Knowledge

Transition state theory

Source 📝

4350:, who hypothesized that the rate increase imposed by enzymes is proportional to the affinity of the enzyme for the transition state structure relative to the Michaelis complex. Because enzymes typically increase the non-catalyzed reaction rate by factors of 10-10, and Michaelis complexes often have dissociation constants in the range of 10-10 M, it is proposed that transition state complexes are bound with dissociation constants in the range of 10-10 M. As substrate progresses from the Michaelis complex to product, chemistry occurs by enzyme-induced changes in electron distribution in the substrate. Enzymes alter the electronic structure by protonation, proton abstraction, electron transfer, geometric distortion, hydrophobic partitioning, and interaction with Lewis acids and bases. Analogs that resemble the transition state structures should therefore provide the most powerful noncovalent inhibitors known. 4252:. It is assumed that unless atoms or molecules collide with enough energy to form the transition structure, then the reaction does not occur. However, according to quantum mechanics, for any barrier with a finite amount of energy, there is a possibility that particles can still tunnel across the barrier. With respect to chemical reactions this means that there is a chance that molecules will react, even if they do not collide with enough energy to overcome the energy barrier. While this effect is negligible for reactions with large activation energies, it becomes an important phenomenon for reactions with relatively low energy barriers, since the tunneling probability increases with decreasing barrier height. 20: 4245:
intermediate is long-lived enough to reach a Boltzmann distribution of energies before continuing to the next step. When the intermediates are very short-lived, TST fails. In such cases, the momentum of the reaction trajectory from the reactants to the intermediate can carry forward to affect product selectivity. An example of such a reaction is the ring closure of cyclopentane biradicals generated from the gas-phase thermal decomposition of 2,3-diazabicyclohept-2-ene.
4280:
TST is said to provide an upper bound for the rate coefficients. To correct for this, variational transition state theory varies the location of the dividing surface that defines a successful reaction in order to minimize the rate for each fixed energy. The rate expressions obtained in this microcanonical treatment can be integrated over the energy, taking into account the statistical distribution over energy states, so as to give the canonical, or thermal rates.
3234:) for bimolecular gas-phase reactions) holds. For a unimolecular process, a negative value indicates a more ordered, rigid transition state than the ground state, while a positive value reflects a transition state with looser bonds and/or greater conformational freedom. It is important to note that, for reasons of dimensionality, reactions that are bimolecular or higher have Δ 4338:
transition state theory, the smallest fraction of the catalytic cycle is spent in the most important step, that of the transition state. The original proposals of absolute reaction rate theory for chemical reactions defined the transition state as a distinct species in the reaction coordinate that determined the absolute reaction rate. Soon thereafter,
4256:
temperatures, molecules populate higher energy vibrational modes; their motion becomes more complex and collisions may lead to transition states far away from the lowest energy saddle point. This deviation from transition state theory is observed even in the simple exchange reaction between diatomic hydrogen and a hydrogen radical.
4354:
single bond vibration. No physical or spectroscopic method is available to directly observe the structure of the transition state for enzymatic reactions, yet transition state structure is central to understanding enzyme catalysis since enzymes work by lowering the activation energy of a chemical transformation.
2675: 4358:
reactions, whereas the transition state tends to be characteristic of one particular enzyme, so that such an inhibitor tends to be specific for that particular enzyme. The identification of numerous transition state inhibitors supports the transition state stabilization hypothesis for enzymatic catalysis.
