:U 12590:( 12586:m 12583:o 12580:H 12573:V 12561:U 12550:) 12548:V 12546:, 12544:U 12537:V 12531:U 12525:K 12513:U 12503:K 12497:V 12491:U 12466:) 12463:V 12460:( 12456:d 12453:n 12450:E 12437:) 12435:u 12414:) 12411:V 12408:( 12404:d 12401:n 12398:E 12375:) 12372:V 12369:( 12364:1 12359:1 12355:T 12334:) 12331:V 12328:( 12324:d 12321:n 12318:E 12306:u 12289:. 12286:a 12280:b 12277:, 12274:x 12268:= 12265:) 12262:x 12259:( 12256:) 12253:b 12247:a 12244:( 12224:) 12221:V 12218:( 12214:d 12211:n 12208:E 12201:) 12198:V 12195:( 12190:1 12185:1 12181:T 12158:. 12152:) 12149:b 12146:( 12137:u 12133:, 12130:a 12124:= 12118:b 12115:, 12112:) 12109:a 12106:( 12103:u 12072:V 12065:V 12052:u 12032:) 12023:V 12019:( 12014:d 12011:n 12008:E 11995:u 11974:, 11971:) 11968:b 11965:( 11956:u 11949:a 11943:b 11937:) 11934:a 11931:( 11928:u 11925:= 11922:) 11919:b 11913:a 11910:( 11907:u 11885:) 11882:V 11879:( 11875:d 11872:n 11869:E 11862:u 11838:1 11835:= 11832:s 11829:= 11826:r 11804:) 11801:V 11798:( 11794:d 11791:n 11788:E 11764:) 11761:V 11758:( 11753:r 11748:s 11744:T 11701:i 11697:v 11674:V 11650:n 11646:v 11642:, 11636:, 11631:1 11627:v 11592:i 11588:v 11579:i 11575:v 11566:i 11542:V 11535:V 11529:K 11523:{ 11493:V 11464:V 11443:V 11423:. 11420:) 11417:V 11414:( 11409:1 11403:r 11398:1 11392:s 11388:T 11381:) 11378:V 11375:( 11370:r 11365:s 11361:T 11344:s 11340:r 11323:) 11320:s 11317:, 11314:r 11311:( 11287:. 11284:) 11281:v 11278:( 11275:f 11269:f 11263:v 11243:K 11231:V 11224:V 11179:. 11161:U 11151:V 11147:= 11126:) 11122:U 11116:V 11113:( 11087:V 11068:U 11064:= 11036:) 11032:V 11026:U 11022:( 10992:V 10969:) 10966:0 10963:, 10960:1 10957:( 10946:V 10918:U 10900:U 10883:. 10876:n 10873:+ 10870:m 10866:i 10857:3 10854:+ 10851:m 10847:i 10841:2 10838:+ 10835:m 10831:i 10825:1 10822:+ 10819:m 10815:i 10810:G 10802:m 10798:i 10789:2 10785:i 10779:1 10775:i 10770:F 10766:= 10759:n 10756:+ 10753:m 10749:i 10740:2 10736:i 10730:1 10726:i 10721:) 10717:G 10711:F 10708:( 10684:0 10679:n 10675:T 10668:G 10644:0 10639:m 10635:T 10628:F 10617:n 10611:m 10601:G 10595:F 10568:) 10565:V 10562:( 10557:r 10552:s 10548:T 10521:V 10505:V 10499:V 10482:. 10477:1 10473:f 10461:1 10457:v 10448:1 10444:v 10440:= 10437:) 10429:1 10425:v 10421:( 10415:) 10410:1 10406:f 10397:1 10393:v 10389:( 10367:i 10363:f 10351:V 10334:i 10330:v 10318:V 10301:. 