Knowledge

Compact group

Source 📝

38: 3026: 3006: 3014: 4529: 5057: 4322: 1748:
was one of the influential results of twentieth century mathematics. The combination of the Peter–Weyl theorem and the Weyl character formula led Weyl to a complete classification of the representations of a connected compact Lie group; this theory is described in the next section.
373:
Thus, the classification of connected compact Lie groups can in principle be reduced to knowledge of the simply connected compact Lie groups together with information about their centers. (For information about the center, see the section below on fundamental group and center.)
4333: 1383:
In general, the center can be expressed in terms of the root lattice and the kernel of the exponential map for the maximal torus. The general method shows, for example, that the simply connected compact group corresponding to the exceptional root system
4883: 5434:
ranging over the dominant, analytically integral elements—forms an orthonormal set in the space of square integrable class functions. But by the Weyl character formula, the characters of the irreducible representations form a subset of the
3960:
the representations have been classified. In Weyl's analysis of the compact group case, however, the Weyl character formula is actually a crucial part of the classification itself. Specifically, in Weyl's analysis of the representations of
2449: 3965:, the hardest part of the theorem—showing that every dominant, analytically integral element is actually the highest weight of some representation—is proved in a totally different way from the usual Lie algebra construction using 4077: 4179: 3794: 2986: 1956: 1768:
are into a unitary group (of finite dimension) and the image will be a closed subgroup of the unitary group by compactness. Cartan's theorem states that Im(ρ) must itself be a Lie subgroup in the unitary group. If
2615: 3862: 2779: 357: 2131: 822:. These structures then play an essential role both in the classification of connected compact groups (described above) and in the representation theory of a fixed such group (described below). 543: 4742:. We focus on the most difficult part of the theorem, showing that every dominant, analytically integral element is the highest weight of some (finite-dimensional) irreducible representation. 3656: 493: 443: 3720: 2218: 4618:
each with multiplicity one. (The weights are the integers appearing in the exponents of the exponentials and the multiplicities are the coefficients of the exponentials.) Since there are
2883: 935: 4524:{\displaystyle \mathrm {X} \left({\begin{pmatrix}e^{i\theta }&0\\0&e^{-i\theta }\end{pmatrix}}\right)=e^{im\theta }+e^{i(m-2)\theta }+\cdots e^{-i(m-2)\theta }+e^{-im\theta }.} 2018: 1060: 4613: 3294: 711: 5462:'s. And by the Peter–Weyl theorem, the characters of the irreducible representations form an orthonormal basis for the space of square integrable class functions. If there were some 3425: 5169:
norm of the character is 1. Specifically, if there were any additional terms in the numerator, the Weyl integral formula would force the norm of the character to be greater than 1.
1354: 1259: 1227: 1163: 996: 859: 1195: 2472: 3451: 5682: 5569: 5538: 5507: 5460: 5412: 5382: 5335: 5248: 5197: 3251: 2667: 3590: 3342: 2265: 2045: 2301: 1817: 5052:{\displaystyle \mathrm {X} (e^{H})={\frac {\sum _{w\in W}\det(w)e^{i\langle w\cdot (\lambda +\rho ),H\rangle }}{\sum _{w\in W}\det(w)e^{i\langle w\cdot \rho ,H\rangle }}}} 4855: 3928: 3077: 2732: 2640: 1698: 808: 5589: 5480: 5432: 5355: 5308: 5219: 4833: 3538: 3386: 3217: 3173: 3153: 2842: 2660: 2559: 2519: 2321: 2241: 5677: 3558: 3492: 3475: 3362: 3241: 3193: 3121: 3097: 3051: 3000: 2372: 1821: 892: 2380: 2075: 5167: 5120: 2702: 2539: 2499: 2352: 2154: 1983: 1879: 1497: 1468: 1438: 1409: 1087: 1023: 962: 673: 4875: 4813: 3684: 4668: 4642: 2802: 5288: 5268: 5140: 5100: 5080: 4785: 4740: 4720: 4700: 4167: 4144: 4124: 4104: 3902: 3882: 2903: 2822: 1718: 1649: 1629: 1378: 1322: 1302: 1279: 775: 751: 731: 614:
is semisimple. Conversely, every complex semisimple Lie algebra has a compact real form isomorphic to the Lie algebra of a compact, simply connected Lie group.
5357:
is the highest weight of a representation; nevertheless, the expressions on the right-hand side of the character formula gives a well-defined set of functions
3565: 1324:. (The group SO(2) is an exception—the center is the whole group, even though most elements are not roots of the identity.) Thus, for example, the center of 4003: 4317:{\displaystyle \mathrm {X} \left({\begin{pmatrix}e^{i\theta }&0\\0&e^{-i\theta }\end{pmatrix}}\right)={\frac {\sin((m+1)\theta )}{\sin(\theta )}}.} 1604:, and Haar measure of a coset will be the reciprocal of the index. Therefore, integrals are often computable quite directly, a fact applied constantly in 3600:
is simply connected, the set of possible highest weights in the group sense is the same as the set of possible highest weights in the Lie algebra sense.
237:
this exhausts the list of examples (which already includes some redundancies). This classification is described in more detail in the next subsection.
115:
form a class of topological groups, and the compact Lie groups have a particularly well-developed theory. Basic examples of compact Lie groups include
4767:, which states that the characters of the irreducible representations form an orthonormal basis for the space of square integrable class functions on 1809: 3728: 369:: Every connected compact Lie group is the quotient by a finite central subgroup of a product of a simply connected compact Lie group and a torus. 2915: 4086:, the analytically integral elements are labeled by integers, so that the dominant, analytically integral elements are non-negative integers 3937:
The study of characters is an important part of the representation theory of compact groups. One crucial result, which is a corollary of the
1891: 825:
The root systems associated to the simple compact groups appearing in the classification of simply connected compact groups are as follows:
5122:
is half the sum of the positive roots. (The notation uses the convention of "real weights"; this convention requires an explicit factor of
4534:(If we use the formula for the sum of a finite geometric series on the above expression and simplify, we obtain the earlier expression.) 1808:
Certain simple examples of the representation theory of compact Lie groups can be worked out by hand, such as the representations of the
3956:
In the closely related representation theory of semisimple Lie algebras, the Weyl character formula is an additional result established
2567: 17: 3297: 1797: 781: 81:(when an element of the group is operated on, the result is also within the group). Compact groups are a natural generalization of 4670:. Thus, we recover much of the information about the representations that is usually obtained from the Lie algebra computation. 5544:(the set of characters of the irreducible representations) would be contained in a strictly larger orthonormal set (the set of 4538: 3561: 3517: 4764: 5782:
Peter, F.; Weyl, H. (1927), "Die VollstÀndigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe",
3803: 2737: 1728:
The representation theory of compact groups (not necessarily Lie groups and not necessarily connected) was founded by the
295: 3997:, but we here look at them from the group point of view. We take the maximal torus to be the set of matrices of the form 2083: 89:
and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to
503: 5939: 3617: 453: 403: 5957: 1700:
as an orthogonal direct sum of finite-dimensional subspaces of matrix entries for the irreducible representations of
3689: 3560:
are analytically integral in the sense described in the previous subsection. Every analytically integral element is
3250:
We now briefly describe the structures needed to formulate the theorem; more details can be found in the article on
2162: 1796:
The unknown part of the representation theory of compact groups is thereby, roughly speaking, thrown back onto the
1442:
is one of very few simple compact groups that are simultaneously simply connected and center free. (The others are
4170: 5632: 2847: 899: 1125:
It is important to know whether a connected compact Lie group is simply connected, and if not, to determine its
3994: 3487: 3123:
is one-dimensional. Nevertheless, the restriction decomposes as a direct sum of irreducible representations of
1988: 1813: 1030: 5142:
in the exponent.) Weyl's proof of the character formula is analytic in nature and hinges on the fact that the
4547: 3269: 678: 3395: 1304:
can easily be computed "by hand," and in most cases consists simply of whatever roots of the identity are in
3508:
every dominant, analytically integral element arises as the highest weight of an irreducible representation.
