Knowledge

Transpiration

Source 📝

558:(MRI) to monitor the internal status of the xylem during transpiration, in a non invasive manner. This method of imaging allows for scientists to visualize the movement of water throughout the entirety of the plant. It also is capable of viewing what phase the water is in while in the xylem, which makes it possible to visualize cavitation events. Scientists were able to see that over the course of 20 hours of sunlight more than 10 xylem vessels began filling with gas particles becoming cavitated. MRI technology also made it possible to view the process by which these xylem structures are repaired in the plant. After three hours in darkness it was seen that the vascular tissue was resupplied with liquid water. This was possible because in darkness the stomates of the plant are closed and transpiration no longer occurs. When transpiration is halted the cavitation bubbles are destroyed by the pressure generated by the roots. These observations suggest that MRIs are capable of monitoring the functional status of xylem and allows scientists to view cavitation events for the first time. 551:
to transport water throughout its vascular system. There is no apparent pattern of where cavitation occurs throughout the plant's xylem. If not effectively taken care of, cavitation can cause a plant to reach its permanent wilting point, and die. Therefore, the plant must have a method by which to remove this cavitation blockage, or it must create a new connection of vascular tissue throughout the plant. The plant does this by closing its stomates overnight, which halts the flow of transpiration. This then allows for the roots to generate over 0.05 mPa of pressure, and that is capable of destroying the blockage and refilling the xylem with water, reconnecting the vascular system. If a plant is unable to generate enough pressure to eradicate the blockage it must prevent the blockage from spreading with the use of pit pears and then create new xylem that can re-connect the vascular system of the plant.
441: 429: 82: 453: 56: 64: 31: 292:, wind, and incident sunlight. Along with above-ground factors, soil temperature and moisture can influence stomatal opening, and thus transpiration rate. The amount of water lost by a plant also depends on its size and the amount of water absorbed at the roots. Factors that effect root absorption of water include: moisture content of the soil, excessive soil fertility or salt content, poorly developed root systems, and those impacted by pathogenic bacteria and fungi such as 2672: 464: 550:
occurs. Cavitation is when the plant cannot supply its xylem with adequate water so instead of being filled with water the xylem begins to be filled with water vapor. These particles of water vapor come together and form blockages within the xylem of the plant. This prevents the plant from being able
545:
To maintain the pressure gradient necessary for a plant to remain healthy they must continuously uptake water with their roots. They need to be able to meet the demands of water lost due to transpiration. If a plant is incapable of bringing in enough water to remain in equilibrium with transpiration
475:
During a growing season, a leaf will transpire many times more water than its own weight. An acre of corn gives off about 3,000–4,000 gallons (11,400–15,100 liters) of water each day, and a large oak tree can transpire 40,000 gallons (151,000 liters) per year. The transpiration ratio
210:
in the cell walls and decreases their radius, thus exerting tension in the cells' water. Because of the cohesive properties of water, the tension travels through the leaf cells to the leaf and stem xylem, where a momentary negative pressure is created as water is pulled up the xylem from the roots.
196:
Two major factors influence the rate of water flow from the soil to the roots: the hydraulic conductivity of the soil and the magnitude of the pressure gradient through the soil. Both of these factors influence the rate of bulk flow of water moving from the roots to the stomatal pores in the leaves
403:
In still air, water lost due to transpiration can accumulate in the form of vapor close to the leaf surface. This will reduce the rate of water loss, as the water potential gradient from inside to outside of the leaf is then slightly less. The wind blows away much of this water vapor near the leaf
231:
We can see the history of the word transpiration when we break it down into trans, a Latin preposition that means "across," and spiration, which comes from the Latin verb spīrāre, meaning "to breathe." The motion suffix adds the meaning "the act of," so we can see transpiration is, literally, "the
205:
differences. If the water potential in the ambient air is lower than that in the leaf airspace of the stomatal pore, water vapor will travel down the gradient and move from the leaf airspace to the atmosphere. This movement lowers the water potential in the leaf airspace and causes evaporation of
590:
is the cooling provided as plants transpire water. Excess heat generated from solar radiation is damaging to plant cells and thermal injury occurs during drought or when there is rapid transpiration which produces wilting. Green vegetation contributes to moderating climate by being cooler than
344:
A waxy cuticle is relatively impermeable to water and water vapor and reduces evaporation from the plant surface except via the stomata. A reflective cuticle will reduce solar heating and temperature rise of the leaf, helping to reduce the rate of evaporation. Tiny hair-like structures called
1354:
Ellison, David; Morris, Cindy E.; Locatelli, Bruno; Sheil, Douglas; Cohen, Jane; Murdiyarso, Daniel; Gutierrez, Victoria; Noordwijk, Meine van; Creed, Irena F.; Pokorny, Jan; Gaveau, David; Spracklen, Dominick V.; Tobella, Aida Bargués; Ilstedt, Ulrik; Teuling, Adriaan J. (2017-03-01).
192:
explains how leaves pull water through the xylem. Water molecules stick together or exhibit cohesion. As a water molecule evaporates from the leaf's surface, it pulls on the adjacent water molecule, creating a continuous water flow through the plant.
