Knowledge

Dual space

Source 📝

17039: 17787: 17303: 15020: 3128: 3864: 12388: 6652: 4594: 2869: 12850: 12739: 5121:
can be intuitively thought of as a particular family of parallel lines covering the plane. To compute the value of a functional on a given vector, it suffices to determine which of the lines the vector lies on. Informally, this "counts" how many lines the vector crosses. More generally, if
7070: 588: 2295: 12997: 12559: 2422: 3682: 7334: 1784: 1382: 13745: 12244: 6499: 4472: 3123:{\displaystyle g(x)=g(\alpha _{1}\mathbf {e} _{1}+\dots +\alpha _{n}\mathbf {e} _{n})=\alpha _{1}g(\mathbf {e} _{1})+\dots +\alpha _{n}g(\mathbf {e} _{n})=\mathbf {e} ^{1}(x)g(\mathbf {e} _{1})+\dots +\mathbf {e} ^{n}(x)g(\mathbf {e} _{n})} 2600: 12773: 10156: 15346: 12660: 1988: 8069: 2064: 14792: 14213: 6103: 3400: 15554: 8327: 6945: 9813: 6863: 3956: 1486: 453: 7662: 982: 2685: 13246: 12072: 7956: 15206: 11017: 3187: 2797: 1656: 1600: 1233: 1126: 7411: 6357: 2171: 14015: 5865: 14332: 9742: 8183: 4382: 921: 12496: 7848: 3859:{\displaystyle {\begin{bmatrix}e^{11}&e^{12}\\e^{21}&e^{22}\end{bmatrix}}{\begin{bmatrix}e_{11}&e_{21}\\e_{12}&e_{22}\end{bmatrix}}={\begin{bmatrix}1&0\\0&1\end{bmatrix}}.} 14526: 7484: 3674: 3621: 3568: 3515: 12888: 9947: 2300: 458: 6451: 8757: 7572: 8386: 1880: 2115: 2166: 13816: 4629: 13866: 11606: 8482: 15990: 8517: 5775: 5525: 10361: 9678: 8597: 7753: 4126: 11413: 10287: 2464: 14950: 8431: 4067: 630: 7154: 5999: 5740: 5624: 5494: 5362: 5304: 5251: 1663: 1261: 11791: 11728: 11668: 10749: 13633: 12383:{\displaystyle {\text{ for all }}A\in {\mathcal {A}}\qquad \|\varphi _{i}-\varphi \|_{A}=\sup _{x\in A}|\varphi _{i}(x)-\varphi (x)|{\underset {i\to \infty }{\longrightarrow }}0.} 6647:{\displaystyle T\left(\sum _{\alpha \in A}f_{\alpha }\mathbf {e} _{\alpha }\right)=\sum _{\alpha \in A}f_{\alpha }T(e_{\alpha })=\sum _{\alpha \in A}f_{\alpha }\theta _{\alpha }.} 5677: 12653: 12623: 12593: 12489: 8106: 11363: 10964: 8949: 8794: 8559: 5416: 4464: 13896: 9996: 5445: 4743: 4667: 4178: 4014: 3985: 3458: 3429: 3298: 2714: 12162: 11988: 11755: 10503: 9626: 8832: 1521: 349: 13425: 13329: 13084: 12766: 12415: 11917: 11696: 11636: 6409: 2508: 11054: 15781: 15702: 12191: 11435: 6025: 5388: 5330: 4589:{\displaystyle \mathbf {x} =\sum _{i}\langle \mathbf {x} ,\mathbf {e} ^{i}\rangle \mathbf {e} _{i}=\sum _{i}\langle \mathbf {x} ,\mathbf {e} _{i}\rangle \mathbf {e} ^{i},} 2741: 872: 6745: 6682: 5925: 4319: 17823: 16289: 9392: 2860: 1418: 15659: 11437:) are particularly important. This gives rise to the notion of the "continuous dual space" or "topological dual" which is a linear subspace of the algebraic dual space 4994: 4919: 4873: 396: 288: 15228: 13941: 12211: 12095: 10617: 10444: 9573: 9515: 8889: 5957: 1912: 752: 15877: 15830: 15801: 13579: 13543: 13507: 13474: 13381: 13281: 13165: 13036: 12880: 12236: 11873: 11570: 11487: 6702: 5595: 5562: 313: 10931: 9456: 8977: 6172: 684: 657: 16316: 15904: 15729: 11462: 11158: 10897: 10870: 10843: 9483: 9359: 9332: 8861: 8617: 8217: 7792: 6893: 6222: 5707: 5171: 5119: 5072: 4412: 3241: 3214: 2824: 1814: 1173: 1047: 780: 714: 423: 261: 12845:{\displaystyle {\text{ for all }}A\in {\mathcal {A}}\quad {\text{ and all }}\lambda \in {\mathbb {F} }\quad {\text{ such that }}\lambda \cdot A\in {\mathcal {A}}.} 11191: 4948: 11305: 10645: 10581: 2516: 11079: 9430: 9061: 4244: 95: 16030: 16010: 15851: 15750: 13445: 13401: 13349: 13305: 13128: 13104: 13060: 12459: 12439: 12135: 12115: 11961: 11941: 11893: 11533: 11265: 11215: 11127: 11103: 10816: 10796: 10772: 10689: 10665: 10550: 10530: 10467: 10404: 10384: 10219: 10199: 10179: 10056: 10036: 10016: 9876: 9856: 9836: 9698: 9535: 9305: 9279: 9259: 8911: 8645: 8237: 7142: 7122: 6937: 6917: 6789: 6769: 6491: 6471: 6377: 6306: 6286: 6266: 6246: 6195: 6146: 6126: 6045: 5885: 5818: 5798: 5465: 5271: 5219: 5191: 5140: 5092: 5037: 5014: 4968: 4893: 4847: 4827: 4807: 4787: 4767: 4714: 4687: 4436: 4149: 3269: 2620: 1253: 1146: 1067: 1020: 823: 801: 444: 231: 208: 58: 14104: 12734:{\displaystyle {\text{ for all }}A,B\in {\mathcal {A}}\quad {\text{ there exists some }}C\in {\mathcal {A}}\quad {\text{ such that }}A\cup B\subseteq C.} 10064: 17676: 15663: 1917: 8006: 11794: 1993: 15961:
for their justification. The axiom of choice is needed to show that an arbitrary vector space has a basis: in particular it is needed to show that
15262: 11501:, the continuous dual and the algebraic dual coincide. This is however false for any infinite-dimensional normed space, as shown by the example of 17816: 17512: 1420:. In particular, letting in turn each one of those coefficients be equal to one and the other coefficients zero, gives the system of equations 17339: 14726: 7065:{\displaystyle V^{*}\cong \left(\bigoplus _{\alpha \in A}F\right)^{*}\cong \prod _{\alpha \in A}F^{*}\cong \prod _{\alpha \in A}F\cong F^{A}} 4599:
even when the basis vectors are not orthogonal to each other. Strictly speaking, the above statement only makes sense once the inner product
6053: 3303: 8242: 583:{\displaystyle {\begin{aligned}(\varphi +\psi )(x)&=\varphi (x)+\psi (x)\\(a\varphi )(x)&=a\left(\varphi (x)\right)\end{aligned}}} 9750: 9229:
is represented by the same matrix acting on the right on row vectors. These points of view are related by the canonical inner product on
6797: 14151: 8651:. Infinite-dimensional Hilbert spaces are not isomorphic to their algebraic double duals, but instead to their continuous double duals. 3872: 1426: 17809: 17502: 11612: 8647:
is finite-dimensional. Indeed, the isomorphism of a finite-dimensional vector space with its double dual is an archetypal example of a
132:
vector spaces. When applied to vector spaces of functions (which are typically infinite-dimensional), dual spaces are used to describe
7609: 930: 15497: 2625: 13175: 2290:{\displaystyle x+\lambda y=(\alpha _{1}+\lambda \beta _{1})\mathbf {e} _{1}+\dots +(\alpha _{n}+\lambda \beta _{n})\mathbf {e} _{n}} 17629: 17484: 16897: 15584: 12000: 7861: 16249: 15083: 10969: 5094:, because the range is 1-dimensional, so that every point in the range is a multiple of any one nonzero element. So an element of 3136: 2746: 1605: 1549: 1182: 1075: 17460: 15419: 7346: 6311: 3676:. (Note: The superscript here is the index, not an exponent.) This system of equations can be expressed using matrix notation as 17230: 13956: 17288: 13039: 11920: 12554:{\displaystyle {\text{ for all }}x\in V\quad {\text{ there exists some }}A\in {\mathcal {A}}\quad {\text{ such that }}x\in A.} 7094:) than the original vector space. This is in contrast to the case of the continuous dual space, discussed below, which may be 16832: 16802: 16747: 16605: 16564: 16538: 16452: 5823: 12992:{\displaystyle U_{A}~=~\left\{\varphi \in V'~:~\quad \|\varphi \|_{A}<1\right\},\qquad {\text{ for }}A\in {\mathcal {A}}} 9703: 8128: 4327: 2417:{\displaystyle \mathbf {e} ^{i}(x+\lambda y)=\alpha _{i}+\lambda \beta _{i}=\mathbf {e} ^{i}(x)+\lambda \mathbf {e} ^{i}(y)} 879: 16739: 16711: 11230:, where the dual space has inverse units. Under the natural pairing, these units cancel, and the resulting scalar value is 7814: 15443:
Second, even in the locally convex setting, several natural vector space topologies can be defined on the continuous dual
7416: 3626: 3573: 3520: 3467: 17886: 9884: 6414: 17352: 16681: 13513:, then the corresponding notion of reflexivity is the standard one: the spaces reflexive in this sense are just called 8713: 7539: 15235:
In analogy with the case of the algebraic double dual, there is always a naturally defined continuous linear operator
8332: 1823: 17441: 17332: 16719: 16662: 16631: 16512: 16474: 14464: 11825: 2069: 17: 11317:: over the course of 3 seconds, an event that occurs 2 times per second occurs a total of 6 times, corresponding to 2120: 17953: 17936: 17711: 17278: 16597: 16504: 16444: 14588: 13010: 8866: 5368:
of real numbers that contain only finitely many non-zero entries, which has a basis indexed by the natural numbers
4602: 13827: 11575: 9582:
The annihilator of a subset is itself a vector space. The annihilator of the zero vector is the whole dual space:
8436: 17356: 17240: 17176: 15964: 10553: 8487: 5749: 5499: 10298: 9631: 8564: 7673: 4072: 105:
The dual space as defined above is defined for all vector spaces, and to avoid ambiguity may also be called the
17926: 16193: 13604: 13545:
is endowed with the stereotype dual topology, then the corresponding reflexivity is presented in the theory of
11388: 11382: 10227: 7997: 7329:{\displaystyle \mathrm {dim} (V)=|A|<|F|^{|A|}=|V^{\ast }|=\mathrm {max} (|\mathrm {dim} (V^{\ast })|,|F|),} 2427: 1779:{\displaystyle \mathbf {e} ^{i}(c^{1}\mathbf {e} _{1}+\cdots +c^{n}\mathbf {e} _{n})=c^{i},\quad i=1,\ldots ,n} 1377:{\displaystyle \mathbf {e} ^{i}(c^{1}\mathbf {e} _{1}+\cdots +c^{n}\mathbf {e} _{n})=c^{i},\quad i=1,\ldots ,n} 13777: 8391: 7491: 4019: 17507: 16794: 16556: 16530: 15604: 14275: 13740:{\displaystyle \|\mathbf {a} \|_{p}=\left(\sum _{n=0}^{\infty }|a_{n}|^{p}\right)^{\frac {1}{p}}<\infty .} 7487: 596: 13589:: the spaces reflexive in this sense are arbitrary (Hausdorff) locally convex spaces with the weak topology. 9074:
with its dual. This identity characterizes the transpose, and is formally similar to the definition of the
5962: 5716: 5600: 5470: 5338: 5280: 5227: 18060: 17790: 17563: 17497: 17325: 17018: 16890: 14085: 10697: 114: 14419: 5632: 18075: 17527: 17123: 16973: 14905: 12628: 12598: 12568: 12464: 11239: 8077: 7076: 17981: 17772: 17726: 17650: 17532: 17028: 16922: 15572: 11671: 11320: 10936: 8921: 8766: 8522: 5393: 4441: 137: 124:
Dual vector spaces find application in many branches of mathematics that use vector spaces, such as in
13872: 11764: 11701: 11641: 9955: 5421: 4719: 4643: 4154: 3990: 3961: 3434: 3405: 3274: 2690: 18070: 18002: 17767: 17583: 17268: 16917: 16738:. International Series in Pure and Applied Mathematics. Vol. 8 (Second ed.). New York, NY: 16710:. International Series in Pure and Applied Mathematics. Vol. 25 (First ed.). New York, NY: 14116: 12140: 11966: 11733: 10584: 10472: 9585: 9283: 8801: 8660: 5193:, and the action of a linear functional on a vector can be visualized in terms of these hyperplanes. 1494: 322: 14038: 13406: 13310: 13065: 12747: 12396: 11898: 11677: 11617: 6382: 2469: 17986: 17958: 17619: 17517: 17420: 17260: 17143: 16042: 15397: 14135:
is a continuous linear map between two topological vector spaces, then the (continuous) transpose
11817: 11730:
the space of compactly supported distributions; and the space of rapidly decreasing test functions
11513: 11509:
the terms "continuous dual space" and "topological dual space" are often replaced by "dual space".
11506: 11502: 11378: 11026: 5710: 110: 15756: 15674: 12169: 11418: 6004: 5371: 5309: 2719: 830: 18065: 17716: 17492: 17306: 17235: 17013: 16883: 15352: 14956: 14380: 14107:, the continuous dual of certain spaces of continuous functions can be described using measures. 6710: 6660: 5890: 4249: 1070: 16257: 9364: 2832: 1390: 17931: 17747: 17691: 17655: 17070: 17003: 16993: 16650: 15637: 15024: 11195:-dimensional space, in the sense that its dimensions can be canceled against the dimensions of 9075: 8685: 8194: 5222: 4973: 4898: 4852: 363: 266: 15213: 13926: 12196: 12080: 10590: 10416: 9540: 9488: 8874: 5930: 1885: 737: 17866: 17085: 17080: 17075: 17008: 16953: 15992:
has a basis. It is also needed to show that the dual of an infinite-dimensional vector space
15786: 15599: 13284: 10775: 9576: 9160: 6748: 6687: 5567: 5534: 4746: 133: 10910: 9435: 8956: 6151: 2595:{\displaystyle \lambda _{1}\mathbf {e} ^{1}+\cdots +\lambda _{n}\mathbf {e} ^{n}=0\in V^{*}} 663: 636: 17965: 17730: 17095: 17060: 17047: 16938: 16820: 16574: 16294: 15882: 15707: 14093: 11798: 11440: 11227: 11136: 10907:
The dual space is analogous to a "negative"-dimensional space. Most simply, since a vector
10875: 10848: 10821: 9461: 9337: 9310: 9183: 9130: 8839: 8602: 8202: 7777: 7080: 6871: 6200: 5685: 5274: 5149: 5097: 5050: 4390: 3219: 3192: 2802: 1792: 1151: 1025: 758: 692: 401: 239: 17317: 16582: 11167: 9575:. Within finite dimensional vector spaces, the annihilator is dual to (isomorphic to) the 4924: 8: 18039: 17896: 17871: 17696: 17634: 17348: 17273: 17153: 17128: 16978: 14061: 14056:(the space of bounded sequences). Furthermore, the continuous duals of the Banach spaces 13131: 11282: 10622: 10558: 9134: 8648: 7515: 211: 145: 15857: 15810: 13559: 13523: 13487: 13454: 13361: 13261: 13145: 13016: 12860: 12216: 11853: 11550: 11467: 11061: 9397: 8986: 4183: 293: 77: 17916: 17721: 17588: 16983: 16786: 16774: 16522: 16015: 15995: 15836: 15735: 15614: 15609: 13430: 13386: 13334: 13290: 13113: 13089: 13045: 12444: 12424: 12120: 12100: 11946: 11926: 11878: 11518: 11250: 11220: 11200: 11112: 11088: 10801: 10781: 10757: 10674: 10650: 10535: 10515: 10452: 10389: 10369: 10204: 10184: 10164: 10041: 10021: 10001: 9861: 9841: 9821: 9683: 9520: 9290: 9264: 9244: 8896: 8630: 8222: 7759: 7127: 7107: 6922: 6902: 6774: 6754: 6476: 6456: 6362: 6291: 6271: 6251: 6231: 6180: 6131: 6111: 6030: 5870: 5803: 5783: 5743: 5450: 5256: 5204: 5176: 5125: 5077: 5040: 5022: 4999: 4953: 4878: 4832: 4812: 4792: 4772: 4752: 4699: 4672: 4421: 4134: 3254: 2605: 1238: 1131: 1052: 1005: 808: 786: 429: 216: 193: 129: 43: 13167:
is normed (in fact a Banach space if the field of scalars is complete), with the norm
17948: 17701: 17181: 17138: 17065: 16958: 16861: 16858: 16838: 16828: 16808: 16798: 16753: 16743: 16733: 16715: 16704: 16687: 16677: 16658: 16642: 16627: 16615: 16601: 16560: 16534: 16508: 16470: 16448: 16189: 15928: 15920: 14455: 14097: 10506: 7985: 353: 17801: 14120: 18018: 17706: 17624: 17593: 17573: 17558: 17553: 17548: 17186: 17090: 16943: 16797:. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. 16619: 16578: 16484: 16462: 16059: 14401: 13546: 13255: 11850:
There is a standard construction for introducing a topology on the continuous dual
11611:
Important examples for continuous dual spaces are the space of compactly supported
11235: 10668: 10151:{\displaystyle \left(\bigcup _{i\in I}A_{i}\right)^{0}=\bigcap _{i\in I}A_{i}^{0}.} 9233:, which identifies the space of column vectors with the dual space of row vectors. 9159:, taking the dual of vector spaces and the transpose of linear maps is therefore a 9138: 7145: 925: 176: 17385: 11019:
to obtain a scalar, a covector can "cancel" the dimension of a vector, similar to
17943: 17836: 17568: 17522: 17470: 17465: 17436: 17245: 17038: 16998: 16988: 16570: 16045:
with domain a vector space and the space of functionals on the dual vector space.
15958: 15427: 15386: 14992: 13510: 13477: 11814: 11494: 10407: 9156: 7981: 7091: 4415: 1524: 985: 17395: 7086:
If a vector space is not finite-dimensional, then its (algebraic) dual space is
1983:{\displaystyle x=\alpha _{1}\mathbf {e} _{1}+\dots +\alpha _{n}\mathbf {e} _{n}} 17881: 17757: 17609: 17410: 17250: 17171: 16906: 15422:, the continuous dual may be equal to { 0 } and the map Ψ trivial. However, if 14089: 11841: 11758: 11366: 11314: 8064:{\displaystyle \Phi _{\langle \cdot ,\cdot \rangle }:V\to {\overline {V^{*}}}.} 7340: 6896: 3869:
Solving for the unknown values in the first matrix shows the dual basis to be
2059:{\displaystyle y=\beta _{1}\mathbf {e} _{1}+\dots +\beta _{n}\mathbf {e} _{n}} 18054: 17921: 17904: 17861: 17762: 17686: 17415: 17400: 17390: 17283: 17206: 17166: 17133: 17113: 16842: 16812: 16691: 16676:. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. 16646: 16436: 15341:{\displaystyle \Psi (x)(\varphi )=\varphi (x),\quad x\in V,\ \varphi \in V'.} 14065: 13582: 13355: 13139: 11231: 11020: 10469:
with its image in the second dual space under the double duality isomorphism
7519: 141: 16757: 7101:
The proof of this inequality between dimensions results from the following.
4631:
and the corresponding duality pairing are introduced, as described below in
17752: 17405: 17375: 17216: 17105: 17055: 16948: 16729: 16699: 16589: 16328: 16326: 15571:, and continuity of Ψ depends upon this choice. As a consequence, defining 15440:
of the continuous dual, again as a consequence of the Hahn–Banach theorem.
15046: 14088:, the continuous dual of a Hilbert space is again a Hilbert space which is 13135: 11243: 357: 188: 37: 11365:. Similarly, if the primal space measures length, the dual space measures 8108:
can be identified with the set of all additive complex-valued functionals
17856: 17832: 17681: 17671: 17578: 17380: 17196: 17161: 17118: 16963: 16496: 16245: 15589: 11845: 9112: 8624: 7098:
to the original vector space even if the latter is infinite-dimensional.
4689: 726: 70: 33: 16323: 4438:. The biorthogonality property of these two basis sets allows any point 17614: 16968: 16548: 14831: 14787:{\displaystyle W^{\perp }=\{\varphi \in V':W\subseteq \ker \varphi \}.} 14241:
produces a linear map between the space of continuous linear maps from
12857:
If these requirements are fulfilled then the corresponding topology on
8680: 8197: 7095: 5143: 1176: 997: 316: 16081: 16079: 14075:(the sequences converging to zero) are both naturally identified with 5780:
This observation generalizes to any infinite-dimensional vector space
5273:, then the same construction as in the finite-dimensional case yields 18023: 17909: 17876: 17023: 16866: 16559:, vol. 211 (Revised third ed.), New York: Springer-Verlag, 15704:
is reserved for some other meaning. For instance, in the above text,
15594: 15382: 15019: 13586: 11270: 9202: 9092: 9070:
with its dual space, and that on the right is the natural pairing of
8620: 6174:
may be written uniquely in this way by the definition of the basis).
6098:{\displaystyle \sum _{\alpha \in A}f_{\alpha }\mathbf {e} _{\alpha }} 5044: 3395:{\displaystyle \{\mathbf {e} _{1}=(1/2,1/2),\mathbf {e} _{2}=(0,1)\}} 447:
when equipped with an addition and scalar multiplication satisfying:
99: 13903:-th term is 1 and all others are zero. Conversely, given an element 9628:, and the annihilator of the whole space is just the zero covector: 8322:{\displaystyle V^{**}=\{\Phi :V^{*}\to F:\Phi \ \mathrm {linear} \}} 7810:
is finite dimensional) defines a unique nondegenerate bilinear form
17191: 16076: 15356: 13609: 13585:, then the corresponding reflexivity is presented in the theory of 11991: 9808:{\displaystyle \{0\}\subseteq T^{0}\subseteq S^{0}\subseteq V^{*}.} 7988:
instead of bilinear forms. In that case, a given sesquilinear form
6858:{\displaystyle V\cong (F^{A})_{0}\cong \bigoplus _{\alpha \in A}F.} 5682:
which is a finite sum because there are only finitely many nonzero
5365: 3461: 15079:. The addition +′ induced by the transformation can be defined as 14208:{\displaystyle T'(\varphi )=\varphi \circ T,\quad \varphi \in W'.} 7961:
Thus there is a one-to-one correspondence between isomorphisms of
3951:{\displaystyle \{\mathbf {e} ^{1}=(2,0),\mathbf {e} ^{2}=(-1,1)\}} 1481:{\displaystyle \mathbf {e} ^{i}(\mathbf {e} _{j})=\delta _{j}^{i}} 16875: 14561:
are equipped with "compatible" topologies: for example, when for
14535:
is a continuous linear map between two topological vector spaces
7603:. In other words, the bilinear form determines a linear mapping 16041:
To be precise, continuous Fourier analysis studies the space of
10509:
on the lattice of subsets of a finite-dimensional vector space.
7657:{\displaystyle \Phi _{\langle \cdot ,\cdot \rangle }:V\to V^{*}} 6771:(viewed as a 1-dimensional vector space over itself) indexed by 977:{\displaystyle \langle \cdot ,\cdot \rangle :V\times V^{*}\to F} 17201: 15549:{\displaystyle \varphi \in V'\mapsto \varphi (x),\quad x\in V,} 11674:(generalized functions); the space of arbitrary test functions 11310: 10583:
is a vector space in its own right, and so has a dual. By the
9680:. Furthermore, the assignment of an annihilator to a subset of 7770:
is finite-dimensional, then this is an isomorphism onto all of
2680:{\displaystyle \lambda _{1}=\lambda _{2}=\dots =\lambda _{n}=0} 125: 13241:{\displaystyle \|\varphi \|=\sup _{\|x\|\leq 1}|\varphi (x)|.} 15575:
in this framework is more involved than in the normed case.
13331:
can be chosen as the class of all totally bounded subsets in
12067:{\displaystyle \|\varphi \|_{A}=\sup _{x\in A}|\varphi (x)|,} 11572:
is defined as the space of all continuous linear functionals
7951:{\displaystyle \langle v,w\rangle _{\Phi }=(\Phi (v))(w)=.\,} 15201:{\displaystyle (\varphi )=\varphi (x_{1}+x_{2})=\varphi (x)} 13383:
is the topology of uniform convergence on finite subsets in
12768:
is closed under the operation of multiplication by scalars:
11012:{\displaystyle \langle x,\varphi \rangle :=\varphi (x)\in F} 3402:. The basis vectors are not orthogonal to each other. Then, 3182:{\displaystyle \{\mathbf {e} ^{1},\dots ,\mathbf {e} ^{n}\}} 2792:{\displaystyle \{\mathbf {e} ^{1},\dots ,\mathbf {e} ^{n}\}} 1651:{\displaystyle \{\mathbf {e} ^{1},\dots ,\mathbf {e} ^{n}\}} 1595:{\displaystyle \{\mathbf {e} _{1},\dots ,\mathbf {e} _{n}\}} 1228:{\displaystyle \{\mathbf {e} ^{1},\dots ,\mathbf {e} ^{n}\}} 1121:{\displaystyle \{\mathbf {e} _{1},\dots ,\mathbf {e} _{n}\}} 17347: 15027:
of vector addition from a vector space to its double dual.