1327: 1232: 1200: 1136: 969: 832: 1777:, for the kernel of ρ smaller and smaller, of finite-dimensional unitary representations, which identifies 1168: 5337:
form an orthonormal family of class functions. We emphasize that we do not currently know that every such
4791:
With these tools in hand, we proceed with the proof. The first major step in the argument is to prove the
1284:
It is also important to know the center of a connected compact Lie group. The center of a classical group
5975: 2457: 591:. For each of these groups, the center is known explicitly. The classification is through the associated 3430: 1592:
Such a Haar measure is in many cases easy to compute; for example for orthogonal groups it was known to
602:
The classification of compact, simply connected Lie groups is the same as the classification of complex
3993:
We now consider the case of the compact group SU(2). The representations are often considered from the
3941:, is that the characters form an orthonormal basis for the set of square-integrable class functions in 90: 5547: 5516: 5485: 5438: 5390: 5360: 5313: 5226: 5175: 3516:
is then almost the same as for semisimple Lie algebras, with one notable exception: The concept of an
5985: 5600: 3571: 3323: 2246: 2026: 1543:
provides a large supply of examples of compact commutative groups. These are in duality with abelian
3949:, which gives an explicit formula for the character—or, rather, the restriction of the character to 3564:
in the Lie algebra sense, but not the other way around. (This phenomenon reflects that, in general,
2273: 5624: 4757: 145: 4838: 4678:
We now outline the proof of the theorem of the highest weight, following the original argument of
3911: 3060: 2707: 2623: 3018: 1786: 1753: 1658: 3001:
Lie algebra representation § Classifying finite-dimensional representations of Lie algebras
1130: 1120: 787: 5644: 4792: 3974: 3970: 3946: 3938: 3609: 2444:{\displaystyle \Gamma =\left\{H\in {\mathfrak {t}}\mid e^{2\pi H}=\operatorname {Id} \right\},} 1761: 1745: 1729: 1652: 1556: 1133:
to computing the fundamental group. The first approach applies to the classical compact groups
819: 603: 226: 5615:
The influence of the compact group theory on non-compact groups was formulated by Weyl in his
5574: 5465: 5417: 5340: 5293: 5204: 4818: 3523: 3371: 3202: 3158: 3138: 2827: 2645: 2544: 2504: 2306: 2226: 5659: 5599:
The topic of recovering a compact group from its representation theory is the subject of the
3543: 3460: 3347: 3226: 3178: 3106: 3082: 3036: 2357: 864: 448: 398: 183: 172: 94: 2054: 1281:. The second approach uses the root system and applies to all connected compact Lie groups. 5620: 5145: 5105: 2680: 2524: 2481: 2330: 2139: 1968: 1864: 1475: 1446: 1416: 1387: 1065: 1001: 940: 675:
and that is not contained in any larger subgroup of this type. A basic example is the case
651: 4860: 4798: 3669: 8: 5980: 4647: 4621: 3457:
than another if their difference can be expressed as a linear combination of elements of
1586: 1534: 610:
is a simply connected compact Lie group, then the complexification of the Lie algebra of
4750: 2784: 5604: 5273: 5253: 5125: 5085: 5065: 4770: 4725: 4705: 4685: 4152: 4129: 4109: 4089: 3887: 3867: 2888: 2807: 1703: 1634: 1614: 1540: 1363: 1307: 1287: 1264: 760: 736: 716: 250: 4072:{\displaystyle {\begin{pmatrix}e^{i\theta }&0\\0&e^{-i\theta }\end{pmatrix}}.} 5953: 5935: 1597: 1126: 86: 70: 1091:
The exceptional compact Lie groups correspond to the five exceptional root systems G
5791: 1858: 1737: 1582: 1472: 1443: 1412: 577: 570: 563: 556: 549: 382: 215: 208: 201: 194: 187: 137: 5199:
denote the function on the right-hand side of the character formula. We show that
5664: 5616: 2781:
and the kernel of the (scaled) exponential map is the set of numbers of the form
1526: 587:
are to avoid special isomorphisms among the various families for small values of
260: 230: 101: 5509:
would not be the character of a representation. Thus, the characters would be a
3505:
two irreducible representations with the same highest weight are isomorphic, and
2666:. This integrality condition is related to, but not identical to, the notion of 1773:
is not itself a Lie group, there must be a kernel to ρ. Further one can form an
5628: 5310:
ranges over the set of dominant, analytically integral elements, the functions
1774: 1574: 1544: 1522: 1508:
Amongst groups that are not Lie groups, and so do not carry the structure of a
596: 264: 234: 4082:
According to the example discussed above in the section on representations of
3300:. Specifically, the weights are the nonzero weights for the adjoint action of 1800:. This theory is rather rich in detail, but is qualitatively well understood. 5969: 5649: 3025: 2734:
of absolute value 1. The Lie algebra is the set of purely imaginary numbers,
1832: 1782: 1741: 1605: 1593: 623: 164: 78: 46: 5762: 4126:, there is a unique irreducible representation of SU(2) with highest weight 3789:{\displaystyle \mathrm {X} (x)=\operatorname {trace} (\Pi (x)),\quad x\in K} 5482:
that is not the highest weight of a representation, then the corresponding
4679: 3966: 1733: 1601: 1570: 1566: 1562: 1530: 780:
The maximal torus in a compact group plays a role analogous to that of the
362:
Meanwhile, for connected compact Lie groups, we have the following result:
120: 82: 31: 5769:, ActualitĂ©s Scientifiques et Industrielles, vol. 869, Paris: Hermann 4644:
weights, each with multiplicity 1, the dimension of the representation is
3247:
is to classify the irreducible representations in terms of their weights.
2981:{\displaystyle \rho (e^{i\theta })=e^{ik\theta },\quad k\in \mathbb {Z} .} 2844:
takes integer values on all such numbers if and only if it is of the form
5934:, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, 5654: 3313: 1803: 811: 784:
in a complex semisimple Lie algebra. In particular, once a maximal torus
627: 592: 127: 54: 5932:
Lie Groups, Lie Algebras, and Representations An Elementary Introduction
5795: 3502:
the highest weight is always a dominant, analytically integral element,
1951:{\displaystyle \rho :T\rightarrow GL(1;\mathbb {C} )=\mathbb {C} ^{*}.} 1820:. We focus here on the general theory. See also the parallel theory of 815: 498: 153: 3029:
Black dots indicate the dominant integral elements for the group SU(3)
37: 5627:, and the representation theory of such groups, developed largely by 112: 1756:
gives a survey of the whole representation theory of compact groups
777:
belongs to a maximal torus and that all maximal tori are conjugate.
5672: 5635:
to such a subgroup, and also the model of Weyl's character theory.
4327:
We can also write the character as sum of exponentials as follows:
4169:
is encoded in its character. Now, the Weyl character formula says,
4149:
Much information about the representation corresponding to a given
3131:
may occur more than once.) Now, each irreducible representation of
1509: 595:(for a fixed maximal torus), which in turn are classified by their 381:
is a product of finitely many compact, connected, simply-connected
74: 1565:, which will be invariant by both left and right translation (the 30:
This article is about mathematics. For astronomy of galaxies, see
1596:, and in the Lie group cases can always be given by an invariant 3491:, which is closely related to the analogous theorem classifying 3175:
occurs at least once in the decomposition of the restriction of
5767:
L'intégration dans les groupes topologiques et ses applications
5683:
Weights in the representation theory of semisimple Lie algebras
2610:{\displaystyle \lambda (H)\in \mathbb {Z} ,\quad H\in \Gamma ,} 42: 5678:
Classifying finite-dimensional representations of Lie algebras
4541:, we can read off that the weights of the representation are 3013: 1827:
Throughout this section, we fix a connected compact Lie group
1360:
th roots of unity times the identity, a cyclic group of order
377:
Finally, every compact, connected, simply-connected Lie group
5540:'s. But then we have an impossible situation: an orthonormal 5290:. Then using the Weyl integral formula, one can show that as 3009:
Example of the weights of a representation of the group SU(3)
393:
each of which is isomorphic to exactly one of the following:
3005: 4537:
From this last expression and the standard formula for the
3800:
This function is easily seen to be a class function, i.e.,
1793:
is found is another consequence of the Peter–Weyl theorem.
3053:
denote a finite-dimensional irreducible representation of
5591:
must actually be the highest weight of a representation.
5221:
is not known to be the highest weight of a representation
3981:
are realized inside the space of continuous functions on
3512:
The theorem of the highest weight for representations of
1785:
of compact Lie groups. Here the fact that in the limit a
632:
A key idea in the study of a connected compact Lie group
5925:, Graduate Texts in Mathematics, vol. 98, Springer 4539:
character in terms of the weights of the representation
3969:. In Weyl's approach, the construction is based on the 3953:—in terms of the highest weight of the representation. 4351: 4197: 4012: 3857:{\displaystyle \mathrm {X} (xyx^{-1})=\mathrm {X} (y)} 3480:
The irreducible finite-dimensional representations of
3021:" representation of SU(3), as used in particle physics 1804:
Representation theory of a connected compact Lie group
5610: 5577: 5550: 5519: 5488: 5468: 5441: 5420: 5393: 5363: 5343: 5316: 5296: 5276: 5256: 5229: 5207: 5178: 5148: 5128: 5108: 5088: 5068: 4886: 4863: 4841: 4821: 4815:
is an irreducible representation with highest weight
4801: 4773: 4728: 4708: 4688: 4650: 4624: 4550: 4336: 4182: 4155: 4132: 4112: 4092: 4006: 3914: 3890: 3870: 3806: 3731: 3692: 3672: 3620: 3574: 3546: 3526: 3463: 3433: 3398: 3374: 3350: 3326: 3272: 3229: 3205: 3181: 3161: 3141: 3109: 3085: 3063: 3039: 2918: 2891: 2850: 2830: 2810: 2787: 2774:{\displaystyle H=i\theta ,\,\theta \in \mathbb {R} ,} 2740: 2710: 2683: 2648: 2626: 2570: 2547: 2527: 2507: 2501:
in order to avoid such factors elsewhere.) Then for
2484: 2460: 2383: 2360: 2333: 2309: 2276: 2249: 2229: 2165: 2142: 2086: 2057: 2029: 2023:
To describe these representations concretely, we let
1991: 1971: 1894: 1867: 1760:. That is, by the Peter–Weyl theorem the irreducible 1706: 1661: 1637: 1617: 1478: 1449: 1419: 1390: 1366: 1330: 1310: 1290: 1267: 1235: 1203: 1171: 1139: 1068: 1033: 1004: 972: 943: 902: 867: 835: 790: 763: 739: 719: 681: 654: 648:
that is isomorphic to a product of several copies of
506: 456: 406: 298: 3499:
every irreducible representation has highest weight,
2478:. (We scale the exponential map here by a factor of 1600:. In the profinite case there are many subgroups of 352:{\displaystyle 1\to G_{0}\to G\to \pi _{0}(G)\to 1.} 3127:. (Note that a given irreducible representation of 2303:is not injective, not every such linear functional 2126:{\displaystyle h=e^{H},\quad H\in {\mathfrak {t}}.} 1533:are compact groups, a basic fact for the theory of 49:
is a compact Lie group with complex multiplication.