283:
Plants regulate the rate of transpiration by controlling the size of the stomatal apertures. The rate of transpiration is also influenced by the evaporative demand of the atmosphere surrounding the leaf such as boundary layer conductance,
349:
on the surface of leaves also can inhibit water loss by creating a high humidity environment at the surface of leaves. These are some examples of the adaptations of plants for the conservation of water that may be found on many
507:. Recent evidence from a global study of water stable isotopes shows that transpired water is isotopically different from groundwater and streams. This suggests that soil water is not as well mixed as widely assumed. 251:. The effect can be seen in the drawing up of liquids between the hairs of a paint-brush, in a thin tube, in porous materials such as paper and plaster, in some non-porous materials such as sand and liquefied 404:
surface, making the potential gradient steeper and speeding up the diffusion of water molecules into the surrounding air. Even in wind, though, there may be some accumulation of water vapor in a thin
2502: 362:
The rate of transpiration is controlled by the stomatal aperture, and these small pores open especially for photosynthesis. While there are exceptions to this (such as night or
897:
Mellander, Per-Erik; Bishop, Kevin; Lundmark, Tomas (2004-06-28). "The influence of soil temperature on transpiration: a plot scale manipulation in a young Scots pine stand".
160:
Water is necessary for plants, but only a small amount of water taken up by the roots is used for growth and metabolism. The remaining 97–99.5% is lost by transpiration and
471:
will reduce the surface of their leaves during water deficiencies (left). If temperatures are cool enough and water levels are adequate the leaves expand again (right).
956:
Jasechko, Scott; Sharp, Zachary D.; Gibson, John J.; Birks, S. Jean; Yi, Yi; Fawcett, Peter J. (3 April 2013). "Terrestrial water fluxes dominated by transpiration".
317:
More leaves (or spines, or other photosynthesizing organs) means a bigger surface area and more stomata for gaseous exchange. This will result in greater water loss.
2507: 440: 408:
of slower moving air next to the leaf surface. The stronger the wind, the thinner this layer will tend to be, and the steeper the water potential gradient.
591:
adjacent bare earth or constructed areas. As plant leaves transpire they use energy to evaporate water aggregating up to a huge volume globally every day.
428: 2640: 1007:
Evaristo, Jaivime; Jasechko, Scott; McDonnell, Jeffrey J. (2015-09-03). "Global separation of plant transpiration from groundwater and streamflow".
452: 594:
An individual tree can transpire hundreds of liters of water per day. For every 100 liters of water transpired, the tree then cools by 70 kWh.
2558: 533:
stems, rather than leaves, so the surface area of the shoot is very low. Many desert plants have a special type of photosynthesis, termed
48:
Water moves from the xylem into the mesophyll cells, evaporates from their surfaces and leaves the plant by diffusion through the stomata
2374: 144:
by evaporation, plants close small pores called stomata to decrease water loss, which slows down nutrient uptake and decreases CO
263:
between the liquid and surrounding solid surfaces. If the diameter of the tube is sufficiently small, then the combination of
1409: 1338: 1136: 941: 881: 856: 791: 764: 715: 587: 580: 537:
or CAM photosynthesis, in which the stomata are closed during the day and open at night when transpiration will be lower.
1311: 419:
caused by restricted water supply from the soil may result in stomatal closure and reduce the rates of transpiration.
2564: 831: 1459: 211:
In taller plants and trees, the force of gravity pulling the water inside can only be overcome by the decrease in
1898: 664: 128:. It is a passive process that requires no energy expense by the plant. Transpiration also cools plants, changes 2379: 1829: 476:
is the ratio of the mass of water transpired to the mass of dry matter produced; the transpiration ratio of
2548: 2135: 1650: 534: 188:
and their stomatal accessory cells (together known as stomatal complex) that open and close the pore. The
75: 503:
and thermometric sap flow sensors. Isotope measurements indicate transpiration is the larger component of
2630: 2384: 1397: 2364: 555: 395:
Drier surroundings give a steeper water potential gradient, and so increase the rate of transpiration.
2701: 2514: 613: 416: 133: 1203:"Stomatal Closure, Basal Leaf Embolism, and Shedding Protect the Hydraulic Integrity of Grape Stems" 2652: 2497: 1547: 609: 247:
flowing in narrow spaces without the assistance of, or even in opposition to, external forces like
649: 333:
A leaf with a bigger surface area will transpire faster than a leaf with a smaller surface area.
19:
This article is about plant transpiration. For transpiration in human and animal physiology, see
206:
liquid water from the mesophyll cell walls. This evaporation increases the tension on the water
2482: 2406: 1432: 571:
Transpiration cools plants, as the evaporating water carries away heat energy due to its large
2211: 1328: 1126: 781: 705: 81: 2647: 500: 376:
1) An increased rate of evaporation due to a temperature rise will hasten the loss of water.
220: 45:
The forces of cohesion and adhesion cause the water molecules to form a column in the xylem.
2369: 2266: 2221: 1893: 1452: 1075: 1016: 965: 674: 669: 268: 260: 197:
via the xylem. Mass flow of liquid water from the roots to the leaves is driven in part by
177: 1869: 8: 2539: 2084: 602:
areas reveal a higher temperature than adjacent intact forest. Forests and other natural
141: 1255:"In Vivo Observation of Cavitation and Embolism Repair Using Magnetic Resonance Imaging" 1079: 1020: 969: 2696: 2477: 2342: 2120: 1812: 1598: 1494: 1279: 1254: 1227: 1202: 1178: 1153: 1107: 1048: 989: 633: 504: 383: 363: 94: 2635: 1484: 1479: 1405: 1378: 1334: 1307: 1284: 1232: 1183: 1132: 1111: 1099: 1091: 1040: 1032: 981: 937: 914: 877: 852: 827: 787: 760: 711: 595: 232:
ACT of breathing across," which clearly identifies vapor emission from plant leaves.