7406:{\displaystyle \mathrm {dim} (V)<\mathrm {dim} (V^{*}),} 6352:{\displaystyle \theta _{\alpha }=T(\mathbf {e} _{\alpha })} 4321:
is a matrix whose columns are the dual basis vectors, then
16856: 16401: 16377: 15455:
is not uniquely defined as a set. Saying that Ψ maps from
14010:{\displaystyle \varphi (\mathbf {b} )=\sum _{n}a_{n}b_{n}} 11547:(in the sense of the theory of topological vector spaces) 7577:
where the right hand side is defined as the functional on
144:. Consequently, the dual space is an important concept in 113:, there is a subspace of the dual space, corresponding to 16343: 16341: 15485:, is a reasonable minimal requirement on the topology of 14999:
itself. The converse is not true: for example, the space
11493:
normed vector space or topological vector space, such as
9066:
where the bracket on the left is the natural pairing of
16389: 14429:
is a Hilbert space, there is an antilinear isomorphism
14110: 6747:
may be identified (essentially by definition) with the
5860:{\displaystyle \{\mathbf {e} _{\alpha }:\alpha \in A\}} 5447:
is the sequence consisting of all zeroes except in the
16338: 16250:"A mathematical formalisation of dimensional analysis" 15404:) can still be defined by the same formula, for every 14379:. Several properties of transposition depend upon the 14096:
used by physicists in the mathematical formulation of
13602:< ∞ be a real number and consider the Banach space 11385:
linear functionals from the space into the base field
9737:{\displaystyle \{0\}\subseteq S\subseteq T\subseteq V} 9095:
linear map between the space of linear operators from
8178:{\displaystyle f(\alpha v)={\overline {\alpha }}f(v).} 4692:, its dual space is typically written as the space of 4633: 4377:{\displaystyle {\hat {E}}^{\textrm {T}}\cdot E=I_{n},} 3822: 3755: 3691: 916:{\displaystyle \varphi (x)=\langle x,\varphi \rangle } 17831: 16297: 16260: 16018: 15998: 15967: 15885: 15860: 15839: 15813: 15789: 15759: 15738: 15710: 15677: 15640: 15500: 15265: 15216: 15086: 14908: 14729: 14467: 14278: 14154: 13959: 13929: 13875: 13830: 13780: 13636: 13562: 13526: 13490: 13457: 13433: 13409: 13389: 13364: 13337: 13313: 13293: 13264: 13178: 13148: 13116: 13092: 13086:
can be chosen as the class of all bounded subsets in
13068: 13048: 13019: 12891: 12863: 12776: 12750: 12663: 12631: 12601: 12571: 12499: 12467: 12447: 12427: 12399: 12247: 12219: 12199: 12172: 12143: 12123: 12103: 12083: 12003: 11990:
or what is the same thing, the topology generated by
11969: 11949: 11929: 11901: 11881: 11856: 11767: 11736: 11704: 11680: 11644: 11620: 11578: 11553: 11521: 11470: 11443: 11421: 11391: 11323: 11285: 11253: 11203: 11170: 11139: 11115: 11091: 11064: 11029: 10972: 10939: 10913: 10878: 10851: 10824: 10804: 10784: 10760: 10700: 10677: 10653: 10625: 10593: 10561: 10538: 10518: 10475: 10455: 10419: 10392: 10372: 10301: 10230: 10207: 10187: 10167: 10067: 10044: 10024: 10004: 9958: 9887: 9864: 9844: 9824: 9753: 9706: 9686: 9634: 9588: 9543: 9523: 9491: 9464: 9438: 9400: 9367: 9340: 9313: 9293: 9267: 9247: 8989: 8959: 8924: 8899: 8877: 8842: 8804: 8769: 8716: 8633: 8605: 8567: 8525: 8490: 8439: 8394: 8335: 8245: 8225: 8205: 8131: 8080: 8009: 7984:
field, then sometimes it is more natural to consider
7864: 7843:{\displaystyle \langle \cdot ,\cdot \rangle _{\Phi }} 7817: 7780: 7676: 7612: 7542: 7419: 7349: 7157: 7130: 7110: 6948: 6925: 6905: 6874: 6800: 6777: 6757: 6713: 6690: 6663: 6502: 6479: 6459: 6417: 6385: 6365: 6314: 6294: 6274: 6254: 6234: 6203: 6183: 6154: 6134: 6114: 6056: 6033: 6007: 5965: 5933: 5893: 5873: 5826: 5806: 5786: 5752: 5719: 5688: 5635: 5603: 5570: 5537: 5502: 5473: 5453: 5424: 5396: 5374: 5341: 5332:) of the dual space, but they will not form a basis. 5312: 5283: 5259: 5230: 5207: 5179: 5152: 5128: 5100: 5080: 5053: 5025: 5002: 4976: 4956: 4927: 4901: 4881: 4855: 4835: 4815: 4795: 4775: 4755: 4722: 4702: 4675: 4646: 4605: 4475: 4444: 4424: 4393: 4330: 4252: 4186: 4157: 4137: 4075: 4022: 3993: 3964: 3875: 3685: 3629: 3576: 3523: 3470: 3437: 3408: 3306: 3277: 3257: 3222: 3195: 3139: 2872: 2835: 2805: 2749: 2722: 2693: 2628: 2608: 2519: 2472: 2430: 2303: 2174: 2123: 2072: 1996: 1920: 1888: 1826: 1795: 1666: 1608: 1552: 1497: 1429: 1393: 1264: 1241: 1185: 1154: 1134: 1078: 1055: 1028: 1008: 933: 882: 833: 811: 789: 761: 740: 695: 666: 639: 599: 456: 432: 404: 366: 325: 296: 269: 242: 219: 196: 80: 46: 16825:
Topological Vector Spaces, Distributions and Kernels
16521: 16097: 16062:
of Ψ is the smallest closed subspace containing {0}.
15671:, p. 19). This notation is sometimes used when 15565:. Further, there is still a choice of a topology on 13427:
can be chosen as the class of all finite subsets in
7497: 7479:{\displaystyle |F|\leq |\mathrm {dim} (V^{\ast })|,} 4246:
is a matrix whose columns are the basis vectors and
3669:{\displaystyle \mathbf {e} ^{2}(\mathbf {e} _{2})=1} 3616:{\displaystyle \mathbf {e} ^{2}(\mathbf {e} _{1})=0} 3563:{\displaystyle \mathbf {e} ^{1}(\mathbf {e} _{2})=0} 3510:{\displaystyle \mathbf {e} ^{1}(\mathbf {e} _{1})=1} 3464:(functions that map a vector to a scalar) such that 16641: 16171: 16160: 15731:is frequently used to denote the codifferential of 14706:
is a closed linear subspace of a normed space 
9942:{\displaystyle A^{0}+B^{0}\subseteq (A\cap B)^{0}.} 9236: 4921:matrix (trivially, a real number) respectively, if 2602:. Applying this functional on the basis vectors of 17677:Spectral theory of ordinary differential equations 16764: 16703: 16489:Elements of mathematics, Topological vector spaces 16332: 16310: 16283: 16186:Elements of mathematics: Algebra I, Chapters 1 - 3 16024: 16004: 15984: 15898: 15871: 15845: 15824: 15795: 15775: 15744: 15723: 15696: 15653: 15548: 15414:, however several difficulties arise. First, when 15340: 15222: 15200: 14944: 14786: 14520: 14326: 14207: 14009: 13935: 13890: 13860: 13810: 13739: 13573: 13537: 13501: 13468: 13439: 13419: 13395: 13375: 13343: 13323: 13299: 13275: 13240: 13159: 13122: 13098: 13078: 13054: 13030: 12991: 12874: 12844: 12760: 12733: 12647: 12617: 12587: 12553: 12483: 12453: 12433: 12409: 12382: 12230: 12205: 12185: 12156: 12129: 12109: 12089: 12066: 11982: 11955: 11935: 11911: 11887: 11867: 11785: 11749: 11722: 11690: 11662: 11630: 11600: 11564: 11527: 11481: 11456: 11429: 11407: 11357: 11299: 11259: 11209: 11185: 11152: 11121: 11097: 11073: 11048: 11011: 10958: 10925: 10891: 10864: 10837: 10810: 10790: 10766: 10743: 10683: 10659: 10639: 10611: 10575: 10544: 10524: 10497: 10461: 10438: 10398: 10378: 10355: 10281: 10213: 10193: 10173: 10150: 10050: 10030: 10010: 9990: 9941: 9870: 9850: 9830: 9807: 9736: 9692: 9672: 9620: 9567: 9529: 9509: 9477: 9450: 9424: 9386: 9353: 9326: 9299: 9273: 9253: 9175:using the natural injection into the double dual. 9055: 8971: 8943: 8905: 8883: 8855: 8826: 8788: 8751: 8639: 8611: 8591: 8553: 8511: 8476: 8425: 8380: 8321: 8231: 8211: 8177: 8100: 8063: 7950: 7842: 7786: 7747: 7656: 7566: 7490:. The exact dimension of the dual is given by the 7478: 7405: 7328: 7136: 7116: 7064: 6931: 6911: 6887: 6857: 6783: 6763: 6739: 6696: 6676: 6646: 6485: 6465: 6446:{\displaystyle \theta (\alpha )=\theta _{\alpha }} 6445: 6403: 6371: 6351: 6300: 6280: 6260: 6240: 6216: 6189: 6166: 6140: 6120: 6097: 6039: 6019: 5993: 5951: 5919: 5879: 5859: 5812: 5792: 5769: 5734: 5701: 5671: 5618: 5589: 5556: 5519: 5488: 5459: 5439: 5410: 5382: 5356: 5324: 5298: 5265: 5245: 5213: 5185: 5165: 5134: 5113: 5086: 5066: 5031: 5008: 4988: 4962: 4942: 4913: 4887: 4867: 4841: 4821: 4801: 4781: 4761: 4737: 4708: 4681: 4661: 4623: 4588: 4458: 4430: 4406: 4376: 4313: 4238: 4172: 4143: 4120: 4061: 4008: 3979: 3950: 3858: 3668: 3615: 3562: 3509: 3452: 3423: 3394: 3292: 3263: 3235: 3208: 3181: 3122: 2854: 2818: 2791: 2735: 2708: 2679: 2614: 2594: 2502: 2458: 2416: 2289: 2160: 2109: 2058: 1982: 1906: 1874: 1808: 1778: 1650: 1594: 1515: 1480: 1412: 1376: 1247: 1227: 1167: 1148:, it is possible to construct a specific basis in 1140: 1120: 1061: 1041: 1014: 976: 915: 866: 817: 795: 774: 746: 708: 678: 651: 624: 582: 438: 417: 390: 343: 307: 282: 255: 225: 202: 89: 52: 16671: 16085: 13922:, the corresponding continuous linear functional 13005:Here are the three most important special cases. 12417:is supposed to satisfy the following conditions: 11824:is identical to the continuous dual space of the 8752:{\displaystyle f^{*}(\varphi )=\varphi \circ f\,} 8188: 7762:, then this is an isomorphism onto a subspace of 7567:{\displaystyle v\mapsto \langle v,\cdot \rangle } 102:addition and scalar multiplication by constants. 18052: 16614: 16208: 16183: 16012:is nonzero, and hence that the natural map from 15430:and locally convex, the map Ψ is injective from 13549:: the spaces reflexive in this sense are called 13192: 12300: 12024: 11797:(slowly growing distributions) in the theory of 8381:{\displaystyle (\Psi (v))(\varphi )=\varphi (v)} 1875:{\displaystyle \mathbf {e} ^{i},i=1,2,\dots ,n,} 15957:Several assertions in this article require the 14521:{\displaystyle i_{V}\circ T^{*}=T'\circ i_{V}.} 14345:are normed spaces, the norm of the transpose in 10505:. In particular, forming the annihilator is a 2110:{\displaystyle \mathbf {e} ^{i}(x)=\alpha _{i}} 16672:Narici, Lawrence; Beckenstein, Edward (2011). 14092:to the original space. This gives rise to the 11242:: given a one-dimensional vector space with a 7486:which can be done with an argument similar to 7144:-vector space, the arithmetical properties of 5531:sequences of real numbers: each real sequence 4669:can be interpreted as the space of columns of 2161:{\displaystyle \mathbf {e} ^{i}(y)=\beta _{i}} 17817: 17333: 16891: 16785: 14387:has dense range if and only if the transpose 9129:then the space of linear maps is actually an 5142:is a vector space of any dimension, then the 4624:{\displaystyle \langle \cdot ,\cdot \rangle } 14778: 14743: 14269:are composable continuous linear maps, then 14105:Riesz–Markov–Kakutani representation theorem 14044:In a similar manner, the continuous dual of 13861:{\displaystyle (\varphi (\mathbf {e} _{n}))} 13646: 13637: 13202: 13196: 13185: 13179: 12947: 12940: 12287: 12267: 12011: 12004: 11601:{\displaystyle \varphi :V\to {\mathbb {F} }} 11234:, as expected. For example, in (continuous) 10985: 10973: 9760: 9754: 9713: 9707: 9654: 9648: 9596: 9589: 8654: 8477:{\displaystyle \mathrm {ev} _{v}:V^{*}\to F} 8316: 8262: 8027: 8015: 7878: 7865: 7831: 7818: 7739: 7727: 7699: 7687: 7630: 7618: 7561: 7549: 5854: 5827: 5467:-th position, which is 1. The dual space of 5196: 4618: 4606: 4568: 4545: 4517: 4494: 3945: 3876: 3389: 3307: 3176: 3140: 2786: 2750: 1645: 1609: 1589: 1553: 1527:symbol. This property is referred to as the 1222: 1186: 1115: 1079: 946: 934: 910: 898: 98:together with the vector space structure of 27:In mathematics, vector space of linear forms 15985:{\displaystyle \mathbb {R} ^{\mathbb {N} }} 13451:Each of these three choices of topology on 8512:{\displaystyle \varphi \mapsto \varphi (v)} 5770:{\displaystyle \mathbb {R} ^{\mathbb {N} }} 5520:{\displaystyle \mathbb {R} ^{\mathbb {N} }} 4809:. Then, seeing this functional as a matrix 17824: 17810: 17454: 17340: 17326: 16898: 16884: 14605:of uniform convergence on bounded sets of 14145:is defined by the same formula as before: 13283:is the topology of uniform convergence on 13038:is the topology of uniform convergence on 10356:{\displaystyle (A\cap B)^{0}=A^{0}+B^{0}.} 9673:{\displaystyle V^{0}=\{0\}\subseteq V^{*}} 9361:, is the collection of linear functionals 8592:{\displaystyle v\mapsto \mathrm {ev} _{v}} 7748:{\displaystyle \left=\langle v,w\rangle .} 4749:. This is because a functional maps every 4121:{\displaystyle \mathbf {e} ^{2}(x,y)=-x+y} 4016:are functionals, they can be rewritten as 991: 17450: 16058:is locally convex but not Hausdorff, the 15976: 15970: 15953: 15951: 15949: 15947: 15879:for the continuous dual, while reserving 15559:be continuous for the chosen topology on 15381:. Normed spaces for which the map Ψ is a 14418:is compact. This can be proved using the 12809: 11835: 11820:(TVS), then the continuous dual space of 11593: 11423: 11408:{\displaystyle \mathbb {F} =\mathbb {C} } 11401: 11393: 10282:{\displaystyle (A+B)^{0}=A^{0}\cap B^{0}} 9034: 9015: 8748: 7947: 5761: 5755: 5722: 5606: 5511: 5505: 5476: 5404: 5376: 5344: 4725: 4649: 4160: 3280: 2459:{\displaystyle \mathbf {e} ^{i}\in V^{*}} 17630:Group algebra of a locally compact group 16773: 16626:(3rd ed.). AMS Chelsea Publishing. 16527:A (Terse) Introduction to Linear Algebra 16483: 16461: 16407: 16395: 16383: 16371: 16347: 16184:Nicolas Bourbaki (1974). Hermann (ed.). 15585:Covariance and contravariance of vectors 15018: 13811:{\displaystyle \varphi \in (\ell ^{p})'} 12393:Usually (but not necessarily) the class 11372: 9167:to itself. It is possible to identify ( 9163:from the category of vector spaces over 8426:{\displaystyle v\in V,\varphi \in V^{*}} 6128:(the sum is finite by the assumption on 4634:§ Bilinear products and dual spaces 4062:{\displaystyle \mathbf {e} ^{1}(x,y)=2x} 16765:Robertson, A.P.; Robertson, W. (1964). 14327:{\displaystyle (U\circ T)'=T'\circ U'.} 11309:). For example, if time is measured in 10902: 9103:and the space of linear operators from 924:. This pairing defines a nondegenerate 625:{\displaystyle \varphi ,\psi \in V^{*}} 356:). Since linear maps are vector space 182: 14: 18053: 17289:Comparison of linear algebra libraries 16819: 16495: 16232: 16220: 16148: 16136: 15944: 15907: 15804: 15617:– dual space basis, in crystallography 15491:, namely that the evaluation mappings 14383:. For example, the bounded linear map 9225:acting on the left on column vectors, 6197:may then be identified with the space 5994:{\displaystyle f_{\alpha }=f(\alpha )} 5735:{\displaystyle \mathbb {R} ^{\infty }} 5619:{\displaystyle \mathbb {R} ^{\infty }} 5489:{\displaystyle \mathbb {R} ^{\infty }} 5357:{\displaystyle \mathbb {R} ^{\infty }} 5299:{\displaystyle \mathbf {e} ^{\alpha }} 5246:{\displaystyle \mathbf {e} _{\alpha }} 17805: 17321: 16879: 16857: 16827:. Mineola, N.Y.: Dover Publications. 16728: 16698: 16435: 16419: 16359: 16124: 16108: 16106: 15449:, so that the continuous double dual 15049:of two vectors. The addition + sends 14982: 14404:linear map between two Banach spaces 12166:This means that a net of functionals 12097:is a continuous linear functional on 11313:, the corresponding dual unit is the 10744:{\displaystyle (V/W)^{*}\cong W^{0}.} 8917:The following identity holds for all 6791:, i.e. there are linear isomorphisms 6308:is uniquely determined by the values 5564:defines a function where the element 5039:consists of the space of geometrical 689:Elements of the algebraic dual space 16740:McGraw-Hill Science/Engineering/Math 16712:McGraw-Hill Science/Engineering/Math 16547: 15783:represents the pullback of the form 14816:can be identified with the quotient 14111:Transpose of a continuous linear map 11963:of uniform convergence on sets from 9217:, hence the name. Alternatively, as 7969:and nondegenerate bilinear forms on 5672:{\displaystyle \sum _{n}a_{n}x_{n},} 5221:is not finite-dimensional but has a 17887:Topologies on spaces of linear maps 16244: 14945:{\displaystyle \ker(j')=W^{\perp }} 14889:, then the kernel of the transpose 14609:, or both have the weak-∗ topology 12648:{\displaystyle C\in {\mathcal {A}}} 12618:{\displaystyle B\in {\mathcal {A}}} 12588:{\displaystyle A\in {\mathcal {A}}} 12484:{\displaystyle A\in {\mathcal {A}}} 9485:consists of all linear functionals 8101:{\displaystyle {\overline {V^{*}}}} 7339:where cardinalities are denoted as 5074:form a family of parallel lines in 4745:as a linear functional by ordinary 826:is sometimes denoted by a bracket: 425:itself becomes a vector space over 24: 16905: 16781:. New York: The Macmillan Company. 16588: 16467:Elements of mathematics, Algebra I 16112: 16103: 16098:Katznelson & Katznelson (2008) 15668: 15266: 15117: 15090: 14710:, and consider the annihilator of 14249:and the space of linear maps from 13731: 13680: 13412: 13316: 13071: 12984: 12834: 12790: 12753: 12702: 12683: 12640: 12610: 12580: 12528: 12476: 12402: 12371: 12261: 12146: 11972: 11904: 11771: 11739: 11708: 11683: 11648: 11623: 9209:with respect to the dual bases of 8606: 8579: 8576: 8526: 8445: 8442: 8339: 8312: 8309: 8306: 8303: 8300: 8297: 8290: 8265: 8206: 8011: 7923: 7893: 7882: 7835: 7781: 7683: 7614: 7448: 7445: 7442: 7380: 7377: 7374: 7357: 7354: 7351: 7279: 7276: 7273: 7260: 7257: 7254: 7165: 7162: 7159: 6684:is nonzero for only finitely many 6001:is nonzero for only finitely many 5727: 5611: 5481: 5349: 1882:are linear functionals, which map 25: 18087: 16850: 16525:; Katznelson, Yonatan R. (2008). 16172:Misner, Thorne & Wheeler 1973 16161:Misner, Thorne & Wheeler 1973 14965:induces an isometric isomorphism 14855:is an isometric isomorphism from 14624:of pointwise convergence on  11505:. Nevertheless, in the theory of 11358:{\displaystyle 3s\cdot 2s^{-1}=6} 10959:{\displaystyle \varphi \in V^{*}} 8944:{\displaystyle \varphi \in W^{*}} 8789:{\displaystyle \varphi \in W^{*}} 8554:{\displaystyle \Psi :V\to V^{**}} 8484:is the evaluation map defined by 7965:to a subspace of (resp., all of) 7498:Bilinear products and dual spaces 6657:Again, the sum is finite because 5777:does not have a countable basis. 5411:{\displaystyle i\in \mathbb {N} } 5335:For instance, consider the space 4716:real numbers. Such a row acts on 4459:{\displaystyle \mathbf {x} \in V} 17786: 17785: 17712:Topological quantum field theory 17302: 17301: 17279:Basic Linear Algebra Subprograms 17037: 16501:Finite-Dimensional Vector Spaces 16032:to its double dual is injective. 15832:to denote the algebraic dual of 15250:into its continuous double dual 13967: 13891:{\displaystyle \mathbf {e} _{n}} 13878: 13842: 13641: 11786:{\displaystyle {\mathcal {S}}',} 11723:{\displaystyle {\mathcal {E}}',} 11663:{\displaystyle {\mathcal {D}}',} 10754:As a particular consequence, if 10691:. There is thus an isomorphism 9991:{\displaystyle (A_{i})_{i\in I}} 9700:reverses inclusions, so that if 9237:Quotient spaces and annihilators 9137:, and the assignment is then an 8074:The conjugate of the dual space 6539: 6336: 6085: 5832: 5440:{\displaystyle \mathbf {e} _{i}} 5427: 5286: 5233: 4738:{\displaystyle \mathbb {R} ^{n}} 4662:{\displaystyle \mathbb {R} ^{n}} 4573: 4558: 4549: 4522: 4507: 4498: 4477: 4446: 4298: 4273: 4223: 4198: 4173:{\displaystyle \mathbb {R} ^{n}} 4078: 4025: 4009:{\displaystyle \mathbf {e} ^{2}} 3996: 3980:{\displaystyle \mathbf {e} ^{1}} 3967: 3914: 3881: 3647: 3632: 3594: 3579: 3541: 3526: 3488: 3473: 3453:{\displaystyle \mathbf {e} ^{2}} 3440: 3424:{\displaystyle \mathbf {e} ^{1}} 3411: 3361: 3312: 3293:{\displaystyle \mathbb {R} ^{2}} 3166: 3145: 3107: 3080: 3056: 3029: 3011: 2971: 2937: 2906: 2776: 2755: 2709:{\displaystyle \mathbf {e} _{i}} 2696: 2563: 2532: 2433: 2395: 2368: 2306: 2277: 2224: 2126: 2075: 2046: 2015: 1970: 1939: 1829: 1725: 1694: 1669: 1635: 1614: 1579: 1558: 1447: 1432: 1323: 1292: 1267: 1212: 1191: 1105: 1084: 360:, the dual space may be denoted 17177:Seven-dimensional cross product 16429: 16413: 16365: 16353: 16238: 16226: 16214: 16202: 16177: 16165: 16048: 16035: 15533: 15305: 14881:denotes the injection map from 14797:Then, the dual of the quotient 14697: 14446:. For every bounded linear map 14187: 13818:, the corresponding element of 13480:for topological vector spaces: 12970: 12939: 12814: 12795: 12707: 12688: 12533: 12514: 12266: 12157:{\displaystyle {\mathcal {A}}.