5583: 5563: 5532: 5501: 5474: 5454: 5426: 5406: 5376: 5349: 5329: 5302: 5282: 5262: 5242: 5213: 5191: 5161: 5134: 5114: 5094: 5074: 5051: 4869: 4849: 4827: 4807: 4779: 4734: 4714: 4694: 4662: 4636: 4607: 4523: 4316: 4161: 4138: 4118: 4098: 4071: 3922: 3896: 3876: 3856: 3788: 3714: 3678: 3650: 3584: 3552: 3532: 3469: 3445: 3419: 3380: 3356: 3336: 3288: 3235: 3211: 3187: 3167: 3147: 3115: 3091: 3071: 3045: 2980: 2897: 2877: 2836: 2816: 2796: 2773: 2726: 2696: 2654: 2634: 2609: 2553: 2533: 2513: 2493: 2466: 2443: 2366: 2346: 2315: 2295: 2259: 2235: 2212: 2148: 2125: 2069: 2039: 2012: 1977: 1950: 1873: 1712: 1692: 1643: 1623: 1581:, ×), and so 1). In other words, these groups are 1491: 1462: 1432: 1403: 1372: 1348: 1316: 1296: 1273: 1253: 1221: 1189: 1157: 1081: 1054: 1017: 990: 956: 929: 886: 853: 802: 769: 745: 725: 705: 667: 538:{\displaystyle \operatorname {Spin} (n),\,n\geq 7} 537: 487: 437: 351: 5270:, which therefore extends to a class function on 4106:. The general theory then tells us that for each 3977:. Ultimately, the irreducible representations of 2909:in this case are one-dimensional and of the form 289:is compact. We therefore have a finite extension 5967: 5920: 5713: 5003: 4930: 3651:{\displaystyle \Pi :K\to \operatorname {GL} (V)} 3298:construction for complex semisimple Lie algebras 617: 488:{\displaystyle \operatorname {SU} (n),\,n\geq 3} 438:{\displaystyle \operatorname {Sp} (n),\,n\geq 1} 3243:. The strategy of the representation theory of 1114: 229:of compact Lie groups states that up to finite 100:In the following we will assume all groups are 5250:is a well-defined, Weyl-invariant function on 3715:{\displaystyle \mathrm {X} :K\to \mathbb {C} } 1861:tells us that each irreducible representation 1740:of the compact connected Lie groups, based on 5947: 3603: 3103:. This restriction is not irreducible unless 2991: 2213:{\displaystyle \rho (e^{H})=e^{i\lambda (H)}} 1845: 5948:Hofmann, Karl H.; Morris, Sidney A. (1998), 5041: 5023: 4980: 4950: 2642:is the set of integers. A linear functional 1585:. Haar measure is easily normalized to be a 5921:Bröcker, Theodor; tom Dieck, Tammo (1985), 4745:The tools for the proof are the following: 3493:representations of a semisimple Lie algebra 3155:as in the preceding subsection. If a given 2878:{\displaystyle \lambda (i\theta )=k\theta } 2670:in the setting of semisimple Lie algebras. 1822:representations of a semisimple Lie algebra 930:{\displaystyle \operatorname {Spin} (2n+1)} 4673: 2374:denote the kernel of the exponential map: 5781: 5387:Now comes the conclusion. The set of all 3708: 3592:comes from a representation of the group 3065: 2971: 2764: 2756: 2628: 2587: 2013:{\displaystyle S^{1}\subset \mathbb {C} } 2006: 1935: 1923: 1525:, and constructions from it. In fact any 1055:{\displaystyle \operatorname {Spin} (2n)} 525: 475: 425: 4608:{\displaystyle m,m-2,\ldots ,-(m-2),-m,} 3289:{\displaystyle R\subset {\mathfrak {t}}} 3266:). The construction of this root system 3024: 3012: 3004: 1798:complex representations of finite groups 1723: 733:to be the group of diagonal elements in 706:{\displaystyle K=\operatorname {SU} (n)} 36: 5384:, and these functions are orthonormal. 3420:{\displaystyle \lambda (\alpha )\geq 0} 3079:). We then consider the restriction of 2662:satisfying this condition is called an 27:Topological group with compact topology 14: 5968: 4765:Peter–Weyl theorem for class functions 1349:{\displaystyle \operatorname {SU} (n)} 1254:{\displaystyle \operatorname {Sp} (n)} 1222:{\displaystyle \operatorname {SO} (n)} 1158:{\displaystyle \operatorname {SU} (n)} 991:{\displaystyle \operatorname {Sp} (n)} 854:{\displaystyle \operatorname {SU} (n)} 548:or one of the five exceptional groups 5923:Representations of Compact Lie Groups 4702:be a connected compact Lie group and 3453:. Finally, we say that one weight is 2905:. The irreducible representations of 1190:{\displaystyle \operatorname {U} (n)} 107: 5929: 5904: 5892: 5880: 5868: 5856: 5844: 5832: 5820: 5808: 5761: 5749: 5737: 5725: 5701: 3930:is determined by its restriction to 3368:and we say that an integral element 3135:is described by a linear functional 2323:gives rise to a well-defined map of 1651:is the associated Haar measure, the 1589:, analogous to dΞ/2π on the circle. 1529:is a compact group. This means that 1129:. For compact Lie groups, there are 3577: 3329: 3304:on the complexified Lie algebra of 3281: 3262:(relative to a given maximal torus 2824:is an integer. A linear functional 2467:{\displaystyle \operatorname {Id} } 2403: 2252: 2115: 2032: 1503: 1121:Fundamental group § Lie groups 757:which states that every element of 24: 5611:From compact to non-compact groups 5552: 5521: 5490: 5443: 5395: 5365: 5318: 5231: 5180: 4888: 4864: 4843: 4802: 4338: 4184: 3916: 3841: 3808: 3758: 3733: 3694: 3673: 3621: 3547: 3464: 3446:{\displaystyle \alpha \in \Delta } 3440: 3351: 3312:has all the usual properties of a 3230: 3182: 3110: 3086: 3040: 2601: 2384: 2361: 1512:, examples are the additive group 1172: 810:has been chosen, one can define a 25: 5997: 4173:, that the character is given by 3988: 1752:A combination of Weyl's work and 240: 5564:{\displaystyle \Phi _{\lambda }} 5533:{\displaystyle \Phi _{\lambda }} 5502:{\displaystyle \Phi _{\lambda }} 5455:{\displaystyle \Phi _{\lambda }} 5407:{\displaystyle \Phi _{\lambda }} 5377:{\displaystyle \Phi _{\lambda }} 5330:{\displaystyle \Phi _{\lambda }} 5243:{\displaystyle \Phi _{\lambda }} 5192:{\displaystyle \Phi _{\lambda }} 3477:with non-negative coefficients. 3252:weights in representation theory 1537:in the case of infinite degree. 45:of center 0 and radius 1 in the 5950:The structure of compact groups 5914: 5898: 5886: 5874: 5862: 5850: 5838: 5826: 5633:restriction of a representation 5603:, now often recast in terms of 3776: 3585:{\displaystyle {\mathfrak {k}}} 3337:{\displaystyle {\mathfrak {t}}} 2963: 2594: 2270:Now, since the exponential map 2260:{\displaystyle {\mathfrak {t}}} 2106: 2040:{\displaystyle {\mathfrak {t}}} 1550: 5814: 5802: 5775: 5755: 5743: 5731: 5719: 5707: 5695: 5012: 5006: 4971: 4959: 4939: 4933: 4905: 4892: 4590: 4578: 4488: 4476: 4451: 4439: 4305: 4299: 4288: 4282: 4270: 4267: 3851: 3845: 3834: 3812: 3770: 3767: 3761: 3755: 3743: 3737: 3704: 3645: 3639: 3630: 3408: 3402: 3316:, except that the elements of 2938: 2922: 2863: 2854: 2580: 2574: 2296:{\displaystyle H\mapsto e^{H}} 2280: 2205: 2199: 2182: 2169: 1927: 1913: 1904: 1687: 1672: 1343: 1337: 1248: 1242: 1216: 1210: 1184: 1178: 1152: 1146: 1062:correspond to the root system 1049: 1040: 998:correspond to the root system 985: 979: 966:The compact symplectic groups 937:correspond to the root system 924: 909: 861:correspond to the root system 848: 842: 700: 694: 519: 513: 469: 463: 419: 413: 343: 340: 334: 321: 315: 302: 13: 1: 5716:, Chapter V, Sections 7 and 8 5688: 4795:. The formula states that if 3973:and an analytic proof of the 3945:. A second key result is the 2664:analytically integral element 1736:went on to give the detailed 1261:and proceeds by induction on 618:Maximal tori and