10298:) 10295:V 10292:( 10283:r 10279:+ 10276:r 10267:s 10263:+ 10260:s 10256:T 10249:) 10246:V 10243:( 10234:r 10224:s 10219:T 10213:K 10205:) 10202:V 10199:( 10194:r 10189:s 10185:T 10166:K 10160:V 10154:f 10126:V 10105:. 10100:s 10092:) 10083:V 10079:( 10069:r 10062:V 10058:= 10053:s 10037:V 10018:V 10005:r 9995:V 9983:V 9976:= 9973:) 9970:V 9967:( 9962:r 9957:s 9953:T 9941:V 9923:) 9920:s 9917:, 9914:r 9911:( 9900:s 9894:r 9856:B 9844:A 9835:= 9832:B 9826:A 9784:. 9779:] 9771:2 9768:, 9765:2 9761:b 9755:2 9752:, 9749:2 9745:a 9737:1 9734:, 9731:2 9727:b 9721:2 9718:, 9715:2 9711:a 9703:2 9700:, 9697:2 9693:b 9687:1 9684:, 9681:2 9677:a 9669:1 9666:, 9663:2 9659:b 9653:1 9650:, 9647:2 9643:a 9633:2 9630:, 9627:1 9623:b 9617:2 9614:, 9611:2 9607:a 9599:1 9596:, 9593:1 9589:b 9583:2 9580:, 9577:2 9573:a 9565:2 9562:, 9559:1 9555:b 9549:1 9546:, 9543:2 9539:a 9531:1 9528:, 9525:1 9521:b 9515:1 9512:, 9509:2 9505:a 9495:2 9492:, 9489:2 9485:b 9479:2 9476:, 9473:1 9469:a 9461:1 9458:, 9455:2 9451:b 9445:2 9442:, 9439:1 9435:a 9427:2 9424:, 9421:2 9417:b 9411:1 9408:, 9405:1 9401:a 9393:1 9390:, 9387:2 9383:b 9377:1 9374:, 9371:1 9367:a 9357:2 9354:, 9351:1 9347:b 9341:2 9338:, 9335:1 9331:a 9323:1 9320:, 9317:1 9313:b 9307:2 9304:, 9301:1 9297:a 9289:2 9286:, 9283:1 9279:b 9273:1 9270:, 9267:1 9263:a 9255:1 9252:, 9249:1 9245:b 9239:1 9236:, 9233:1 9229:a 9222:[ 9217:= 9212:] 9204:] 9196:2 9193:, 9190:2 9186:b 9178:1 9175:, 9172:2 9168:b 9158:2 9155:, 9152:1 9148:b 9140:1 9137:, 9134:1 9130:b 9123:[ 9116:2 9113:, 9110:2 9106:a 9098:] 9090:2 9087:, 9084:2 9080:b 9072:1 9069:, 9066:2 9062:b 9052:2 9049:, 9046:1 9042:b 9034:1 9031:, 9028:1 9024:b 9017:[ 9010:1 9007:, 9004:2 9000:a 8990:] 8982:2 8979:, 8976:2 8972:b 8964:1 8961:, 8958:2 8954:b 8944:2 8941:, 8938:1 8934:b 8926:1 8923:, 8920:1 8916:b 8909:[ 8902:2 8899:, 8896:1 8892:a 8884:] 8876:2 8873:, 8870:2 8866:b 8858:1 8855:, 8852:2 8848:b 8838:2 8835:, 8832:1 8828:b 8820:1 8817:, 8814:1 8810:b 8803:[ 8796:1 8793:, 8790:1 8786:a 8779:[ 8774:= 8769:] 8761:2 8758:, 8755:2 8751:b 8743:1 8740:, 8737:2 8733:b 8723:2 8720:, 8717:1 8713:b 8705:1 8702:, 8699:1 8695:b 8688:[ 8678:] 8670:2 8667:, 8664:2 8660:a 8652:1 8649:, 8646:2 8642:a 8632:2 8629:, 8626:1 8622:a 8614:1 8611:, 8608:1 8604:a 8597:[ 8575:, 8570:] 8562:2 8559:, 8556:2 8552:b 8544:1 8541:, 8538:2 8534:b 8524:2 8521:, 8518:1 8514:b 8506:1 8503:, 8500:1 8496:b 8489:[ 8484:= 8481:B 8477:, 8472:] 8464:2 8461:, 8458:2 8454:a 8446:1 8443:, 8440:2 8436:a 8426:2 8423:, 8420:1 8416:a 8408:1 8405:, 8402:1 8398:a 8391:[ 8386:= 8383:A 8372:g 8366:f 8360:Y 8354:W 8350:X 8346:V 8327:g 8321:f 8301:w 8295:v 8280:g 8274:f 8242:g 8238:f 8206:. 