4357:
It is now accepted that enzymes function to stabilize transition states lying between reactants and products, and that they would therefore be expected to bind strongly any inhibitor that closely resembles such a transition state. Substrates and products often participate in several enzyme catalyzed
4279:
A fundamental flaw of transition state theory is that it counts any crossing of the transition state as a reaction from reactants to products or vice versa. In reality, a molecule may cross this "dividing surface" and turn around, or cross multiple times and only truly react once. As such, unadjusted
1883:
In TST, it is assumed that the flux of activated complexes in the two directions are independent of each other. That is, if all the product molecules were suddenly removed from the reaction system, the flow of stops, but there is still a flow from left to right. Hence, to be technically correct, the
1879:
TST assumes that even when the reactants and products are not in equilibrium with each other, the activated complexes are in quasi-equilibrium with the reactants. As illustrated in Figure 2, at any instant of time, there are a few activated complexes, and some were reactant molecules in the immediate
1385:
It has been typically assumed that the rate-limiting or lowest saddle point is located on the same energy surface as the initial ground state. However, it was recently found that this could be incorrect for processes occurring in semiconductors and insulators, where an initial excited state could go
4244:
In general, TST has provided researchers with a conceptual foundation for understanding how chemical reactions take place. Even though the theory is widely applicable, it does have limitations. For example, when applied to each elementary step of a multi-step reaction, the theory assumes that each
1398:
was able to derive a relationship between the shape of the potential energy surface along the reaction coordinate and the transition rates of the system. The formulation relies on approximating the potential energy landscape as a series of harmonic wells. In a two state system, there will be three
683:
At about the same time as Marcelin was working on his formulation, Dutch chemists Philip Abraham Kohnstamm, Frans Eppo Cornelis Scheffer, and Wiedold Frans Brandsma introduced standard entropy of activation and the standard enthalpy of activation. They proposed the following rate constant equation
4342:
proposed that the powerful catalytic action of enzymes could be explained by specific tight binding to the transition state species Because reaction rate is proportional to the fraction of the reactant in the transition state complex, the enzyme was proposed to increase the concentration of the
4353:
All chemical transformations pass through an unstable structure called the transition state, which is poised between the chemical structures of the substrates and products. The transition states for chemical reactions are proposed to have lifetimes near 10 seconds, on the order of the time of a
3106:
Because the functional form of the Eyring and Arrhenius equations are similar, it is tempting to relate the activation parameters with the activation energy and pre-exponential factors of the Arrhenius treatment. However, the Arrhenius equation was derived from experimental data and models the
4370:
Desorption as well as reactions on surfaces are straightforward to describe with transition state theory. Analysis of adsorption to a surface from a liquid phase can present a challenge due to lack of ability to assess the concentration of the solute near the surface. When full details are not
4337:
chemical reactions at rates that are astounding relative to uncatalyzed chemistry at the same reaction conditions. Each catalytic event requires a minimum of three or often more steps, all of which occur within the few milliseconds that characterize typical enzymatic reactions. According to
1381:
made an important contribution by following the progress of a reaction on a potential energy surface. The importance of this work was that it was the first time that the concept of col or saddle point in the potential energy surface was discussed. They concluded that the rate of a reaction is
802: 4296:
A modification of canonical variational transition state theory in which, for energies below the threshold energy, the position of the dividing surface is taken to be that of the microcanonical threshold energy. This forces the contributions to rate constants to be zero if they are below the
176:, successfully addresses these two issues; however, 46 years elapsed between the publication of the Arrhenius rate law, in 1889, and the Eyring equation derived from TST, in 1935. During that period, many scientists and researchers contributed significantly to the development of the theory. 4361:
Currently there is a large number of enzymes known to interact with transition state analogs, most of which have been designed with the intention of inhibiting the target enzyme. Examples include HIV-1 protease, racemases, β-lactamases, metalloproteinases, cyclooxygenases and many others.
1234: 4255:
Transition state theory fails for some reactions at high temperature. The theory assumes the reaction system will pass over the lowest energy saddle point on the potential energy surface. While this description is consistent for reactions occurring at relatively low temperatures, at high
2958: 1539: 3107:
macroscopic rate using only two parameters, irrespective of the number of transition states in a mechanism. In contrast, activation parameters can be found for every transition state of a multistep mechanism, at least in principle. Thus, although the enthalpy of activation, Δ
3654: 1338:
further developed Rice's idea of the critical increment. He concluded that critical increment (now referred to as activation energy) of a reaction is equal to the average energy of all molecules undergoing reaction minus the average energy of all reactant molecules.
2808: 78:
TST is used primarily to understand qualitatively how chemical reactions take place. TST has been less successful in its original goal of calculating absolute reaction rate constants because the calculation of absolute reaction rates requires precise knowledge of
4172: 3750: 3327:. It gives information regarding the size, and hence, degree of bonding at the transition state. An associative mechanism will likely have a negative volume of activation, while a dissociative mechanism will likely have a positive value. 3242:
chosen (standard concentration, in particular). For most recent publications, 1 mol L or 1 molar is chosen. Since this choice is a human construct, based on our definitions of units for molar quantity and volume, the magnitude and sign of
3178:, gives the extent to which transition state (including any solvent molecules involved in or perturbed by the reaction) is more disordered compared to the starting materials. It offers a concrete interpretation of the pre-exponential factor 4733: 4093: 2531: 1362:
constructed a potential energy surface for the reaction below. This surface is a three-dimensional diagram based on quantum-mechanical principles as well as experimental data on vibrational frequencies and energies of dissociation.
988:
In 1915, another important contribution came from British physicist James Rice. Based on his statistical analysis, he concluded that the rate constant is proportional to the "critical increment". His ideas were further developed by
678: 2213: 3961: 3457: 3325: 3891: 2441: 690: 1875:
where complete equilibrium is achieved between all the species in the system including activated complexes, . Using statistical mechanics, concentration of can be calculated in terms of the concentration of A and B.
4371:
available, it has been proposed that reacting species' concentrations should be normalized to the concentration of active surface sites, an approximation called the surface reactant equi-density approximation (SREA).