root systems 285:) which must be finite since 5714:Bröcker & tom Dieck 1985 4850:{\displaystyle \mathrm {X} } 3923:{\displaystyle \mathrm {X} } 3072:{\displaystyle \mathbb {C} } 2727:{\displaystyle e^{i\theta }} 2635:{\displaystyle \mathbb {Z} } 1655:provides a decomposition of 1115:Fundamental group and center 818:similar to what one has for 713:, in which case we may take 277:is the group of components π 245:Given any compact Lie group 7: 5638: 2521:to give a well-defined map 2474:is the identity element of 2223:for some linear functional 1818:special unitary group SU(3) 1814:special unitary group SU(2) 1693:{\displaystyle L^{2}(K,dm)} 1561:Compact groups all carry a 829:The special unitary groups 10: 6002: 5594: 3607: 3604:The Weyl character formula 3520:is different. The weights 3254:. We need the notion of a 2998: 1554: 1411:has trivial center. Thus, 1118: 803:{\displaystyle T\subset K} 621: 29: 4722:a fixed maximal torus in 3995:Lie algebra point of view 3596:.) On the other hand, if 3495:. The result says that: 3484:are then classified by a 2992:Representation theory of 1846:Representation theory of 182:the compact forms of the 79:compact topological space 18:Compact topological group 5625:maximal compact subgroup 5584:{\displaystyle \lambda } 5475:{\displaystyle \lambda } 5427:{\displaystyle \lambda } 5350:{\displaystyle \lambda } 5303:{\displaystyle \lambda } 5214:{\displaystyle \lambda } 4828:{\displaystyle \lambda } 3566:not every representation 3533:{\displaystyle \lambda } 3381:{\displaystyle \lambda } 3344:. We then choose a base 3212:{\displaystyle \lambda } 3168:{\displaystyle \lambda } 3148:{\displaystyle \lambda } 2837:{\displaystyle \lambda } 2655:{\displaystyle \lambda } 2554:{\displaystyle \lambda } 2514:{\displaystyle \lambda } 2316:{\displaystyle \lambda } 2236:{\displaystyle \lambda } 753:. A basic result is the 399:compact symplectic group 146:special orthogonal group 5930:Hall, Brian C. (2015), 5631:, uses intensively the 4674:An outline of the proof 3553:{\displaystyle \Sigma } 3486:theorem of the highest 3470:{\displaystyle \Delta } 3357:{\displaystyle \Delta } 3296:is very similar to the 3236:{\displaystyle \Sigma } 3188:{\displaystyle \Sigma } 3116:{\displaystyle \Sigma } 3092:{\displaystyle \Sigma } 3046:{\displaystyle \Sigma } 2367:{\displaystyle \Gamma } 1985:must actually map into 1787:faithful representation 1762:unitary representations 1631:is a compact group and 887:{\displaystyle A_{n-1}} 820:semisimple Lie algebras 604:semisimple Lie algebras 5952:, Berlin: de Gruyter, 5907:Sections 12.4 and 12.5 5895:Sections 12.4 and 12.5 5585: 5565: 5534: 5503: 5476: 5456: 5428: 5408: 5378: 5351: 5331: 5304: 5284: 5264: 5244: 5215: 5193: 5163: 5136: 5116: 5096: 5082:in the Lie algebra of 5076: 5053: 4871: 4851: 4829: 4809: 4793:Weyl character formula 4781: 4736: 4716: 4696: 4664: 4638: 4609: 4525: 4318: 4163: 4140: 4120: 4100: 4073: 3975:Weyl character formula 3947:Weyl character formula 3924: 3898: 3878: 3858: 3790: 3716: 3680: 3652: 3610:Weyl character formula 3586: 3554: 3534: 3471: 3447: 3421: 3382: 3358: 3338: 3290: 3237: 3213: 3189: 3169: 3149: 3117: 3093: 3073: 3047: 3030: 3022: 3010: 2982: 2899: 2879: 2838: 2818: 2798: 2775: 2728: 2698: 2673:Suppose, for example, 2656: 2636: 2611: 2555: 2535: 2515: 2495: 2468: 2445: 2368: 2348: 2317: 2297: 2261: 2237: 2214: 2150: 2127: 2071: 2070:{\displaystyle h\in T} 2047:be the Lie algebra of 2041: 2014: 1979: 1952: 1875: 1746:Weyl character formula 1744:theory. The resulting 1714: 1694: 1645: 1625: 1493: 1464: 1434: 1405: 1374: 1350: 1318: 1298: 1275: 1255: 1223: 1191: 1159: 1083: 1056: 1019: 992: 958: 931: 888: 855: 804: 771: 747: 727: 707: 669: 583:. The restrictions on 539: 489: 439: 353: 227:classification theorem 184:exceptional Lie groups 50: 5660:Locally compact group 5601:Tannaka–Krein duality 5586: 5566: 5535: 5513:subset of the set of 5504: 5477: 5457: 5429: 5409: 5379: 5352: 5332: 5305: 5285: 5265: 5245: 5216: 5194: 5164: 5162:{\displaystyle L^{2}} 5137: 5117: 5115:{\displaystyle \rho } 5097: 5077: 5054: 4872: 4852: 4835:, then the character 4830: 4810: 4782: 4758:Weyl integral formula 4737: 4717: 4697: 4682:. We continue to let 4665: 4639: 4610: 4526: 4319: 4164: 4141: 4121: 4101: 4074: 3925: 3899: 3879: 3859: 3791: 3717: 3681: 3658:is representation of 3653: 3587: 3555: 3535: 3472: 3448: 3422: 3383: 3359: 3339: 3291: 3238: 3214: 3190: 3170: 3150: 3118: 3094: 3074: 3048: 3028: 3016: 3008: 2983: 2900: 2880: 2839: 2819: 2799: 2776: 2729: 2699: 2697:{\displaystyle S^{1}} 2657: 2637: 2612: 2556: 2536: 2534:{\displaystyle \rho } 2516: 2496: 2494:{\displaystyle 2\pi } 2469: 2446: 2369: 2349: 2347:{\displaystyle S^{1}} 2318: 2298: 2262: 2238: 2215: 2151: 2149:{\displaystyle \rho } 2136:In such coordinates, 2128: 2072: 2042: 2015: 1980: 1978:{\displaystyle \rho } 1953: 1876: 1874:{\displaystyle \rho } 1724:Representation theory 1715: 1695: 1646: 1626: 1569:must be a continuous 1494: 1492:{\displaystyle E_{8}} 1465: 1463:{\displaystyle F_{4}} 1435: 1433:{\displaystyle G_{2}} 1406: 1404:{\displaystyle G_{2}} 1375: 1351: 1319: 1299: 1276: 1256: 1224: 1192: 1160: 1084: 1082:{\displaystyle D_{n}} 1057: 1027:The even spin groups 1020: 1018:{\displaystyle C_{n}} 993: 959: 957:{\displaystyle B_{n}} 932: 889: 856: 805: 772: 748: 728: 708: 670: 668:{\displaystyle S^{1}} 640:, that is a subgroup 540: 490: 449:special unitary group 440: 354: 173:special unitary group 95:representation theory 40: 5621:semisimple Lie group 5575: 5548: 5517: 5486: 5466: 5439: 5418: 5391: 5361: 5341: 5314: 5294: 5274: 5254: 5227: 5205: 5176: 5146: 5126: 5106: 5086: 5066: 4884: 4870:{\displaystyle \Pi } 4861: 4839: 4819: 4808:{\displaystyle \Pi } 4799: 4771: 4726: 4706: 4686: 4648: 4622: 4548: 4334: 4180: 4153: 4130: 4110: 4090: 4004: 3912: 3888: 3868: 3804: 3729: 3690: 3679:{\displaystyle \Pi } 3670: 3618: 3572: 3544: 3540:of a representation 3524: 3461: 3431: 3396: 3372: 3348: 3324: 3270: 3227: 3203: 3179: 3159: 3139: 3107: 3083: 3061: 3037: 2916: 2889: 2848: 2828: 2808: 2785: 2738: 2708: 2681: 2646: 2624: 2568: 2545: 2525: 2505: 2482: 2458: 2381: 2358: 2331: 2307: 2274: 2247: 2227: 2163: 2140: 2084: 2055: 2051:and we write points 2027: 1989: 1969: 1892: 1885:is one-dimensional: 1865: 1810:rotation group SO(3) 1704: 1659: 1635: 1615: 1535:algebraic extensions 1476: 1447: 1417: 1388: 1364: 1328: 1308: 1288: 1265: 1233: 1201: 1169: 1137: 1131:two basic approaches 1066: 1031: 1002: 970: 941: 900: 896:The odd spin groups 865: 833: 788: 761: 737: 717: 679: 652: 636:is the concept of a 504: 454: 404: 296: 5619:. Inside a general 4663:{\displaystyle m+1} 4637:{\displaystyle m+1} 3686:to be the function 3568:of the Lie algebra 2704:of complex numbers 2156:will have the form 1587:probability measure 152:) and its covering 5976:Topological groups 5796:10.1007/BF01447892 5645:Peter–Weyl theorem 5605:Tannakian category 5581: 5561: 5530: 5499: 5472: 5452: 5424: 5404: 5374: 5347: 5327: 5300: 5280: 5260: 5240: 5211: 5189: 5159: 5132: 5112: 5092: 5072: 5049: 5002: 4929: 4867: 4847: 4825: 4805: 4777: 4732: 