189: 90: 1373: 1356: 598:
effects can be attributed to the replacement of vegetation by constructed surfaces.
2421: 2327: 2322: 2276: 2169: 2154: 2115: 2040: 1881: 1805: 1702: 1644: 1368: 1274: 1266: 1222: 1214: 1173: 1165: 1083: 1066:
Bowen, Gabriel (2015-09-03). "Hydrology: The diversified economics of soil water".
1052: 1024: 993: 973: 906: 654: 491:
Transpiration rates of plants can be measured by a number of techniques, including
240: 198: 129: 2216: 1154:"Reversible Leaf Xylem Collapse: A Potential "Circuit Breaker" against Cavitation" 707:
University Botany- Iii : (Plant Taxonomy, Plant Embryology, Plant Physiology)
55: 2675: 2657: 2519: 2348: 2298: 2286: 2248: 2184: 2011: 1979: 1940: 1913: 1742: 1737: 1628: 1564: 1445: 910: 826:. Upper Saddle River, New Jersey, USA: Pearson Education, Inc. pp. 200–202. 754: 679: 643: 627: 264: 256: 202: 137: 2569: 2534: 2487: 2469: 2433: 2189: 2016: 1994: 1960: 1935: 1918: 1908: 1903: 1785: 1603: 1588: 1542: 1537: 526: 405: 149: 63: 2690: 2605: 2353: 2271: 2206: 2174: 2110: 2079: 2030: 1930: 1732: 1715: 1638: 1618: 1559: 1554: 1502: 1382: 1095: 1036: 918: 599: 339: 24: 207: 2600: 2590: 2492: 2201: 1710: 1677: 1288: 1236: 1187: 1103: 1044: 985: 659: 638: 252: 212: 164:. Water with any dissolved mineral nutrients is absorbed into the roots by 2416: 2401: 2396: 2332: 2194: 1974: 1945: 1844: 1839: 1687: 1527: 1522: 1507: 1347: 572: 484:, crop plants transpire 200 to 1000 kg of water for every kg of dry 297: 289: 248: 113: 30: 1270: 1218: 1169: 1028: 977: 851:. Sunderland, Massachusetts, USA: Sinauer Associates, Inc. p. 101. 2445: 2438: 2428: 2411: 2094: 2089: 2025: 1817: 1664: 1623: 1517: 1389: 547: 351: 185: 121: 1128:
Science and the Garden: The Scientific Basis of Horticultural Practice
1125:
Ingram, David S.; Vince-Prue, Daphne; Gregory, Peter J. (2008-04-15).
2553: 2450: 2179: 1984: 1965: 1876: 1800: 1720: 1672: 1613: 1593: 1532: 603: 530: 496: 492: 468: 216: 161: 140:. When water uptake by the roots is less than the water lost to the 1087: 2595: 2585: 2529: 2524: 2291: 2164: 2140: 2057: 1727: 1512: 346: 285: 272: 173: 20: 731:
Runkle, Erik (September 2023). "The Importance of Transpiration".
1780: 1775: 1692: 1682: 514: 293: 165: 446:
The effect of wind velocity on the transpiration rate of plants.
275:
between the liquid and container wall act to propel the liquid.
38:
Water is passively transported into the roots and then into the
2233: 2125: 2045: 1999: 1989: 1950: 1888: 1864: 1859: 1854: 1849: 1468: 522: 510: 485: 244: 125: 86: 71: 783:
Physiological Processes in Plants Under Low Temperature Stress
434:
The effect of temperature on the transpiration rate of plants.
2457: 2391: 2313: 2281: 2238: 2130: 2072: 2067: 2062: 2050: 2035: 2004: 1925: 1583: 1574: 181: 169: 148:
absorption from the atmosphere limiting metabolic processes,
109: 105: 67: 39: 463: 2308: 2303: 1955: 1795: 1770: 1765: 1749: 1608: 1353: 684: 518: 477: 458:
The effect of humidity on the transpiration rate of plants.
366:), in general, a light supply will encourage open stomata. 117: 874:
Biological Sciences: The Cell, Genetics, & Development
2228: 1790: 1437: 1357:"Trees, forests and water: Cool insights for a hot world" 1006: 876:. Boston, Massachusetts, USA: Pearson. pp. 765–766. 955: 872:
Freeman, Scott; Quillin, Kim; Allison, Lizabeth (2014).
513:
plants have specially adapted structures, such as thick
325:
More stomata will provide more pores for transpiration.
1124: 896: 616:
using our knowledge of the efficacy of how plants cool.