} 11983:{\displaystyle {\mathcal {A}},} 11750:{\displaystyle {\mathcal {S}},} 10498:{\displaystyle V\approx V^{**}} 9621:{\displaystyle \{0\}^{0}=V^{*}} 8827:{\displaystyle f^{*}(\varphi )} 7774:. Conversely, any isomorphism 7518:between these two spaces. Any 1754: 1516:{\displaystyle \delta _{j}^{i}} 1387:for any choice of coefficients 1352: 344:{\displaystyle \varphi :V\to F} 315:) is defined as the set of all 16333:Robertson & Robertson 1964 16154: 16142: 16130: 16118: 16091: 15913: 15854:. However, other authors use 15685: 15678: 15628: 15527: 15521: 15515: 15299: 15293: 15284: 15278: 15275: 15269: 15195: 15189: 15180: 15154: 15145: 15139: 15136: 15133: 15120: 15106: 15093: 15087: 15014: 14987:If the dual of a normed space 14926: 14915: 14292: 14279: 14169: 14163: 13971: 13963: 13855: 13852: 13837: 13831: 13801: 13787: 13766:. Then the continuous dual of 13702: 13686: 13420:{\displaystyle {\mathcal {A}}} 13324:{\displaystyle {\mathcal {A}}} 13231: 13227: 13221: 13214: 13142:) then the strong topology on 13079:{\displaystyle {\mathcal {A}}} 12761:{\displaystyle {\mathcal {A}}} 12410:{\displaystyle {\mathcal {A}}} 12368: 12361: 12355: 12351: 12345: 12336: 12330: 12316: 12057: 12053: 12047: 12040: 11912:{\displaystyle {\mathcal {A}}} 11875:of a topological vector space 11691:{\displaystyle {\mathcal {E}}} 11631:{\displaystyle {\mathcal {D}}} 11588: 11269:, the dual space has units of 11180: 11171: 11000: 10994: 10933:can be paired with a covector 10716: 10701: 10603: 10315: 10302: 10244: 10231: 9973: 9959: 9927: 9914: 9549: 9501: 9413: 9401: 9047: 9044: 9038: 9025: 9019: 9009: 9003: 8990: 8821: 8815: 8733: 8727: 8571: 8535: 8506: 8500: 8494: 8468: 8375: 8369: 8360: 8354: 8351: 8348: 8342: 8336: 8281: 8189:Injection into the double-dual 8169: 8163: 8144: 8135: 8038: 7941: 7932: 7926: 7920: 7914: 7908: 7905: 7902: 7896: 7890: 7710: 7704: 7641: 7546: 7469: 7465: 7452: 7437: 7429: 7421: 7397: 7384: 7367: 7361: 7320: 7316: 7308: 7300: 7296: 7283: 7268: 7264: 7246: 7231: 7221: 7213: 7207: 7198: 7190: 7182: 7175: 7169: 6895:is (again by definition), the 6821: 6807: 6728: 6714: 6599: 6586: 6453:) defines a linear functional 6427: 6421: 6404:{\displaystyle \theta :A\to F} 6395: 6346: 6331: 6047:is identified with the vector 5988: 5982: 5943: 5908: 5894: 5584: 5571: 5551: 5538: 4338: 4308: 4292: 4284: 4268: 4259: 4233: 4217: 4209: 4193: 4100: 4088: 4047: 4035: 3942: 3927: 3906: 3894: 3657: 3642: 3604: 3589: 3551: 3536: 3498: 3483: 3386: 3374: 3353: 3325: 3117: 3102: 3096: 3090: 3066: 3051: 3045: 3039: 3021: 3006: 2981: 2966: 2947: 2891: 2882: 2876: 2503:{\displaystyle i=1,2,\dots ,n} 2411: 2405: 2384: 2378: 2331: 2316: 2272: 2243: 2219: 2190: 2142: 2136: 2091: 2085: 1735: 1679: 1457: 1442: 1333: 1277: 968: 892: 886: 861: 849: 843: 837: 568: 562: 541: 535: 532: 523: 516: 510: 501: 495: 482: 476: 473: 461: 385: 373: 335: 13: 1: 17508:Uniform boundedness principle 16769:. Cambridge University Press. 16557:Graduate Texts in Mathematics 16531:American Mathematical Society 16086:Narici & Beckenstein 2011 16069: 15605:Duality (projective geometry) 14121:Dual system § Transposes 14050:is naturally identified with 13770:is naturally identified with 12691: there exists some  12517: there exists some  11943:. This gives the topology on 11804: 11049:{\displaystyle V\oplus V^{*}} 9517:such that the restriction to 9189:with respect to two bases of 7992:determines an isomorphism of 7514:. But there is in general no 6899:of infinitely many copies of 6751:of infinitely many copies of 3300:, let its basis be chosen as 1658:be defined as the following: 115:continuous linear functionals 69:for short) consisting of all 17019:Eigenvalues and eigenvectors 16789:; Wolff, Manfred P. (1999). 16594:An Introduction to Manifolds 16209:Mac Lane & Birkhoff 1999 15776:{\displaystyle F^{*}\omega } 15697:{\displaystyle (\cdot )^{*}} 15664:An Introduction to Manifolds 15465:, or in other words, that Ψ( 14086:Riesz representation theorem 12186:{\displaystyle \varphi _{i}} 11430:{\displaystyle \mathbb {R} } 11023:. Thus while the direct sum 10038:belonging to some index set 9998:is any family of subsets of 8155: 8093: 8053: 7506:is finite-dimensional, then 6939:, and so the identification 6020:{\displaystyle \alpha \in A} 5383:{\displaystyle \mathbb {N} } 5325:{\displaystyle \alpha \in A} 5173:are parallel hyperplanes in 4950:then, by dimension reasons, 2736:{\displaystyle \lambda _{i}} 1022:is finite-dimensional, then 867:{\displaystyle \varphi (x)=} 733:The pairing of a functional 7: 15578: 15005:is separable, but its dual 13899:denotes the sequence whose 13593: 11226:This arises in physics via 8797:. The resulting functional 7124:is an infinite-dimensional 6740:{\displaystyle (F^{A})_{0}} 6677:{\displaystyle f_{\alpha }} 5920:{\displaystyle (F^{A})_{0}} 5364:, whose elements are those 5253:indexed by an infinite set 4314:{\displaystyle {\hat {E}}=} 2799:is linearly independent on 2687:(The functional applied in 1179:. This dual basis is a set 10: 18092: 17651:Invariant subspace problem 16284:{\displaystyle V^{T^{-1}}} 16254:Similarly, one can define 14114: 12882:is Hausdorff and the sets 12625:are contained in some set 11839: 10386:is finite-dimensional and 9387:{\displaystyle f\in V^{*}} 9141:of algebras, meaning that 9119:is finite-dimensional. If 9111:; this homomorphism is an 8658: 7488:Cantor's diagonal argument 7413:it suffices to prove that 7090:of larger dimension (as a 5146:of a linear functional in 3216:. Hence, it is a basis of 2855:{\displaystyle g\in V^{*}} 1413:{\displaystyle c^{i}\in F} 1255:, defined by the relation 1049:has the same dimension as 995: 263:(alternatively denoted by 18032: 18011: 18003:Transpose of a linear map 17995: 17974: 17895: 17844: 17781: 17740: 17664: 17643: 17602: 17541: 17483: 17429: 17371: 17364: 17297: 17259: 17215: 17152: 17104: 17046: 17035: 16931: 16913: 16791:Topological Vector Spaces 16779:Topological vector spaces 16767:Topological vector spaces 16674:Topological Vector Spaces 16441:Linear Algebra Done Right 15654:{\displaystyle V^{\lor }} 15355:, this map is in fact an 14440:onto its continuous dual 14218:The resulting functional 14117:Transpose of a linear map 11507:topological vector spaces 11503:discontinuous linear maps 11379:topological vector spaces 10585:first isomorphism theorem 8661:Transpose of a linear map 8655:Transpose of a linear map 7079:relating direct sums (of 6359:it takes on the basis of 5197:Infinite-dimensional case 4989:{\displaystyle 1\times n} 4914:{\displaystyle 1\times 1} 4868:{\displaystyle n\times 1} 2622:successively, lead us to 1529:bi-orthogonality property 1235:of linear functionals on 391:{\displaystyle \hom(V,F)} 283:{\displaystyle V^{\lor }} 17620:Spectrum of a C*-algebra 15906:for the algebraic dual ( 15621: 15398:topological vector space 15351:As a consequence of the 15223:{\displaystyle \varphi } 14955:and it follows from the 14458:operators are linked by 14454:, the transpose and the 13936:{\displaystyle \varphi } 12206:{\displaystyle \varphi } 12090:{\displaystyle \varphi } 11818:topological vector space 11514:topological vector space 11219:. This is formalized by 10612:{\displaystyle f:V\to F} 10439:{\displaystyle W^{00}=W} 9568:{\displaystyle f|_{S}=0} 9510:{\displaystyle f:V\to F} 8884:{\displaystyle \varphi } 7758:If the bilinear form is 7533:into its dual space via 6027:, where such a function 5952:{\displaystyle f:A\to F} 1907:{\displaystyle x,y\in V} 747:{\displaystyle \varphi } 111:topological vector space 17717:Noncommutative geometry 15919:In many areas, such as 15796:{\displaystyle \omega } 14995:, then so is the space 14808:can be identified with 11670:the space of arbitrary 11277:unit of time (units of 11240:time–frequency analysis 11083:-dimensional space (if 10966:by the natural pairing 7492:Erdős–Kaplansky theorem 7075:is a special case of a 6697:{\displaystyle \alpha } 5590:{\displaystyle (x_{n})} 5557:{\displaystyle (a_{n})} 5043:in the plane, then the 992:Finite-dimensional case 17773:Tomita–Takesaki theory 17748:Approximation property 17692:Calculus of variations 17004:Row and column vectors 16312: 16285: 16026: 16006: 15986: 15900: 15873: 15847: 15826: 15797: 15777: 15746: 15725: 15698: 15661:used in this way, see 15655: 15550: 15434:to the algebraic dual 15342: 15232: 15224: 15202: 15025:natural transformation 14946: 14895:is the annihilator of 14873:, with range equal to 14849:; then, the transpose 14788: 14522: 14328: 14209: 14011: 13937: 13892: 13862: 13812: 13741: 13684: 13575: 13539: 13503: 13476:leads to a variant of 13470: 13441: 13421: 13397: 13377: 13345: 13325: 13301: 13277: 13242: 13161: 13124: 13100: 13080: 13056: 13032: 12993: 12876: 12846: 12762: 12735: 12649: 12619: 12589: 12555: 12485: 12455: 12435: 12411: 12384: 12232: 12207: 12193:tends to a functional 12187: 12158: 12131: 12111: 12091: 12068: 11984: 11957: 11937: 11913: 11889: 11869: 11836:Topologies on the dual 11795:tempered distributions 11787: 11751: 11724: 11692: 11664: 11632: 11602: 11566: 11541:topological dual space 11529: 11483: 11458: 11431: 11409: 11359: 11301: 11261: 11211: 11187: 11154: 11123: 11099: 11075: 11050: 11013: 10960: 10927: 10926:{\displaystyle v\in V} 10893: 10866: 10839: 10812: 10792: 10768: 10745: 10685: 10661: 10641: 10613: 10577: 10546: 10526: 10499: 10463: 10440: 10400: 10380: 10357: 10283: 10215: 10195: 10175: 10152: 10052: 10032: 10012: 9992: 9943: 9872: 9852: 9832: 9809: 9738: 9694: 9674: 9622: 9569: 9531: 9511: 9479: 9452: 9451:{\displaystyle s\in S} 9426: 9388: 9355: 9328: 9301: 9275: 9255: 9201:is represented by the 9182:is represented by the 9057: 8973: 8972:{\displaystyle v\in V} 8945: 8907: 8885: 8857: 8828: 8790: 8753: 8641: 8623:; and it is always an 8613: 8593: 8561:is defined as the map 8555: 8513: 8478: 8433:. In other words, if 8427: 8382: 8323: 8233: 8213: 8179: 8102: 8065: 7952: 7844: 7788: 7749: 7658: 7568: 7480: 7407: 7330: 7138: 7118: 7083:) to direct products. 7066: 6933: 6913: 6889: 6859: 6785: 6765: 6741: 6698: 6678: 6648: 6487: 6467: 6447: 6405: 6373: 6353: 6302: 6282: 6268:: a linear functional 6262: 6242: 6218: 6191: 6168: 6167:{\displaystyle v\in V} 6142: 6122: 6099: 6041: 6021: 5995: 5953: 5921: 5881: 5861: 5814: 5794: 5771: 5736: 5703: 5673: 5626:is sent to the number 5620: 5591: 5558: 5521: 5490: 5461: 5441: 5412: 5384: 5358: 5326: 5300: 5267: 5247: 5215: 5187: 5167: 5136: 5115: 5088: 5068: 5033: 5016:must be a row vector. 5010: 4990: 4964: 4944: 4915: 4889: 4869: 4843: 4823: 4803: 4783: 4763: 4739: 4710: 4683: 4663: 4625: 4590: 4460: 4432: 4408: 4378: 4315: 4240: 4174: 4145: 4122: 4063: 4010: 3981: 3952: 3860: 3670: 3617: 3564: 3511: 3454: 3425: 3396: 3294: 3265: 3237: 3210: 3183: 3124: 2856: 2820: 2793: 2737: 2710: 2681: 2616: 2596: 2504: 2460: 2418: 2291: 2162: 2111: 2060: 1984: 1908: 1876: 1810: 1780: 1652: 1596: 1517: 1482: 1414: 1378: 1249: 1229: 1169: 1142: 1122: 1063: 1043: 1016: 978: 917: 868: 819: 797: 776: 748: 710: 680: 679:{\displaystyle a\in F} 653: 652:{\displaystyle x\in V} 626: 584: 440: 419: 392: 345: 309: 284: 257: 235:(algebraic) dual space 227: 204: 91: 54: 17768:Banach–Mazur distance 17731:Generalized functions 17009:Row and column spaces 16954:Scalar multiplication 16313: 16311:{\displaystyle V^{T}} 16291:as the dual space to 16286: 16027: 16007: 15987: 15901: 15899:{\displaystyle V^{*}} 15874: 15848: 15827: 15798: 15778: 15747: 15726: 15724:{\displaystyle F^{*}} 15699: 15656: 15600:Duality (mathematics) 15551: 15343: 15225: 15203: 15022: 14947: 14830:denote the canonical 14789: 14543:, then the transpose 14523: 14420:Arzelà–Ascoli theorem 14412:, then the transpose 14329: 14210: 14012: 13938: 13893: 13863: 13813: 13742: 13664: 13576: 13540: 13504: 13471: 13442: 13422: 13398: 13378: 13346: 13326: 13302: 13278: 13243: 13162: 13125: 13101: 13081: 13057: 13033: 13002:form its local base. 12994: 12877: 12847: 12817: such that  12763: 12736: 12710: such that  12650: 12620: 12590: 12556: 12536: such that  12486: 12456: 12436: 12412: 12385: 12233: 12208: 12188: 12159: 12132: 12112: 12092: 12069: 11985: 11958: 11938: 11914: 11890: 11870: 11799:generalized functions 11788: 11752: 11725: 11693: 11665: 11633: 11603: 11567: 11537:continuous dual space 11530: 11484: 11459: 11457:{\displaystyle V^{*}} 11432: 11410: 11373:Continuous dual space 11360: 11302: 11262: 11212: 11188: 11155: 11153:{\displaystyle V^{*}} 11124: 11100: 11076: 11051: 11014: 10961: 10928: 10894: 10892:{\displaystyle B^{0}} 10867: 10865:{\displaystyle A^{0}} 10840: 10838:{\displaystyle V^{*}} 10813: 10793: 10769: 10746: 10686: 10662: 10642: 10614: 10578: 10547: 10527: 10500: 10464: 10441: 10401: 10381: 10358: 10284: 10216: 10196: 10176: 10153: 10053: 10033: 10013: 9993: 9944: 9873: 9853: 9833: 9810: 9739: 9695: 9675: 9623: 9577:orthogonal complement 9570: 9532: 9512: 9480: 9478:{\displaystyle S^{0}} 9453: 9427: 9389: 9356: 9354:{\displaystyle S^{0}} 9329: 9327:{\displaystyle V^{*}} 9302: 9276: 9256: 9161:contravariant functor 9155:. In the language of 9058: 8974: 8946: 8908: 8886: 8858: 8856:{\displaystyle V^{*}} 8829: 8791: 8754: 8642: 8614: 8612:{\displaystyle \Psi } 8594: 8556: 8514: 8479: 8428: 8383: 8324: 8239:into the double dual 8234: 8214: 8212:{\displaystyle \Psi } 8180: 8103: 8066: 7953: 7845: 7789: 7787:{\displaystyle \Phi } 7750: 7659: 7569: 7481: 7408: 7331: 7139: 7119: 7067: 6934: 6914: 6890: 6888:{\displaystyle F^{A}} 6860: 6786: 6766: 6742: 6699: 6679: 6649: 6488: 6468: 6448: 6406: 6374: 6354: 6303: 6283: 6263: 6243: 6219: 6217:{\displaystyle F^{A}} 6192: 6169: 6143: 6123: 6100: 6042: 6022: 5996: 5954: 5922: 5882: 5862: 5815: 5795: 5772: 5737: 5704: 5702:{\displaystyle x_{n}} 5674: 5621: 5592: 5559: 5522: 5491: 5462: 5442: 5413: 5385: 5359: 5327: 5301: 5268: 5248: 5216: 5188: 5168: 5166:{\displaystyle V^{*}} 5137: 5116: 5114:{\displaystyle V^{*}} 5089: 5069: 5067:{\displaystyle V^{*}} 5034: 5011: 4991: 4965: 4945: 4916: 4890: 4870: 4844: 4824: 4804: 4784: 4764: 4747:matrix multiplication 4740: 4711: 4684: 4664: 4626: 4591: 4466:to be represented as 4461: 4433: 4409: 4407:{\displaystyle I_{n}} 4379: 4316: 4241: 4175: 4146: 4123: 4064: 4011: 3982: 3953: 3861: 3671: 3618: 3565: 3512: 3455: 3426: 3397: 3295: 3266: 3238: 3236:{\displaystyle V^{*}} 3211: 3209:{\displaystyle V^{*}} 3184: 3125: 2857: 2821: 2819:{\displaystyle V^{*}} 2794: 2738: 2711: 2682: 2617: 2597: 2505: 2461: 2419: 2292: 2163: 2112: 2061: 1985: 1909: 1877: 1811: 1809:{\displaystyle V^{*}} 1789:These are a basis of 1781: 1653: 1597: 1518: 1483: 1415: 1379: 1250: 1230: 1170: 1168:{\displaystyle V^{*}} 1143: 1123: 1064: 1044: 1042:{\displaystyle V^{*}} 1017: 979: 918: 869: 820: 798: 777: 775:{\displaystyle V^{*}} 749: 716:are sometimes called 711: 709:{\displaystyle V^{*}} 681: 654: 627: 585: 441: 420: 418:{\displaystyle V^{*}} 393: 346: 310: 285: 258: 256:{\displaystyle V^{*}} 228: 205: 119:continuous dual space 109:. When defined for a 92: 55: 17513:Kakutani fixed-point 17498:Riesz representation 17144:Gram–Schmidt process 17096:Gaussian elimination 16497:Halmos, Paul Richard 16295: 16258: 16016: 15996: 15965: 15883: 15858: 15837: 15811: 15787: 15757: 15736: 15708: 15675: 15638: 15498: 15263: 15246:from a normed space 15214: 15084: 14906: 14727: 14465: 14360:is equal to that of 14276: 14152: 14064:sequences, with the 13957: 13927: 13873: 13828: 13778: 13634: 13581:is endowed with the 13560: 13524: 13509:is endowed with the 13488: 13478:reflexivity property 13455: 13431: 13407: 13387: 13362: 13335: 13311: 13291: 13285:totally bounded sets 13262: 13176: 13146: 13114: 13090: 13066: 13046: 13017: 12889: 12861: 12774: 12748: 12661: 12629: 12599: 12569: 12497: 12465: 12461:belongs to some set 12445: 12425: 12397: 12245: 12217: 12197: 12170: 12141: 12137:runs over the class 12121: 12101: 12081: 12001: 11967: 11947: 11927: 11899: 11879: 11854: 11765: 11734: 11702: 11678: 11642: 11618: 11576: 11551: 11519: 11468: 11441: 11419: 11389: 11321: 11283: 11251: 11228:dimensional analysis 11201: 11186:{\displaystyle (-n)} 11168: 11137: 11113: 11089: 11062: 11027: 10970: 10937: 10911: 10903:Dimensional analysis 10876: 10849: 10822: 10802: 10782: 10758: 10698: 10675: 10651: 10623: 10591: 10559: 10536: 10516: 10473: 10453: 10417: 10390: 10370: 10299: 10228: 10205: 10185: 10165: 10065: 10042: 10022: 10002: 9956: 9885: 9862: 9842: 9822: 9751: 9704: 9684: 9632: 9586: 9541: 9521: 9489: 9462: 9436: 9398: 9365: 9338: 9311: 9291: 9265: 9245: 8987: 8957: 8922: 8897: 8875: 8840: 8802: 8767: 8714: 8631: 8603: 8565: 8523: 8488: 8437: 8392: 8333: 8243: 8223: 8203: 8129: 8078: 8007: 7976:If the vector space 7862: 7815: 7778: 7674: 7610: 7540: 7417: 7347: 7155: 7128: 7108: 6946: 6923: 6903: 6872: 6798: 6775: 6755: 6711: 6688: 6661: 6500: 6477: 6457: 6415: 6383: 6363: 6312: 6292: 6272: 6252: 6232: 6201: 6181: 6152: 6132: 6112: 6054: 6031: 6005: 5963: 5931: 5891: 5871: 5824: 5820:: a choice of basis 5804: 5784: 5750: 5717: 5686: 5633: 5601: 5568: 5535: 5500: 5471: 5451: 5422: 5394: 5372: 5339: 5310: 5281: 5275:linearly independent 5257: 5228: 5205: 5177: 5150: 5126: 5098: 5078: 5051: 5023: 5000: 4974: 4954: 4943:{\displaystyle Mx=y} 4925: 4899: 4879: 4853: 4833: 4813: 4793: 4773: 4753: 4720: 4700: 4673: 4644: 4603: 4473: 4442: 4422: 4391: 4328: 4250: 4184: 4155: 4135: 4073: 4020: 3991: 3962: 3873: 3683: 3627: 3574: 3521: 3468: 3435: 3406: 3304: 3275: 3255: 3220: 3193: 3137: 2870: 2833: 2803: 2747: 2720: 2691: 2626: 2606: 2517: 2470: 2428: 2301: 2172: 2121: 2070: 1994: 1918: 1886: 1824: 1793: 1664: 1606: 1602:the basis of V. Let 1550: 1495: 1427: 1391: 1262: 1239: 1183: 1152: 1132: 1076: 1053: 1026: 1006: 931: 880: 831: 809: 787: 759: 738: 693: 664: 637: 597: 454: 430: 402: 364: 323: 294: 267: 240: 217: 194: 183:Algebraic dual space 107:algebraic dual space 78: 61:has a corresponding 44: 18061:Functional analysis 18040:Biorthogonal system 17872:Operator topologies 17697:Functional calculus 17656:Mahler's conjecture 17635:Von Neumann algebra 17349:Functional analysis 17274:Numerical stability 17154:Multilinear algebra 17129:Inner product space 16979:Linear independence 16862:"Dual Vector Space" 16787:Schaefer, Helmut H. 16775:Schaefer, Helmut H. 16735:Functional Analysis 16706:Functional Analysis 16523:Katznelson, Yitzhak 16469:. Springer-Verlag. 16088:, pp. 225–273. 15925:⟨·,·⟩ 15807:, p. 20) uses 15469:) is continuous on 15353:Hahn–Banach theorem 14957:Hahn–Banach theorem 14634:is continuous from 14549:is continuous when 14381:Hahn–Banach theorem 14060:(consisting of all 14039:Hölder's inequality 13774:: given an element 13256:stereotype topology 13132:normed vector space 12798: and all  12779: for all  12666: for all  12502: for all  12250: for all  11895:. Fix a collection 11300:{\displaystyle 1/t} 11021:reducing a fraction 10845:is a direct sum of 10640:{\displaystyle V/W} 10576:{\displaystyle V/W} 10144: 9858:are two subsets of 9135:composition of maps 8649:natural isomorphism 7990:⟨·,·⟩ 7529:gives a mapping of 7523:⟨·,·⟩ 7516:natural isomorphism 7343:. For proving that 6868:On the other hand, 6379:, and any function 5496:is (isomorphic to) 4789:into a real number 1512: 1477: 169:transponierter Raum 146:functional analysis 18076:Linear functionals 17722:Riemann hypothesis 17421:Topological vector 16984:Linear combination 16859:Weisstein, Eric W. 16643:Misner, Charles W. 16616:Mac Lane, Saunders 16491:. Springer-Verlag. 16437:Axler, Sheldon Jay 16308: 16281: 16022: 16002: 15982: 15927:is reserved for a 15896: 15872:{\displaystyle V'} 15869: 15843: 15825:{\displaystyle V'} 15822: 15793: 15773: 15742: 15721: 15694: 15651: 15615:Reciprocal lattice 15610:Pontryagin duality 15546: 15338: 15233: 15231:in the dual space. 