4712: 4692: 4660: 4634: 4605: 4521: 4399: 4314: 4245: 4159: 4136: 4116: 4096: 4069: 4060: 3971:Peter–Weyl theorem 3939:Peter–Weyl theorem 3920: 3894: 3874: 3854: 3786: 3712: 3676: 3648: 3582: 3550: 3530: 3467: 3443: 3417: 3378: 3354: 3334: 3308:. The root system 3286: 3233: 3209: 3185: 3165: 3145: 3113: 3089: 3069: 3043: 3031: 3023: 3011: 2978: 2895: 2875: 2834: 2814: 2797:{\displaystyle in} 2794: 2771: 2724: 2694: 2677:is just the group 2652: 2632: 2607: 2551: 2531: 2511: 2491: 2464: 2441: 2364: 2344: 2313: 2293: 2257: 2233: 2210: 2146: 2123: 2067: 2037: 2010: 1975: 1948: 1871: 1730:Peter–Weyl theorem 1710: 1690: 1653:Peter–Weyl theorem 1641: 1621: 1557:Peter–Weyl theorem 1541:Pontryagin duality 1489: 1460: 1430: 1401: 1370: 1346: 1314: 1294: 1271: 1251: 1219: 1187: 1155: 1079: 1052: 1015: 988: 954: 927: 884: 851: 800: 767: 743: 723: 703: 665: 535: 485: 435: 349: 251:identity component 108:Compact Lie groups 51: 5571:'s). Thus, every 5283:{\displaystyle K} 5263:{\displaystyle T} 5135:{\displaystyle i} 5095:{\displaystyle T} 5075:{\displaystyle H} 5047: 4987: 4914: 4780:{\displaystyle K} 4735:{\displaystyle K} 4715:{\displaystyle T} 4695:{\displaystyle K} 4309: 4162:{\displaystyle m} 4139:{\displaystyle m} 4119:{\displaystyle m} 4099:{\displaystyle m} 3897:{\displaystyle y} 3877:{\displaystyle x} 2898:{\displaystyle k} 2885:for some integer 2817:{\displaystyle n} 1713:{\displaystyle K} 1644:{\displaystyle m} 1624:{\displaystyle K} 1598:differential form 1373:{\displaystyle n} 1317:{\displaystyle G} 1297:{\displaystyle G} 1274:{\displaystyle n} 1127:fundamental group 782:Cartan subalgebra 770:{\displaystyle K} 746:{\displaystyle K} 726:{\displaystyle T} 383:simple Lie groups 249:one can take its 87:discrete topology 77:realizes it as a 71:topological group 16:(Redirected from 5993: 5986:Fourier analysis 5962: 5944: 5926: 5908: 5902: 5896: 5890: 5884: 5878: 5872: 5866: 5860: 5854: 5848: 5842: 5836: 5830: 5824: 5823:Proposition 12.9 5818: 5812: 5806: 5800: 5798: 5779: 5773: 5770: 5759: 5753: 5747: 5741: 5735: 5729: 5723: 5717: 5711: 5705: 5699: 5590: 5588: 5587: 5582: 5570: 5568: 5567: 5562: 5560: 5559: 5539: 5537: 5536: 5531: 5529: 5528: 5508: 5506: 5505: 5500: 5498: 5497: 5481: 5479: 5478: 5473: 5461: 5459: 5458: 5453: 5451: 5450: 5433: 5431: 5430: 5425: 5413: 5411: 5410: 5405: 5403: 5402: 5383: 5381: 5380: 5375: 5373: 5372: 5356: 5354: 5353: 5348: 5336: 5334: 5333: 5328: 5326: 5325: 5309: 5307: 5306: 5301: 5289: 5287: 5286: 5281: 5269: 5267: 5266: 5261: 5249: 5247: 5246: 5241: 5239: 5238: 5220: 5218: 5217: 5212: 5198: 5196: 5195: 5190: 5188: 5187: 5168: 5166: 5165: 5160: 5158: 5157: 5141: 5139: 5138: 5133: 5121: 5119: 5118: 5113: 5101: 5099: 5098: 5093: 5081: 5079: 5078: 5073: 5058: 5056: 5055: 5050: 5048: 5046: 5045: 5044: 5001: 4985: 4984: 4983: 4928: 4912: 4904: 4903: 4891: 4876: 4874: 4873: 4868: 4856: 4854: 4853: 4848: 4846: 4834: 4832: 4831: 4826: 4814: 4812: 4811: 4806: 4786: 4784: 4783: 4778: 4741: 4739: 4738: 4733: 4721: 4719: 4718: 4713: 4701: 4699: 4698: 4693: 4669: 4667: 4666: 4661: 4643: 4641: 4640: 4635: 4614: 4612: 4611: 4606: 4530: 4528: 4527: 4522: 4517: 4516: 4495: 4494: 4458: 4457: 4427: 4426: 4408: 4404: 4403: 4396: 4395: 4366: 4365: 4341: 4323: 4321: 4320: 4315: 4310: 4308: 4291: 4259: 4254: 4250: 4249: 4242: 4241: 4212: 4211: 4187: 4168: 4166: 4165: 4160: 4145: 4143: 4142: 4137: 4125: 4123: 4122: 4117: 4105: 4103: 4102: 4097: 4078: 4076: 4075: 4070: 4065: 4064: 4057: 4056: 4027: 4026: 3929: 3927: 3926: 3921: 3919: 3903: 3901: 3900: 3895: 3883: 3881: 3880: 3875: 3863: 3861: 3860: 3855: 3844: 3833: 3832: 3811: 3795: 3793: 3792: 3787: 3736: 3721: 3719: 3718: 3713: 3711: 3697: 3685: 3683: 3682: 3677: 3662:, we define the 3657: 3655: 3654: 3649: 3591: 3589: 3588: 3583: 3581: 3580: 3559: 3557: 3556: 3551: 3539: 3537: 3536: 3531: 3518:integral element 3476: 3474: 3473: 3468: 3452: 3450: 3449: 3444: 3426: 3424: 3423: 3418: 3387: 3385: 3384: 3379: 3363: 3361: 3360: 3355: 3343: 3341: 3340: 3335: 3333: 3332: 3295: 3293: 3292: 3287: 3285: 3284: 3242: 3240: 3239: 3234: 3218: 3216: 3215: 3210: 3194: 3192: 3191: 3186: 3174: 3172: 3171: 3166: 3154: 3152: 3151: 3146: 3122: 3120: 3119: 3114: 3098: 3096: 3095: 3090: 3078: 3076: 3075: 3070: 3068: 3052: 3050: 3049: 3044: 2987: 2985: 2984: 2979: 2974: 2959: 2958: 2937: 2936: 2904: 2902: 2901: 2896: 2884: 2882: 2881: 2876: 2843: 2841: 2840: 2835: 2823: 2821: 2820: 2815: 2803: 2801: 2800: 2795: 2780: 2778: 2777: 2772: 2767: 2733: 2731: 2730: 2725: 2723: 2722: 2703: 2701: 2700: 2695: 2693: 2692: 2668:integral element 2661: 2659: 2658: 2653: 2641: 2639: 2638: 2633: 2631: 2616: 2614: 2613: 2608: 2590: 2560: 2558: 2557: 2552: 2540: 2538: 2537: 2532: 2520: 2518: 2517: 2512: 2500: 2498: 2497: 2492: 2473: 2471: 2470: 2465: 2450: 2448: 2447: 2442: 2437: 2433: 2426: 2425: 2407: 2406: 2373: 2371: 2370: 2365: 2353: 2351: 2350: 2345: 2343: 2342: 2322: 2320: 2319: 2314: 2302: 2300: 2299: 2294: 2292: 2291: 2266: 2264: 2263: 2258: 2256: 2255: 2242: 2240: 2239: 2234: 2219: 2217: 2216: 2211: 2209: 2208: 2181: 2180: 2155: 2153: 2152: 2147: 2132: 2130: 2129: 2124: 2119: 2118: 2102: 2101: 2076: 2074: 2073: 2068: 2046: 2044: 2043: 2038: 2036: 2035: 2019: 2017: 2016: 2011: 2009: 2001: 2000: 1984: 1982: 1981: 1976: 1957: 1955: 1954: 1949: 1944: 1943: 1938: 1926: 1880: 1878: 1877: 1872: 1857:is commutative, 1754:Cartan's theorem 1738:character theory 1719: 1717: 1716: 1711: 1699: 1697: 1696: 1691: 1671: 1670: 1650: 1648: 1647: 1642: 1630: 1628: 1627: 1622: 1567:modulus function 1504:Further examples 1498: 1496: 1495: 1490: 1488: 1487: 1469: 1467: 1466: 1461: 1459: 1458: 1439: 1437: 1436: 1431: 1429: 1428: 1410: 1408: 1407: 1402: 1400: 1399: 1379: 1377: 1376: 1371: 1355: 1353: 1352: 1347: 1323: 1321: 1320: 1315: 1303: 1301: 1300: 1295: 1280: 1278: 1277: 1272: 1260: 1258: 1257: 1252: 1228: 1226: 1225: 1220: 1196: 1194: 1193: 1188: 1164: 1162: 1161: 1156: 1088: 1086: 1085: 1080: 1078: 1077: 1061: 1059: 1058: 1053: 1024: 1022: 1021: 1016: 1014: 1013: 997: 995: 994: 989: 963: 961: 960: 955: 953: 952: 936: 934: 933: 928: 893: 891: 890: 885: 883: 882: 860: 858: 857: 852: 809: 807: 806: 801: 776: 774: 773: 768: 752: 750: 749: 744: 732: 730: 729: 724: 712: 710: 709: 704: 674: 672: 671: 666: 664: 663: 544: 542: 541: 536: 494: 492: 491: 486: 444: 442: 441: 436: 358: 356: 355: 350: 333: 332: 314: 313: 138:orthogonal group 102:Hausdorff spaces 21: 6001: 6000: 5996: 5995: 5994: 5992: 5991: 5990: 5966: 5965: 5960: 5942: 5917: 5912: 5911: 5903: 5899: 5891: 5887: 5883:Corollary 13.20 5879: 5875: 5867: 5863: 5855: 5851: 5843: 5839: 5831: 5827: 5819: 5815: 5807: 5803: 5780: 5776: 5760: 5756: 5748: 5744: 5736: 5732: 5724: 5720: 5712: 5708: 5700: 5696: 5691: 5641: 5617:unitarian trick 5613: 5597: 5576: 5573: 5572: 5555: 5551: 5549: 5546: 5545: 5524: 5520: 5518: 5515: 5514: 5493: 5489: 5487: 5484: 5483: 5467: 5464: 5463: 5446: 5442: 5440: 5437: 5436: 5419: 5416: 5415: 5398: 5394: 5392: 5389: 5388: 5368: 5364: 5362: 5359: 5358: 5342: 5339: 5338: 5321: 5317: 5315: 5312: 5311: 5295: 5292: 5291: 5275: 5272: 5271: 5255: 5252: 5251: 5234: 