1306:. Massachusetts: Sinauer Associates, Inc. p. 63. 871: 936:(3rd ed.), New York: Macmillan Publishing Co., 931: 382:humidity outside the leaf will increase the water 521:to reduce transpiration and conserve water. Many 2688: 1327:Forbes, James C.; Watson, Drennan (1992-08-20). 184:(singular "stoma"). The stomata are bordered by 1453: 561: 16:Process of water moving through a plant parts 2559:International Association for Plant Taxonomy 1326: 811:(3rd ed.). Freeman, Scott. p. 215. 779: 215:in the upper parts of the plants due to the 155: 932:Martin, J.; Leonard, W.; Stamp, D. (1976), 685:Water Evaluation And Planning system (WEAP) 1460: 1446: 374:Temperature affects the rate in two ways: 180:to the foliage and out small pores called 1372: 1278: 1226: 1177: 517:, reduced leaf areas, sunken stomata and 2503:International Code of Nomenclature (ICN) 1433:USGS The Water Cycle: Evapotranspiration 1402:Encyclopedia of Ecology (Second Edition) 1252: 1200: 462: 80: 62: 54: 29: 1395: 806: 748: 746: 2689: 1404:, Oxford: Elsevier, pp. 292–303, 1248: 1246: 821: 730: 646:flux (aka eddy correlation, eddy flux) 630:– a substance to prevent transpiration 1441: 1151: 1065: 752: 703: 1301: 846: 743: 581:Transpirational cooling (biological) 480:tends to fall between 200 and 1000 ( 1243: 1152:Zhang, Yong-Jiang (December 2016). 934:Principles of Field Crop Production 235: 13: 14: 2713: 2508:ICN for Cultivated Plants (ICNCP) 1426: 219:of water out of stomata into the 2671: 2670: 1304:Plant Physiology and Development 849:Plant Physiology and Development 579:This section is an excerpt from 451: 439: 427: 1374:10.1016/j.gloenvcha.2017.01.002 1320: 1295: 1194: 1145: 1118: 1059: 1000: 949: 925: 780:Bhattacharya, A. (2022-02-25). 665:Soil plant atmosphere continuum 606:support climate stabilisation. 59:Transpiration of water in xylem 1333:. Cambridge University Press. 1253:Holbrook, Michele (May 2001). 890: 865: 840: 815: 800: 773: 724: 697: 1: 899:Forest Ecology and Management 691: 540: 278: 2549:History of plant systematics 2136:Thorns, spines, and prickles 911:10.1016/j.foreco.2004.02.051 733:GPN Green House Product News 554:Scientists have begun using 535:crassulacean acid metabolism 226: 168:, which travels through the 76:scanning electron microscope 7: 1396:Pokorny, Jan (2019-01-01), 1361:Global Environmental Change 1201:Hochberg, Uri (June 2017). 753:Sinha, Rajiv Kumar (2004). 620: 573:latent heat of vaporization 116:from aerial parts, such as 34:Overview of transpiration: 10: 2718: 2365:Alternation of generations 1467: 807:Cummins, Benjamin (2007). 578: 566: 562:Effects on the environment 556:magnetic resonance imaging 201:, but primarily driven by 18: 2666: 2614: 2578: 2515:Cultivated plant taxonomy 2478:Biological classification 2468: 2341: 2257: 2153: 2103: 1828: 1758: 1701: 1663: 1637: 1573: 1493: 1475: 1131:. John Wiley & Sons. 822:Graham, Linda E. (2006). 710:. New Age International. 172:by way of water molecule 156:Water and nutrient uptake 74:leaf shown via colorized 2375:Evolutionary development 1400:, in Fath, Brian (ed.), 309:Effect on transpiration 2026:Hypanthium (Floral cup) 756:Modern Plant Physiology 650:Hydrology (agriculture) 614:mitigate climate change 588:Transpirational cooling 271:within the liquid) and 259:. It occurs because of 190:cohesion-tension theory 2641:by author abbreviation 2565:Plant taxonomy systems 2483:Botanical nomenclature 1302:Tiaz, Lincoln (2015). 847:Taiz, Lincoln (2015). 575:of 2260 kJ per liter. 501:photosynthesis systems 472: 132:of cells, and enables 98: 78: 60: 52: 2648:Botanical expeditions 1398:"Evapotranspiration☆" 1330:Plants in Agriculture 704:Reddy, S. M. (2007). 610:Earth’s energy budget 466: 261:intermolecular forces 89:in this image of the 84: 66: 58: 33: 2380:Evolutionary history 2370:Double fertilization 2222:Cellular respiration 675:Transpiration stream 670:Stomatal conductance 612:reveals pathways to 267:(which is caused by 243:is the process of a 213:hydrostatic pressure 1599:Non-vascular plants 1271:10.1104/pp.126.1.27 1219:10.1104/pp.16.01816 1170:10.1104/pp.16.01191 1080:2015Natur.525...43B 1029:10.1038/nature14983 1021:2015Natur.525...91E 978:10.1038/nature11983 970:2013Natur.496..347J 786:. Springer Nature. 