15220: 15198: 14983:Further properties 14942: 14838:onto the quotient 14812:, and the dual of 14784: 14518: 14324: 14205: 14007: 13986: 13933: 13888: 13858: 13808: 13750:Define the number 13737: 13574:{\displaystyle V'} 13571: 13538:{\displaystyle V'} 13535: 13502:{\displaystyle V'} 13499: 13469:{\displaystyle V'} 13466: 13437: 13417: 13393: 13376:{\displaystyle V'} 13373: 13341: 13321: 13297: 13276:{\displaystyle V'} 13273: 13238: 13212: 13160:{\displaystyle V'} 13157: 13120: 13096: 13076: 13052: 13031:{\displaystyle V'} 13028: 12989: 12875:{\displaystyle V'} 12872: 12842: 12758: 12731: 12645: 12615: 12585: 12551: 12481: 12451: 12431: 12407: 12380: 12375: 12314: 12231:{\displaystyle V'} 12228: 12203: 12183: 12154: 12127: 12107: 12087: 12064: 12038: 11980: 11953: 11933: 11909: 11885: 11868:{\displaystyle V'} 11865: 11783: 11747: 11720: 11688: 11660: 11628: 11598: 11565:{\displaystyle V'} 11562: 11525: 11491:finite-dimensional 11482:{\displaystyle V'} 11479: 11454: 11427: 11405: 11377:When dealing with 11355: 11297: 11257: 11238:, or more broadly 11221:tensor contraction 11207: 11183: 11150: 11119: 11095: 11074:{\displaystyle 2n} 11071: 11046: 11009: 10956: 10923: 10889: 10862: 10835: 10808: 10788: 10764: 10741: 10681: 10657: 10637: 10609: 10573: 10542: 10522: 10495: 10459: 10449:after identifying 10436: 10396: 10376: 10353: 10279: 10211: 10191: 10171: 10148: 10130: 10129: 10089: 10048: 10028: 10008: 9988: 9939: 9868: 9848: 9828: 9805: 9734: 9690: 9670: 9618: 9565: 9527: 9507: 9475: 9448: 9425:{\displaystyle =0} 9422: 9384: 9351: 9324: 9297: 9271: 9251: 9221:is represented by 9178:If the linear map 9056:{\displaystyle =,} 9053: 8969: 8941: 8903: 8881: 8853: 8824: 8786: 8749: 8637: 8609: 8589: 8551: 8509: 8474: 8423: 8378: 8319: 8229: 8209: 8175: 8098: 8061: 8000:of the dual space 7986:sesquilinear forms 7948: 7840: 7784: 7745: 7654: 7564: 7476: 7403: 7326: 7134: 7114: 7062: 7045: 7016: 6983: 6929: 6909: 6885: 6855: 6848: 6781: 6761: 6737: 6694: 6674: 6644: 6620: 6572: 6526: 6483: 6463: 6443: 6401: 6369: 6349: 6298: 6278: 6258: 6238: 6214: 6187: 6177:The dual space of 6164: 6138: 6118: 6095: 6072: 6037: 6017: 5991: 5949: 5917: 5877: 5857: 5810: 5790: 5767: 5744:countably infinite 5732: 5699: 5669: 5645: 5616: 5587: 5554: 5517: 5486: 5457: 5437: 5408: 5380: 5354: 5322: 5296: 5263: 5243: 5211: 5183: 5163: 5132: 5111: 5084: 5064: 5029: 5006: 4986: 4960: 4940: 4911: 4885: 4865: 4839: 4819: 4799: 4779: 4759: 4735: 4706: 4679: 4659: 4621: 4586: 4544: 4493: 4456: 4428: 4404: 4374: 4311: 4239:{\displaystyle E=} 4236: 4170: 4141: 4118: 4059: 4006: 3977: 3948: 3856: 3847: 3808: 3744: 3666: 3613: 3560: 3507: 3450: 3421: 3392: 3290: 3261: 3233: 3206: 3179: 3120: 2852: 2816: 2789: 2733: 2706: 2677: 2612: 2592: 2500: 2456: 2414: 2287: 2158: 2107: 2056: 1980: 1904: 1872: 1806: 1776: 1648: 1592: 1513: 1498: 1478: 1463: 1410: 1374: 1245: 1225: 1165: 1138: 1118: 1059: 1039: 1012: 974: 913: 864: 815: 793: 772: 755:in the dual space 744: 706: 676: 649: 622: 580: 578: 436: 415: 388: 354:linear functionals 341: 308:{\displaystyle V'} 305: 280: 253: 223: 200: 130:finite-dimensional 90:{\displaystyle V,} 87: 50: 18048: 18047: 17937:in Hilbert spaces 17799: 17798: 17702:Integral operator 17479: 17478: 17315: 17314: 17182:Geometric algebra 17139:Kronecker product 16974:Linear projection 16959:Vector projection 16834:978-0-486-45352-1 16804:978-1-4612-7155-0 16749:978-0-07-054236-5 16657:. W. H. Freeman. 16620:Birkhoff, Garrett 16607:978-1-4419-7400-6 16566:978-0-387-95385-4 16540:978-0-8218-4419-9 16485:Bourbaki, Nicolas 16463:Bourbaki, Nicolas 16454:978-3-319-11079-0 16025:{\displaystyle V} 16005:{\displaystyle V} 15929:sesquilinear form 15921:quantum mechanics 15846:{\displaystyle V} 15745:{\displaystyle F} 15320: 14235:. The assignment 14098:quantum mechanics 13977: 13725: 13547:stereotype spaces 13440:{\displaystyle V} 13396:{\displaystyle V} 13344:{\displaystyle V} 13300:{\displaystyle V} 13191: 13123:{\displaystyle V} 13099:{\displaystyle V} 13055:{\displaystyle V} 12974: 12938: 12932: 12910: 12904: 12818: 12799: 12780: 12711: 12692: 12667: 12537: 12518: 12503: 12454:{\displaystyle V} 12434:{\displaystyle x} 12360: 12299: 12251: 12130:{\displaystyle A} 12110:{\displaystyle V} 12023: 11956:{\displaystyle V} 11936:{\displaystyle V} 11888:{\displaystyle V} 11528:{\displaystyle V} 11260:{\displaystyle t} 11210:{\displaystyle V} 11122:{\displaystyle n} 11098:{\displaystyle V} 10811:{\displaystyle B} 10791:{\displaystyle A} 10778:of two subspaces 10767:{\displaystyle V} 10684:{\displaystyle f} 10660:{\displaystyle W} 10545:{\displaystyle V} 10532:is a subspace of 10525:{\displaystyle W} 10507:Galois connection 10462:{\displaystyle W} 10399:{\displaystyle W} 10379:{\displaystyle V} 10214:{\displaystyle V} 10201:are subspaces of 10194:{\displaystyle B} 10174:{\displaystyle A} 10161:In particular if 10114: 10074: 10051:{\displaystyle I} 10031:{\displaystyle i} 10011:{\displaystyle V} 9871:{\displaystyle V} 9851:{\displaystyle B} 9831:{\displaystyle A} 9693:{\displaystyle V} 9530:{\displaystyle S} 9300:{\displaystyle S} 9274:{\displaystyle V} 9254:{\displaystyle S} 8906:{\displaystyle f} 8640:{\displaystyle V} 8295: 8232:{\displaystyle V} 8158: 8096: 8056: 7998:complex conjugate 7798:to a subspace of 7510:is isomorphic to 7137:{\displaystyle F} 7117:{\displaystyle V} 7030: 7001: 6968: 6932:{\displaystyle A} 6912:{\displaystyle F} 6833: 6784:{\displaystyle A} 6764:{\displaystyle F} 6605: 6557: 6511: 6486:{\displaystyle V} 6466:{\displaystyle T} 6372:{\displaystyle V} 6301:{\displaystyle V} 6281:{\displaystyle T} 6261:{\displaystyle F} 6241:{\displaystyle A} 6190:{\displaystyle V} 6141:{\displaystyle f} 6121:{\displaystyle V} 6057: 6040:{\displaystyle f} 5880:{\displaystyle V} 5813:{\displaystyle F} 5793:{\displaystyle V} 5636: 5460:{\displaystyle i} 5266:{\displaystyle A} 5214:{\displaystyle V} 5186:{\displaystyle V} 5135:{\displaystyle V} 5087:{\displaystyle V} 5047:of an element of 5032:{\displaystyle V} 5009:{\displaystyle M} 4996:matrix; that is, 4963:{\displaystyle M} 4888:{\displaystyle y} 4842:{\displaystyle x} 4822:{\displaystyle M} 4802:{\displaystyle y} 4782:{\displaystyle x} 4762:{\displaystyle n} 4709:{\displaystyle n} 4682:{\displaystyle n} 4535: 4484: 4431:{\displaystyle n} 4348: 4341: 4262: 4144:{\displaystyle V} 4131:In general, when 3264:{\displaystyle V} 3248: 3247: 2829:Lastly, consider 2615:{\displaystyle V} 1248:{\displaystyle V} 1141:{\displaystyle V} 1062:{\displaystyle V} 1015:{\displaystyle V} 818:{\displaystyle V} 796:{\displaystyle x} 439:{\displaystyle F} 398:. The dual space 226:{\displaystyle F} 203:{\displaystyle V} 63:dual vector space 53:{\displaystyle V} 18:Dual vector space 16:(Redirected from 18083: 18071:Duality theories 18019:Saturated family 17917:Ultraweak/Weak-* 17826: 17819: 17812: 17803: 17802: 17789: 17788: 17707:Jones polynomial 17625:Operator algebra 17369: 17368: 17342: 17335: 17328: 17319: 17318: 17305: 17304: 17187:Exterior algebra 17124:Hadamard product 17041: 17029:Linear equations 16900: 16893: 16886: 16877: 16876: 16872: 16871: 16846: 16821:Trèves, François 16816: 16782: 16770: 16761: 16725: 16709: 16695: 16668: 16651:Wheeler, John A. 16637: 16611: 16596:(2nd ed.). 16585: 16544: 16518: 16503:(2nd ed.). 16492: 16480: 16458: 16443:(3rd ed.). 16423: 16417: 16411: 16405: 16399: 16393: 16387: 16381: 16375: 16369: 16363: 16357: 16351: 16345: 16336: 16330: 16321: 16320: 16317: 16315: 16314: 16309: 16307: 16306: 16290: 16288: 16287: 16282: 16280: 16279: 16278: 16277: 16242: 16236: 16230: 16224: 16218: 16212: 16206: 16200: 16199: 16181: 16175: 16169: 16163: 16158: 16152: 16146: 16140: 16134: 16128: 16122: 16116: 16110: 16101: 16095: 16089: 16083: 16063: 16052: 16046: 16039: 16033: 16031: 16029: 16028: 16023: 16011: 16009: 16008: 16003: 15991: 15989: 15988: 15983: 15981: 15980: 15979: 15973: 15955: 15942: 15940: 15926: 15917: 15911: 15905: 15903: 15902: 15897: 15895: 15894: 15878: 15876: 15875: 15870: 15868: 15852: 15850: 15849: 15844: 15831: 15829: 15828: 15823: 15821: 15802: 15800: 15799: 15794: 15782: 15780: 15779: 15774: 15769: 15768: 15751: 15749: 15748: 15743: 15730: 15728: 15727: 15722: 15720: 15719: 15703: 15701: 15700: 15695: 15693: 15692: 15660: 15658: 15657: 15652: 15650: 15649: 15632: 15570: 15564: 15555: 15553: 15552: 15547: 15514: 15490: 15484: 15474: 15464: 15454: 15448: 15439: 15413: 15380: 15370: 15347: 15345: 15344: 15339: 15334: 15318: 15255: 15245: 15229: 15227: 15226: 15221: 15207: 15205: 15204: 15199: 15179: 15178: 15166: 15165: 15132: 15131: 15116: 15105: 15104: 15078: 15044: 15010: 15004: 14998: 14990: 14978: 14964: 14951: 14949: 14948: 14943: 14941: 14940: 14925: 14894: 14872: 14866: 14854: 14848: 14825: 14807: 14793: 14791: 14790: 14785: 14759: 14739: 14738: 14719: 14693: 14678: 14663: 14648: 14633: 14628:. The transpose 14623: 14604: 14586: 14580: 14570: 14560: 14554: 14548: 14527: 14525: 14524: 14519: 14514: 14513: 14501: 14490: 14489: 14477: 14476: 14445: 14417: 14392: 14378: 14359: 14333: 14331: 14330: 14325: 14320: 14309: 14298: 14260: 14254: 14240: 14234: 14228: 14214: 14212: 14211: 14206: 14201: 14162: 14144: 14134: 14094:bra–ket notation 14080: 14055: 14049: 14036: 14016: 14014: 14013: 14008: 14006: 14005: 13996: 13995: 13985: 13970: 13949: 13942: 13940: 13939: 13934: 13921: 13902: 13897: 13895: 13894: 13889: 13887: 13886: 13881: 13867: 13865: 13864: 13859: 13851: 13850: 13845: 13824:is the sequence 13823: 13817: 13815: 13814: 13809: 13807: 13799: 13798: 13765: 13746: 13744: 13743: 13738: 13727: 13726: 13718: 13716: 13712: 13711: 13710: 13705: 13699: 13698: 13689: 13683: 13678: 13654: 13653: 13644: 13626: 13580: 13578: 13577: 13572: 13570: 13544: 13542: 13541: 13536: 13534: 13508: 13506: 13505: 13500: 13498: 13475: 13473: 13472: 13467: 13465: 13446: 13444: 13443: 13438: 13426: 13424: 13423: 13418: 13416: 13415: 13402: 13400: 13399: 13394: 13382: 13380: 13379: 13374: 13372: 13350: 13348: 13347: 13342: 13330: 13328: 13327: 13322: 13320: 13319: 13306: 13304: 13303: 13298: 13282: 13280: 13279: 13274: 13272: 13247: 13245: 13244: 13239: 13234: 13217: 13211: 13166: 13164: 13163: 13158: 13156: 13134:(for example, a 13129: 13127: 13126: 13121: 13105: 13103: 13102: 13097: 13085: 13083: 13082: 13077: 13075: 13074: 13061: 13059: 13058: 13053: 13037: 13035: 13034: 13029: 13027: 12998: 12996: 12995: 12990: 12988: 12987: 12975: 12972: 12966: 12962: 12955: 12954: 12936: 12930: 12929: 12908: 12902: 12901: 12900: 12881: 12879: 12878: 12873: 12871: 12851: 12849: 12848: 12843: 12838: 12837: 12819: 12816: 12813: 12812: 12800: 12797: 12794: 12793: 12781: 12778: 12767: 12765: 12764: 12759: 12757: 12756: 12740: 12738: 12737: 12732: 12712: 12709: 12706: 12705: 12693: 12690: 12687: 12686: 12668: 12665: 12654: 12652: 12651: 12646: 12644: 12643: 12624: 12622: 12621: 12616: 12614: 12613: 12594: 12592: 12591: 12586: 12584: 12583: 12560: 12558: 12557: 12552: 12538: 12535: 12532: 12531: 12519: 12516: 12504: 12501: 12490: 12488: 12487: 12482: 12480: 12479: 12460: 12458: 12457: 12452: 12440: 12438: 12437: 12432: 12416: 12414: 12413: 12408: 12406: 12405: 12389: 12387: 12386: 12381: 12376: 12374: 12358: 12329: 12328: 12319: 12313: 12295: 12294: 12279: 12278: 12265: 12264: 12252: 12249: 12237: 12235: 12234: 12229: 12227: 12212: 12210: 12209: 12204: 12192: 12190: 12189: 12184: 12182: 12181: 12163: 12161: 12160: 12155: 12150: 12149: 12136: 12134: 12133: 12128: 12116: 12114: 12113: 12108: 12096: 12094: 12093: 12088: 12073: 12071: 12070: 12065: 12060: 12043: 12037: 12019: 12018: 11989: 11987: 11986: 11981: 11976: 11975: 11962: 11960: 11959: 11954: 11942: 11940: 11939: 11934: 11918: 11916: 11915: 11910: 11908: 11907: 11894: 11892: 11891: 11886: 11874: 11872: 11871: 11866: 11864: 11831: 11823: 11812: 11792: 11790: 11789: 11784: 11779: 11775: 11774: 11756: 11754: 11753: 11748: 11743: 11742: 11729: 11727: 11726: 11721: 11716: 11712: 11711: 11697: 11695: 11694: 11689: 11687: 11686: 11669: 11667: 11666: 11661: 11656: 11652: 11651: 11637: 11635: 11634: 11629: 11627: 11626: 11607: 11605: 11604: 11599: 11597: 11596: 11571: 11569: 11568: 11563: 11561: 11534: 11532: 11531: 11526: 11488: 11486: 11485: 11480: 11478: 11463: 11461: 11460: 11455: 11453: 11452: 11436: 11434: 11433: 11428: 11426: 11414: 11412: 11411: 11406: 11404: 11396: 11364: 11362: 11361: 11356: 11348: 11347: 11308: 11306: 11304: 11303: 11298: 11293: 11268: 11266: 11264: 11263: 11258: 11236:Fourier analysis 11218: 11216: 11214: 11213: 11208: 11194: 11192: 11190: 11189: 11184: 11161: 11159: 11157: 11156: 11151: 11149: 11148: 11130: 11128: 11126: 11125: 11120: 11106: 11104: 11102: 11101: 11096: 11082: 11080: 11078: 11077: 11072: 11055: 11053: 11052: 11047: 11045: 11044: 11018: 11016: 11015: 11010: 10965: 10963: 10962: 10957: 10955: 10954: 10932: 10930: 10929: 10924: 10898: 10896: 10895: 10890: 10888: 10887: 10871: 10869: 10868: 10863: 10861: 10860: 10844: 10842: 10841: 10836: 10834: 10833: 10817: 10815: 10814: 10809: 10797: 10795: 10794: 10789: 10773: 10771: 10770: 10765: 10750: 10748: 10747: 10742: 10737: 10736: 10724: 10723: 10711: 10690: 10688: 10687: 10682: 10666: 10664: 10663: 10658: 10646: 10644: 10643: 10638: 10633: 10619:factors through 10618: 10616: 10615: 10610: 10582: 10580: 10579: 10574: 10569: 10551: 10549: 10548: 10543: 10531: 10529: 10528: 10523: 10504: 10502: 10501: 10496: 10494: 10493: 10468: 10466: 10465: 10460: 10445: 10443: 10442: 10437: 10429: 10428: 10405: 10403: 10402: 10397: 10385: 10383: 10382: 10377: 10362: 10360: 10359: 10354: 10349: 10348: 10336: 10335: 10323: 10322: 10288: 10286: 10285: 10280: 10278: 10277: 10265: 10264: 10252: 10251: 10220: 10218: 10217: 10212: 10200: 10198: 10197: 10192: 10180: 10178: 10177: 10172: 10157: 10155: 10154: 10149: 10143: 10138: 10128: 10110: 10109: 10104: 10100: 10099: 10098: 10088: 10057: 10055: 10054: 10049: 10037: 10035: 10034: 10029: 10017: 10015: 10014: 10009: 9997: 9995: 9994: 9989: 9987: 9986: 9971: 9970: 9948: 9946: 9945: 9940: 9935: 9934: 9910: 9909: 9897: 9896: 9877: 9875: 9874: 9869: 9857: 9855: 9854: 9849: 9837: 9835: 9834: 9829: 9814: 9812: 9811: 9806: 9801: 9800: 9788: 9787: 9775: 9774: 9743: 9741: 9740: 9735: 9699: 9697: 9696: 9691: 9679: 9677: 9676: 9671: 9669: 9668: 9644: 9643: 9627: 9625: 9624: 9619: 9617: 9616: 9604: 9603: 9574: 9572: 9571: 9566: 9558: 9557: 9552: 9536: 9534: 9533: 9528: 9516: 9514: 9513: 9508: 9484: 9482: 9481: 9476: 9474: 9473: 9457: 9455: 9454: 9449: 9431: 9429: 9428: 9423: 9393: 9391: 9390: 9385: 9383: 9382: 9360: 9358: 9357: 9352: 9350: 9349: 9333: 9331: 9330: 9325: 9323: 9322: 9306: 9304: 9303: 9298: 9280: 9278: 9277: 9272: 9260: 9258: 9257: 9252: 9154: 9139:antihomomorphism 9128: 9090: 9062: 9060: 9059: 9054: 9002: 9001: 8978: 8976: 8975: 8970: 8950: 8948: 8947: 8942: 8940: 8939: 8912: 8910: 8909: 8904: 8890: 8888: 8887: 8882: 8862: 8860: 8859: 8854: 8852: 8851: 8833: 8831: 8830: 8825: 8814: 8813: 8795: 8793: 8792: 8787: 8785: 8784: 8758: 8756: 8755: 8750: 8726: 8725: 8706: 8678: 8646: 8644: 8643: 8638: 8618: 8616: 8615: 8610: 8598: 8596: 8595: 8590: 8588: 8587: 8582: 8560: 8558: 8557: 8552: 8550: 8549: 8518: 8516: 8515: 8510: 8483: 8481: 8480: 8475: 8467: 8466: 8454: 8453: 8448: 8432: 8430: 8429: 8424: 8422: 8421: 8387: 8385: 8384: 8379: 8328: 8326: 8325: 8320: 8315: 8293: 8280: 8279: 8258: 8257: 8238: 8236: 8235: 8230: 8218: 8216: 8215: 8210: 8184: 8182: 8181: 8176: 8159: 8151: 8121: 8107: 8105: 8104: 8099: 8097: 8092: 8091: 8082: 8070: 8068: 8067: 8062: 8057: 8052: 8051: 8042: 8031: 8030: 7991: 7957: 7955: 7954: 7949: 7886: 7885: 7850: 7849: 7847: 7846: 7841: 7839: 7838: 7793: 7791: 7790: 7785: 7754: 7752: 7751: 7746: 7723: 7719: 7703: 7702: 7663: 7661: 7660: 7655: 7653: 7652: 7634: 7633: 7602: 7590: 7573: 7571: 7570: 7565: 7524: 7485: 7483: 7482: 7477: 7472: 7464: 7463: 7451: 7440: 7432: 7424: 7412: 7410: 7409: 7404: 7396: 7395: 7383: 7360: 7335: 7333: 7332: 7327: 7319: 7311: 7303: 7295: 7294: 7282: 7271: 7263: 7249: 7244: 7243: 7234: 7226: 7225: 7224: 7216: 7210: 7201: 7193: 7185: 7168: 7146:cardinal numbers 7143: 7141: 7140: 7135: 7123: 7121: 7120: 7115: 7071: 7069: 7068: 7063: 7061: 7060: 7044: 7026: 7025: 7015: 6997: 6996: 6991: 6987: 6982: 6958: 6957: 6938: 6936: 6935: 6930: 6918: 6916: 6915: 6910: 6894: 6892: 6891: 6886: 6884: 6883: 6864: 6862: 6861: 6856: 6847: 6829: 6828: 6819: 6818: 6790: 6788: 6787: 6782: 6770: 6768: 6767: 6762: 6746: 6744: 6743: 6738: 6736: 6735: 6726: 6725: 6703: 6701: 6700: 6695: 6683: 6681: 6680: 6675: 6673: 6672: 6653: 6651: 6650: 6645: 6640: 6639: 6630: 6629: 6619: 6598: 6597: 6582: 6581: 6571: 6553: 6549: 6548: 6547: 6542: 6536: 6535: 6525: 6492: 6490: 6489: 6484: 6472: 6470: 6469: 6464: 6452: 6450: 6449: 6444: 6442: 6441: 6410: 6408: 6407: 6402: 6378: 6376: 6375: 6370: 6358: 6356: 6355: 6350: 6345: 6344: 6339: 6324: 6323: 6307: 6305: 6304: 6299: 6287: 6285: 6284: 6279: 6267: 6265: 6264: 6259: 6247: 6245: 6244: 6239: 6223: 6221: 6220: 6215: 6213: 6212: 6196: 6194: 6193: 6188: 6173: 6171: 6170: 6165: 6147: 6145: 6144: 6139: 6127: 6125: 6124: 6119: 6104: 6102: 6101: 6096: 6094: 6093: 6088: 6082: 6081: 6071: 6046: 6044: 6043: 6038: 6026: 6024: 6023: 6018: 6000: 5998: 5997: 5992: 5975: 5974: 5958: 5956: 5955: 5950: 5926: 5924: 5923: 5918: 5916: 5915: 5906: 5905: 5886: 5884: 5883: 5878: 5866: 5864: 5863: 5858: 5841: 5840: 5835: 5819: 5817: 5816: 5811: 5799: 5797: 5796: 5791: 5776: 5774: 5773: 5768: 5766: 5765: 5764: 5758: 5741: 5739: 5738: 5733: 5731: 5730: 5725: 5708: 5706: 5705: 5700: 5698: 5697: 5678: 5676: 5675: 5670: 5665: 5664: 5655: 5654: 5644: 5625: 5623: 5622: 5617: 5615: 5614: 5609: 5596: 5594: 5593: 5588: 5583: 5582: 5563: 5561: 5560: 5555: 5550: 5549: 5526: 5524: 5523: 5518: 5516: 5515: 5514: 5508: 5495: 5493: 5492: 5487: 5485: 5484: 5479: 5466: 5464: 5463: 5458: 5446: 5444: 5443: 5438: 5436: 5435: 5430: 5417: 5415: 5414: 5409: 5407: 5389: 5387: 5386: 5381: 5379: 5363: 5361: 5360: 5355: 5353: 5352: 5347: 5331: 5329: 5328: 5323: 5305: 5303: 5302: 5297: 5295: 5294: 5289: 5272: 5270: 5269: 5264: 5252: 5250: 5249: 5244: 5242: 5241: 5236: 5220: 5218: 5217: 5212: 5192: 5190: 5189: 5184: 5172: 5170: 5169: 5164: 5162: 5161: 5141: 5139: 5138: 5133: 5120: 5118: 5117: 5112: 5110: 5109: 5093: 5091: 5090: 5085: 5073: 5071: 5070: 5065: 5063: 5062: 5038: 5036: 5035: 5030: 5015: 5013: 5012: 5007: 4995: 4993: 4992: 4987: 4969: 4967: 4966: 4961: 4949: 4947: 4946: 4941: 4920: 4918: 4917: 4912: 4894: 4892: 4891: 4886: 4874: 4872: 4871: 4866: 4848: 4846: 4845: 4840: 4828: 4826: 4825: 4820: 4808: 4806: 4805: 4800: 4788: 4786: 4785: 4780: 4768: 4766: 4765: 4760: 4744: 4742: 4741: 4736: 4734: 4733: 4728: 4715: 4713: 4712: 4707: 4688: 4686: 4685: 4680: 4668: 4666: 4665: 4660: 4658: 4657: 4652: 4630: 4628: 4627: 4622: 4595: 4593: 4592: 4587: 4582: 4581: 4576: 4567: 4566: 4561: 4552: 4543: 4531: 4530: 4525: 4516: 4515: 4510: 4501: 4492: 4480: 4465: 4463: 4462: 4457: 4449: 4437: 4435: 4434: 4429: 4413: 4411: 4410: 4405: 4403: 4402: 4383: 4381: 4380: 4375: 4370: 4369: 4351: 4350: 4349: 4346: 4343: 4342: 4334: 4320: 4318: 4317: 4312: 4307: 4306: 4301: 4295: 4287: 4282: 4281: 4276: 4264: 4263: 4255: 4245: 4243: 4242: 4237: 4232: 4231: 4226: 4220: 4212: 4207: 4206: 4201: 4179: 4177: 4176: 4171: 4169: 4168: 4163: 4150: 4148: 4147: 4142: 4127: 4125: 4124: 4119: 4087: 4086: 4081: 4068: 4066: 4065: 4060: 4034: 4033: 4028: 4015: 4013: 4012: 4007: 4005: 4004: 3999: 3986: 3984: 3983: 3978: 3976: 3975: 3970: 3957: 3955: 3954: 3949: 3923: 3922: 3917: 3890: 3889: 3884: 3865: 3863: 3862: 3857: 3852: 3851: 3813: 3812: 3805: 3804: 3793: 3792: 3779: 3778: 3767: 3766: 3749: 3748: 3741: 3740: 3729: 3728: 3715: 3714: 3703: 3702: 3675: 3673: 3672: 3667: 3656: 3655: 3650: 3641: 3640: 3635: 3622: 3620: 3619: 3614: 3603: 3602: 3597: 3588: 3587: 3582: 3569: 3567: 3566: 3561: 3550: 3549: 3544: 3535: 3534: 3529: 3516: 3514: 3513: 3508: 3497: 3496: 3491: 3482: 3481: 3476: 3459: 3457: 3456: 3451: 3449: 3448: 3443: 3430: 3428: 3427: 3422: 3420: 3419: 3414: 3401: 3399: 3398: 3393: 3370: 3369: 3364: 3349: 3335: 3321: 3320: 3315: 3299: 3297: 3296: 3291: 3289: 3288: 3283: 3270: 3268: 3267: 3262: 3251:For example, if 3242: 3240: 3239: 3234: 3232: 3231: 3215: 3213: 3212: 3207: 3205: 3204: 3188: 3186: 3185: 3180: 