5230: 5228: 5225: 5224: 5206: 5203: 5202: 5183: 5179: 5177: 5174: 5173: 5153: 5149: 5147: 5144: 5143: 5127: 5124: 5123: 5107: 5104: 5103: 5087: 5084: 5083: 5067: 5064: 5063: 5019: 5015: 4991: 4986: 4946: 4942: 4918: 4913: 4911: 4899: 4895: 4887: 4885: 4882: 4881: 4862: 4859: 4858: 4842: 4840: 4837: 4836: 4820: 4817: 4816: 4800: 4797: 4796: 4772: 4769: 4768: 4727: 4724: 4723: 4707: 4704: 4703: 4687: 4684: 4683: 4676: 4649: 4646: 4645: 4623: 4620: 4619: 4549: 4546: 4545: 4503: 4499: 4469: 4465: 4435: 4431: 4416: 4412: 4398: 4397: 4385: 4381: 4379: 4373: 4372: 4367: 4358: 4354: 4347: 4346: 4342: 4337: 4335: 4332: 4331: 4292: 4260: 4258: 4244: 4243: 4231: 4227: 4225: 4219: 4218: 4213: 4204: 4200: 4193: 4192: 4188: 4183: 4181: 4178: 4177: 4154: 4151: 4150: 4131: 4128: 4127: 4111: 4108: 4107: 4091: 4088: 4087: 4059: 4058: 4046: 4042: 4040: 4034: 4033: 4028: 4019: 4015: 4008: 4007: 4005: 4002: 4001: 3991: 3915: 3913: 3910: 3909: 3889: 3886: 3885: 3869: 3866: 3865: 3840: 3825: 3821: 3807: 3805: 3802: 3801: 3732: 3730: 3727: 3726: 3707: 3693: 3691: 3688: 3687: 3671: 3668: 3667: 3619: 3616: 3615: 3612: 3606: 3576: 3575: 3573: 3570: 3569: 3545: 3542: 3541: 3525: 3522: 3521: 3462: 3459: 3458: 3432: 3429: 3428: 3397: 3394: 3393: 3373: 3370: 3369: 3349: 3346: 3345: 3328: 3327: 3325: 3322: 3321: 3280: 3279: 3271: 3268: 3267: 3228: 3225: 3224: 3204: 3201: 3200: 3180: 3177: 3176: 3160: 3157: 3156: 3140: 3137: 3136: 3108: 3105: 3104: 3084: 3081: 3080: 3064: 3062: 3059: 3058: 3038: 3035: 3034: 3003: 2997: 2970: 2948: 2944: 2929: 2925: 2917: 2914: 2913: 2890: 2887: 2886: 2849: 2846: 2845: 2829: 2826: 2825: 2809: 2806: 2805: 2786: 2783: 2782: 2763: 2739: 2736: 2735: 2715: 2711: 2709: 2706: 2705: 2688: 2684: 2682: 2679: 2678: 2647: 2644: 2643: 2627: 2625: 2622: 2621: 2586: 2569: 2566: 2565: 2546: 2543: 2542: 2526: 2523: 2522: 2506: 2503: 2502: 2483: 2480: 2479: 2459: 2456: 2455: 2415: 2411: 2402: 2401: 2394: 2390: 2382: 2379: 2378: 2359: 2356: 2355: 2338: 2334: 2332: 2329: 2328: 2308: 2305: 2304: 2287: 2283: 2275: 2272: 2271: 2251: 2250: 2248: 2245: 2244: 2228: 2225: 2224: 2192: 2188: 2176: 2172: 2164: 2161: 2160: 2141: 2138: 2137: 2114: 2113: 2097: 2093: 2085: 2082: 2081: 2056: 2053: 2052: 2031: 2030: 2028: 2025: 2024: 2005: 1996: 1992: 1990: 1987: 1986: 1970: 1967: 1966: 1939: 1934: 1933: 1922: 1893: 1890: 1889: 1866: 1863: 1862: 1851: 1806: 1726: 1705: 1702: 1701: 1666: 1662: 1660: 1657: 1656: 1636: 1633: 1632: 1616: 1613: 1612: 1559: 1553: 1545:discrete groups 1527:profinite group 1523:p-adic integers 1520: 1506: 1483: 1479: 1477: 1474: 1473: 1454: 1450: 1448: 1445: 1444: 1424: 1420: 1418: 1415: 1414: 1395: 1391: 1389: 1386: 1385: 1365: 1362: 1361: 1329: 1326: 1325: 1309: 1306: 1305: 1289: 1286: 1285: 1266: 1263: 1262: 1234: 1231: 1230: 1202: 1199: 1198: 1170: 1167: 1166: 1138: 1135: 1134: 1123: 1117: 1110: 1106: 1102: 1098: 1094: 1073: 1069: 1067: 1064: 1063: 1032: 1029: 1028: 1009: 1005: 1003: 1000: 999: 971: 968: 967: 948: 944: 942: 939: 938: 901: 898: 897: 872: 868: 866: 863: 862: 834: 831: 830: 789: 786: 785: 762: 759: 758: 738: 735: 734: 718: 715: 714: 680: 677: 676: 659: 655: 653: 650: 649: 630: 620: 597:Dynkin diagrams 581: 574: 567: 560: 553: 505: 502: 501: 455: 452: 451: 405: 402: 401: 392: 328: 324: 309: 305: 297: 294: 293: 280: 276: 258: 243: 219: 212: 205: 198: 191: 110: 35: 28: 23: 22: 15: 12: 11: 5: 5999: 5989: 5988: 5983: 5978: 5964: 5963: 5958: 5945: 5941:978-3319134666 5940: 5927: 5916: 5913: 5910: 5909: 5897: 5885: 5873: 5861: 5849: 5837: 5825: 5813: 5801: 5774: 5754: 5742: 5730: 5718: 5706: 5693: 5692: 5690: 5687: 5686: 5685: 5680: 5675: 5670: 5668:-compact group 5662: 5657: 5652: 5647: 5640: 5637: 5629:Harish-Chandra 5612: 5609: 5596: 5593: 5580: 5558: 5554: 5527: 5523: 5496: 5492: 5471: 5449: 5445: 5423: 5401: 5397: 5371: 5367: 5346: 5324: 5320: 5299: 5279: 5259: 5237: 5233: 5210: 5186: 5182: 5156: 5152: 5131: 5111: 5091: 5071: 5060: 5059: 5043: 5040: 5037: 5034: 5031: 5028: 5025: 5022: 5018: 5014: 5011: 5008: 5005: 5000: 4997: 4994: 4990: 4982: 4979: 4976: 4973: 4970: 4967: 4964: 4961: 4958: 4955: 4952: 4949: 4945: 4941: 4938: 4935: 4932: 4927: 4924: 4921: 4917: 4910: 4907: 4902: 4898: 4894: 4890: 4866: 4845: 4824: 4804: 4789: 4788: 4776: 4761: 4754: 4731: 4711: 4691: 4675: 4672: 4659: 4656: 4653: 4633: 4630: 4627: 4616: 4615: 4604: 4601: 4598: 4595: 4592: 4589: 4586: 4583: 4580: 4577: 4574: 4571: 4568: 4565: 4562: 4559: 4556: 4553: 4532: 4531: 4520: 4515: 4512: 4509: 4506: 4502: 4498: 4493: 4490: 4487: 4484: 4481: 4478: 4475: 4472: 4468: 4464: 4461: 4456: 4453: 4450: 4447: 4444: 4441: 4438: 4434: 4430: 4425: 4422: 4419: 4415: 4411: 4407: 4402: 4394: 4391: 4388: 4384: 4380: 4378: 4375: 4374: 4371: 4368: 4364: 4361: 4357: 4353: 4352: 4350: 4345: 4340: 4325: 4324: 4313: 4307: 4304: 4301: 4298: 4295: 4290: 4287: 4284: 4281: 4278: 4275: 4272: 4269: 4266: 4263: 4257: 4253: 4248: 4240: 4237: 4234: 4230: 4226: 4224: 4221: 4220: 4217: 4214: 4210: 4207: 4203: 4199: 4198: 4196: 4191: 4186: 4158: 4135: 4115: 4095: 4080: 4079: 4068: 4063: 4055: 4052: 4049: 4045: 4041: 4039: 4036: 4035: 4032: 4029: 4025: 4022: 4018: 4014: 4013: 4011: 3990: 3989:The SU(2) case 3987: 3918: 3893: 3873: 3853: 3850: 3847: 3843: 3839: 3836: 3831: 3828: 3824: 3820: 3817: 3814: 3810: 3798: 3797: 3785: 3782: 3779: 3775: 3772: 3769: 3766: 3763: 3760: 3757: 3754: 3751: 3748: 3745: 3742: 3739: 3735: 3710: 3706: 3703: 3700: 3696: 3675: 3647: 3644: 3641: 3638: 3635: 3632: 3629: 3626: 3623: 3608:Main article: 3605: 3602: 3579: 3549: 3529: 3510: 3509: 3506: 3503: 3500: 3466: 3442: 3439: 3436: 3416: 3413: 3410: 3407: 3404: 3401: 3377: 3353: 3331: 3283: 3278: 3275: 3232: 3208: 3184: 3164: 3144: 3112: 3088: 3067: 3042: 2996: 2990: 2989: 2988: 2977: 2973: 2969: 2966: 2962: 2957: 2954: 2951: 2947: 2943: 2940: 2935: 2932: 2928: 2924: 2921: 2894: 2874: 2871: 2868: 2865: 2862: 2859: 2856: 2853: 2833: 2813: 2793: 2790: 2770: 2766: 2762: 2759: 2755: 2752: 2749: 2746: 2743: 2721: 2718: 2714: 2691: 2687: 2651: 2630: 2618: 2617: 2606: 2603: 2600: 2597: 2593: 2589: 2585: 2582: 2579: 2576: 2573: 2550: 2530: 2510: 2490: 2487: 2463: 2452: 2451: 2440: 2436: 2432: 2429: 2424: 2421: 2418: 2414: 2410: 2405: 2400: 2397: 2393: 2389: 2386: 2363: 2354:. Rather, let 2341: 2337: 2312: 2290: 2286: 2282: 2279: 2254: 2232: 2221: 2220: 2207: 2204: 2201: 2198: 2195: 2191: 2187: 2184: 2179: 2175: 2171: 2168: 2145: 2134: 2133: 2122: 2117: 2112: 2109: 2105: 2100: 2096: 2092: 2089: 2066: 2063: 2060: 2034: 2008: 2004: 1999: 1995: 1974: 1959: 1958: 1947: 1942: 1937: 1932: 1929: 1925: 1921: 1918: 1915: 1912: 1909: 1906: 1903: 1900: 1897: 1870: 1850: 1844: 1805: 1802: 1775:inverse system 1725: 1722: 1709: 1689: 1686: 1683: 1680: 1677: 1674: 1669: 1665: 1640: 1620: 1575:positive reals 1552: 1549: 1516: 1505: 1502: 1486: 1482: 1457: 1453: 1427: 1423: 1398: 1394: 1369: 1345: 1342: 1339: 1336: 1333: 1313: 1293: 1270: 1250: 1247: 1244: 1241: 1238: 1218: 1215: 1212: 1209: 1206: 1186: 1183: 1180: 1177: 1174: 1154: 1151: 1148: 1145: 1142: 1116: 1113: 1112: 1111: 1108: 1104: 1100: 1096: 1092: 1089: 1076: 1072: 1051: 1048: 