108:movement through a 2104:Surface structures 1899:Flower development 809:Biological Science 634:Canopy conductance 546:an event known as 505:evapotranspiration 473: 384:potential gradient 364:CAM photosynthesis 104:is the process of 99: 95:evapotranspiration 79: 61: 53: 2684: 2683: 2323:Herbaceous plants 2149: 2148: 1411:978-0-444-64130-4 1340:978-0-521-42791-3 1138:978-0-470-99533-4 943:978-0-02-376720-3 883:978-0-321-74367-1 858:978-1-60535-255-8 793:978-981-16-9037-2 766:978-0-8493-1714-9 717:978-81-224-1547-6 596:Urban heat island 423: 422: 392:Relative humidity 322:Number of stomata 138:mineral nutrients 91:Amazon Rainforest 2709: 2702:Plant physiology 2674: 2673: 2653:Individual trees 2328:Secondary growth 2299:Succulent plants 2287:Prostrate shrubs 2170:Apical dominance 2155:Plant physiology 2116:Epicuticular wax 1661: 1660: 1654: 1645:Plant morphology 1462: 1455: 1448: 1439: 1438: 1421: 1420: 1419: 1418: 1393: 1387: 1386: 1376: 1351: 1345: 1344: 1324: 1318: 1317: 1299: 1293: 1292: 1282: 1259:Plant Physiology 1250: 1241: 1240: 1230: 1207:Plant Physiology 1198: 1192: 1191: 1181: 1164:(4): 2261–2274. 1158:Plant Physiology 1149: 1143: 1142: 1122: 1116: 1115: 1063: 1057: 1056: 1004: 998: 997: 964:(7445): 347–50. 953: 947: 946: 929: 923: 922: 894: 888: 887: 869: 863: 862: 844: 838: 837: 819: 813: 812: 804: 798: 797: 777: 771: 770: 750: 741: 740: 728: 722: 721: 701: 655:Latent heat flux 455: 443: 431: 330:Size of the leaf 314:Number of leaves 303: 302: 241:Capillary action 236:Capillary action 199:capillary action 130:osmotic pressure 93:are a result of 2717: 2716: 2712: 2711: 2710: 2708: 2707: 2706: 2687: 2686: 2685: 2680: 2662: 2631:Botanical terms 2624: 2610: 2574: 2520:Citrus taxonomy 2498:Author citation 2464: 2358: 2337: 2259: 2253: 2249:Turgor pressure 2157: 2145: 2099: 1914:Floral symmetry 1832: 1824: 1754: 1743:Vascular bundle 1738:Vascular tissue 1697: 1657: 1648: 1647: 1633: 1604:Vascular plants 1569: 1565:Plant pathology 1489: 1471: 1466: 1429: 1424: 1416: 1414: 1412: 1394: 1390: 1352: 1348: 1341: 1325: 1321: 1314: 1300: 1296: 1251: 1244: 1199: 1195: 1150: 1146: 1139: 1123: 1119: 1088:10.1038/525043a 1074:(7567): 43–44. 1064: 1060: 1015:(7567): 91–94. 1005: 1001: 954: 950: 944: 930: 926: 895: 891: 884: 870: 866: 859: 845: 841: 834: 820: 816: 805: 801: 794: 778: 774: 767: 751: 744: 729: 725: 718: 702: 698: 694: 689: 680:Turgor pressure 644:Eddy covariance 628:Antitranspirant 623: 618: 617: 584: 569: 564: 543: 459: 456: 447: 444: 435: 432: 377: 281: 273:adhesive forces 265:surface tension 257:biological cell 238: 229: 203:water potential 158: 147: 51: 28: 17: 12: 11: 5: 2715: 2705: 2704: 2699: 2682: 2681: 2679: 2678: 2667: 2664: 2663: 2661: 2660: 2655: 2650: 2645: 2644: 2643: 2633: 2627: 2625: 2623: 2622: 2621:Related topics 2619: 2615: 2612: 2611: 2609: 2608: 2603: 2598: 2593: 2588: 2582: 2580: 2576: 2575: 2573: 2572: 2570:Taxonomic rank 2567: 2562: 2556: 2551: 2546: 2545: 2544: 2543: 2542: 2537: 2532: 2522: 2512: 2511: 2510: 2505: 2500: 2495: 2490: 2488:Botanical name 2480: 2474: 2472: 2470:Plant taxonomy 2466: 2465: 2463: 2462: 2461: 2460: 2455: 2454: 2453: 2446:Megasporangium 2443: 2442: 2441: 2434:Microsporangia 2426: 2425: 2424: 2419: 2414: 2409: 2399: 2394: 2389: 2388: 2387: 2377: 2372: 2367: 2361: 2359: 2357: 2356: 2351: 2345: 2339: 2338: 2336: 2335: 2330: 2325: 2320: 2319: 2318: 2317: 2316: 2306: 2301: 2296: 2295: 2294: 2289: 2279: 2274: 2272:Cushion plants 2263: 2261: 2255: 2254: 2252: 2251: 2246: 2241: 2236: 2231: 2226: 2225: 2224: 2219: 2209: 2207:Plant hormones 2204: 2199: 2198: 2197: 2190:Photosynthesis 2187: 2182: 2177: 2172: 2167: 2161: 2159: 2151: 2150: 2147: 2146: 2144: 2143: 2138: 