3175: 3174: 3169: 3154: 3153: 3148: 3129: 3127: 3126: 3121: 3116: 3115: 3110: 3089: 3088: 3083: 3065: 3064: 3059: 3038: 3037: 3032: 3020: 3019: 3014: 3002: 3001: 2980: 2979: 2974: 2962: 2961: 2946: 2945: 2940: 2934: 2933: 2915: 2914: 2909: 2903: 2902: 2861: 2859: 2858: 2853: 2851: 2850: 2825: 2823: 2822: 2817: 2815: 2814: 2798: 2796: 2795: 2790: 2785: 2784: 2779: 2764: 2763: 2758: 2742: 2740: 2739: 2734: 2732: 2731: 2715: 2713: 2712: 2707: 2705: 2704: 2699: 2686: 2684: 2683: 2678: 2670: 2669: 2651: 2650: 2638: 2637: 2621: 2619: 2618: 2613: 2601: 2599: 2598: 2593: 2591: 2590: 2572: 2571: 2566: 2560: 2559: 2541: 2540: 2535: 2529: 2528: 2509: 2507: 2506: 2501: 2465: 2463: 2462: 2457: 2455: 2454: 2442: 2441: 2436: 2423: 2421: 2420: 2415: 2404: 2403: 2398: 2377: 2376: 2371: 2362: 2361: 2346: 2345: 2315: 2314: 2309: 2296: 2294: 2293: 2288: 2286: 2285: 2280: 2271: 2270: 2255: 2254: 2233: 2232: 2227: 2218: 2217: 2202: 2201: 2167: 2165: 2164: 2159: 2157: 2156: 2135: 2134: 2129: 2116: 2114: 2113: 2108: 2106: 2105: 2084: 2083: 2078: 2065: 2063: 2062: 2057: 2055: 2054: 2049: 2043: 2042: 2024: 2023: 2018: 2012: 2011: 1989: 1987: 1986: 1981: 1979: 1978: 1973: 1967: 1966: 1948: 1947: 1942: 1936: 1935: 1913: 1911: 1910: 1905: 1881: 1879: 1878: 1873: 1838: 1837: 1832: 1815: 1813: 1812: 1807: 1805: 1804: 1785: 1783: 1782: 1777: 1750: 1749: 1734: 1733: 1728: 1722: 1721: 1703: 1702: 1697: 1691: 1690: 1678: 1677: 1672: 1657: 1655: 1654: 1649: 1644: 1643: 1638: 1623: 1622: 1617: 1601: 1599: 1598: 1593: 1588: 1587: 1582: 1567: 1566: 1561: 1535: 1534: 1522: 1520: 1519: 1514: 1511: 1506: 1487: 1485: 1484: 1479: 1476: 1471: 1456: 1455: 1450: 1441: 1440: 1435: 1419: 1417: 1416: 1411: 1403: 1402: 1383: 1381: 1380: 1375: 1348: 1347: 1332: 1331: 1326: 1320: 1319: 1301: 1300: 1295: 1289: 1288: 1276: 1275: 1270: 1254: 1252: 1251: 1246: 1234: 1232: 1231: 1226: 1221: 1220: 1215: 1200: 1199: 1194: 1174: 1172: 1171: 1166: 1164: 1163: 1147: 1145: 1144: 1139: 1127: 1125: 1124: 1119: 1114: 1113: 1108: 1093: 1092: 1087: 1068: 1066: 1065: 1060: 1048: 1046: 1045: 1040: 1038: 1037: 1021: 1019: 1018: 1013: 983: 981: 980: 975: 967: 966: 926:bilinear mapping 922: 920: 919: 914: 873: 871: 870: 865: 824: 822: 821: 816: 802: 800: 799: 794: 781: 779: 778: 773: 771: 770: 753: 751: 750: 745: 715: 713: 712: 707: 705: 704: 685: 683: 682: 677: 658: 656: 655: 650: 631: 629: 628: 623: 621: 620: 589: 587: 586: 581: 579: 575: 571: 445: 443: 442: 437: 424: 422: 421: 416: 414: 413: 397: 395: 394: 389: 350: 348: 347: 342: 314: 312: 311: 306: 304: 289: 287: 286: 281: 279: 278: 262: 260: 259: 254: 252: 251: 232: 230: 229: 224: 209: 207: 206: 201: 151:Early terms for 96: 94: 93: 88: 59: 57: 56: 51: 21: 18091: 18090: 18086: 18085: 18084: 18082: 18081: 18080: 18051: 18050: 18049: 18044: 18028: 18007: 17991: 17970: 17891: 17840: 17830: 17800: 17795: 17777: 17741:Advanced topics 17736: 17660: 17639: 17598: 17564:Hilbert–Schmidt 17537: 17528:Gelfand–Naimark 17475: 17425: 17360: 17346: 17316: 17311: 17293: 17255: 17211: 17148: 17100: 17042: 17033: 16999:Change of basis 16989:Multilinear map 16927: 16909: 16904: 16853: 16835: 16805: 16750: 16722: 16684: 16665: 16634: 16608: 16567: 16541: 16515: 16477: 16455: 16432: 16427: 16426: 16418: 16414: 16406: 16402: 16394: 16390: 16382: 16378: 16370: 16366: 16358: 16354: 16346: 16339: 16331: 16324: 16302: 16298: 16296: 16293: 16292: 16270: 16266: 16265: 16261: 16259: 16256: 16255: 16243: 16239: 16231: 16227: 16219: 16215: 16207: 16203: 16196: 16188:. p. 400. 16182: 16178: 16170: 16166: 16159: 16155: 16147: 16143: 16135: 16131: 16123: 16119: 16111: 16104: 16096: 16092: 16084: 16077: 16072: 16067: 16066: 16053: 16049: 16040: 16036: 16017: 16014: 16013: 15997: 15994: 15993: 15975: 15974: 15969: 15968: 15966: 15963: 15962: 15959:axiom of choice 15956: 15945: 15932: 15924: 15918: 15914: 15890: 15886: 15884: 15881: 15880: 15861: 15859: 15856: 15855: 15838: 15835: 15834: 15814: 15812: 15809: 15808: 15788: 15785: 15784: 15764: 15760: 15758: 15755: 15754: 15737: 15734: 15733: 15715: 15711: 15709: 15706: 15705: 15688: 15684: 15676: 15673: 15672: 15645: 15641: 15639: 15636: 15635: 15633: 15629: 15624: 15581: 15566: 15560: 15507: 15499: 15496: 15495: 15486: 15476: 15470: 15460: 15450: 15444: 15435: 15405: 15372: 15360: 15327: 15264: 15261: 15260: 15251: 15236: 15215: 15212: 15211: 15174: 15170: 15161: 15157: 15127: 15123: 15109: 15100: 15096: 15085: 15082: 15081: 15077: 15070: 15064: 15062: 15055: 15042: 15035: 15028: 15017: 15006: 15000: 14996: 14988: 14985: 14970: /  14966: 14960: 14936: 14932: 14918: 14907: 14904: 14903: 14890: 14868: 14861: /  14856: 14850: 14843: /  14839: 14821: /  14817: 14802: /  14798: 14752: 14734: 14730: 14728: 14725: 14724: 14715: 14700: 14680: 14665: 14650: 14635: 14629: 14610: 14591: 14589:strong topology 14582: 14572: 14562: 14556: 14550: 14544: 14509: 14505: 14494: 14485: 14481: 14472: 14468: 14466: 14463: 14462: 14441: 14434: 14413: 14388: 14365: 14346: 14313: 14302: 14291: 14277: 14274: 14273: 14256: 14250: 14236: 14230: 14219: 14194: 14155: 14153: 14150: 14149: 14136: 14126: 14123: 14113: 14090:anti-isomorphic 14076: 14074: 14051: 14045: 14030: 14021: 14001: 13997: 13991: 13987: 13981: 13966: 13958: 13955: 13954: 13945: 13928: 13925: 13924: 13916: 13904: 13900: 13882: 13877: 13876: 13874: 13871: 13870: 13846: 13841: 13840: 13829: 13826: 13825: 13819: 13800: 13794: 13790: 13779: 13776: 13775: 13755: 13717: 13706: 13701: 13700: 13694: 13690: 13685: 13679: 13668: 13663: 13659: 13658: 13649: 13645: 13640: 13635: 13632: 13631: 13624: 13612: 13596: 13563: 13561: 13558: 13557: 13527: 13525: 13522: 13521: 13511:strong topology 13491: 13489: 13486: 13485: 13458: 13456: 13453: 13452: 13432: 13429: 13428: 13411: 13410: 13408: 13405: 13404: 13388: 13385: 13384: 13365: 13363: 13360: 13359: 13336: 13333: 13332: 13315: 13314: 13312: 13309: 13308: 13292: 13289: 13288: 13265: 13263: 13260: 13259: 13230: 13213: 13195: 13177: 13174: 13173: 13149: 13147: 13144: 13143: 13115: 13112: 13111: 13091: 13088: 13087: 13070: 13069: 13067: 13064: 13063: 13047: 13044: 13043: 13040:bounded subsets 13020: 13018: 13015: 13014: 13011:strong topology 12983: 12982: 12973: for  12971: 12950: 12946: 12922: 12915: 12911: 12896: 12892: 12890: 12887: 12886: 12864: 12862: 12859: 12858: 12833: 12832: 12815: 12808: 12807: 12796: 12789: 12788: 12777: 12775: 12772: 12771: 12752: 12751: 12749: 12746: 12745: 12708: 12701: 12700: 12689: 12682: 12681: 12664: 12662: 12659: 12658: 12639: 12638: 12630: 12627: 12626: 12609: 12608: 12600: 12597: 12596: 12579: 12578: 12570: 12567: 12566: 12534: 12527: 12526: 12515: 12500: 12498: 12495: 12494: 12475: 12474: 12466: 12463: 12462: 12446: 12443: 12442: 12426: 12423: 12422: 12401: 12400: 12398: 12395: 12394: 12364: 12359: 12354: 12324: 12320: 12315: 12303: 12290: 12286: 12274: 12270: 12260: 12259: 12248: 12246: 12243: 12242: 12238:if and only if 12220: 12218: 12215: 12214: 12198: 12195: 12194: 12177: 12173: 12171: 12168: 12167: 12145: 12144: 12142: 12139: 12138: 12122: 12119: 12118: 12102: 12099: 12098: 12082: 12079: 12078: 12056: 12039: 12027: 12014: 12010: 12002: 11999: 11998: 11971: 11970: 11968: 11965: 11964: 11948: 11945: 11944: 11928: 11925: 11924: 11921:bounded subsets 11903: 11902: 11900: 11897: 11896: 11880: 11877: 11876: 11857: 11855: 11852: 11851: 11848: 11840:Main articles: 11838: 11829: 11821: 11810: 11807: 11770: 11769: 11768: 11766: 11763: 11762: 11761:, and its dual 11738: 11737: 11735: 11732: 11731: 11707: 11706: 11705: 11703: 11700: 11699: 11682: 11681: 11679: 11676: 11675: 11647: 11646: 11645: 11643: 11640: 11639: 11622: 11621: 11619: 11616: 11615: 11592: 11591: 11577: 11574: 11573: 11554: 11552: 11549: 11548: 11520: 11517: 11516: 11471: 11469: 11466: 11465: 11448: 11444: 11442: 11439: 11438: 11422: 11420: 11417: 11416: 11400: 11392: 11390: 11387: 11386: 11375: 11340: 11336: 11322: 11319: 11318: 11289: 11284: 11281: 11280: 11278: 11252: 11249: 11248: 11246: 11202: 11199: 11198: 11196: 11169: 11166: 11165: 11163: 11144: 11140: 11138: 11135: 11134: 11132: 11131:-dimensional), 11114: 11111: 11110: 11108: 11090: 11087: 11086: 11084: 11063: 11060: 11059: 11057: 11040: 11036: 11028: 11025: 11024: 10971: 10968: 10967: 10950: 10946: 10938: 10935: 10934: 10912: 10909: 10908: 10905: 10883: 10879: 10877: 10874: 10873: 10856: 10852: 10850: 10847: 10846: 10829: 10825: 10823: 10820: 10819: 10803: 10800: 10799: 10783: 10780: 10779: 10759: 10756: 10755: 10732: 10728: 10719: 10715: 10707: 10699: 10696: 10695: 10676: 10673: 10672: 10652: 10649: 10648: 10647:if and only if 10629: 10624: 10621: 10620: 10592: 10589: 10588: 10587:, a functional 10565: 10560: 10557: 10556: 10537: 10534: 10533: 10517: 10514: 10513: 10486: 10482: 10474: 10471: 10470: 10454: 10451: 10450: 10424: 10420: 10418: 10415: 10414: 10408:vector subspace 10391: 10388: 10387: 10371: 10368: 10367: 10344: 10340: 10331: 10327: 10318: 10314: 10300: 10297: 10296: 10273: 10269: 10260: 10256: 10247: 10243: 10229: 10226: 10225: 10206: 10203: 10202: 10186: 10183: 10182: 10166: 10163: 10162: 10139: 10134: 10118: 10105: 10094: 10090: 10078: 10073: 10069: 10068: 10066: 10063: 10062: 10043: 10040: 10039: 10023: 10020: 10019: 10003: 10000: 9999: 9976: 9972: 9966: 9962: 9957: 9954: 9953: 9930: 9926: 9905: 9901: 9892: 9888: 9886: 9883: 9882: 9863: 9860: 9859: 9843: 9840: 9839: 9823: 9820: 9819: 9796: 9792: 9783: 9779: 9770: 9766: 9752: 9749: 9748: 9705: 9702: 9701: 9685: 9682: 9681: 9664: 9660: 9639: 9635: 9633: 9630: 9629: 9612: 9608: 9599: 9595: 9587: 9584: 9583: 9553: 9548: 9547: 9542: 9539: 9538: 9522: 9519: 9518: 9490: 9487: 9486: 9469: 9465: 9463: 9460: 9459: 9437: 9434: 9433: 9399: 9396: 9395: 9378: 9374: 9366: 9363: 9362: 9345: 9341: 9339: 9336: 9335: 9334:, denoted here 9318: 9314: 9312: 9309: 9308: 9292: 9289: 9288: 9266: 9263: 9262: 9261:be a subset of 9246: 9243: 9242: 9239: 9157:category theory 9142: 9120: 9115:if and only if 9082: 9081:The assignment 8997: 8993: 8988: 8985: 8984: 8958: 8955: 8954: 8935: 8931: 8923: 8920: 8919: 8898: 8895: 8894: 8876: 8873: 8872: 8847: 8843: 8841: 8838: 8837: 8809: 8805: 8803: 8800: 8799: 8780: 8776: 8768: 8765: 8764: 8721: 8717: 8715: 8712: 8711: 8694: 8666: 8663: 8657: 8632: 8629: 8628: 8604: 8601: 8600: 8583: 8575: 8574: 8566: 8563: 8562: 8542: 8538: 8524: 8521: 8520: 8489: 8486: 8485: 8462: 8458: 8449: 8441: 8440: 8438: 8435: 8434: 8417: 8413: 8393: 8390: 8389: 8334: 8331: 8330: 8296: 8275: 8271: 8250: 8246: 8244: 8241: 8240: 8224: 8221: 8220: 8204: 8201: 8200: 8191: 8150: 8130: 8127: 8126: 8109: 8087: 8083: 8081: 8079: 8076: 8075: 8047: 8043: 8041: 8014: 8010: 8008: 8005: 8004: 7989: 7881: 7877: 7863: 7860: 7859: 7834: 7830: 7816: 7813: 7812: 7811: 7802:(resp., all of 7779: 7776: 7775: 7686: 7682: 7681: 7677: 7675: 7672: 7671: 7648: 7644: 7617: 7613: 7611: 7608: 7607: 7592: 7582: 7541: 7538: 7537: 7522: 7500: 7468: 7459: 7455: 7441: 7436: 7428: 7420: 7418: 7415: 7414: 7391: 7387: 7373: 7350: 7348: 7345: 7344: 7341:absolute values 7315: 7307: 7299: 7290: 7286: 7272: 7267: 7253: 7245: 7239: 7235: 7230: 7220: 7212: 7211: 7206: 7205: 7197: 7189: 7181: 7158: 7156: 7153: 7152: 7129: 7126: 7125: 7109: 7106: 7105: 7092:cardinal number 7056: 7052: 7034: 7021: 7017: 7005: 6992: 6972: 6967: 6963: 6962: 6953: 6949: 6947: 6944: 6943: 6924: 6921: 6920: 6904: 6901: 6900: 6879: 6875: 6873: 6870: 6869: 6837: 6824: 6820: 6814: 6810: 6799: 6796: 6795: 6776: 6773: 6772: 6756: 6753: 6752: 6731: 6727: 6721: 6717: 6712: 6709: 6708: 6689: 6686: 6685: 6668: 6664: 6662: 6659: 6658: 6635: 6631: 6625: 6621: 6609: 6593: 6589: 6577: 6573: 6561: 6543: 6538: 6537: 6531: 6527: 6515: 6510: 6506: 6501: 6498: 6497: 6478: 6475: 6474: 6458: 6455: 6454: 6437: 6433: 6416: 6413: 6412: 6384: 6381: 6380: 6364: 6361: 6360: 6340: 6335: 6334: 6319: 6315: 6313: 6310: 6309: 6293: 6290: 6289: 6273: 6270: 6269: 6253: 6250: 6249: 6233: 6230: 6229: 6228:functions from 6208: 6204: 6202: 6199: 6198: 6182: 6179: 6178: 6153: 6150: 6149: 6133: 6130: 6129: 6113: 6110: 6109: 6089: 6084: 6083: 6077: 6073: 6061: 6055: 6052: 6051: 6032: 6029: 6028: 6006: 6003: 6002: 5970: 5966: 5964: 5961: 5960: 5932: 5929: 5928: 5911: 5907: 5901: 5897: 5892: 5889: 5888: 5887:with the space 5872: 5869: 5868: 5836: 5831: 5830: 5825: 5822: 5821: 5805: 5802: 5801: 5800:over any field 5785: 5782: 5781: 5760: 5759: 5754: 5753: 5751: 5748: 5747: 5726: 5721: 5720: 5718: 5715: 5714: 5693: 5689: 5687: 5684: 5683: 5660: 5656: 5650: 5646: 5640: 5634: 5631: 5630: 5610: 5605: 5604: 5602: 5599: 5598: 5578: 5574: 5569: 5566: 5565: 5545: 5541: 5536: 5533: 5532: 5527:, the space of 5510: 5509: 5504: 5503: 5501: 5498: 5497: 5480: 5475: 5474: 5472: 5469: 5468: 5452: 5449: 5448: 5431: 5426: 5425: 5423: 5420: 5419: 5403: 5395: 5392: 5391: 5375: 5373: 5370: 5369: 5348: 5343: 5342: 5340: 5337: 5336: 5311: 5308: 5307: 5290: 5285: 5284: 5282: 5279: 5278: 5258: 5255: 5254: 5237: 5232: 5231: 5229: 5226: 5225: 5206: 5203: 5202: 5199: 5178: 5175: 5174: 5157: 5153: 5151: 5148: 5147: 5127: 5124: 5123: 5105: 5101: 5099: 5096: 5095: 5079: 5076: 5075: 5058: 5054: 5052: 5049: 5048: 5024: 5021: 5020: 5001: 4998: 4997: 4975: 4972: 4971: 4955: 4952: 4951: 4926: 4923: 4922: 4900: 4897: 4896: 4880: 4877: 4876: 4854: 4851: 4850: 4834: 4831: 4830: 4814: 4811: 4810: 4794: 4791: 4790: 4774: 4771: 4770: 4754: 4751: 4750: 4729: 4724: 4723: 4721: 4718: 4717: 4701: 4698: 4697: 4674: 4671: 4670: 4653: 4648: 4647: 4645: 4642: 4641: 4640:In particular, 4604: 4601: 4600: 4577: 4572: 4571: 4562: 4557: 4556: 4548: 4539: 4526: 4521: 4520: 4511: 4506: 4505: 4497: 4488: 4476: 4474: 4471: 4470: 4445: 4443: 4440: 4439: 4423: 4420: 4419: 4416:identity matrix 4398: 4394: 4392: 4389: 4388: 4365: 4361: 4345: 4344: 4333: 4332: 4331: 4329: 4326: 4325: 4302: 4297: 4296: 4291: 4283: 4277: 4272: 4271: 4254: 4253: 4251: 4248: 4247: 4227: 4222: 4221: 4216: 4208: 4202: 4197: 4196: 4185: 4182: 4181: 4164: 4159: 4158: 4156: 4153: 4152: 4136: 4133: 4132: 4082: 4077: 4076: 4074: 4071: 4070: 4029: 4024: 4023: 4021: 4018: 4017: 4000: 3995: 3994: 3992: 3989: 3988: 3971: 3966: 3965: 3963: 3960: 3959: 3918: 3913: 3912: 3885: 3880: 3879: 3874: 3871: 3870: 3846: 3845: 3840: 3834: 3833: 3828: 3818: 3817: 3807: 3806: 3800: 3796: 3794: 3788: 3784: 3781: 3780: 3774: 3770: 3768: 3762: 3758: 3751: 3750: 3743: 3742: 3736: 3732: 3730: 3724: 3720: 3717: 3716: 3710: 3706: 3704: 3698: 3694: 3687: 3686: 3684: 3681: 3680: 3651: 3646: 3645: 3636: 3631: 3630: 3628: 3625: 3624: 3598: 3593: 3592: 3583: 3578: 3577: 3575: 3572: 3571: 3545: 3540: 3539: 3530: 3525: 3524: 3522: 3519: 3518: 3492: 3487: 3486: 3477: 3472: 3471: 3469: 3466: 3465: 3444: 3439: 3438: 3436: 3433: 3432: 3415: 3410: 3409: 3407: 3404: 3403: 3365: 3360: 3359: 3345: 3331: 3316: 3311: 3310: 3305: 3302: 3301: 3284: 3279: 3278: 3276: 3273: 3272: 3256: 3253: 3252: 3249: 3227: 3223: 3221: 3218: 3217: 3200: 3196: 3194: 3191: 3190: 3170: 3165: 3164: 3149: 3144: 3143: 3138: 3135: 3134: 3111: 3106: 3105: 3084: 3079: 3078: 3060: 3055: 3054: 3033: 3028: 3027: 3015: 3010: 3009: 2997: 2993: 2975: 2970: 2969: 2957: 2953: 2941: 2936: 2935: 2929: 2925: 2910: 2905: 2904: 2898: 2894: 2871: 2868: 2867: 2846: 2842: 2834: 2831: 2830: 2810: 2806: 2804: 2801: 2800: 2780: 2775: 2774: 2759: 2754: 2753: 2748: 2745: 2744: 2727: 2723: 2721: 2718: 2717: 2700: 2695: 2694: 2692: 2689: 2688: 2665: 2661: 2646: 2642: 2633: 2629: 2627: 2624: 2623: 2607: 2604: 2603: 2586: 2582: 2567: 2562: 2561: 2555: 2551: 2536: 2531: 2530: 2524: 2520: 2518: 2515: 2514: 2471: 2468: 2467: 2450: 2446: 2437: 2432: 2431: 2429: 2426: 2425: 2399: 2394: 2393: 2372: 2367: 2366: 2357: 2353: 2341: 2337: 2310: 2305: 2304: 2302: 2299: 2298: 2281: 2276: 2275: 2266: 2262: 2250: 2246: 2228: 2223: 2222: 2213: 2209: 2197: 2193: 2173: 2170: 2169: 2152: 2148: 2130: 2125: 2124: 2122: 2119: 2118: 2101: 2097: 2079: 2074: 2073: 2071: 2068: 2067: 2050: 2045: 2044: 2038: 2034: 2019: 2014: 2013: 2007: 2003: 1995: 1992: 1991: 1974: 1969: 1968: 1962: 1958: 1943: 1938: 1937: 1931: 1927: 1919: 1916: 1915: 1887: 1884: 1883: 1833: 1828: 1827: 1825: 1822: 1821: 1800: 1796: 1794: 1791: 1790: 1745: 1741: 1729: 1724: 1723: 1717: 1713: 1698: 1693: 1692: 1686: 1682: 1673: 1668: 1667: 1665: 1662: 1661: 1639: 1634: 1633: 1618: 1613: 1612: 1607: 1604: 1603: 1583: 1578: 1577: 1562: 1557: 1556: 1551: 1548: 1547: 1540: 1525:Kronecker delta 1507: 1502: 1496: 1493: 1492: 1472: 1467: 1451: 1446: 1445: 1436: 1431: 1430: 1428: 1425: 1424: 1398: 1394: 1392: 1389: 1388: 1343: 1339: 1327: 1322: 1321: 1315: 1311: 1296: 1291: 1290: 1284: 1280: 1271: 1266: 1265: 1263: 1260: 1259: 1240: 1237: 1236: 1216: 1211: 1210: 1195: 1190: 1189: 1184: 1181: 1180: 1159: 1155: 1153: 1150: 1149: 1133: 1130: 1129: 1109: 1104: 1103: 1088: 1083: 1082: 1077: 1074: 1073: 1054: 1051: 1050: 1033: 1029: 1027: 1024: 1023: 1007: 1004: 1003: 1000: 994: 986:natural pairing 962: 958: 932: 929: 928: 881: 878: 877: 832: 829: 828: 810: 807: 806: 788: 785: 784: 782:and an element 766: 762: 760: 757: 756: 739: 736: 735: 700: 696: 694: 691: 690: 665: 662: 661: 638: 635: 634: 616: 612: 598: 595: 594: 577: 576: 558: 554: 544: 520: 519: 485: 457: 455: 452: 451: 431: 428: 427: 409: 405: 403: 400: 399: 365: 362: 361: 324: 321: 320: 297: 295: 292: 291: 274: 270: 268: 265: 264: 247: 243: 241: 238: 237: 218: 215: 214: 195: 192: 191: 185: 171:and . The term 161:espace conjugué 79: 76: 75: 45: 42: 41: 28: 23: 22: 15: 12: 11: 5: 18089: 18079: 18078: 18073: 18068: 18066:Linear algebra 18063: 18046: 18045: 18043: 18042: 18036: 18034: 18033:Other concepts 18030: 18029: 18027: 18026: 18021: 18015: 18013: 18009: 18008: 18006: 18005: 17999: 17997: 17993: 17992: 17990: 17989: 17984: 17982:Banach–Alaoglu 17978: 17976: 17972: 17971: 17969: 17968: 17963: 17962: 17961: 17956: 17954:polar topology 17946: 17941: 17940: 17939: 17934: 17929: 17919: 17914: 17913: 17912: 17901: 17899: 17893: 17892: 17890: 17889: 17884: 17882:Polar topology 17879: 17874: 17869: 17864: 17859: 17854: 17848: 17846: 17845:Basic concepts 17842: 17841: 17835:and spaces of 17829: 17828: 17821: 17814: 17806: 17797: 17796: 17794: 17793: 17782: 17779: 17778: 17776: 17775: 17770: 17765: 17760: 17758:Choquet theory 17755: 17750: 17744: 17742: 17738: 17737: 17735: 17734: 17724: 17719: 17714: 17709: 17704: 17699: 17694: 17689: 17684: 17679: 17674: 17668: 17666: 17662: 17661: 17659: 17658: 17653: 17647: 17645: 17641: 17640: 17638: 17637: 17632: 17627: 17622: 17617: 17612: 17610:Banach algebra 17606: 17604: 17600: 17599: 17597: 17596: 17591: 17586: 17581: 17576: 17571: 17566: 17561: 17556: 17551: 17545: 17543: 17539: 17538: 17536: 17535: 17533:Banach–Alaoglu 17530: 17525: 17520: 17515: 17510: 17505: 17500: 17495: 17489: 17487: 17481: 17480: 17477: 17476: 17474: 17473: 17468: 17463: 17461:Locally convex 17458: 17444: 17439: 17433: 17431: 17427: 17426: 17424: 17423: 17418: 17413: 17408: 17403: 17398: 17393: 17388: 17383: 17378: 17372: 17366: 17362: 17361: 17345: 17344: 17337: 17330: 17322: 17313: 17312: 17310: 17309: 17298: 17295: 17294: 17292: 17291: 17286: 17281: 17276: 17271: 17269:Floating-point 17265: 17263: 17257: 17256: 17254: 17253: 17251:Tensor product 17248: 17243: 17238: 17236:Function space 17233: 17228: 17222: 17220: 17213: 17212: 17210: 17209: 17204: 17199: 17194: 17189: 17184: 17179: 17174: 17172:Triple product 17169: 17164: 17158: 17156: 17150: 17149: 17147: 17146: 17141: 17136: 17131: 17126: 17121: 17116: 17110: 17108: 17102: 17101: 17099: 17098: 17093: 17088: 17086:Transformation 17083: 17078: 17076:Multiplication 17073: 17068: 17063: 17058: 17052: 17050: 17044: 17043: 17036: 17034: 17032: 17031: 17026: 17021: 17016: 17011: 17006: 17001: 16996: 16991: 16986: 16981: 16976: 16971: 16966: 16961: 16956: 16951: 16946: 16941: 16935: 16933: 16932:Basic concepts 16929: 16928: 16926: 16925: 16920: 16914: 16911: 16910: 16907:Linear algebra 16903: 16902: 16895: 16888: 16880: 16874: 16873: 16852: 16851:External links 16849: 16848: 16847: 16833: 16817: 16803: 16783: 16771: 16762: 16748: 16726: 16720: 16696: 16683:978-1584888666 16682: 16669: 16663: 16647:Thorne, Kip S. 16639: 16632: 16612: 16606: 16586: 16565: 16545: 16539: 16519: 16513: 16493: 16481: 16475: 16459: 16453: 16431: 16428: 16425: 16424: 16412: 16400: 16388: 16376: 16364: 16352: 16337: 16322: 16305: 16301: 16276: 16273: 16269: 16264: 16248:(2012-12-29). 