1045: 1042: 1039: 1036: 1025: 1012: 1008: 987: 984: 981: 978: 975: 964: 951: 947: 926: 923: 920: 917: 914: 911: 908: 905: 894: 881: 878: 875: 871: 850: 847: 844: 841: 838: 799: 796: 793: 766: 742: 722: 702: 699: 696: 693: 690: 687: 684: 662: 658: 619: 616: 579: 572: 565: 558: 551: 546: 545: 534: 531: 528: 524: 521: 518: 515: 512: 509: 495: 484: 481: 478: 474: 471: 468: 465: 462: 459: 445: 434: 431: 428: 424: 421: 418: 415: 412: 409: 388: 371: 370: 360: 359: 348: 345: 342: 339: 336: 331: 327: 323: 320: 317: 312: 308: 304: 301: 278: 274: 265:quotient group 256: 242: 241:Classification 239: 223: 222: 217: 210: 203: 196: 189: 180: 161: 134: 109: 106: 26: 9: 6: 4: 3: 2: 5998: 5987: 5984: 5982: 5979: 5977: 5974: 5973: 5971: 5961: 5959:3-11-015268-1 5955: 5951: 5946: 5943: 5937: 5933: 5928: 5924: 5919: 5918: 5906: 5901: 5894: 5889: 5882: 5877: 5870: 5865: 5858: 5853: 5846: 5841: 5834: 5829: 5822: 5817: 5810: 5805: 5797: 5793: 5789: 5785: 5778: 5772: 5768: 5764: 5758: 5751: 5746: 5739: 5734: 5727: 5722: 5715: 5710: 5703: 5698: 5694: 5684: 5681: 5679: 5676: 5674: 5671: 5669: 5667: 5663: 5661: 5658: 5656: 5653: 5651: 5650:Maximal torus 5648: 5646: 5643: 5642: 5636: 5634: 5630: 5626: 5622: 5618: 5608: 5606: 5602: 5592: 5578: 5556: 5543: 5525: 5512: 5494: 5469: 5447: 5421: 5399: 5385: 5369: 5344: 5322: 5297: 5277: 5257: 5235: 5222: 5208: 5184: 5172:Next, we let 5170: 5154: 5150: 5129: 5109: 5089: 5069: 5038: 5035: 5032: 5029: 5026: 5020: 5016: 5009: 4998: 4995: 4992: 4988: 4977: 4974: 4968: 4965: 4962: 4956: 4953: 4947: 4943: 4936: 4925: 4922: 4919: 4915: 4908: 4900: 4896: 4880: 4879: 4878: 4822: 4794: 4774: 4766: 4762: 4759: 4755: 4752: 4751:torus theorem 4748: 4747: 4746: 4743: 4729: 4709: 4689: 4681: 4671: 4657: 4654: 4651: 4631: 4628: 4625: 4602: 4599: 4596: 4593: 4587: 4584: 4581: 4575: 4572: 4569: 4566: 4563: 4560: 4557: 4554: 4551: 4544: 4543: 4542: 4540: 4535: 4518: 4513: 4510: 4507: 4504: 4500: 4496: 4491: 4485: 4482: 4479: 4473: 4470: 4466: 4462: 4459: 4454: 4448: 4445: 4442: 4436: 4432: 4428: 4423: 4420: 4417: 4413: 4409: 4405: 4400: 4392: 4389: 4386: 4382: 4376: 4369: 4362: 4359: 4355: 4348: 4343: 4330: 4329: 4328: 4311: 4302: 4296: 4293: 4285: 4279: 4276: 4273: 4264: 4261: 4255: 4251: 4246: 4238: 4235: 4232: 4228: 4222: 4215: 4208: 4205: 4201: 4194: 4189: 4176: 4175: 4174: 4172: 4156: 4147: 4133: 4113: 4093: 4085: 4066: 4061: 4053: 4050: 4047: 4043: 4037: 4030: 4023: 4020: 4016: 4009: 4000: 3999: 3998: 3996: 3986: 3984: 3980: 3976: 3972: 3968: 3967:Verma modules 3964: 3959: 3954: 3952: 3948: 3944: 3940: 3935: 3933: 3907: 3891: 3871: 3848: 3837: 3829: 3826: 3822: 3818: 3815: 3783: 3780: 3777: 3773: 3764: 3752: 3749: 3746: 3740: 3725: 3724: 3723: 3701: 3698: 3665: 3661: 3642: 3636: 3633: 3627: 3624: 3611: 3601: 3599: 3595: 3567: 3563: 3527: 3519: 3515: 3507: 3504: 3501: 3498: 3497: 3496: 3494: 3490: 3489: 3483: 3478: 3456: 3437: 3434: 3414: 3411: 3405: 3399: 3391: 3375: 3367: 3320:may not span 3319: 3315: 3311: 3307: 3303: 3299: 3276: 3273: 3265: 3261: 3257: 3253: 3248: 3246: 3222: 3206: 3198: 3162: 3142: 3134: 3130: 3126: 3102: 3056: 3027: 3020: 3019:eightfold way 3015: 3007: 3002: 2995: 2975: 2967: 2964: 2960: 2955: 2952: 2949: 2945: 2941: 2933: 2930: 2926: 2919: 2912: 2911: 2910: 2908: 2892: 2872: 2869: 2866: 2860: 2857: 2851: 2831: 2811: 2791: 2788: 2768: 2760: 2757: 2753: 2750: 2747: 2744: 2741: 2719: 2716: 2712: 2689: 2685: 2676: 2671: 2669: 2665: 2649: 2604: 2598: 2595: 2591: 2583: 2577: 2571: 2564: 2563: 2562: 2561:must satisfy 2548: 2528: 2508: 2488: 2485: 2477: 2461: 2438: 2434: 2430: 2427: 2422: 2419: 2416: 2412: 2408: 2398: 2395: 2391: 2387: 2377: 2376: 2375: 2339: 2335: 2326: 2310: 2288: 2284: 2277: 2268: 2230: 2202: 2196: 2193: 2189: 2185: 2177: 2173: 2166: 2159: 2158: 2157: 2143: 2120: 2110: 2107: 2103: 2098: 2094: 2090: 2087: 2080: 2079: 2078: 2064: 2061: 2058: 2050: 2021: 2002: 1997: 1993: 1972: 1964: 1961:Since, also, 1945: 1940: 1930: 1919: 1916: 1910: 1907: 1901: 1898: 1895: 1888: 1887: 1886: 1884: 1868: 1860: 1859:Schur's lemma 1856: 1849: 1843: 1841: 1837: 1834: 1833:maximal torus 1830: 1825: 1823: 1819: 1815: 1811: 1801: 1799: 1794: 1792: 1788: 1784: 1783:inverse limit 1780: 1776: 1772: 1767: 1763: 1759: 1755: 1750: 1747: 1743: 1742:maximal torus 1739: 1735: 1731: 1721: 1707: 1684: 1681: 1678: 1675: 1667: 1663: 1654: 1638: 1618: 1609: 1607: 1606:number theory 1603: 1599: 1595: 1594:Adolf Hurwitz 1590: 1588: 1584: 1580: 1576: 1572: 1568: 1564: 1558: 1548: 1546: 1542: 1538: 1536: 1532: 1531:Galois groups 1528: 1524: 1519: 1515: 1511: 1501: 1499: 1484: 1480: 1470: 1455: 1451: 1441: 1425: 1421: 1396: 1392: 1381: 1367: 1359: 1340: 1334: 1331: 1311: 1291: 1282: 1268: 1245: 1239: 1236: 1213: 1207: 1204: 1181: 1175: 1149: 1143: 1140: 1132: 1128: 1122: 1090: 1074: 1070: 1046: 1043: 1037: 1034: 1026: 1010: 1006: 982: 976: 973: 965: 949: 945: 921: 918: 915: 912: 906: 903: 895: 879: 876: 873: 869: 845: 839: 836: 828: 827: 826: 823: 821: 817: 813: 797: 794: 791: 783: 778: 764: 756: 755:torus theorem 740: 720: 697: 691: 688: 685: 682: 660: 656: 647: 643: 639: 638:maximal torus 635: 629: 625: 624:Maximal torus 615: 613: 609: 606:. Indeed, if 605: 600: 598: 594: 590: 586: 582: 575: 568: 561: 554: 532: 529: 526: 522: 516: 510: 507: 500: 496: 482: 479: 476: 472: 466: 460: 457: 450: 446: 432: 429: 426: 422: 416: 410: 407: 400: 396: 395: 394: 391: 387: 384: 380: 375: 368: 365: 364: 363: 346: 337: 329: 325: 318: 310: 306: 299: 292: 291: 290: 288: 284: 273: 269: 266: 262: 255: 252: 248: 238: 236: 232: 228: 220: 213: 206: 199: 192: 185: 181: 178: 174: 170: 166: 165:unitary group 162: 159: 155: 151: 147: 143: 139: 135: 132: 129: 125: 122: 118: 117: 116: 114: 105: 103: 98: 96: 92: 91:group actions 88: 84: 83:finite groups 80: 76: 72: 68: 64: 60: 56: 48: 47:complex plane 44: 39: 33: 19: 5949: 5931: 5922: 5915:Bibliography 5900: 5888: 5876: 5871:Section 12.2 5864: 5852: 5847:Section 11.7 5840: 5835:Section 12.2 5828: 5816: 5804: 5787: 5783: 5777: 5771: 5766: 5757: 5752:Section 13.8 5745: 5733: 5721: 5709: 5697: 5665: 5614: 5598: 5541: 5510: 5386: 5200: 5171: 5061: 4790: 4744: 4680:Hermann Weyl 4677: 4617: 4536: 4533: 4326: 4171:in this case 4148: 4083: 4081: 3992: 3982: 3978: 3962: 3957: 3955: 3950: 3942: 3936: 3931: 3905: 3799: 3663: 3659: 3613: 3597: 3593: 3513: 3511: 3485: 3481: 3479: 3454: 3389: 3365: 3317: 3309: 3305: 3301: 3263: 3259: 3255: 3249: 3244: 3220: 3196: 3132: 3128: 3124: 3100: 3054: 3032: 2993: 2906: 2674: 2672: 2663: 2619: 2475: 2453: 2324: 2269: 2222: 2135: 2048: 2022: 1965:is compact, 1962: 1960: 1882: 1854: 1852: 1847: 1839: 1835: 1828: 1826: 1807: 1795: 1790: 1778: 1770: 1765: 1757: 1751: 1734:Hermann Weyl 1727: 1610: 1602:finite index 1591: 1578: 1571:homomorphism 1563:Haar measure 1560: 1551:Haar measure 1539: 1517: 1513: 1507: 1413:the compact 1382: 1357: 1356:consists of 1283: 1124: 824: 779: 754: 645: 641: 637: 633: 631: 611: 607: 601: 588: 584: 547: 389: 385: 378: 376: 372: 366: 361: 286: 282: 271: 267: 253: 246: 244: 224: 176: 168: 157: 149: 141: 130: 128:torus groups 123: 121:circle group 111: 99: 66: 62: 