2133: 2128: 2123: 2118: 2113: 2107: 2105: 2101: 2100: 2098: 2097: 2092: 2087: 2082: 2077: 2076: 2075: 2070: 2065: 2055: 2054: 2053: 2048: 2043: 2038: 2028: 2023: 2022: 2021: 2020: 2019: 2014: 2009: 2008: 2007: 2002: 1982: 1977: 1972: 1971: 1970: 1969: 1968: 1963: 1953: 1948: 1943: 1938: 1933: 1923: 1922: 1921: 1916: 1911: 1909:Floral formula 1906: 1904:Floral diagram 1901: 1896: 1886: 1885: 1884: 1879: 1874: 1873: 1872: 1867: 1857: 1847: 1842: 1836: 1834: 1833:(incl. Flower) 1826: 1825: 1823: 1822: 1821: 1820: 1815: 1810: 1809: 1808: 1803: 1793: 1783: 1778: 1773: 1768: 1762: 1760: 1756: 1755: 1753: 1752: 1747: 1746: 1745: 1735: 1733:Storage organs 1730: 1725: 1724: 1723: 1713: 1707: 1705: 1699: 1698: 1696: 1695: 1690: 1685: 1680: 1675: 1669: 1667: 1658: 1656: 1655: 1641: 1635: 1634: 1632: 1631: 1626: 1621: 1619:Spermatophytes 1616: 1611: 1606: 1601: 1596: 1591: 1589:Archaeplastida 1586: 1580: 1578: 1571: 1570: 1568: 1567: 1562: 1557: 1552: 1551: 1550: 1543:Phytogeography 1540: 1538:Phytochemistry 1535: 1530: 1525: 1520: 1515: 1510: 1505: 1499: 1497: 1495:Subdisciplines 1491: 1490: 1488: 1487: 1482: 1476: 1473: 1472: 1465: 1464: 1457: 1450: 1442: 1436: 1435: 1428: 1427:External links 1425: 1423: 1422: 1410: 1388: 1346: 1339: 1319: 1313:978-1605352558 1312: 1294: 1242: 1213:(2): 764–775. 1193: 1144: 1137: 1117: 1058: 999: 948: 942: 924: 889: 882: 864: 857: 839: 832: 814: 799: 792: 772: 765: 742: 723: 716: 695: 693: 690: 688: 687: 682: 677: 672: 667: 662: 657: 652: 647: 641: 636: 631: 624: 622: 619: 585: 577: 568: 565: 563: 560: 542: 539: 527:photosynthesis 499:, porometers, 461: 460: 457: 450: 448: 445: 438: 436: 433: 426: 421: 420: 414: 410: 409: 406:boundary layer 401: 397: 396: 393: 389: 388: 372: 368: 367: 360: 356: 355: 342: 335: 334: 331: 327: 326: 323: 319: 318: 315: 311: 310: 307: 280: 277: 237: 234: 228: 225: 157: 154: 152:, and growth. 150:photosynthesis 145: 50: 49: 46: 43: 35: 15: 9: 6: 4: 3: 2: 2714: 2703: 2700: 2698: 2695: 2694: 2692: 2677: 2669: 2668: 2665: 2659: 2656: 2654: 2651: 2649: 2646: 2642: 2639: 2638: 2637: 2634: 2632: 2629: 2628: 2626: 2620: 2617: 2616: 2613: 2607: 2606:Phytochemical 2604: 2602: 2599: 2597: 2594: 2592: 2589: 2587: 2584: 2583: 2581: 2577: 2571: 2568: 2566: 2563: 2560: 2557: 2555: 2552: 2550: 2547: 2541: 2538: 2536: 2533: 2531: 2528: 2527: 2526: 2523: 2521: 2518: 2517: 2516: 2513: 2509: 2506: 2504: 2501: 2499: 2496: 2494: 2491: 2489: 2486: 2485: 2484: 2481: 2479: 2476: 2475: 2473: 2471: 2467: 2459: 2456: 2452: 2449: 2448: 2447: 2444: 2440: 2437: 2436: 2435: 2432: 2431: 2430: 2427: 2423: 2420: 2418: 2415: 2413: 2410: 2408: 2405: 2404: 2403: 2400: 2398: 2395: 2393: 2390: 2386: 2383: 2382: 2381: 2378: 2376: 2373: 2371: 2368: 2366: 2363: 2362: 2360: 2355: 2352: 2350: 2347: 2346: 2344: 2340: 2334: 2331: 2329: 2326: 2324: 2321: 2315: 2312: 2311: 2310: 2307: 2305: 2302: 2300: 2297: 2293: 2290: 2288: 2285: 2284: 2283: 2280: 2278: 2275: 2273: 2270: 2269: 2268: 2265: 2264: 2262: 2256: 2250: 2247: 2245: 2244:Transpiration 2242: 2240: 2237: 2235: 2232: 2230: 2227: 2223: 2220: 2218: 2215: 2214: 2213: 2210: 2208: 2205: 2203: 2200: 2196: 2193: 2192: 2191: 2188: 2186: 2183: 2181: 2178: 2176: 2173: 2171: 2168: 2166: 2163: 2162: 2160: 2156: 2152: 2142: 2139: 2137: 2134: 2132: 2129: 2127: 2124: 2122: 2119: 2117: 2114: 2112: 2109: 2108: 2106: 2102: 2096: 2093: 2091: 2088: 2086: 2083: 2081: 2078: 2074: 2071: 2069: 2066: 2064: 2061: 2060: 2059: 2056: 2052: 2049: 2047: 2044: 2042: 2039: 2037: 2034: 2033: 2032: 2031:Inflorescence 2029: 2027: 2024: 2018: 2015: 2013: 2010: 2006: 2003: 2001: 1998: 1997: 1996: 1993: 1992: 1991: 1988: 1987: 1986: 1983: 1981: 1978: 1976: 1973: 1967: 1964: 1962: 1959: 1958: 1957: 1954: 1952: 1949: 1947: 1944: 1942: 1939: 1937: 1934: 1932: 1929: 1928: 1927: 1924: 1920: 1917: 1915: 1912: 1910: 1907: 1905: 1902: 1900: 1897: 1895: 1892: 1891: 1890: 1887: 1883: 1880: 1878: 1875: 1871: 1868: 1866: 1863: 1862: 1861: 1858: 1856: 1853: 1852: 1851: 