8203:) 8200:W 8194:f 8191:( 8185:) 8182:g 8176:V 8173:( 8170:= 8167:) 8164:g 8158:U 8155:( 8149:) 8146:Z 8140:f 8137:( 8134:= 8131:g 8125:f 8099:. 8096:) 8093:w 8090:( 8087:g 8081:) 8078:u 8075:( 8072:f 8069:= 8066:) 8063:w 8057:u 8054:( 8051:) 8048:g 8042:f 8039:( 8013:Z 8007:V 8001:W 7995:U 7992:: 7989:g 7983:f 7958:Z 7952:W 7949:: 7946:g 7924:V 7918:U 7915:: 7912:f 7889:f 7883:W 7860:. 7857:w 7851:) 7848:u 7845:( 7842:f 7839:= 7836:) 7833:w 7827:u 7824:( 7821:) 7818:W 7812:f 7809:( 7783:W 7777:V 7771:W 7765:U 7762:: 7759:W 7753:f 7737:W 7721:V 7715:U 7712:: 7709:f 7696:. 7668:n 7661:V 7652:n 7645:V 7617:) 7614:n 7611:( 7608:s 7604:x 7589:) 7586:1 7583:( 7580:s 7576:x 7567:n 7563:x 7548:1 7544:x 7530:n 7526:s 7519:V 7515:n 7499:n 7492:V 7455:V 7449:V 7429:x 7423:y 7417:y 7411:x 7386:v 7380:w 7374:w 7368:v 7344:W 7341:= 7338:V 7311:v 7305:w 7283:w 7277:v 7254:, 7251:V 7245:W 7239:W 7233:V 7206:W 7186:V 7153:) 7150:w 7144:v 7141:( 7135:u 7113:w 7107:) 7104:v 7098:u 7095:( 7072:, 7069:) 7066:W 7060:V 7057:( 7051:U 7045:W 7039:) 7036:V 7030:U 7027:( 7002:W 6999:, 6996:V 6993:, 6990:U 6965:W 6959:V 6944:W 6938:V 6924:W 6918:V 6903:W 6897:V 6882:W 6876:V 6846:Y 6824:X 6800:g 6794:f 6781:) 6778:g 6775:, 6772:f 6769:( 6760:Z 6747:Y 6741:X 6711:T 6705:S 6700:C 6677:} 6673:Y 6667:g 6664:, 6661:X 6655:f 6652:: 6649:g 6643:f 6639:{ 6626:Z 6604:T 6599:C 6591:Y 6569:S 6564:C 6556:X 6534:) 6531:t 6528:( 6525:g 6522:) 6519:s 6516:( 6513:f 6507:) 6504:t 6501:, 6498:s 6495:( 6471:T 6465:S 6460:C 6452:g 6446:f 6422:T 6417:C 6409:g 6385:S 6380:C 6372:f 6352:T 6332:S 6310:) 6307:s 6304:( 6301:f 6298:c 6292:s 6270:f 6267:c 6247:) 6244:s 6241:( 6238:g 6235:+ 6232:) 6229:s 6226:( 6223:f 6217:s 6197:g 6194:+ 6191:f 6171:S 6149:S 6144:C 6117:Y 6111:X 6105:) 6102:y 6099:, 6096:x 6093:( 6071:) 6068:y 6065:, 6062:x 6059:( 6056:T 6048:y 6042:x 6000:T 5976:n 5971:C 5963:Y 5939:m 5934:C 5926:X 5901:m 5898:, 5892:, 5889:1 5886:= 5883:i 5878:n 5875:, 5869:, 5866:1 5863:= 5860:j 5852:) 5846:j 5842:y 5836:i 5832:x 5827:( 5804:) 5799:) 5793:n 5789:y 5785:, 5779:, 5774:1 5770:y 5765:( 5761:, 5757:) 5751:m 5747:x 5743:, 5737:, 5732:1 5728:x 5723:( 5718:( 5714:= 5711:) 5708:y 5705:, 5702:x 5699:( 5677:n 5674:m 5669:C 5659:n 5654:C 5644:m 5639:C 5634:: 5631:T 5609:n 5606:m 5601:C 5593:Z 5573:n 5553:m 5528:} 5524:n 5518:j 5512:1 5509:, 5506:m 5500:i 5494:1 5491:: 5487:) 5481:j 5477:y 5473:, 5468:i 5464:x 5459:( 5455:T 5451:{ 5428:Y 5404:n 5400:y 5396:, 5390:, 5385:1 5381:y 5360:X 5338:m 5334:x 5330:, 5324:, 5319:1 5315:x 5294:T 5274:Y 5254:X 5242:. 