58: 52: 32:galaxy group 5790:: 737–755, 5763:Weil, AndrĂ© 5740:Section 7.7 5704:Section 1.2 5655:Root system 5623:there is a 4877:satisfies: 3314:root system 3256:root system 3033:We now let 812:root system 628:Root system 593:root system 259:, which is 233:and finite 63:topological 55:mathematics 5981:Lie groups 5970:Categories 5859:Chapter 12 5784:Math. Ann. 5728:Chapter 11 5689:References 3199:, we call 2999:See also: 1816:, and the 1583:unimodular 1555:See also: 1119:See also: 816:Weyl group 622:See also: 499:spin group 231:extensions 171:) and the 154:spin group 113:Lie groups 5905:Hall 2015 5893:Hall 2015 5881:Hall 2015 5869:Hall 2015 5857:Hall 2015 5845:Hall 2015 5833:Hall 2015 5821:Hall 2015 5809:Hall 2015 5750:Hall 2015 5738:Hall 2015 5726:Hall 2015 5702:Hall 2015 5579:λ 5557:λ 5553:Φ 5526:λ 5522:Φ 5495:λ 5491:Φ 5470:λ 5448:λ 5444:Φ 5422:λ 5400:λ 5396:Φ 5370:λ 5366:Φ 5345:λ 5323:λ 5319:Φ 5298:λ 5236:λ 5232:Φ 5209:λ 5185:λ 5181:Φ 5110:ρ 5042:⟩ 5033:ρ 5030:⋅ 5024:⟨ 4996:∈ 4989:∑ 4981:⟩ 4969:ρ 4963:λ 4957:⋅ 4951:⟨ 4923:∈ 4916:∑ 4865:Π 4823:λ 4803:Π 4597:− 4585:− 4576:− 4570:… 4561:− 4514:θ 4505:− 4492:θ 4483:− 4471:− 4463:⋯ 4455:θ 4446:− 4424:θ 4393:θ 4387:− 4363:θ 4303:θ 4297:⁡ 4286:θ 4265:⁡ 4239:θ 4233:− 4209:θ 4054:θ 4048:− 4024:θ 3827:− 3781:∈ 3759:Π 3753:⁡ 3722:given by 3705:→ 3674:Π 3664:character 3637:⁡ 3631:→ 3622:Π 3548:Σ 3528:λ 3465:Δ 3441:Δ 3438:∈ 3435:α 3412:≥ 3406:α 3400:λ 3376:λ 3352:Δ 3277:⊂ 3231:Σ 3207:λ 3183:Σ 3163:λ 3143:λ 3111:Σ 3087:Σ 3041:Σ 2968:∈ 2956:θ 2934:θ 2920:ρ 2873:θ 2861:θ 2852:λ 2832:λ 2761:∈ 2758:θ 2751:θ 2720:θ 2650:λ 2602:Γ 2599:∈ 2584:∈ 2572:λ 2549:λ 2529:ρ 2509:λ 2489:π 2420:π 2409:∣ 2399:∈ 2385:Γ 2362:Γ 2311:λ 2281:↦ 2231:λ 2197:λ 2167:ρ 2144:ρ 2111:∈ 2062:∈ 2003:⊂ 1973:ρ 1941:∗ 1905:→ 1896:ρ 1869:ρ 1335:⁡ 1240:⁡ 1208:⁡ 1176:⁡ 1144:⁡ 1038:⁡ 977:⁡ 907:⁡ 877:− 840:⁡ 795:⊂ 692:⁡ 530:≥ 511:⁡ 480:≥ 461:⁡ 430:≥ 411:⁡ 344:→ 326:π 322:→ 316:→ 303:→ 261:connected 85:with the 5811:Part III 5765:(1940), 5673:Protorus 5639:See also 5607:theory. 5201:even if 5062:for all 3908:. Thus, 3864:for all 3562:integral 3427:for all 3390:dominant 1510:manifold 126:and the 75:topology 5595:Duality 5102:. Here 367:Theorem 144:), the 59:compact 5956:  5938:  5511:proper 5414:—with 3488:weight 3455:higher 3221:weight 3057:(over 2804:where 2620:where 2454:where 1853:Since 1831:and a 1812:, the 1781:as an 1229:, and 1107:, or E 814:and a 576:, and 263:. The 235:covers 214:, and 73:whose 43:circle 5542:basis 3958:after 3750:trace 3017:The " 2327:into 1764:ρ of 1440:group 156:Spin( 69:is a 67:group 5954:ISBN 5936:ISBN 4763:The 4756:The 4749:The 3884:and 3364:for 3258:for 1471:and 1035:Spin 904:Spin 626:and 508:Spin 497:The 447:The 397:The 225:The 163:the 136:the 119:the 93:and 57:, a 41:The 5792:doi 5004:det 4931:det 4857:of 4294:sin 4262:sin 3904:in 3666:of 3614:If 3392:if 3388:is 3223:of 3195:to 3099:to 2243:on 2077:as 1881:of 1838:in 1789:of 1611:If 1573:to 1521:of 1500:.) 1103:, E 1099:, E 1095:, F 644:of 175:SU( 148:SO( 53:In 5972:: 5788:97 5786:, 5223:, 4146:. 3985:. 3934:. 3634:GL 3219:a 2541:, 2462:Id 2431:Id 2267:. 2020:. 1842:. 1824:. 1732:. 1720:. 1608:. 1547:. 1380:. 1332:SU 1237:Sp 1205:SO 1197:, 1165:, 1141:SU 974:Sp 837:SU 689:SU 599:. 569:, 562:, 555:, 458:SU 408:Sp 347:1. 207:, 200:, 193:, 186:: 179:), 167:U( 160:), 140:O( 104:. 97:. 65:) 5799:. 5794:: 5666:p 5278:K 5258:T 5155:2 5151:L 5130:i 5090:T 5070:H 5039:H 5036:, 5027:w 5021:i 5017:e 5013:) 5010:w 5007:( 4999:W 4993:w 4978:H 4975:, 4972:) 4966:+ 4960:( 4954:w 4948:i 4944:e 4940:) 4937:w 4934:( 4926:W 4920:w 4909:= 4906:) 4901:H 4897:e 4893:( 4889:X 4844:X 4787:. 4775:K 4760:. 4753:. 4730:K 4710:T 4690:K 4658:1 4655:+ 4652:m 4632:1 4629:+ 4626:m 4603:, 4600:m 4594:, 4591:) 4588:2 4582:m 4579:( 4573:, 4567:, 4564:2 4558:m 4555:, 4552:m 4519:. 4511:m 4508:i 4501:e 4497:+ 4489:) 4486:2 4480:m 4477:( 4474:i 4467:e 4460:+ 4452:) 4449:2 4443:m 4440:( 4437:i 4433:e 4429:+ 4421:m 4418:i 4414:e 4410:= 4406:) 4401:) 4390:i 4383:e 4377:0 4370:0 4360:i 4356:e 4349:( 4344:( 4339:X 4312:. 4306:) 4300:( 4289:) 4283:) 4280:1 4277:+ 4274:m 4271:( 4268:( 4256:= 4252:) 4247:) 4236:i 4229:e 4223:0 4216:0 4206:i 4202:e 4195:( 4190:( 4185:X 4157:m 4134:m 4114:m 4094:m 4084:T 4067:. 4062:) 4051:i 4044:e 4038:0 4031:0 4021:i 4017:e 4010:( 3983:K 3979:K 3963:K 3951:T 3943:K 3932:T 3917:X 3906:K 3892:y 3872:x 3852:) 3849:y 3846:( 3842:X 3838:= 3835:) 3830:1 3823:x 3819:y 3816:x 3813:( 3809:X 3796:. 3784:K 3778:x 3774:, 3771:) 3768:) 3765:x 3762:( 3756:( 3747:= 3744:) 3741:x 3738:( 3734:X 3709:C 3702:K 3699:: 3695:X 3660:K 3646:) 3643:V 3640:( 3628:K 3625:: 3598:K 3594:K 3578:k 3514:K 3482:K 3415:0 3409:) 3403:( 3366:R 3330:t 3318:R 3310:R 3306:K 3302:T 3282:t 3274:R 3264:T 3260:K 3245:K 3197:T 3133:T 3129:T 3125:T 3101:T 3066:C 3055:K 2994:K 2976:. 2972:Z 2965:k 2961:, 2953:k 2950:i 2946:e 2942:= 2939:) 2931:i 2927:e 2923:( 2907:T 2893:k 2870:k 2867:= 2864:) 2858:i 2855:( 2812:n 2792:n 2789:i 2769:, 2765:R 2754:, 2748:i 2745:= 2742:H 2717:i 2713:e 2690:1 2686:S 2675:T 2629:Z 2605:, 2596:H 2592:, 2588:Z 2581:) 2578:H 2575:( 2486:2 2476:T 2439:, 2435:} 2428:= 2423:H 2417:2 2413:e 2404:t 2396:H 2392:{ 2388:= 2340:1 2336:S 2325:T 2289:H 2285:e 2278:H 2253:t 2206:) 2203:H 2200:( 2194:i 2190:e 2186:= 2183:) 2178:H 2174:e 2170:( 2121:. 2116:t 2108:H 2104:, 2099:H 2095:e 2091:= 2088:h 2065:T 2059:h 2049:T 2033:t 2007:C 1998:1 1994:S 1963:T 1946:. 1936:C 1931:= 1928:) 1924:C 1920:; 1917:1 1914:( 1911:L 1908:G 1902:T 1899:: 1883:T 1855:T 1848:T 1840:K 1836:T 1829:K 1791:G 1779:G 1771:G 1766:G 1758:G 1708:K 1688:) 1685:m 1682:d 1679:, 1676:K 1673:( 1668:2 1664:L 1639:m 1619:K 1579:R 1577:( 1518:p 1514:Z 1485:8 1481:E 1456:4 1452:F 1426:2 1422:G 1397:2 1393:G 1368:n 1358:n 1344:) 1341:n 1338:( 1312:G 1292:G 1269:n 1249:) 1246:n 1243:( 1217:) 1214:n 1211:( 1185:) 1182:n 1179:( 1173:U 1153:) 1150:n 1147:( 1109:8 1105:7 1101:6 1097:4 1093:2 1075:n 1071:D 1050:) 1047:n 1044:2 1041:( 1011:n 1007:C 986:) 983:n 980:( 950:n 946:B 925:) 922:1 919:+ 916:n 913:2 910:( 880:1 874:n 870:A 849:) 846:n 843:( 798:K 792:T 765:K 741:K 721:T 701:) 698:n 695:( 686:= 683:K 661:1 657:S 646:K 642:T 634:K 612:K 608:K 589:n 585:n 580:8 578:E 573:7 571:E 566:6 564:E 559:4 557:F 552:2 550:G 533:7 527:n 523:, 520:) 517:n 514:( 483:3 477:n 473:, 470:) 467:n 464:( 433:1 427:n 423:, 420:) 417:n 414:( 390:i 386:K 379:K 341:) 338:G 335:( 330:0 319:G 311:0 307:G 300:1 287:G 283:G 281:( 279:0 275:0 272:G 270:/ 268:G 257:0 254:G 247:G 221:. 218:8 216:E 211:7 209:E 204:6 202:E 197:4 195:F 190:2 188:G 177:n 169:n 158:n 150:n 142:n 133:, 131:T 124:T 61:( 34:. 20:)

Index

Compact topological group
galaxy group

circle
complex plane
mathematics
topological group
topology
compact topological space
finite groups
discrete topology
group actions
representation theory
Hausdorff spaces
Lie groups
circle group
torus groups
orthogonal group
special orthogonal group
spin group
unitary group
special unitary group
exceptional Lie groups
G2
F4
E6
E7
E8
classification theorem
extensions

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