16237: 16225: 16213: 16201: 16194: 16176: 16164: 16153: 16141: 16129: 16117: 16102: 16090: 16074: 16073: 16071: 16068: 16065: 16064: 16047: 16034: 16021: 16001: 15978: 15972: 15943: 15912: 15910:, p. 35). 15893: 15889: 15867: 15864: 15842: 15820: 15817: 15792: 15772: 15767: 15763: 15741: 15718: 15714: 15691: 15687: 15683: 15680: 15648: 15644: 15626: 15625: 15623: 15620: 15619: 15618: 15612: 15607: 15602: 15597: 15592: 15587: 15580: 15577: 15557: 15556: 15545: 15542: 15539: 15536: 15532: 15529: 15526: 15523: 15520: 15517: 15513: 15510: 15506: 15503: 15420:locally convex 15349: 15348: 15337: 15333: 15330: 15326: 15323: 15317: 15314: 15311: 15308: 15304: 15301: 15298: 15295: 15292: 15289: 15286: 15283: 15280: 15277: 15274: 15271: 15268: 15219: 15197: 15194: 15191: 15188: 15185: 15182: 15177: 15173: 15169: 15164: 15160: 15156: 15153: 15150: 15147: 15144: 15141: 15138: 15135: 15130: 15126: 15122: 15119: 15115: 15112: 15108: 15103: 15099: 15095: 15092: 15089: 15075: 15068: 15060: 15053: 15040: 15033: 15016: 15013: 14984: 14981: 14953: 14952: 14939: 14935: 14931: 14928: 14924: 14921: 14917: 14914: 14911: 14826:. Indeed, let 14795: 14794: 14783: 14780: 14777: 14774: 14771: 14768: 14765: 14762: 14758: 14755: 14751: 14748: 14745: 14742: 14737: 14733: 14699: 14696: 14529: 14528: 14517: 14512: 14508: 14504: 14500: 14497: 14493: 14488: 14484: 14480: 14475: 14471: 14432: 14393:is injective. 14335: 14334: 14323: 14319: 14316: 14312: 14308: 14305: 14301: 14297: 14294: 14290: 14287: 14284: 14281: 14216: 14215: 14204: 14200: 14197: 14193: 14190: 14186: 14183: 14180: 14177: 14174: 14171: 14168: 14165: 14161: 14158: 14112: 14109: 14072: 14028: 14018: 14017: 14004: 14000: 13994: 13990: 13984: 13980: 13976: 13973: 13969: 13965: 13962: 13950:is defined by 13932: 13912: 13885: 13880: 13857: 13854: 13849: 13844: 13839: 13836: 13833: 13806: 13803: 13797: 13793: 13789: 13786: 13783: 13748: 13747: 13736: 13733: 13730: 13724: 13721: 13715: 13709: 13704: 13697: 13693: 13688: 13682: 13677: 13674: 13671: 13667: 13662: 13657: 13652: 13648: 13643: 13639: 13620: 13595: 13592: 13591: 13590: 13569: 13566: 13554: 13533: 13530: 13518: 13497: 13494: 13464: 13461: 13449: 13448: 13436: 13414: 13392: 13371: 13368: 13352: 13340: 13318: 13296: 13271: 13268: 13251: 13250: 13249: 13248: 13237: 13233: 13229: 13226: 13223: 13220: 13216: 13210: 13207: 13204: 13201: 13198: 13194: 13190: 13187: 13184: 13181: 13155: 13152: 13119: 13108: 13107: 13095: 13073: 13051: 13026: 13023: 13000: 12999: 12986: 12981: 12978: 12969: 12965: 12961: 12958: 12953: 12949: 12945: 12942: 12935: 12928: 12925: 12921: 12918: 12914: 12907: 12899: 12895: 12870: 12867: 12855: 12854: 12853: 12852: 12841: 12836: 12831: 12828: 12825: 12822: 12811: 12806: 12803: 12792: 12787: 12784: 12755: 12743: 12742: 12741: 12730: 12727: 12724: 12721: 12718: 12715: 12704: 12699: 12696: 12685: 12680: 12677: 12674: 12671: 12642: 12637: 12634: 12612: 12607: 12604: 12582: 12577: 12574: 12565:Each two sets 12563: 12562: 12561: 12550: 12547: 12544: 12541: 12530: 12525: 12522: 12513: 12510: 12507: 12478: 12473: 12470: 12450: 12430: 12404: 12391: 12390: 12379: 12373: 12370: 12367: 12363: 12357: 12353: 12350: 12347: 12344: 12341: 12338: 12335: 12332: 12327: 12323: 12318: 12312: 12309: 12306: 12302: 12298: 12293: 12289: 12285: 12282: 12277: 12273: 12269: 12263: 12258: 12255: 12226: 12223: 12202: 12180: 12176: 12153: 12148: 12126: 12106: 12086: 12075: 12074: 12063: 12059: 12055: 12052: 12049: 12046: 12042: 12036: 12033: 12030: 12026: 12022: 12017: 12013: 12009: 12006: 11979: 11974: 11952: 11932: 11906: 11884: 11863: 11860: 11842:Polar topology 11837: 11834: 11806: 11803: 11782: 11778: 11773: 11759:Schwartz space 11746: 11741: 11719: 11715: 11710: 11685: 11659: 11655: 11650: 11625: 11613:test functions 11595: 11590: 11587: 11584: 11581: 11560: 11557: 11524: 11477: 11474: 11451: 11447: 11425: 11403: 11399: 11395: 11374: 11371: 11367:inverse length 11354: 11351: 11346: 11343: 11339: 11335: 11332: 11329: 11326: 11315:inverse second 11296: 11292: 11288: 11273:: occurrences 11256: 11206: 11182: 11179: 11176: 11173: 11162:behaves as an 11147: 11143: 11118: 11094: 11070: 11067: 11043: 11039: 11035: 11032: 11008: 11005: 11002: 10999: 10996: 10993: 10990: 10987: 10984: 10981: 10978: 10975: 10953: 10949: 10945: 10942: 10922: 10919: 10916: 10904: 10901: 10886: 10882: 10859: 10855: 10832: 10828: 10807: 10787: 10763: 10752: 10751: 10740: 10735: 10731: 10727: 10722: 10718: 10714: 10710: 10706: 10703: 10680: 10656: 10636: 10632: 10628: 10608: 10605: 10602: 10599: 10596: 10572: 10568: 10564: 10554:quotient space 10541: 10521: 10492: 10489: 10485: 10481: 10478: 10458: 10447: 10446: 10435: 10432: 10427: 10423: 10395: 10375: 10364: 10363: 10352: 10347: 10343: 10339: 10334: 10330: 10326: 10321: 10317: 10313: 10310: 10307: 10304: 10290: 10289: 10276: 10272: 10268: 10263: 10259: 10255: 10250: 10246: 10242: 10239: 10236: 10233: 10210: 10190: 10170: 10159: 10158: 10147: 10142: 10137: 10133: 10127: 10124: 10121: 10117: 10113: 10108: 10103: 10097: 10093: 10087: 10084: 10081: 10077: 10072: 10047: 10027: 10007: 9985: 9982: 9979: 9975: 9969: 9965: 9961: 9950: 9949: 9938: 9933: 9929: 9925: 9922: 9919: 9916: 9913: 9908: 9904: 9900: 9895: 9891: 9867: 9847: 9827: 9816: 9815: 9804: 9799: 9795: 9791: 9786: 9782: 9778: 9773: 9769: 9765: 9762: 9759: 9756: 9733: 9730: 9727: 9724: 9721: 9718: 9715: 9712: 9709: 9689: 9667: 9663: 9659: 9656: 9653: 9650: 9647: 9642: 9638: 9615: 9611: 9607: 9602: 9598: 9594: 9591: 9564: 9561: 9556: 9551: 9546: 9526: 9506: 9503: 9500: 9497: 9494: 9472: 9468: 9447: 9444: 9441: 9421: 9418: 9415: 9412: 9409: 9406: 9403: 9381: 9377: 9373: 9370: 9348: 9344: 9321: 9317: 9296: 9270: 9250: 9238: 9235: 9064: 9063: 9052: 9049: 9046: 9043: 9040: 9037: 9033: 9030: 9027: 9024: 9021: 9018: 9014: 9011: 9008: 9005: 9000: 8996: 8992: 8968: 8965: 8962: 8938: 8934: 8930: 8927: 8902: 8880: 8864:is called the 8850: 8846: 8823: 8820: 8817: 8812: 8808: 8783: 8779: 8775: 8772: 8760: 8759: 8747: 8744: 8741: 8738: 8735: 8732: 8729: 8724: 8720: 8707:is defined by 8659:Main article: 8656: 8653: 8636: 8608: 8586: 8581: 8578: 8573: 8570: 8548: 8545: 8541: 8537: 8534: 8531: 8528: 8508: 8505: 8502: 8499: 8496: 8493: 8473: 8470: 8465: 8461: 8457: 8452: 8447: 8444: 8420: 8416: 8412: 8409: 8406: 8403: 8400: 8397: 8377: 8374: 8371: 8368: 8365: 8362: 8359: 8356: 8353: 8350: 8347: 8344: 8341: 8338: 8318: 8314: 8311: 8308: 8305: 8302: 8299: 8292: 8289: 8286: 8283: 8278: 8274: 8270: 8267: 8264: 8261: 8256: 8253: 8249: 8228: 8208: 8190: 8187: 8186: 8185: 8174: 8171: 8168: 8165: 8162: 8157: 8154: 8149: 8146: 8143: 8140: 8137: 8134: 8095: 8090: 8086: 8072: 8071: 8060: 8055: 8050: 8046: 8040: 8037: 8034: 8029: 8026: 8023: 8020: 8017: 8013: 7959: 7958: 7946: 7943: 7940: 7937: 7934: 7931: 7928: 7925: 7922: 7919: 7916: 7913: 7910: 7907: 7904: 7901: 7898: 7895: 7892: 7889: 7884: 7880: 7876: 7873: 7870: 7867: 7837: 7833: 7829: 7826: 7823: 7820: 7783: 7756: 7755: 7744: 7741: 7738: 7735: 7732: 7729: 7726: 7722: 7718: 7715: 7712: 7709: 7706: 7701: 7698: 7695: 7692: 7689: 7685: 7680: 7665: 7664: 7651: 7647: 7643: 7640: 7637: 7632: 7629: 7626: 7623: 7620: 7616: 7575: 7574: 7563: 7560: 7557: 7554: 7551: 7548: 7545: 7499: 7496: 7475: 7471: 7467: 7462: 7458: 7454: 7450: 7447: 7444: 7439: 7435: 7431: 7427: 7423: 7402: 7399: 7394: 7390: 7386: 7382: 7379: 7376: 7372: 7369: 7366: 7363: 7359: 7356: 7353: 7337: 7336: 7325: 7322: 7318: 7314: 7310: 7306: 7302: 7298: 7293: 7289: 7285: 7281: 7278: 7275: 7270: 7266: 7262: 7259: 7256: 7252: 7248: 7242: 7238: 7233: 7229: 7223: 7219: 7215: 7209: 7204: 7200: 7196: 7192: 7188: 7184: 7180: 7177: 7174: 7171: 7167: 7164: 7161: 7148:implies that 7133: 7113: 7077:general result 7073: 7072: 7059: 7055: 7051: 7048: 7043: 7040: 7037: 7033: 7029: 7024: 7020: 7014: 7011: 7008: 7004: 7000: 6995: 6990: 6986: 6981: 6978: 6975: 6971: 6966: 6961: 6956: 6952: 6928: 6908: 6897:direct product 6882: 6878: 6866: 6865: 6854: 6851: 6846: 6843: 6840: 6836: 6832: 6827: 6823: 6817: 6813: 6809: 6806: 6803: 6780: 6760: 6734: 6730: 6724: 6720: 6716: 6693: 6671: 6667: 6655: 6654: 6643: 6638: 6634: 6628: 6624: 6618: 6615: 6612: 6608: 6604: 6601: 6596: 6592: 6588: 6585: 6580: 6576: 6570: 6567: 6564: 6560: 6556: 6552: 6546: 6541: 6534: 6530: 6524: 6521: 6518: 6514: 6509: 6505: 6482: 6462: 6440: 6436: 6432: 6429: 6426: 6423: 6420: 6400: 6397: 6394: 6391: 6388: 6368: 6348: 6343: 6338: 6333: 6330: 6327: 6322: 6318: 6297: 6277: 6257: 6237: 6211: 6207: 6186: 6163: 6160: 6157: 6137: 6117: 6106: 6105: 6092: 6087: 6080: 6076: 6070: 6067: 6064: 6060: 6036: 6016: 6013: 6010: 5990: 5987: 5984: 5981: 5978: 5973: 5969: 5948: 5945: 5942: 5939: 5936: 5914: 5910: 5904: 5900: 5896: 5876: 5856: 5853: 5850: 5847: 5844: 5839: 5834: 5829: 5809: 5789: 5763: 5757: 5729: 5724: 5696: 5692: 5680: 5679: 5668: 5663: 5659: 5653: 5649: 5643: 5639: 5613: 5608: 5586: 5581: 5577: 5573: 5553: 5548: 5544: 5540: 5513: 5507: 5483: 5478: 5456: 5434: 5429: 5406: 5402: 5399: 5378: 5351: 5346: 5321: 5318: 5315: 5293: 5288: 5262: 5240: 5235: 5210: 5198: 5195: 5182: 5160: 5156: 5131: 5108: 5104: 5083: 5061: 5057: 5028: 5005: 4985: 4982: 4979: 4959: 4939: 4936: 4933: 4930: 4910: 4907: 4904: 4884: 4864: 4861: 4858: 4838: 4818: 4798: 4778: 4758: 4732: 4727: 4705: 4678: 4656: 4651: 4620: 4617: 4614: 4611: 4608: 4597: 4596: 4585: 4580: 4575: 4570: 4565: 4560: 4555: 4551: 4547: 4542: 4538: 4534: 4529: 4524: 4519: 4514: 4509: 4504: 4500: 4496: 4491: 4487: 4483: 4479: 4455: 4452: 4448: 4427: 4401: 4397: 4385: 4384: 4373: 4368: 4364: 4360: 4357: 4354: 4340: 4337: 4310: 4305: 4300: 4294: 4290: 4286: 4280: 4275: 4270: 4267: 4261: 4258: 4235: 4230: 4225: 4219: 4215: 4211: 4205: 4200: 4195: 4192: 4189: 4167: 4162: 4140: 4117: 4114: 4111: 4108: 4105: 4102: 4099: 4096: 4093: 4090: 4085: 4080: 4058: 4055: 4052: 4049: 4046: 4043: 4040: 4037: 4032: 4027: 4003: 3998: 3974: 3969: 3947: 3944: 3941: 3938: 3935: 3932: 3929: 3926: 3921: 3916: 3911: 3908: 3905: 3902: 3899: 3896: 3893: 3888: 3883: 3878: 3867: 3866: 3855: 3850: 3844: 3841: 3839: 3836: 3835: 3832: 3829: 3827: 3824: 3823: 3821: 3816: 3811: 3803: 3799: 3795: 3791: 3787: 3783: 3782: 3777: 3773: 3769: 3765: 3761: 3757: 3756: 3754: 3747: 3739: 3735: 3731: 3727: 3723: 3719: 3718: 3713: 3709: 3705: 3701: 3697: 3693: 3692: 3690: 3665: 3662: 3659: 3654: 3649: 3644: 3639: 3634: 3612: 3609: 3606: 3601: 3596: 3591: 3586: 3581: 3559: 3556: 3553: 3548: 3543: 3538: 3533: 3528: 3506: 3503: 3500: 3495: 3490: 3485: 3480: 3475: 3447: 3442: 3418: 3413: 3391: 3388: 3385: 3382: 3379: 3376: 3373: 3368: 3363: 3358: 3355: 3352: 3348: 3344: 3341: 3338: 3334: 3330: 3327: 3324: 3319: 3314: 3309: 3287: 3282: 3260: 3246: 3245: 3230: 3226: 3203: 3199: 3178: 3173: 3168: 3163: 3160: 3157: 3152: 3147: 3142: 3131: 3130: 3119: 3114: 3109: 3104: 3101: 3098: 3095: 3092: 3087: 3082: 3077: 3074: 3071: 3068: 3063: 3058: 3053: 3050: 3047: 3044: 3041: 3036: 3031: 3026: 3023: 3018: 3013: 3008: 3005: 3000: 2996: 2992: 2989: 2986: 2983: 2978: 2973: 2968: 2965: 2960: 2956: 2952: 2949: 2944: 2939: 2932: 2928: 2924: 2921: 2918: 2913: 2908: 2901: 2897: 2893: 2890: 2887: 2884: 2881: 2878: 2875: 2864: 2863: 2849: 2845: 2841: 2838: 2827: 2813: 2809: 2788: 2783: 2778: 2773: 2770: 2767: 2762: 2757: 2752: 2743:). Therefore, 2730: 2726: 2703: 2698: 2676: 2673: 2668: 2664: 2660: 2657: 2654: 2649: 2645: 2641: 2636: 2632: 2611: 2589: 2585: 2581: 2578: 2575: 2570: 2565: 2558: 2554: 2550: 2547: 2544: 2539: 2534: 2527: 2523: 2511: 2499: 2496: 2493: 2490: 2487: 2484: 2481: 2478: 2475: 2453: 2449: 2445: 2440: 2435: 2413: 2410: 2407: 2402: 2397: 2392: 2389: 2386: 2383: 2380: 2375: 2370: 2365: 2360: 2356: 2352: 2349: 2344: 2340: 2336: 2333: 2330: 2327: 2324: 2321: 2318: 2313: 2308: 2284: 2279: 2274: 2269: 2265: 2261: 2258: 2253: 2249: 2245: 2242: 2239: 2236: 2231: 2226: 2221: 2216: 2212: 2208: 2205: 2200: 2196: 2192: 2189: 2186: 2183: 2180: 2177: 2155: 2151: 2147: 2144: 2141: 2138: 2133: 2128: 2104: 2100: 2096: 2093: 2090: 2087: 2082: 2077: 2053: 2048: 2041: 2037: 2033: 2030: 2027: 2022: 2017: 2010: 2006: 2002: 1999: 1977: 1972: 1965: 1961: 1957: 1954: 1951: 1946: 1941: 1934: 1930: 1926: 1923: 1903: 1900: 1897: 1894: 1891: 1871: 1868: 1865: 1862: 1859: 1856: 1853: 1850: 1847: 1844: 1841: 1836: 1831: 1803: 1799: 1775: 1772: 1769: 1766: 1763: 1760: 1757: 1753: 1748: 1744: 1740: 1737: 1732: 1727: 1720: 1716: 1712: 1709: 1706: 1701: 1696: 1689: 1685: 1681: 1676: 1671: 1647: 1642: 1637: 1632: 1629: 1626: 1621: 1616: 1611: 1591: 1586: 1581: 1576: 1573: 1570: 1565: 1560: 1555: 1542: 1541: 1538: 1533: 1510: 1505: 1501: 1489: 1488: 1475: 1470: 1466: 1462: 1459: 1454: 1449: 1444: 1439: 1434: 1409: 1406: 1401: 1397: 1385: 1384: 1373: 1370: 1367: 1364: 1361: 1358: 1355: 1351: 1346: 1342: 1338: 1335: 1330: 1325: 1318: 1314: 1310: 1307: 1304: 1299: 1294: 1287: 1283: 1279: 1274: 1269: 1244: 1224: 1219: 1214: 1209: 1206: 1203: 1198: 1193: 1188: 1162: 1158: 1137: 1117: 1112: 1107: 1102: 1099: 1096: 1091: 1086: 1081: 1058: 1036: 1032: 1011: 993: 990: 973: 970: 965: 961: 957: 954: 951: 948: 945: 942: 939: 936: 912: 909: 906: 903: 900: 897: 894: 891: 888: 885: 863: 860: 857: 854: 851: 848: 845: 842: 839: 836: 814: 792: 769: 765: 743: 703: 699: 675: 672: 669: 648: 645: 642: 619: 615: 611: 608: 605: 602: 591: 590: 574: 570: 567: 564: 561: 557: 553: 550: 547: 545: 543: 540: 537: 534: 531: 528: 525: 522: 521: 518: 515: 512: 509: 506: 503: 500: 497: 494: 491: 488: 486: 484: 481: 478: 475: 472: 469: 466: 463: 460: 459: 435: 412: 408: 387: 384: 381: 378: 375: 372: 369: 340: 337: 334: 331: 328: 303: 300: 277: 273: 250: 246: 222: 199: 184: 181: 142:Hilbert spaces 128:analysis with 108: 86: 83: 49: 26: 9: 6: 4: 3: 2: 18088: 18077: 18074: 18072: 18069: 18067: 18064: 18062: 18059: 18058: 18056: 18041: 18038: 18037: 18035: 18031: 18025: 18022: 18020: 18017: 18016: 18014: 18010: 18004: 18001: 18000: 17998: 17994: 17988: 17985: 17983: 17980: 17979: 17977: 17973: 17967: 17964: 17960: 17957: 17955: 17952: 17951: 17950: 17947: 17945: 17942: 17938: 17935: 17933: 17930: 17928: 17925: 17924: 17923: 17920: 17918: 17915: 17911: 17908: 17907: 17906: 17905:Norm topology 17903: 17902: 17900: 17898: 17894: 17888: 17885: 17883: 17880: 17878: 17875: 17873: 17870: 17868: 17865: 17863: 17862:Dual topology 17860: 17858: 17855: 17853: 17850: 17849: 17847: 17843: 17838: 17834: 17827: 17822: 17820: 17815: 17813: 17808: 17807: 17804: 17792: 17784: 17783: 17780: 17774: 17771: 17769: 17766: 17764: 17763:Weak topology 17761: 17759: 17756: 17754: 17751: 17749: 17746: 17745: 17743: 17739: 17732: 17728: 17725: 17723: 17720: 17718: 17715: 17713: 17710: 17708: 17705: 17703: 17700: 17698: 17695: 17693: 17690: 17688: 17687:Index theorem 17685: 17683: 17680: 17678: 17675: 17673: 17670: 17669: 17667: 17663: 17657: 17654: 17652: 17649: 17648: 17646: 17644:Open problems 17642: 17636: 17633: 17631: 17628: 17626: 17623: 17621: 17618: 17616: 17613: 17611: 17608: 17607: 17605: 17601: 17595: 17592: 17590: 17587: 17585: 17582: 17580: 17577: 17575: 17572: 17570: 17567: 17565: 17562: 17560: 17557: 17555: 17552: 17550: 17547: 17546: 17544: 17540: 17534: 17531: 17529: 17526: 17524: 17521: 17519: 17516: 17514: 17511: 17509: 17506: 17504: 17501: 17499: 17496: 17494: 17491: 17490: 17488: 17486: 17482: 17472: 17469: 17467: 17464: 17462: 17459: 17456: 17452: 17448: 17445: 17443: 17440: 17438: 17435: 17434: 17432: 17428: 17422: 17419: 17417: 17414: 17412: 17409: 17407: 17404: 17402: 17399: 17397: 17394: 17392: 17389: 17387: 17384: 17382: 17379: 17377: 17374: 17373: 17370: 17367: 17363: 17358: 17354: 17350: 17343: 17338: 17336: 17331: 17329: 17324: 17323: 17320: 17308: 17300: 17299: 17296: 17290: 17287: 17285: 17284:Sparse matrix 17282: 17280: 17277: 17275: 17272: 17270: 17267: 17266: 17264: 17262: 17258: 17252: 17249: 17247: 17244: 17242: 17239: 17237: 17234: 17232: 17229: 17227: 17224: 17223: 17221: 17219:constructions 17218: 17214: 17208: 17207:Outermorphism 17205: 17203: 17200: 17198: 17195: 17193: 17190: 17188: 17185: 17183: 17180: 17178: 17175: 17173: 17170: 17168: 17167:Cross product 17165: 17163: 17160: 17159: 17157: 17155: 17151: 17145: 17142: 17140: 17137: 17135: 17134:Outer product 17132: 17130: 17127: 17125: 17122: 17120: 17117: 17115: 17114:Orthogonality 17112: 17111: 17109: 17107: 17103: 17097: 17094: 17092: 17091:Cramer's rule 17089: 17087: 17084: 17082: 17079: 17077: 17074: 17072: 17069: 17067: 17064: 17062: 17061:Decomposition 17059: 17057: 17054: 17053: 17051: 17049: 17045: 17040: 17030: 17027: 17025: 17022: 17020: 17017: 17015: 17012: 17010: 17007: 17005: 17002: 17000: 16997: 16995: 16992: 16990: 16987: 16985: 16982: 16980: 16977: 16975: 16972: 16970: 16967: 16965: 16962: 16960: 16957: 16955: 16952: 16950: 16947: 16945: 16942: 16940: 16937: 16936: 16934: 16930: 16924: 16921: 16919: 16916: 16915: 16912: 16908: 16901: 16896: 16894: 16889: 16887: 16882: 16881: 16878: 16869: 16868: 16863: 16860: 16855: 16854: 16844: 16840: 16836: 16830: 16826: 16822: 16818: 16814: 16810: 16806: 16800: 16796: 16792: 16788: 16784: 16780: 16776: 16772: 16768: 16763: 16759: 16755: 16751: 16745: 16741: 16737: 16736: 16731: 16730:Rudin, Walter 16727: 16723: 16721:9780070542259 16717: 16713: 16708: 16707: 16701: 16700:Rudin, Walter 16697: 16693: 16689: 16685: 16679: 16675: 16670: 16666: 16664:0-7167-0344-0 16660: 16656: 16652: 16648: 16644: 16640: 16635: 16633:0-8218-1646-2 16629: 16625: 16621: 16617: 16613: 16609: 16603: 16599: 16595: 16591: 16590:Tu, Loring W. 16587: 16584: 16580: 16576: 16572: 16568: 16562: 16558: 16554: 16550: 16546: 16542: 16536: 16532: 16528: 16524: 16520: 16516: 16514:0-387-90093-4 16510: 16506: 16502: 16498: 16494: 16490: 16486: 16482: 16478: 16476:3-540-64243-9 16472: 16468: 16464: 16460: 16456: 16450: 16446: 16442: 16438: 16434: 16433: 16421: 16416: 16409: 16408:Schaefer 1966 16404: 16397: 16396:Schaefer 1966 16392: 16385: 16384:Schaefer 1966 16380: 16373: 16372:Bourbaki 2003 16368: 16361: 16356: 16349: 16348:Schaefer 1966 16344: 16342: 16334: 16329: 16327: 16319: 16303: 16299: 16274: 16271: 16267: 16262: 16251: 16247: 16241: 16234: 16233:Halmos (1974) 16229: 16222: 16221:Halmos (1974) 16217: 16210: 16205: 16197: 16191: 16187: 16180: 16173: 16168: 16162: 16157: 16150: 16149:Halmos (1974) 16145: 16138: 16137:Halmos (1974) 16133: 16127:p. 101, §3.94 16126: 16121: 16114: 16109: 16107: 16100:p. 37, §2.1.3 16099: 16094: 16087: 16082: 16080: 16075: 16061: 16057: 16051: 16044: 16038: 16019: 15999: 15960: 15954: 15952: 15950: 15948: 15939: 15935: 15930: 15922: 15916: 15909: 15891: 15887: 15865: 15862: 15853: 15840: 15818: 15815: 15806: 15790: 15770: 15765: 15761: 15752: 15739: 15716: 15712: 15689: 15681: 15670: 15666: 15665: 15646: 15642: 15631: 15627: 15616: 15613: 15611: 15608: 15606: 15603: 15601: 15598: 15596: 15593: 15591: 15588: 15586: 15583: 15582: 15576: 15574: 15569: 15563: 15543: 15540: 15537: 15534: 15530: 15524: 15518: 15511: 15508: 15504: 15501: 15494: 15493: 15492: 15489: 15483: 15479: 15473: 15468: 15463: 15458: 15453: 15447: 15441: 15438: 15433: 15429: 15425: 15421: 15417: 15412: 15408: 15403: 15399: 15395: 15390: 15388: 15384: 15379: 15375: 15368: 15364: 15358: 15354: 15335: 15331: 15328: 15324: 15321: 15315: 15312: 15309: 15306: 15302: 15296: 15290: 15287: 15281: 15272: 15259: 15258: 15257: 15256:, defined by 15254: 15249: 15244: 15240: 15230: 15217: 15208: 15192: 15186: 15183: 15175: 15171: 15167: 15162: 15158: 15151: 