1848: 1846: 1843: 1841: 1838: 1837: 1835: 1831: 1827: 1819: 1816: 1814: 1811: 1807: 1804: 1802: 1799: 1798: 1797: 1794: 1792: 1789: 1788: 1787: 1784: 1782: 1779: 1777: 1774: 1772: 1769: 1767: 1764: 1763: 1761: 1757: 1751: 1748: 1744: 1741: 1740: 1739: 1736: 1734: 1731: 1729: 1726: 1722: 1719: 1718: 1717: 1716:Ground tissue 1714: 1712: 1709: 1708: 1706: 1704: 1700: 1694: 1691: 1689: 1686: 1684: 1681: 1679: 1676: 1674: 1671: 1670: 1668: 1666: 1662: 1659: 1652: 1646: 1643: 1642: 1640: 1639:Plant anatomy 1636: 1630: 1627: 1625: 1622: 1620: 1617: 1615: 1612: 1610: 1607: 1605: 1602: 1600: 1597: 1595: 1592: 1590: 1587: 1585: 1582: 1581: 1579: 1576: 1572: 1566: 1563: 1561: 1560:Plant ecology 1558: 1556: 1555:Plant anatomy 1553: 1549: 1546: 1545: 1544: 1541: 1539: 1536: 1534: 1531: 1529: 1526: 1524: 1521: 1519: 1516: 1514: 1511: 1509: 1506: 1504: 1503:Archaeobotany 1501: 1500: 1498: 1496: 1492: 1486: 1483: 1481: 1478: 1477: 1474: 1470: 1463: 1458: 1456: 1451: 1449: 1444: 1443: 1440: 1434: 1431: 1430: 1413: 1407: 1403: 1399: 1392: 1384: 1380: 1375: 1370: 1366: 1362: 1358: 1350: 1342: 1336: 1332: 1331: 1323: 1315: 1309: 1305: 1298: 1290: 1286: 1281: 1276: 1272: 1268: 1264: 1260: 1256: 1249: 1247: 1238: 1234: 1229: 1224: 1220: 1216: 1212: 1208: 1204: 1197: 1189: 1185: 1180: 1175: 1171: 1167: 1163: 1159: 1155: 1148: 1140: 1134: 1130: 1129: 1121: 1113: 1109: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1073: 1069: 1062: 1054: 1050: 1046: 1042: 1038: 1034: 1030: 1026: 1022: 1018: 1014: 1010: 1003: 995: 991: 987: 983: 979: 975: 971: 967: 963: 959: 952: 945: 939: 935: 928: 920: 916: 912: 908: 904: 900: 893: 885: 879: 875: 868: 860: 854: 850: 843: 835: 833:0-13-146906-1 829: 825: 824:Plant Biology 818: 810: 803: 795: 789: 785: 784: 776: 768: 762: 759:. CRC Press. 758: 757: 749: 747: 738: 734: 727: 719: 713: 709: 708: 700: 696: 686: 683: 681: 678: 676: 673: 671: 668: 666: 663: 661: 658: 656: 653: 651: 648: 645: 642: 640: 637: 635: 632: 629: 626: 625: 615: 611: 607: 605: 601: 597: 592: 589: 582: 576: 574: 559: 557: 552: 549: 538: 536: 532: 528: 524: 520: 516: 512: 508: 506: 502: 498: 494: 489: 487: 483: 479: 470: 465: 454: 449: 442: 437: 430: 425: 424: 418: 415: 412: 411: 407: 402: 399: 398: 394: 391: 390: 387: 385: 381: 378:2) Decreased 373: 370: 369: 365: 361: 358: 357: 353: 348: 343: 341: 340:plant cuticle 337: 336: 332: 329: 328: 324: 321: 320: 316: 313: 312: 308: 305: 304: 301: 299: 295: 291: 287: 276: 274: 270: 266: 262: 258: 254: 250: 246: 242: 233: 224: 222: 218: 214: 209: 204: 200: 194: 191: 187: 183: 179: 175: 171: 167: 163: 153: 151: 143: 139: 135: 131: 127: 123: 119: 115: 111: 107: 103: 102:Transpiration 96: 92: 88: 83: 77: 73: 69: 65: 57: 47: 44: 41: 37: 36: 32: 26: 25:Hyperhydrosis 22: 2601:Horticulture 2591:Floriculture 2493:Correct name 2343:Reproduction 2333:Woody plants 2258:Plant growth 2243: 2217:Gas Exchange 2202:Phytomelanin 2080:Plant embryo 1830:Reproductive 1678:Phragmoplast 1415:, retrieved 1401: 1391: 1364: 1360: 1349: 1329: 1322: 1303: 1297: 1265:(1): 27–31. 1262: 1258: 1210: 1206: 1196: 1161: 1157: 1147: 1127: 1120: 1071: 1067: 1061: 1012: 1008: 1002: 961: 957: 951: 933: 927: 905:(1): 15–28. 902: 898: 892: 873: 867: 848: 842: 823: 817: 808: 802: 782: 775: 755: 736: 732: 726: 706: 699: 660:Perspiration 639:Ecohydrology 593: 586: 570: 553: 544: 509: 490: 481: 474: 417:Water stress 413:Water supply 379: 375: 359:Light supply 338:Presence of 282: 253:carbon fiber 239: 230: 195: 159: 101: 100: 2417:Pollen tube 2412:Pollinators 2402:Pollination 2397:Germination 2212:Respiration 2195:Chlorophyll 2041:Pedicellate 1975:Gametophyte 1894:Aestivation 1845:Antheridium 1840:Archegonium 1688:Plasmodesma 1665:Plant cells 1528:Paleobotany 1523:Ethnobotany 1508:Astrobotany 739:(9): 12–13. 488:produced). 