5228:0 5204:i 5200:x 5177:n 5173:y 5169:, 5163:, 5158:1 5154:y 5128:0 5104:i 5100:y 5073:n 5069:x 5065:, 5059:, 5054:1 5050:x 5023:0 5020:= 5016:) 5010:i 5006:y 5002:, 4997:i 4993:x 4988:( 4984:T 4979:n 4974:1 4971:= 4968:i 4941:Y 4933:n 4929:y 4925:, 4919:, 4914:1 4910:y 4889:X 4881:n 4877:x 4873:, 4867:, 4862:1 4858:x 4837:n 4815:T 4794:Y 4774:X 4752:Z 4749:= 4746:) 4743:Y 4737:X 4734:( 4731:T 4705:Z 4685:T 4665:Y 4645:X 4625:) 4622:T 4619:, 4616:Z 4613:( 4593:Z 4587:Y 4581:X 4578:: 4575:T 4555:Z 4533:Y 4530:, 4527:X 4484:W 4478:w 4456:V 4450:v 4430:) 4427:w 4421:v 4418:( 4409:h 4403:= 4400:) 4397:w 4394:, 4391:v 4388:( 4385:h 4351:h 4345:= 4342:h 4320:Z 4314:W 4308:V 4305:: 4296:h 4265:Z 4259:W 4253:V 4250:: 4247:h 4223:W 4217:V 4195:W 4189:V 4169:w 4163:v 4157:) 4154:w 4151:, 4148:v 4145:( 4142:: 4115:W 4109:V 4097:W 4093:V 4050:φ 4043:h 4039:~ 4033:h 4020:h 4016:~ 4008:h 3968:w 3962:v 3940:) 3937:w 3934:, 3931:v 3928:( 3905:, 3902:R 3898:/ 3894:L 3891:= 3888:W 3882:V 3850:F 3844:s 3822:W 3814:2 3810:w 3806:, 3801:1 3797:w 3793:, 3790:w 3768:V 3760:2 3756:v 3752:, 3747:1 3743:v 3739:, 3736:v 3707:, 3704:) 3701:w 3698:, 3695:v 3692:( 3689:s 3679:) 3676:w 3673:s 3670:, 3667:v 3664:( 3657:, 3654:) 3651:w 3648:, 3645:v 3642:( 3639:s 3629:) 3626:w 3623:, 3620:v 3617:s 3614:( 3607:, 3604:) 3599:2 3595:w 3591:, 3588:v 3585:( 3579:) 3574:1 3570:w 3566:, 3563:v 3560:( 3550:) 3545:2 3541:w 3537:+ 3532:1 3528:w 3524:, 3521:v 3518:( 3511:, 3508:) 3505:w 3502:, 3497:2 3493:v 3489:( 3483:) 3480:w 3477:, 3472:1 3468:v 3464:( 3454:) 3451:w 3448:, 3443:2 3439:v 3435:+ 3430:1 3426:v 3422:( 3401:R 3397:L 3389:R 3382:0 3368:) 3365:w 3362:, 3359:v 3356:( 3346:1 3332:) 3329:w 3326:, 3323:v 3320:( 3300:F 3294:W 3288:V 3263:W 3257:w 3235:V 3229:v 3209:) 3206:w 3203:, 3200:v 3197:( 3184:L 3166:W 3160:V 3147:L 3139:F 3129:W 3125:V 3081:y 3059:x 3035:y 3029:x 2998:W 2992:V 2972:W 2966:V 2946:y 2940:x 2934:) 2931:y 2928:, 2925:x 2922:( 2919:: 2890:W 2886:B 2861:V 2857:B 2836:) 2833:y 2830:, 2827:x 2824:( 2821:B 2801:) 2798:w 2795:, 2792:v 2789:( 2786:B 2760:. 