15148: 15142: 15128: 15124: 15113: 15110: 15101: 15097: 15074: 15067: 15059: 15052: 15048: 15039: 15032: 15026: 15021: 15012: 15009: 15003: 14994: 14980: 14977: 14973: 14969: 14963: 14958: 14937: 14933: 14929: 14922: 14919: 14912: 14909: 14902: 14901: 14900: 14898: 14893: 14888: 14884: 14880: 14876: 14871: 14864: 14860: 14853: 14846: 14842: 14837: 14833: 14829: 14824: 14820: 14815: 14811: 14805: 14801: 14781: 14775: 14772: 14769: 14766: 14763: 14760: 14756: 14753: 14749: 14746: 14740: 14735: 14731: 14723: 14722: 14721: 14718: 14713: 14709: 14705: 14695: 14691: 14687: 14683: 14676: 14672: 14668: 14661: 14657: 14653: 14646: 14642: 14638: 14632: 14627: 14621: 14617: 14613: 14608: 14602: 14598: 14594: 14590: 14585: 14581:, both duals 14579: 14575: 14569: 14565: 14559: 14553: 14547: 14542: 14538: 14534: 14515: 14510: 14506: 14502: 14498: 14495: 14491: 14486: 14482: 14478: 14473: 14469: 14461: 14460: 14459: 14457: 14453: 14449: 14444: 14439: 14435: 14428: 14423: 14421: 14416: 14411: 14407: 14403: 14399: 14394: 14391: 14386: 14382: 14376: 14372: 14368: 14363: 14357: 14353: 14349: 14344: 14340: 14321: 14317: 14314: 14310: 14306: 14303: 14299: 14295: 14288: 14285: 14282: 14272: 14271: 14270: 14268: 14264: 14259: 14253: 14248: 14244: 14239: 14233: 14226: 14222: 14202: 14198: 14195: 14191: 14188: 14184: 14181: 14178: 14175: 14172: 14166: 14159: 14156: 14148: 14147: 14146: 14143: 14139: 14133: 14129: 14122: 14118: 14108: 14106: 14101: 14099: 14095: 14091: 14087: 14082: 14079: 14071: 14067: 14066:supremum norm 14063: 14059: 14054: 14048: 14042: 14040: 14035: 14031: 14024: 14002: 13998: 13992: 13988: 13982: 13978: 13974: 13960: 13953: 13952: 13951: 13948: 13943: 13930: 13920: 13915: 13911: 13907: 13898: 13883: 13847: 13834: 13822: 13804: 13795: 13791: 13784: 13781: 13773: 13769: 13763: 13759: 13753: 13734: 13728: 13722: 13719: 13713: 13707: 13695: 13691: 13675: 13672: 13669: 13665: 13660: 13655: 13650: 13630: 13629: 13628: 13623: 13619: 13615: 13611: 13607: 13606: 13601: 13588: 13584: 13583:weak topology 13567: 13564: 13555: 13552: 13548: 13531: 13528: 13519: 13516: 13512: 13495: 13492: 13483: 13482: 13481: 13479: 13462: 13459: 13434: 13390: 13369: 13366: 13357: 13356:weak topology 13353: 13338: 13294: 13286: 13269: 13266: 13257: 13253: 13252: 13235: 13224: 13218: 13208: 13205: 13199: 13188: 13182: 13172: 13171: 13170: 13169: 13168: 13153: 13150: 13141: 13140:Hilbert space 13137: 13133: 13117: 13093: 13049: 13041: 13024: 13021: 13012: 13008: 13007: 13006: 13003: 12979: 12976: 12967: 12963: 12959: 12956: 12951: 12943: 12933: 12926: 12923: 12919: 12916: 12912: 12905: 12897: 12893: 12885: 12884: 12883: 12868: 12865: 12839: 12829: 12826: 12823: 12820: 12804: 12801: 12785: 12782: 12770: 12769: 12744: 12728: 12725: 12722: 12719: 12716: 12713: 12697: 12694: 12678: 12675: 12672: 12669: 12657: 12656: 12635: 12632: 12605: 12602: 12575: 12572: 12564: 12548: 12545: 12542: 12539: 12523: 12520: 12511: 12508: 12505: 12493: 12492: 12471: 12468: 12448: 12428: 12420: 12419: 12418: 12377: 12365: 12348: 12342: 12339: 12333: 12325: 12321: 12310: 12307: 12304: 12296: 12291: 12283: 12280: 12275: 12271: 12256: 12253: 12241: 12240: 12239: 12224: 12221: 12200: 12178: 12174: 12164: 12151: 12124: 12104: 12084: 12061: 12050: 12044: 12034: 12031: 12028: 12020: 12015: 12007: 11997: 11996: 11995: 11993: 11977: 11950: 11930: 11922: 11882: 11861: 11858: 11847: 11843: 11833: 11827: 11819: 11816: 11802: 11800: 11796: 11793:the space of 11780: 11776: 11760: 11744: 11717: 11713: 11698:and its dual 11673: 11672:distributions 11657: 11653: 11638:and its dual 11614: 11609: 11585: 11582: 11579: 11558: 11555: 11546: 11542: 11538: 11522: 11515: 11510: 11508: 11504: 11500: 11498: 11492: 11475: 11472: 11464:, denoted by 11449: 11445: 11397: 11384: 11380: 11370: 11368: 11352: 11349: 11344: 11341: 11337: 11333: 11330: 11327: 11324: 11316: 11312: 11294: 11290: 11286: 11276: 11272: 11254: 11245: 11241: 11237: 11233: 11232:dimensionless 11229: 11224: 11222: 11204: 11177: 11174: 11145: 11141: 11116: 11092: 11068: 11065: 11041: 11037: 11033: 11030: 11022: 11006: 11003: 10997: 10991: 10988: 10982: 10979: 10976: 10951: 10947: 10943: 10940: 10920: 10917: 10914: 10900: 10884: 10880: 10857: 10853: 10830: 10826: 10805: 10785: 10777: 10761: 10738: 10733: 10729: 10725: 10720: 10712: 10708: 10704: 10694: 10693: 10692: 10678: 10670: 10654: 10634: 10630: 10626: 10606: 10600: 10597: 10594: 10586: 10570: 10566: 10562: 10555: 10539: 10519: 10510: 10508: 10490: 10487: 10483: 10479: 10476: 10456: 10433: 10430: 10425: 10421: 10413: 10412: 10411: 10409: 10393: 10373: 10350: 10345: 10341: 10337: 10332: 10328: 10324: 10319: 10311: 10308: 10305: 10295: 10294: 10293: 10274: 10270: 10266: 10261: 10257: 10253: 10248: 10240: 10237: 10234: 10224: 10223: 10222: 10208: 10188: 10168: 10145: 10140: 10135: 10131: 10125: 10122: 10119: 10115: 10111: 10106: 10101: 10095: 10091: 10085: 10082: 10079: 10075: 10070: 10061: 10060: 10059: 10045: 10025: 10005: 9983: 9980: 9977: 9967: 9963: 9936: 9931: 9923: 9920: 9917: 9911: 9906: 9902: 9898: 9893: 9889: 9881: 9880: 9879: 9865: 9845: 9825: 9802: 9797: 9793: 9789: 9784: 9780: 9776: 9771: 9767: 9763: 9757: 9747: 9746: 9745: 9731: 9728: 9725: 9722: 9719: 9716: 9710: 9687: 9665: 9661: 9657: 9651: 9645: 9640: 9636: 9613: 9609: 9605: 9600: 9592: 9580: 9578: 9562: 9559: 9554: 9544: 9524: 9504: 9498: 9495: 9492: 9470: 9466: 9445: 9442: 9439: 9419: 9416: 9410: 9407: 9404: 9379: 9375: 9371: 9368: 9346: 9342: 9319: 9315: 9294: 9286: 9285: 9268: 9248: 9234: 9232: 9228: 9224: 9220: 9216: 9212: 9208: 9204: 9200: 9196: 9192: 9188: 9185: 9181: 9176: 9174: 9170: 9166: 9162: 9158: 9153: 9150: 9146: 9140: 9136: 9132: 9127: 9123: 9118: 9114: 9110: 9106: 9102: 9098: 9094: 9089: 9085: 9079: 9077: 9073: 9069: 9050: 9041: 9035: 9031: 9028: 9022: 9016: 9012: 9006: 8998: 8994: 8983: 8982: 8981: 8979: 8966: 8963: 8960: 8951: 8936: 8932: 8928: 8925: 8915: 8913: 8900: 8891: 8878: 8869: 8868: 8863: 8848: 8844: 8834: 8818: 8810: 8806: 8796: 8781: 8777: 8773: 8770: 8745: 8742: 8739: 8736: 8730: 8722: 8718: 8710: 8709: 8708: 8705: 8701: 8697: 8692: 8688: 8687: 8682: 8677: 8673: 8669: 8662: 8652: 8650: 8634: 8626: 8622: 8584: 8568: 8546: 8543: 8539: 8532: 8529: 8503: 8497: 8491: 8471: 8463: 8459: 8455: 8450: 8418: 8414: 8410: 8407: 8404: 8401: 8398: 8395: 8372: 8366: 8363: 8357: 8345: 8329:, defined by 8287: 8284: 8276: 8272: 8268: 8259: 8254: 8251: 8247: 8226: 8199: 8196: 8172: 8166: 8160: 8152: 8147: 8141: 8138: 8132: 8125: 8124: 8123: 8120: 8116: 8112: 8088: 8084: 8058: 8048: 8044: 8035: 8032: 8024: 8021: 8018: 8003: 8002: 8001: 7999: 7995: 7987: 7983: 7979: 7974: 7972: 7968: 7964: 7944: 7938: 7935: 7929: 7917: 7911: 7899: 7887: 7874: 7871: 7868: 7858: 7857: 7856: 7854: 7827: 7824: 7821: 7809: 7805: 7801: 7797: 7773: 7769: 7765: 7761: 7760:nondegenerate 7742: 7736: 7733: 7730: 7724: 7720: 7716: 7713: 7707: 7696: 7693: 7690: 7678: 7670: 7669: 7668: 7649: 7645: 7638: 7635: 7627: 7624: 7621: 7606: 7605: 7604: 7600: 7596: 7589: 7585: 7580: 7558: 7555: 7552: 7543: 7536: 7535: 7534: 7532: 7528: 7521: 7520:bilinear form 7517: 7513: 7509: 7505: 7495: 7493: 7489: 7473: 7460: 7456: 7433: 7425: 7400: 7392: 7388: 7370: 7364: 7342: 7323: 7312: 7304: 7291: 7287: 7250: 7240: 7236: 7227: 7217: 7202: 7194: 7186: 7178: 7172: 7151: 7150: 7149: 7147: 7131: 7111: 7102: 7099: 7097: 7093: 7089: 7084: 7082: 7078: 7057: 7053: 7049: 7046: 7041: 7038: 7035: 7031: 7027: 7022: 7018: 7012: 7009: 7006: 7002: 6998: 6993: 6988: 6984: 6979: 6976: 6973: 6969: 6964: 6959: 6954: 6950: 6942: 6941: 6940: 6926: 6906: 6898: 6880: 6876: 6852: 6849: 6844: 6841: 6838: 6834: 6830: 6825: 6815: 6811: 6804: 6801: 6794: 6793: 6792: 6778: 6758: 6750: 6732: 6722: 6718: 6705: 6691: 6669: 6665: 6641: 6636: 6632: 6626: 6622: 6616: 6613: 6610: 6606: 6602: 6594: 6590: 6583: 6578: 6574: 6568: 6565: 6562: 6558: 6554: 6550: 6544: 6532: 6528: 6522: 6519: 6516: 6512: 6507: 6503: 6496: 6495: 6494: 6480: 6460: 6438: 6434: 6430: 6424: 6418: 6398: 6392: 6389: 6386: 6366: 6341: 6328: 6325: 6320: 6316: 6295: 6275: 6255: 6235: 6227: 6209: 6205: 6184: 6175: 6161: 6158: 6155: 6135: 6115: 6090: 6078: 6074: 6068: 6065: 6062: 6058: 6050: 6049: 6048: 6034: 6014: 6011: 6008: 5985: 5979: 5976: 5971: 5967: 5946: 5940: 5937: 5934: 5927:of functions 5912: 5902: 5898: 5874: 5851: 5848: 5845: 5842: 5837: 5807: 5787: 5778: 5745: 5712: 5694: 5690: 5666: 5661: 5657: 5651: 5647: 5641: 5637: 5629: 5628: 5627: 5579: 5575: 5546: 5542: 5530: 5454: 5432: 5400: 5397: 5367: 5333: 5319: 5316: 5313: 5291: 5276: 5260: 5238: 5224: 5208: 5194: 5180: 5158: 5154: 5145: 5129: 5106: 5102: 5081: 5059: 5055: 5046: 5042: 5026: 5017: 5003: 4983: 4980: 4977: 4957: 4937: 4934: 4931: 4928: 4908: 4905: 4902: 4882: 4862: 4859: 4856: 4836: 4816: 4796: 4776: 4756: 4748: 4730: 4703: 4695: 4691: 4676: 4654: 4638: 4636: 4635: 4615: 4612: 4609: 4583: 4578: 4563: 4553: 4540: 4536: 4532: 4527: 4512: 4502: 4489: 4485: 4481: 4469: 4468: 4467: 4453: 4450: 4425: 4417: 4399: 4395: 4371: 4366: 4362: 4358: 4355: 4352: 4335: 4324: 4323: 4322: 4303: 4288: 4278: 4265: 4256: 4228: 4213: 4203: 4190: 4187: 4165: 4138: 4129: 4115: 4112: 4109: 4106: 4103: 4097: 4094: 4091: 4083: 4056: 4053: 4050: 4044: 4041: 4038: 4030: 4001: 3972: 3939: 3936: 3933: 3930: 3924: 3919: 3909: 3903: 3900: 3897: 3891: 3886: 3853: 3848: 3842: 3837: 3830: 3825: 3819: 3814: 3809: 3801: 3797: 3789: 3785: 3775: 3771: 3763: 3759: 3752: 3745: 3737: 3733: 3725: 3721: 3711: 3707: 3699: 3695: 3688: 3679: 3678: 3677: 3663: 3660: 3652: 3637: 3610: 3607: 3599: 3584: 3557: 3554: 3546: 3531: 3504: 3501: 3493: 3478: 3463: 3445: 3416: 3383: 3380: 3377: 3371: 3366: 3356: 3350: 3346: 3342: 3339: 3336: 3332: 3328: 3322: 3317: 3285: 3258: 3244: 3228: 3224: 3201: 3197: 3171: 3161: 3158: 3155: 3150: 3112: 3099: 3093: 3085: 3075: 3072: 3069: 3061: 3048: 3042: 3034: 3024: 3016: 3003: 2998: 2994: 2990: 2987: 2984: 2976: 2963: 2958: 2954: 2950: 2942: 2930: 2926: 2922: 2919: 2916: 2911: 2899: 2895: 2888: 2885: 2879: 2873: 2866: 2865: 2847: 2843: 2839: 2836: 2828: 2811: 2807: 2781: 2771: 2768: 2765: 2760: 2728: 2724: 2701: 2674: 2671: 2666: 2662: 2658: 2655: 2652: 2647: 2643: 2639: 2634: 2630: 2609: 2587: 2583: 2579: 2576: 2573: 2568: 2556: 2552: 2548: 2545: 2542: 2537: 2525: 2521: 2512: 2497: 2494: 2491: 2488: 2485: 2482: 2479: 2476: 2473: 2451: 2447: 2443: 2438: 2424:. Therefore, 2408: 2400: 2390: 2387: 2381: 2373: 2363: 2358: 2354: 2350: 2347: 2342: 2338: 2334: 2328: 2325: 2322: 2319: 2311: 2282: 2267: 2263: 2259: 2256: 2251: 2247: 2240: 2237: 2234: 2229: 2214: 2210: 2206: 2203: 2198: 2194: 2187: 2184: 2181: 2178: 2175: 2168:. Then also, 2153: 2149: 2145: 2139: 2131: 2102: 2098: 2094: 2088: 2080: 2051: 2039: 2035: 2031: 2028: 2025: 2020: 2008: 2004: 2000: 1997: 1975: 1963: 1959: 1955: 1952: 1949: 1944: 1932: 1928: 1924: 1921: 1901: 1898: 1895: 1892: 1889: 1869: 1866: 1863: 1860: 1857: 1854: 1851: 1848: 1845: 1842: 1839: 1834: 1819: 1818: 1817: 1801: 1797: 1787: 1773: 1770: 1767: 1764: 1761: 1758: 1755: 1751: 1746: 1742: 1738: 1730: 1718: 1714: 1710: 1707: 1704: 1699: 1687: 1683: 1674: 1659: 1640: 1630: 1627: 1624: 1619: 1584: 1574: 1571: 1568: 1563: 1544: 1543: 1537: 1536: 1532: 1530: 1526: 1508: 1503: 1499: 1473: 1468: 1464: 1460: 1452: 1437: 1423: 1422: 1421: 1407: 1404: 1399: 1395: 1371: 1368: 1365: 1362: 1359: 1356: 1353: 1349: 1344: 1340: 1336: 1328: 1316: 1312: 1308: 1305: 1302: 1297: 1285: 1281: 1272: 1258: 1257: 1256: 1242: 1217: 1207: 1204: 1201: 1196: 1178: 1175:, called the 1160: 1156: 1135: 1110: 1100: 1097: 1094: 1089: 1072: 1056: 1034: 1030: 1009: 999: 989: 987: 971: 963: 959: 955: 952: 949: 943: 940: 937: 927: 923: 907: 904: 901: 895: 889: 883: 874: 858: 855: 852: 846: 840: 834: 825: 812: 803: 790: 767: 763: 754: 741: 731: 729: 728: 723: 719: 701: 697: 687: 673: 670: 667: 659: 646: 643: 640: 617: 613: 609: 606: 603: 600: 572: 565: 559: 555: 551: 548: 546: 538: 529: 526: 513: 507: 504: 498: 492: 489: 487: 479: 470: 467: 464: 450: 449: 448: 446: 433: 410: 406: 382: 379: 376: 370: 367: 359: 358:homomorphisms 355: 351: 338: 332: 329: 326: 318: 301: 298: 275: 271: 248: 244: 236: 220: 213: 197: 190: 180: 178: 174: 170: 166: 165:adjoint space 162: 158: 154: 149: 147: 143: 139: 138:distributions 135: 131: 127: 122: 120: 117:, called the 116: 112: 106: 103: 101: 97: 84: 81: 72: 68: 64: 60: 47: 39: 35: 30: 19: 17987:Mackey–Arens 17975:Main results 17851: 17753:Balanced set 17727:Distribution 17665:Applications 17518:Krein–Milman 17503:Closed graph 17446: 17225: 17217:Vector space 16949:Vector space 16865: 16824: 16790: 16778: 16766: 16734: 16705: 16673: 16654: 16623: 16593: 16552: 16526: 16500: 16488: 16466: 16440: 16430:Bibliography 16415: 16403: 16391: 16379: 16367: 16355: 16253: 16246:Tao, Terence 16240: 16228: 16216: 16204: 16185: 16179: 16167: 16156: 16144: 16132: 16125:Axler (2015) 16120: 16093: 16055: 16050: 16037: 15937: 15933: 15915: 15833: 15805:Halmos (1974 15732: 15662: 15630: 15567: 15561: 15558: 15487: 15481: 15477: 15471: 15466: 15461: 15456: 15451: 15445: 15442: 15436: 15431: 15423: 15415: 15410: 15406: 15401: 15393: 15391: 15377: 15373: 15366: 15362: 15350: 15252: 15247: 15242: 15238: 15234: 15210: 15080: 15072: 15065: 15057: 15050: 15047:ordered pair 15045:denotes the 15037: 15030: 15007: 15001: 14986: 14975: 14971: 14967: 14961: 14954: 14896: 14891: 14886: 14882: 14878: 14874: 14869: 14862: 14858: 14851: 14844: 14840: 14835: 14827: 14822: 14818: 14813: 14809: 14803: 14799: 14796: 14716: 14711: 14707: 14703: 14702:Assume that 14701: 14698:Annihilators 14689: 14685: 14681: 14674: 14670: 14666: 14659: 14655: 14651: 14644: 14640: 14636: 14630: 14625: 14619: 14615: 14611: 14606: 14600: 14596: 14592: 14583: 14577: 14573: 14567: 14563: 14557: 14551: 14545: 14540: 14536: 14532: 14530: 14451: 14447: 14442: 14437: 14430: 14426: 14424: 14414: 14409: 14405: 14397: 14395: 14389: 14384: 14374: 14370: 14366: 14361: 14355: 14351: 14347: 14342: 14338: 14336: 14266: 14262: 14257: 14251: 14246: 14242: 14237: 14231: 14224: 14220: 14217: 14141: 14137: 14131: 14127: 14124: 14102: 14083: 14077: 14069: 14057: 14052: 14046: 14043: 14033: 14026: 14022: 14019: 13946: 13923: 13918: 13913: 13909: 13905: 13869: 13820: 13771: 13767: 13761: 13757: 13751: 13749: 13621: 13617: 13613: 13603: 13599: 13597: 13550: 13514: 13450: 13136:Banach space 13109: 13004: 13001: 12856: 12392: 12165: 12076: 11994:of the form 11849: 11808: 11610: 11544: 11540: 11536: 11511: 11496: 11490: 11376: 11274: 11244:unit of time 11225: 10906: 10753: 10511: 10448: 10365: 10291: 10160: 9951: 9817: 9581: 9282: 9240: 9230: 9226: 9222: 9218: 9214: 9210: 9206: 9198: 9194: 9190: 9186: 9179: 9177: 9172: 9168: 9164: 9151: 9148: 9144: 9125: 9121: 9116: 9108: 9104: 9100: 9096: 9091:produces an 9087: 9083: 9080: 9071: 9067: 9065: 8953: 8918: 8916: 8893: 8871: 8865: 8836: 8798: 8763: 8761: 8703: 8699: 8695: 8690: 8684: 8675: 8671: 8667: 8664: 8599:. This map 8198:homomorphism 8192: 8118: 8114: 8110: 8073: 7993: 7980:is over the 7977: 7975: 7970: 7966: 7962: 7960: 7852: 7807: 7803: 7799: 7795: 7771: 7767: 7763: 7757: 7666: 7598: 7594: 7587: 7583: 7581:taking each 7578: 7576: 7530: 7526: 7511: 7507: 7503: 7501: 7338: 7103: 7100: 7087: 7085: 7074: 6867: 6706: 6656: 6225: 6176: 6107: 5779: 5681: 5528: 5334: 5200: 5045:level curves 5018: 4875:matrix, and 4693: 4690:real numbers 4639: 4632: 4598: 4386: 4130: 3868: 3250: 3132: 1788: 1660: 1545: 1528: 1490: 1386: 1001: 876: 827: 805: 783: 734: 732: 727:linear forms 725: 721: 717: 688: 633: 592: 426: 319: 234: 189:vector space 186: 172: 168: 164: 160: 157:polarer Raum 156: 152: 150: 123: 118: 104: 74: 71:linear forms 66: 62: 40: 38:vector space 31: 29: 17966:Ultrastrong 17949:Strong dual 17857:Dual system 17682:Heat kernel 17672:Hardy space 17579:Trace class 17493:Hahn–Banach 17455:Topological 17197:Multivector 17162:Determinant 17119:Dot product 16964:Linear span 16655:Gravitation 16549:Lang, Serge 16422:, chapter 4 16115:p. 19, §3.1 16043:functionals 15931:defined on 15908:Trèves 2006 15590:Dual module 15573:reflexivity 15385:are called 15015:Double dual 13598:Let 1 < 12421:Each point 11846:Dual system 10018:indexed by 9458:. That is, 9284:annihilator 9113:isomorphism 8683:, then the 8625:isomorphism 8193:There is a 7667:defined by 6919:indexed by 5867:identifies 2716:results in 2066:to scalars 984:called the 317:linear maps 34:mathematics 18055:Categories 17897:Topologies 17852:Dual space 17615:C*-algebra 17430:Properties 17231:Direct sum 17066:Invertible 16969:Linear map 16583:0984.00001 16420:Rudin 1991 16360:Rudin 1973 16223:pp. 25, 28 16195:0201006391 16151:p. 21, §14 16139:p. 20, §13 16070:References 15753:, so that 15475:for every 15359:, meaning 15023:This is a 14832:surjection 14664:, or from 14115:See also: 14062:convergent 13627:for which 13587:dual pairs 13551:stereotype 11826:completion 11805:Properties 11545:dual space 11543:, or just 11495:Euclidean 11489:. For any 11383:continuous 10776:direct sum 10667:is in the 9537:vanishes: 9394:such that 8762:for every 8681:linear map 8619:is always 8122:such that 7096:isomorphic 6749:direct sum 6148:, and any 5959:such that 5746:, whereas 5144:level sets 4970:must be a 3958:. Because 3189:generates 1177:dual basis 1069:. Given a 998:Dual basis 996:See also: 187:Given any 175:is due to 67:dual space 18024:Total set 17910:Dual norm 17877:Polar set 17589:Unbounded 17584:Transpose 17542:Operators 17471:Separable 17466:Reflexive 17451:Algebraic 17437:Barrelled 17261:Numerical 17024:Transpose 16867:MathWorld 16843:853623322 16823:(2006) . 16813:840278135 16692:144216834 16499:(1974) . 16272:− 16113:Tu (2011) 15892:∗ 15791:ω 15771:ω 15766:∗ 15717:∗ 15690:∗ 15682:⋅ 15647:∨ 15595:Dual norm 15538:∈ 15519:φ 15516:↦ 15505:∈ 15502:φ 15428:Hausdorff 15387:reflexive 15383:bijection 15325:∈ 15322:φ 15310:∈ 15291:φ 15282:φ 15267:Ψ 15237:Ψ : 15218:φ 15187:φ 15152:φ 15143:φ 15118:Ψ 15091:Ψ 14993:separable 14938:⊥ 14913:⁡ 14865: )′ 14776:φ 14773:⁡ 14767:⊆ 14750:∈ 14747:φ 14736:⊥ 14587:have the 14503:∘ 14487:∗ 14479:∘ 14311:∘ 14286:∘ 14192:∈ 14189:φ 14179:∘ 14176:φ 14167:φ 13979:∑ 13961:φ 13931:φ 13835:φ 13792:ℓ 13785:∈ 13782:φ 13732:∞ 13681:∞ 13666:∑ 13647:‖ 13638:‖ 13610:sequences 13515:reflexive 13403:(so here 13307:(so here 13219:φ 13206:≤ 13203:‖ 13197:‖ 13186:‖ 13183:φ 13180:‖ 13062:(so here 12980:∈ 12948:‖ 12944:φ 12941:‖ 12920:∈ 12917:φ 12830:∈ 12824:⋅ 12821:λ 12805:∈ 12802:λ 12786:∈ 12723:⊆ 12717:∪ 12698:∈ 12679:∈ 12636:∈ 12606:∈ 12576:∈ 12543:∈ 12524:∈ 12509:∈ 12472:∈ 12372:∞ 12369:→ 12362:⟶ 12343:φ 12340:− 12322:φ 12308:∈ 12288:‖ 12284:φ 12281:− 12272:φ 12268:‖ 12257:∈ 12201:φ 12175:φ 12085:φ 12045:φ 12032:∈ 12012:‖ 12008:φ 12005:‖ 11992:seminorms 11815:Hausdorff 11589:→ 11580:φ 11450:∗ 11342:− 11331:⋅ 11271:frequency 11175:− 11146:∗ 11042:∗ 11034:⊕ 11004:∈ 10992:φ 10986:⟩ 10983:φ 10974:⟨ 10952:∗ 10944:∈ 10941:φ 10918:∈ 10831:∗ 10726:≅ 10721:∗ 10604:→ 10552:then the 10491:∗ 10488:∗ 10480:≈ 10309:∩ 10267:∩ 10123:∈ 10116:⋂ 10083:∈ 10076:⋃ 9981:∈ 9921:∩ 9912:⊆ 9798:∗ 9790:⊆ 9777:⊆ 9764:⊆ 9729:⊆ 9723:⊆ 9717:⊆ 9666:∗ 9658:⊆ 9614:∗ 9502:→ 9443:∈ 9380:∗ 9372:∈ 9320:∗ 9203:transpose 9093:injective 9029:φ 9007:φ 8999:∗ 8964:∈ 8937:∗ 8929:∈ 8926:φ 8879:φ 8849:∗ 8819:φ 8811:∗ 8782:∗ 8774:∈ 8771:φ 8743:∘ 8740:φ 8731:φ 8723:∗ 8686:transpose 8621:injective 8607:Ψ 8572:↦ 8547:∗ 8544:∗ 8536:→ 8527:Ψ 8498:φ 8495:↦ 8492:φ 8469:→ 8464:∗ 8419:∗ 8411:∈ 8408:φ 8399:∈ 8367:φ 8358:φ 8340:Ψ 8291:Φ 8282:→ 8277:∗ 8266:Φ 8255:∗ 8252:∗ 8207:Ψ 8156:¯ 8153:α 8139:α 8094:¯ 8089:∗ 8054:¯ 8049:∗ 8039:→ 8028:⟩ 8025:⋅ 8019:⋅ 8016:⟨ 8012:Φ 7996:with the 7924:Φ 7894:Φ 7883:Φ 7879:⟩ 7866:⟨ 7836:Φ 7832:⟩ 7828:⋅ 7822:⋅ 7819:⟨ 7782:Φ 7740:⟩ 7728:⟨ 7700:⟩ 7697:⋅ 7691:⋅ 7688:⟨ 7684:Φ 7650:∗ 7642:→ 7631:⟩ 7628:⋅ 7622:⋅ 7619:⟨ 7615:Φ 7562:⟩ 7559:⋅ 7550:⟨ 7547:↦ 7461:∗ 7434:≤ 7393:∗ 7292:∗ 7241:∗ 7050:≅ 7039:∈ 7036:α 7032:∏ 7028:≅ 7023:∗ 7010:∈ 7007:α 7003:∏ 6999:≅ 6994:∗ 6977:∈ 6974:α 6970:⨁ 6960:≅ 6955:∗ 6842:∈ 6839:α 6835:⨁ 6831:≅ 6805:≅ 6692:α 6670:α 6637:α 6633:θ 6627:α 6614:∈ 6611:α 6607:∑ 6595:α 6579:α 6566:∈ 6563:α 6559:∑ 6545:α 6533:α 6520:∈ 6517:α 6513:∑ 6439:α 6435:θ 6425:α 6419:θ 6396:→ 6387:θ 6342:α 6321:α 6317:θ 6159:∈ 6091:α 6079:α 6066:∈ 6063:α 6059:∑ 6012:∈ 6009:α 5986:α 5972:α 5944:→ 5849:∈ 5846:α 5838:α 5728:∞ 5711:dimension 5638:∑ 5612:∞ 5482:∞ 5401:∈ 5366:sequences 5350:∞ 5317:∈ 5314:α 5292:α 5277:elements 5239:α 5159:∗ 5107:∗ 5060:∗ 4981:× 4906:× 4860:× 4619:⟩ 4616:⋅ 4610:⋅ 4607:⟨ 4569:⟩ 4546:⟨ 4537:∑ 4518:⟩ 4495:⟨ 4486:∑ 4451:∈ 4418:of order 4353:⋅ 4339:^ 4289:⋯ 4260:^ 4214:⋯ 4107:− 3931:− 3462:one-forms 3229:∗ 3202:∗ 3159:… 3073:⋯ 2995:α 2988:⋯ 2955:α 2927:α 2920:⋯ 2896:α 2848:∗ 2840:∈ 2812:∗ 2769:… 2725:λ 2663:λ 2656:⋯ 2644:λ 2631:λ 2588:∗ 2580:∈ 2553:λ 2546:⋯ 2522:λ 2492:… 2452:∗ 2444:∈ 2391:λ 2355:β 2351:λ 2339:α 2326:λ 2264:β 2260:λ 2248:α 2238:⋯ 2211:β 2207:λ 2195:α 2182:λ 2150:β 2099:α 2036:β 2029:⋯ 2005:β 1960:α 1953:⋯ 1929:α 1899:∈ 1861:… 1816:because: 1802:∗ 1768:… 1708:⋯ 1628:… 1572:… 1546:Consider 1500:δ 1465:δ 1405:∈ 1366:… 1306:⋯ 1205:… 1161:∗ 1098:… 1035:∗ 969:→ 964:∗ 956:× 947:⟩ 944:⋅ 938:⋅ 935:⟨ 911:⟩ 908:φ 899:⟨ 884:φ 859:φ 835:φ 768:∗ 742:φ 722:one-forms 718:covectors 702:∗ 671:∈ 644:∈ 618:∗ 610:∈ 607:ψ 601:φ 560:φ 530:φ 508:ψ 493:φ 471:ψ 465:φ 411:∗ 371:⁡ 336:→ 327:φ 276:∨ 249:∗ 100:pointwise 65:(or just 17959:operator 17932:operator 17791:Category 17603:Algebras 17485:Theorems 17442:Complete 17411:Schwartz 17357:glossary 17307:Category 17246:Subspace 17241:Quotient 17192:Bivector 17106:Bilinear 17048:Matrices 16923:Glossary 16777:(1966). 