371:Temperature 298:rhizoctonia 290:temperature 186:guard cells 114:evaporation 2691:Categories 2439:Microspore 2429:Sporangium 2407:Artificial 2095:Sporophyte 2090:Sporophyll 2085:Receptacle 1980:Gynandrium 1850:Androecium 1759:Vegetative 1629:Angiosperm 1624:Gymnosperm 1518:Dendrology 1417:2022-11-21 692:References 604:ecosystems 600:Deforested 548:cavitation 541:Cavitation 497:lysimeters 493:potometers 469:xerophytes 352:xerophytes 279:Regulation 255:, or in a 221:atmosphere 142:atmosphere 2697:Hydrology 2636:Botanists 2554:Herbarium 2451:Megaspore 2349:Evolution 2292:Subshrubs 2260:and habit 2185:Nutrition 2180:Cellulose 2175:Bulk flow 2158:Materials 2121:Epidermis 1985:Gynoecium 1966:Endosperm 1961:Dispersal 1877:Staminode 1813:Sessility 1801:Cataphyll 1721:Mesophyll 1673:Cell wall 1614:Lycophyte 1594:Bryophyte 1548:Geobotany 1533:Phycology 1383:0959-3780 1367:: 51–61. 1112:205086035 1096:0028-0836 1037:0028-0836 919:0378-1127 531:succulent 347:trichomes 227:Etymology 217:diffusion 162:guttation 134:mass flow 2676:Category 2596:Forestry 2586:Agronomy 2579:Practice 2530:Cultivar 2525:Cultigen 2385:timeline 2277:Rosettes 2165:Aleurone 2141:Trichome 2058:Perianth 1870:Filament 1728:Meristem 1651:glossary 1513:Bryology 1289:11351066 1237:28351909 1188:27733514 1104:26333464 1045:26333467 986:23552893 621:See also 525:conduct 515:cuticles 380:relative 286:humidity 269:cohesion 178:cohesion 174:adhesion 112:and its 21:Sweating 2354:Ecology 2111:Cuticle 1941:Capsule 1931:Anatomy 1882:Tapetum 1806:Petiole 1781:Rhizome 1776:Rhizoid 1703:Tissues 1693:Vacuole 1683:Plastid 1485:Outline 1480:History 1280:1540104 1228:5462014 1179:5129713 1076:Bibcode 1053:4467297 1017:Bibcode 994:4371468 966:Bibcode 567:Cooling 306:Feature 294:pythium 249:gravity 208:menisci 182:stomata 166:osmosis 126:flowers 2658:Plants 2561:(IAPT) 2314:Lianas 2282:Shrubs 2234:Starch 2126:Nectar 2046:Raceme 2012:Stigma 2000:Locule 1990:Carpel 1951:Pyrena 1889:Flower 1865:Anther 1860:Stamen 1855:Pollen 1577:groups 1469:Botany 1408:  1381:  1337:  1310:  1287:  1277:  1235:  1225:  1186:  1176:  1135:  1110:  1102:  1094:  1068:Nature 1051:  1043:  1035:  1009:Nature 992:  984:  958:Nature 940:  917:  880:  855:  830:  790:  763:  714:  511:Desert 486:matter 245:liquid 118:leaves 87:clouds 72:tomato 2618:Lists 2535:Group 2458:Spore 2392:Flora 2309:Vines 2304:Trees 2267:Habit 2239:Sugar 2131:Stoma 2073:Sepal 2068:Petal 2063:Tepal 2051:Umbel 2036:Bract 2017:Style 2005:Ovule 1995:Ovary 1936:Berry 1926:Fruit 1919:Whorl 1786:Shoot 1584:Algae 1575:Plant 1108:S2CID 1049:S2CID 990:S2CID 523:cacti 519:hairs 478:crops 467:Some 170:xylem 122:stems 110:plant 106:water 70:in a 68:Stoma 40:xylem 2540:Grex 2422:Self 1956:Seed 1818:Stem 1796:Leaf 1771:Root 1766:Bulb 1750:Wood 1711:Cork 1609:Fern 1406:ISBN 1379:ISSN 1335:ISBN 1308:ISBN 1285:PMID 1233:PMID 1184:PMID 1133:ISBN 1100:PMID 1092:ISSN 1041:PMID 1033:ISSN 982:PMID 938:ISBN 915:ISSN 878:ISBN 853:ISBN 828:ISBN 788:ISBN 761:ISBN 712:ISBN 608:The 482:i.e. 400:Wind 176:and 124:and 85:The 23:and 2229:Sap 1946:Nut 1791:Bud 1369:doi 1275:PMC 1267:doi 1263:126 1223:PMC 1215:doi 1211:174 1174:PMC 1166:doi 1162:172 1084:doi 1072:525 1025:doi 1013:525 974:doi 962:496 907:doi 903:195 529:in 296:or 136:of 2693:: 1377:. 1365:43 1363:. 1359:. 1283:. 1273:. 1261:. 1257:. 1245:^ 1231:. 1221:. 1209:. 1205:. 1182:. 1172:. 1160:. 1156:. 1106:. 1098:. 1090:. 1082:. 1070:. 1047:. 1039:. 1031:. 1023:. 1011:. 988:. 980:. 972:. 960:. 913:. 901:. 745:^ 737:33 735:. 495:, 386:. 354:. 300:. 288:, 223:. 120:, 1653:) 1649:( 1461:e 1454:t 1447:v 1385:. 1371:: 1343:. 1316:. 1291:. 1269:: 1239:. 1217:: 1190:. 1168:: 1141:. 1114:. 1086:: 1078:: 1055:. 1027:: 1019:: 996:. 976:: 968:: 921:. 909:: 886:. 861:. 836:. 796:. 769:. 720:. 583:. 146:2 97:. 42:. 27:.

Index

Sweating
Hyperhydrosis

xylem


Stoma
tomato
scanning electron microscope

clouds
Amazon Rainforest
evapotranspiration
water
plant
evaporation
leaves
stems
flowers
osmotic pressure
mass flow
mineral nutrients
atmosphere
photosynthesis
guttation
osmosis
xylem
adhesion
cohesion
stomata

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.