2757:w 2751:v 2745:w 2741:y 2735:v 2731:x 2723:W 2719:B 2712:w 2700:V 2696:B 2689:v 2681:= 2669:) 2664:w 2658:w 2654:y 2646:W 2642:B 2635:w 2625:( 2615:) 2610:v 2604:v 2600:x 2592:V 2588:B 2581:v 2571:( 2566:= 2559:y 2553:x 2529:W 2523:y 2503:V 2497:x 2466:W 2462:B 2453:V 2449:B 2426:B 2400:W 2394:V 2372:) 2369:F 2366:; 2363:W 2360:, 2357:V 2354:( 2325:) 2322:w 2316:v 2313:( 2310:) 2307:w 2304:, 2301:v 2298:( 2295:B 2288:W 2284:B 2277:w 2265:V 2261:B 2254:v 2246:= 2243:B 2223:w 2217:v 2197:B 2175:. 2170:w 2166:y 2159:v 2155:x 2151:= 2148:) 2141:w 2137:, 2130:v 2126:( 2123:) 2120:w 2114:v 2111:( 2101:w 2096:y 2086:v 2081:x 2073:W 2069:B 2058:w 2045:V 2041:B 2030:v 2018:) 2015:y 2012:, 2009:x 2006:( 2003:) 2000:w 1994:v 1991:( 1971:F 1965:W 1959:V 1956:: 1953:w 1947:v 1925:W 1921:B 1912:V 1908:B 1887:w 1881:v 1857:W 1853:B 1844:V 1840:B 1817:W 1811:V 1805:) 1802:y 1799:, 1796:x 1793:( 1773:B 1751:) 1748:w 1745:, 1742:v 1739:( 1736:B 1730:w 1726:y 1720:v 1716:x 1708:W 1704:B 1697:w 1685:V 1681:B 1674:v 1666:= 1663:) 1660:y 1657:, 1654:x 1651:( 1648:B 1628:B 1606:w 1602:y 1579:v 1575:x 1554:, 1551:w 1545:w 1541:y 1533:W 1529:B 1522:w 1514:= 1511:y 1501:v 1495:v 1491:x 1483:V 1479:B 1472:v 1464:= 1461:x 1439:W 1435:B 1412:V 1408:B 1387:y 1367:x 1345:F 1339:W 1333:V 1330:: 1327:B 1305:W 1299:V 1293:) 1290:y 1287:, 1284:x 1281:( 1257:W 1253:B 1244:V 1240:B 1217:W 1211:V 1187:W 1181:V 1154:W 1150:B 1125:V 1121:B 1094:W 1088:V 1066:} 1061:W 1057:B 1050:w 1047:, 1042:V 1038:B 1031:v 1025:w 1019:v 1016:{ 991:w 985:v 973:0 957:W 953:B 944:V 940:B 929:1 915:) 912:w 909:, 906:v 903:( 883:W 877:V 863:F 847:W 843:B 834:V 830:B 802:W 796:V 772:W 768:B 761:w 737:V 733:B 726:v 706:w 700:v 690:W 686:V 672:W 666:V 636:W 632:B 607:V 603:B 589:F 578:W 574:V 478:Z 472:W 466:V 453:Z 439:W 433:V 420:W 416:V 402:W 396:V 385:W 379:V 360:W 354:V 334:W 328:V 293:W 287:V 277:w 273:v 255:w 249:v 224:w 218:v 196:W 190:V 170:W 164:w 161:, 158:V 152:v 146:, 143:) 140:w 137:, 134:v 131:( 111:W 105:V 99:W 93:V 75:W 69:V 51:W 45:V 27:.

Index

Tensor product of modules
Tensor product (disambiguation)
mathematics
vector spaces
field
bilinear map
tensor
span
bases
linear map
Universal property
general relativity
gravitational field
metric tensor
tensor field
vector field
space-time
manifold
cotangent space
up to
isomorphism
universal property
§ Universal property
objects
vector spaces
field
bases
functions
Cartesian product
pointwise operations

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.