16758:21163277 16732:(1991). 16702:(1973). 16653:(1973). 16622:(1999). 16598:Springer 16592:(2011). 16551:(2002), 16505:Springer 16487:(2003). 16465:(1989). 16445:Springer 16439:(2015). 16410:, IV.1.2 16386:, IV.5.5 15866:′ 15819:′ 15579:See also 15512:′ 15371:for all 15365:) ‖ = ‖ 15357:isometry 15332:′ 15209:for any 15114:′ 15043:⟩ 15029:⟨ 15011:is not. 14923:′ 14757:′ 14499:′ 14318:′ 14307:′ 14296:′ 14199:′ 14160:′ 14140: : 14130: : 14020:for all 13805:′ 13594:Examples 13568:′ 13532:′ 13496:′ 13463:′ 13370:′ 13270:′ 13154:′ 13025:′ 12927:′ 12869:′ 12225:′ 11862:′ 11777:′ 11714:′ 11654:′ 11559:′ 11476:′ 9432:for all 8867:pullback 8698: : 8670: : 8388:for all 8113: : 7601:⟩ 7593:⟨ 6707:The set 4769:-vector 2513:Suppose 1914:such as 593:for all 302:′ 177:Bourbaki 155:include 134:measures 18012:Subsets 17944:Mackey 17867:Duality 17833:Duality 17594:Unitary 17574:Nuclear 17559:Compact 17554:Bounded 17549:Adjoint 17523:Min–max 17416:Sobolev 17401:Nuclear 17391:Hilbert 17386:Fréchet 17351: ( 16918:Outline 16624:Algebra 16575:1878556 16553:Algebra 16374:, II.42 16211:, §VI.4 15669:Tu 2011 15418:is not 15400:then Ψ( 14847:  14806:  14456:adjoint 14402:compact 14261:. When 14142:W′ → V′ 14103:By the 14084:By the 13608:of all 11311:seconds 11307:⁠ 11279:⁠ 11267:⁠ 11247:⁠ 11217:⁠ 11197:⁠ 11193:⁠ 11164:⁠ 11160:⁠ 11133:⁠ 11129:⁠ 11109:⁠ 11105:⁠ 11085:⁠ 11081:⁠ 11058:⁠ 10818:, then 10410:, then 10058:, then 9744:, then 9205:matrix 9197:, then 9171:) with 9131:algebra 9076:adjoint 8519:, then 8195:natural 7982:complex 7081:modules 5041:vectors 4414:is the 1523:is the 210:over a 17837:linear 17569:Normal 17406:Orlicz 17396:Hölder 17376:Banach 17365:Spaces 17353:topics 17202:Tensor 17014:Kernel 16944:Vector 16939:Scalar 16841:  16831:  16811:  16801:  16756:  16746:  16718:  16690:  16680:  16661:  16630:  16604:  16581:  16573:  16563:  16537:  16511:  16473:  16451:  16398:, IV.1 16350:, II.4 16335:, II.2 16192:  16174:, §2.5 16060:kernel 15319:  14238:T → T′ 14229:is in 14068:) and 13868:where 12937:  12931:  12909:  12903:  12117:, and 12077:where 11512:For a 11381:, the 10669:kernel 9281:. The 9184:matrix 9133:under 8892:along 8294:  7088:always 6411:(with 5709:. The 5390:. For 4849:as an 4829:, and 4387:where 3623:, and 2862:. Then 1491:where 660:, and 233:, the 179:1938. 167:, and 140:, and 126:tensor 36:, any 17927:polar 17381:Besov 17071:Minor 17056:Block 16994:Basis 16362:, 3.1 15622:Notes 15396:is a 15392:When 14959:that 14885:into 14877:. If 14867:into 14834:from 14531:When 14436:from 14425:When 14400:is a 14396:When 14337:When 14132:V → W 14037:(see 13138:or a 13130:is a 11813:is a 11539:, or 11499:space 11056:is a 10774:is a 10406:is a 10221:then 9878:then 8679:is a 8219:from 7794:from 7766:. If 5223:basis 4180:, if 1539:Proof 1071:basis 724:, or 212:field 17996:Maps 17922:Weak 17839:maps 17729:(or 17447:Dual 17226:Dual 17081:Rank 16839:OCLC 16829:ISBN 16809:OCLC 16799:ISBN 16754:OCLC 16744:ISBN 16716:ISBN 16688:OCLC 16678:ISBN 16659:ISBN 16628:ISBN 16602:ISBN 16561:ISBN 16535:ISBN 16509:ISBN 16471:ISBN 16449:ISBN 16190:ISBN 15634:For 15361:‖ Ψ( 15056:and 14571:and 14555:and 14539:and 14408:and 14341:and 14265:and 14119:and 14032:) ∈ 13917:) ∈ 13760:+ 1/ 13729:< 13354:The 13254:The 13009:The 12957:< 12595:and 11844:and 11757:the 11535:its 11415:(or 10872:and 10798:and 10292:and 10181:and 9838:and 9241:Let 9213:and 9193:and 9147:) = 8952:and 8691:dual 8689:(or 7371:< 7195:< 4694:rows 4069:and 3987:and 3460:are 3431:and 3133:and 2466:for 2297:and 2117:and 1990:and 1820:The 173:dual 153:dual 16795:GTM 16579:Zbl 16318:... 16235:§44 16054:If 15568:V′′ 15462:V′′ 15459:to 15452:V′′ 15426:is 15253:V′′ 15243:V′′ 15063:to 14991:is 14910:ker 14770:ker 14714:in 14679:to 14649:to 14450:on 14364:in 14255:to 14245:to 14125:If 14041:). 14025:= ( 13944:on 13908:= ( 13764:= 1 13754:by 13616:= ( 13556:If 13520:If 13484:If 13358:on 13287:in 13258:on 13193:sup 13110:If 13042:in 13013:on 12441:of 12301:sup 12213:in 12025:sup 11923:of 11919:of 11828:of 11809:If 11275:per 11107:is 10671:of 10512:If 10366:If 9952:If 9818:If 9307:in 9287:of 9107:to 9099:to 8870:of 8835:in 8665:If 8627:if 7855:by 7851:on 7806:if 7591:to 7525:on 7502:If 7104:If 6493:by 6473:on 6288:on 6248:to 6226:all 6224:of 6108:in 5742:is 5713:of 5597:of 5529:all 5201:If 5019:If 4696:of 4151:is 3271:is 3243:. 1128:in 1002:If 875:or 804:of 368:hom 290:or 73:on 32:In 18057:: 17355:– 16864:. 16837:. 16807:. 16793:. 16752:. 16742:. 16714:. 16686:. 16649:; 16645:; 16618:; 16600:. 16577:, 16571:MR 16569:, 16555:, 16533:. 16529:. 16507:. 16447:. 16340:^ 16325:^ 16252:. 16105:^ 16078:^ 15946:^ 15936:× 15923:, 15803:. 15562:V′ 15488:V′ 15480:∈ 15472:V′ 15446:V′ 15437:V′ 15409:∈ 15389:. 15376:∈ 15241:→ 15071:+ 15036:, 14979:. 14976:W′ 14974:→ 14968:V′ 14962:j′ 14899:: 14892:j′ 14870:V′ 14852:P′ 14819:V′ 14720:, 14717:V′ 14694:. 14688:, 14686:V′ 14673:, 14671:W′ 14658:, 14656:V′ 14643:, 14641:W′ 14631:T′ 14618:, 14616:X′ 14599:, 14597:X′ 14584:X′ 14576:= 14566:= 14558:V′ 14552:W′ 14546:T′ 14443:V′ 14422:. 14415:T′ 14390:T′ 14373:, 14356:V′ 14354:, 14352:W′ 14258:V′ 14252:W′ 14232:V′ 14221:T′ 14138:T′ 14100:. 14081:. 13756:1/ 13447:). 13351:). 13106:). 12655:: 12491:: 12378:0. 11832:. 11801:. 11608:. 11497:n- 11369:. 11223:. 10989::= 10899:. 10426:00 9579:. 9145:fg 9124:= 9086:↦ 9078:. 8980:: 8914:. 8702:→ 8693:) 8674:→ 8117:→ 7973:. 7597:, 7586:∈ 7494:. 6704:. 5418:, 4895:a 4637:. 4128:. 3802:22 3790:12 3776:21 3764:11 3738:22 3726:21 3712:12 3700:11 3570:, 3517:, 1786:. 1531:. 988:. 730:. 720:, 686:. 632:, 163:, 159:, 148:. 136:, 121:. 17825:e 17818:t 17811:v 17733:) 17457:) 17453:/ 17449:( 17359:) 17341:e 17334:t 17327:v 16899:e 16892:t 16885:v 16870:. 16845:. 16815:. 16760:. 16724:. 16694:. 16667:. 16638:. 16636:. 16610:. 16543:. 16517:. 16479:. 16457:. 16304:T 16300:V 16275:1 16268:T 16263:V 16198:. 16056:V 16020:V 16000:V 15977:N 15971:R 15941:. 15938:V 15934:V 15888:V 15863:V 15841:V 15816:V 15762:F 15740:F 15713:F 15686:) 15679:( 15667:( 15643:V 15544:, 15541:V 15535:x 15531:, 15528:) 15525:x 15522:( 15509:V 15482:V 15478:x 15467:x 15457:V 15432:V 15424:V 15416:V 15411:V 15407:x 15402:x 15394:V 15378:V 15374:x 15369:‖ 15367:x 15363:x 15336:. 15329:V 15316:, 15313:V 15307:x 15303:, 15300:) 15297:x 15294:( 15288:= 15285:) 15279:( 15276:) 15273:x 15270:( 15248:V 15239:V 15196:) 15193:x 15190:( 15184:= 15181:) 15176:2 15172:x 15168:+ 15163:1 15159:x 15155:( 15149:= 15146:) 15140:( 15137:] 15134:) 15129:2 15125:x 15121:( 15111:+ 15107:) 15102:1 15098:x 15094:( 15088:[ 15076:2 15073:x 15069:1 15066:x 15061:2 15058:x 15054:1 15051:x 15041:2 15038:x 15034:1 15031:x 15008:ℓ 15002:ℓ 14997:V 14989:V 14972:W 14934:W 14930:= 14927:) 14920:j 14916:( 14897:W 14887:V 14883:W 14879:j 14875:W 14863:W 14859:V 14857:( 14845:W 14841:V 14836:V 14828:P 14823:W 14814:W 14810:W 14804:W 14800:V 14782:. 14779:} 14764:W 14761:: 14754:V 14744:{ 14741:= 14732:W 14712:W 14708:V 14704:W 14692:) 14690:V 14684:( 14682:σ 14677:) 14675:W 14669:( 14667:σ 14662:) 14660:V 14654:( 14652:β 14647:) 14645:W 14639:( 14637:β 14626:X 14622:) 14620:X 14614:( 14612:σ 14607:X 14603:) 14601:X 14595:( 14593:β 14578:W 14574:X 14568:V 14564:X 14541:W 14537:V 14533:T 14516:. 14511:V 14507:i 14496:T 14492:= 14483:T 14474:V 14470:i 14452:V 14448:T 14438:V 14433:V 14431:i 14427:V 14410:W 14406:V 14398:T 14385:T 14377:) 14375:W 14371:V 14369:( 14367:L 14362:T 14358:) 14350:( 14348:L 14343:W 14339:V 14322:. 14315:U 14304:T 14300:= 14293:) 14289:T 14283:U 14280:( 14267:U 14263:T 14247:W 14243:V 14227:) 14225:φ 14223:( 14203:. 14196:W 14185:, 14182:T 14173:= 14170:) 14164:( 14157:T 14128:T 14078:ℓ 14073:0 14070:c 14058:c 14053:ℓ 14047:ℓ 14034:ℓ 14029:n 14027:b 14023:b 14003:n 13999:b 13993:n 13989:a 13983:n 13975:= 13972:) 13968:b 13964:( 13947:ℓ 13919:ℓ 13914:n 13910:a 13906:a 13901:n 13884:n 13879:e 13856:) 13853:) 13848:n 13843:e 13838:( 13832:( 13821:ℓ 13802:) 13796:p 13788:( 13772:ℓ 13768:ℓ 13762:q 13758:p 13752:q 13735:. 13723:p 13720:1 13714:) 13708:p 13703:| 13696:n 13692:a 13687:| 13676:0 13673:= 13670:n 13661:( 13656:= 13651:p 13642:a 13625:) 13622:n 13618:a 13614:a 13605:ℓ 13600:p 13565:V 13553:. 13529:V 13517:. 13493:V 13460:V 13435:V 13413:A 13391:V 13367:V 13339:V 13317:A 13295:V 13267:V 13236:. 13232:| 13228:) 13225:x 13222:( 13215:| 13209:1 13200:x 13189:= 13151:V 13118:V 13094:V 13072:A 13050:V 13022:V 12985:A 12977:A 12968:, 12964:} 12960:1 12952:A 12934:: 12924:V 12913:{ 12906:= 12898:A 12894:U 12866:V 12840:. 12835:A 12827:A 12810:F 12791:A 12783:A 12754:A 12729:. 12726:C 12720:B 12714:A 12703:A 12695:C 12684:A 12676:B 12673:, 12670:A 12641:A 12633:C 12611:A 12603:B 12581:A 12573:A 12549:. 12546:A 12540:x 12529:A 12521:A 12512:V 12506:x 12477:A 12469:A 12449:V 12429:x 12403:A 12366:i 12356:| 12352:) 12349:x 12346:( 12337:) 12334:x 12331:( 12326:i 12317:| 12311:A 12305:x 12297:= 12292:A 12276:i 12262:A 12254:A 12222:V 12179:i 12152:. 12147:A 12125:A 12105:V 12062:, 12058:| 12054:) 12051:x 12048:( 12041:| 12035:A 12029:x 12021:= 12016:A 11978:, 11973:A 11951:V 11931:V 11905:A 11883:V 11859:V 11830:X 11822:X 11811:X 11781:, 11772:S 11745:, 11740:S 11718:, 11709:E 11684:E 11658:, 11649:D 11624:D 11594:F 11586:V 11583:: 11556:V 11523:V 11473:V 11446:V 11424:R 11402:C 11398:= 11394:F 11353:6 11350:= 11345:1 11338:s 11334:2 11328:s 11325:3 11295:t 11291:/ 11287:1 11255:t 11205:V 11181:) 11178:n 11172:( 11142:V 11117:n 11093:V 11069:n 11066:2 11038:V 11031:V 11007:F 11001:) 10998:x 10995:( 10980:, 10977:x 10948:V 10921:V 10915:v 10885:0 10881:B 10858:0 10854:A 10827:V 10806:B 10786:A 10762:V 10739:. 10734:0 10730:W 10717:) 10713:W 10709:/ 10705:V 10702:( 10679:f 10655:W 10635:W 10631:/ 10627:V 10607:F 10601:V 10598:: 10595:f 10571:W 10567:/ 10563:V 10540:V 10520:W 10484:V 10477:V 10457:W 10434:W 10431:= 10422:W 10394:W 10374:V 10351:. 10346:0 10342:B 10338:+ 10333:0 10329:A 10325:= 10320:0 10316:) 10312:B 10306:A 10303:( 10275:0 10271:B 10262:0 10258:A 10254:= 10249:0 10245:) 10241:B 10238:+ 10235:A 10232:( 10209:V 10189:B 10169:A 10146:. 10141:0 10136:i 10132:A 10126:I 10120:i 10112:= 10107:0 10102:) 10096:i 10092:A 10086:I 10080:i 10071:( 10046:I 10026:i 10006:V 9984:I 9978:i 9974:) 9968:i 9964:A 9960:( 9937:. 9932:0 9928:) 9924:B 9918:A 9915:( 9907:0 9903:B 9899:+ 9894:0 9890:A 9866:V 9846:B 9826:A 9803:. 9794:V 9785:0 9781:S 9772:0 9768:T 9761:} 9758:0 9755:{ 9732:V 9726:T 9720:S 9714:} 9711:0 9708:{ 9688:V 9662:V 9655:} 9652:0 9649:{ 9646:= 9641:0 9637:V 9610:V 9606:= 9601:0 9597:} 9593:0 9590:{ 9563:0 9560:= 9555:S 9550:| 9545:f 9525:S 9505:F 9499:V 9496:: 9493:f 9471:0 9467:S 9446:S 9440:s 9420:0 9417:= 9414:] 9411:s 9408:, 9405:f 9402:[ 9376:V 9369:f 9347:0 9343:S 9316:V 9295:S 9269:V 9249:S 9231:R 9227:f 9223:A 9219:f 9215:V 9211:W 9207:A 9199:f 9195:W 9191:V 9187:A 9180:f 9173:f 9169:f 9165:F 9152:f 9149:g 9143:( 9126:W 9122:V 9117:W 9109:V 9105:W 9101:W 9097:V 9088:f 9084:f 9072:W 9068:V 9051:, 9048:] 9045:) 9042:v 9039:( 9036:f 9032:, 9026:[ 9023:= 9020:] 9017:v 9013:, 9010:) 9004:( 8995:f 8991:[ 8967:V 8961:v 8933:W 8901:f 8845:V 8822:) 8816:( 8807:f 8778:W 8746:f 8737:= 8734:) 8728:( 8719:f 8704:V 8700:W 8696:f 8676:W 8672:V 8668:f 8635:V 8585:v 8580:v 8577:e 8569:v 8540:V 8533:V 8530:: 8507:) 8504:v 8501:( 8472:F 8460:V 8456:: 8451:v 8446:v 8443:e 8415:V 8405:, 8402:V 8396:v 8376:) 8373:v 8370:( 8364:= 8361:) 8355:( 8352:) 8349:) 8346:v 8343:( 8337:( 8317:} 8313:r 8310:a 8307:e 8304:n 8301:i 8298:l 8288:: 8285:F 8273:V 8269:: 8263:{ 8260:= 8248:V 8227:V 8173:. 8170:) 8167:v 8164:( 8161:f 8148:= 8145:) 8142:v 8136:( 8133:f 8119:C 8115:V 8111:f 8085:V 8059:. 8045:V 8036:V 8033:: 8022:, 7994:V 7978:V 7971:V 7967:V 7963:V 7945:. 7942:] 7939:w 7936:, 7933:) 7930:v 7927:( 7921:[ 7918:= 7915:) 7912:w 7909:( 7906:) 7903:) 7900:v 7897:( 7891:( 7888:= 7875:w 7872:, 7869:v 7853:V 7825:, 7808:V 7804:V 7800:V 7796:V 7772:V 7768:V 7764:V 7743:. 7737:w 7734:, 7731:v 7725:= 7721:] 7717:w 7714:, 7711:) 7708:v 7705:( 7694:, 7679:[ 7646:V 7639:V 7636:: 7625:, 7599:w 7595:v 7588:V 7584:w 7579:V 7556:, 7553:v 7544:v 7531:V 7527:V 7512:V 7508:V 7504:V 7474:, 7470:| 7466:) 7457:V 7453:( 7449:m 7446:i 7443:d 7438:| 7430:| 7426:F 7422:| 7401:, 7398:) 7389:V 7385:( 7381:m 7378:i 7375:d 7368:) 7365:V 7362:( 7358:m 7355:i 7352:d 7324:, 7321:) 7317:| 7313:F 7309:| 7305:, 7301:| 7297:) 7288:V 7284:( 7280:m 7277:i 7274:d 7269:| 7265:( 7261:x 7258:a 7255:m 7251:= 7247:| 7237:V 7232:| 7228:= 7222:| 7218:A 7214:| 7208:| 7203:F 7199:| 7191:| 7187:A 7183:| 7179:= 7176:) 7173:V 7170:( 7166:m 7163:i 7160:d 7132:F 7112:V 7058:A 7054:F 7047:F 7042:A 7019:F 7013:A 6989:) 6985:F 6980:A 6965:( 6951:V 6927:A 6907:F 6881:A 6877:F 6853:. 6850:F 6845:A 6826:0 6822:) 6816:A 6812:F 6808:( 6802:V 6779:A 6759:F 6733:0 6729:) 6723:A 6719:F 6715:( 6666:f 6642:. 6623:f 6617:A 6603:= 6600:) 6591:e 6587:( 6584:T 6575:f 6569:A 6555:= 6551:) 6540:e 6529:f 6523:A 6508:( 6504:T 6481:V 6461:T 6431:= 6428:) 6422:( 6399:F 6393:A 6390:: 6367:V 6347:) 6337:e 6332:( 6329:T 6326:= 6296:V 6276:T 6256:F 6236:A 6210:A 6206:F 6185:V 6162:V 6156:v 6136:f 6116:V 6086:e 6075:f 6069:A 6035:f 6015:A 5989:) 5983:( 5980:f 5977:= 5968:f 5947:F 5941:A 5938:: 5935:f 5913:0 5909:) 5903:A 5899:F 5895:( 5875:V 5855:} 5852:A 5843:: 5833:e 5828:{ 5808:F 5788:V 5762:N 5756:R 5723:R 5695:n 5691:x 5667:, 5662:n 5658:x 5652:n 5648:a 5642:n 5607:R 5585:) 5580:n 5576:x 5572:( 5552:) 5547:n 5543:a 5539:( 5512:N 5506:R 5477:R 5455:i 5433:i 5428:e 5405:N 5398:i 5377:N 5345:R 5320:A 5306:( 5287:e 5261:A 5234:e 5209:V 5181:V 5155:V 5130:V 5103:V 5082:V 5056:V 5027:V 5004:M 4984:n 4978:1 4958:M 4938:y 4935:= 4932:x 4929:M 4909:1 4903:1 4883:y 4863:1 4857:n 4837:x 4817:M 4797:y 4777:x 4757:n 4731:n 4726:R 4704:n 4677:n 4655:n 4650:R 4613:, 4584:, 4579:i 4574:e 4564:i 4559:e 4554:, 4550:x 4541:i 4533:= 4528:i 4523:e 4513:i 4508:e 4503:, 4499:x 4490:i 4482:= 4478:x 4454:V 4447:x 4426:n 4400:n 4396:I 4372:, 4367:n 4363:I 4359:= 4356:E 4347:T 4336:E 4309:] 4304:n 4299:e 4293:| 4285:| 4279:1 4274:e 4269:[ 4266:= 4257:E 4234:] 4229:n 4224:e 4218:| 4210:| 4204:1 4199:e 4194:[ 4191:= 4188:E 4166:n 4161:R 4139:V 4116:y 4113:+ 4110:x 4104:= 4101:) 4098:y 4095:, 4092:x 4089:( 4084:2 4079:e 4057:x 4054:2 4051:= 4048:) 4045:y 4042:, 4039:x 4036:( 4031:1 4026:e 4002:2 3997:e 3973:1 3968:e 3946:} 3943:) 3940:1 3937:, 3934:1 3928:( 3925:= 3920:2 3915:e 3910:, 3907:) 3904:0 3901:, 3898:2 3895:( 3892:= 3887:1 3882:e 3877:{ 3854:. 3849:] 3843:1 3838:0 3831:0 3826:1 3820:[ 3815:= 3810:] 3798:e 3786:e 3772:e 3760:e 3753:[ 3746:] 3734:e 3722:e 3708:e 3696:e 3689:[ 3664:1 3661:= 3658:) 3653:2 3648:e 3643:( 3638:2 3633:e 3611:0 3608:= 3605:) 3600:1 3595:e 3590:( 3585:2 3580:e 3558:0 3555:= 3552:) 3547:2 3542:e 3537:( 3532:1 3527:e 3505:1 3502:= 3499:) 3494:1 3489:e 3484:( 3479:1 3474:e 3446:2 3441:e 3417:1 3412:e 3390:} 3387:) 3384:1 3381:, 3378:0 3375:( 3372:= 3367:2 3362:e 3357:, 3354:) 3351:2 3347:/ 3343:1 3340:, 3337:2 3333:/ 3329:1 3326:( 3323:= 3318:1 3313:e 3308:{ 3286:2 3281:R 3259:V 3225:V 3198:V 3177:} 3172:n 3167:e 3162:, 3156:, 3151:1 3146:e 3141:{ 3118:) 3113:n 3108:e 3103:( 3100:g 3097:) 3094:x 3091:( 3086:n 3081:e 3076:+ 3070:+ 3067:) 3062:1 3057:e 3052:( 3049:g 3046:) 3043:x 3040:( 3035:1 3030:e 3025:= 3022:) 3017:n 3012:e 3007:( 3004:g 2999:n 2991:+ 2985:+ 2982:) 2977:1 2972:e 2967:( 2964:g 2959:1 2951:= 2948:) 2943:n 2938:e 2931:n 2923:+ 2917:+ 2912:1 2907:e 2900:1 2892:( 2889:g 2886:= 2883:) 2880:x 2877:( 2874:g 2844:V 2837:g 2826:. 2808:V 2787:} 2782:n 2777:e 2772:, 2766:, 2761:1 2756:e 2751:{ 2729:i 2702:i 2697:e 2675:0 2672:= 2667:n 2659:= 2653:= 2648:2 2640:= 2635:1 2610:V 2584:V 2577:0 2574:= 2569:n 2564:e 2557:n 2549:+ 2543:+ 2538:1 2533:e 2526:1 2510:. 2498:n 2495:, 2489:, 2486:2 2483:, 2480:1 2477:= 2474:i 2448:V 2439:i 2434:e 2412:) 2409:y 2406:( 2401:i 2396:e 2388:+ 2385:) 2382:x 2379:( 2374:i 2369:e 2364:= 2359:i 2348:+ 2343:i 2335:= 2332:) 2329:y 2323:+ 2320:x 2317:( 2312:i 2307:e 2283:n 2278:e 2273:) 2268:n 2257:+ 2252:n 2244:( 2241:+ 2235:+ 2230:1 2225:e 2220:) 2215:1 2204:+ 2199:1 2191:( 2188:= 2185:y 2179:+ 2176:x 2154:i 2146:= 2143:) 2140:y 2137:( 2132:i 2127:e 2103:i 2095:= 2092:) 2089:x 2086:( 2081:i 2076:e 2052:n 2047:e 2040:n 2032:+ 2026:+ 2021:1 2016:e 2009:1 2001:= 1998:y 1976:n 1971:e 1964:n 1956:+ 1950:+ 1945:1 1940:e 1933:1 1925:= 1922:x 1902:V 1896:y 1893:, 1890:x 1870:, 1867:n 1864:, 1858:, 1855:2 1852:, 1849:1 1846:= 1843:i 1840:, 1835:i 1830:e 1798:V 1774:n 1771:, 1765:, 1762:1 1759:= 1756:i 1752:, 1747:i 1743:c 1739:= 1736:) 1731:n 1726:e 1719:n 1715:c 1711:+ 1705:+ 1700:1 1695:e 1688:1 1684:c 1680:( 1675:i 1670:e 1646:} 1641:n 1636:e 1631:, 1625:, 1620:1 1615:e 1610:{ 1590:} 1585:n 1580:e 1575:, 1569:, 1564:1 1559:e 1554:{ 1509:i 1504:j 1474:i 1469:j 1461:= 1458:) 1453:j 1448:e 1443:( 1438:i 1433:e 1408:F 1400:i 1396:c 1372:n 1369:, 1363:, 1360:1 1357:= 1354:i 1350:, 1345:i 1341:c 1337:= 1334:) 1329:n 1324:e 1317:n 1313:c 1309:+ 1303:+ 1298:1 1293:e 1286:1 1282:c 1278:( 1273:i 1268:e 1243:V 1223:} 1218:n 1213:e 1208:, 1202:, 1197:1 1192:e 1187:{ 1157:V 1136:V 1116:} 1111:n 1106:e 1101:, 1095:, 1090:1 1085:e 1080:{ 1057:V 1031:V 1010:V 972:F 960:V 953:V 950:: 941:, 905:, 902:x 896:= 893:) 890:x 887:( 862:] 856:, 853:x 850:[ 847:= 844:) 841:x 838:( 813:V 791:x 764:V 698:V 674:F 668:a 647:V 641:x 614:V 604:, 573:) 569:) 566:x 563:( 556:( 552:a 549:= 542:) 539:x 536:( 533:) 527:a 524:( 517:) 514:x 511:( 505:+ 502:) 499:x 496:( 490:= 483:) 480:x 477:( 474:) 468:+ 462:( 434:F 407:V 386:) 383:F 380:, 377:V 374:( 352:( 339:F 333:V 330:: 299:V 272:V 245:V 221:F 198:V 85:, 82:V 48:V 20:)

Index

Dual vector space
mathematics
vector space
linear forms
pointwise
topological vector space
continuous linear functionals
tensor
finite-dimensional
measures
distributions
Hilbert spaces
functional analysis
Bourbaki
vector space
field
linear maps
linear functionals
homomorphisms
linear forms
bilinear mapping
natural pairing
Dual basis
basis
dual basis
Kronecker delta
one-forms
identity matrix
§ Bilinear products and dual spaces
real numbers

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.