2511: 1091: 2824: 3771:
ln 10 ≈ (1.987 × 10 kcal/mol K)(298 K)(2.303) ≈ 1.36 kcal/mol in the free energies of products A and B results in a factor of 10 in selectivity at room temperature (298 K), a principle known as the "1.36 rule":
1976: 3559: 3077: 1408: 488: 377: 1862: 3564: 961: 1739:) with which they are converted into products. Below, a non-rigorous plausibility argument is given for the functional form of the Eyring equation. However, the key statistical mechanical factor 2703: 1725:
was the notion that activated complexes are in quasi-equilibrium with the reactants. The rate is then directly proportional to the concentration of these complexes multiplied by the frequency (
161:
are involved in the conversion of a reactant to a product. Therefore, further development was necessary to understand the two parameters associated with this law, the pre-exponential factor (
3471:
from R to two products A and B will reflect the difference in the energies of the respective transition states leading to product, assuming there is a single transition state to each one:
3247:
for a single reaction is meaningless by itself; only comparisons of the value with that of a reference reaction of "known" (or assumed) mechanism, made at the same standard state, is valid.
1080: 2267: 4208:~ 2 h. Thus, a free energy of activation of this magnitude corresponds to a typical reaction that proceeds to completion overnight at room temperature. For comparison, the cyclohexane 835:
treats reacting molecules as hard spheres colliding with one another; this theory neglects entropy changes, since it assumes that the collision between molecules are completely elastic.
4098: 3667: 2057: 2358: 1868: 301: 1266: 862:
played a significant role in the development of TST. However, the application of statistical mechanics to TST was developed very slowly given the fact that in mid-19th century,
4271:, and improved canonical variational TST, in which the transition state is not necessarily located at the saddle point, is referred to as generalized transition state theory. 554: 5040:
Reyes, Mayra B.; Carpenter, Barry K. (1 October 2000). "Mechanism of Thermal Deazetization of 2,3-Diazabicyclohept-2-ene and Its Reaction Dynamics in Supercritical Fluids".
3379: 2277:
is directly proportional to the frequency of the vibrational mode responsible for converting the activated complex to the product; the frequency of this vibrational mode is
1351:
in 1913. He theorized that the progress of a chemical reaction could be described as a point in a potential energy surface with coordinates in atomic momenta and distances.
1700: 1596: 1569: 1892:
The activated complexes do not follow a Boltzmann distribution of energies, but an "equilibrium constant" can still be derived from the distribution they do follow. The
2315: 1616: 1670: 1643: 2670:{\displaystyle k=k^{\ddagger }K^{\ddagger }=\kappa {\frac {k_{\text{B}}T}{h}}e^{\frac {-\Delta G^{\ddagger }}{RT}}=\kappa {\frac {k_{\text{B}}T}{h}}K^{\ddagger '}} 2295: 1310: 985:. He then applied Gibbs' statistical-mechanical procedures and obtained an expression similar to the one he had obtained earlier from thermodynamic consideration. 4297:
threshold energy. A compromise dividing surface is then chosen so as to minimize the contributions to the rate constant made by reactants having higher energies.
3977: 1761:
Quasi-equilibrium is different from classical chemical equilibrium, but can be described using a similar thermodynamic treatment. Consider the reaction below
609: 4288:
A development of transition state theory in which the position of the dividing surface is varied so as to minimize the rate constant at a given temperature.
3004:, including energy content and degree of order, compared to the starting materials and has become a standard tool for elucidation of reaction mechanisms in 3896: 2069: 3387: 3257: 874:
published several papers discussing reaction equilibrium and rates in terms of molecular motions and the statistical distribution of molecular speeds.
797:{\displaystyle k\propto \exp \left({\frac {\Delta ^{\ddagger }S^{\ominus }}{R}}\right)\exp \left({\frac {-\Delta ^{\ddagger }H^{\ominus }}{RT}}\right)} 3778: 585:
remained vague. This led many researchers in chemical kinetics to offer different theories of how chemical reactions occurred in an attempt to relate
4409: 4220:
10 s, making it a dynamic process that takes place rapidly (faster than the NMR timescale) at room temperature. At the other end of the scale, the
851:
However, later when the same treatment was applied to other reactions, there were large discrepancies between theoretical and experimental results.
1229:{\displaystyle k_{1}={\frac {k_{\mathrm {B} }T}{h}}\left(1-e^{-{\frac {h\nu }{k_{\text{B}}T}}}\right)\exp \left({\frac {-E^{\ominus }}{RT}}\right)} 2374: 2953:{\displaystyle k=\kappa {\frac {k_{\text{B}}T}{h}}e^{\frac {\Delta S^{\ddagger }}{R}}e^{\frac {-\Delta H^{\ddagger }}{RT}}(c^{\ominus })^{1-m}} 1880:
past, which are designated (since they are moving from left to right). The remainder of them were product molecules in the immediate past ().
5424: 4977: 3764: 3468: 574:
is regarded as the activation energy. By the early 20th century many had accepted the Arrhenius equation, but the physical interpretation of
4757:
For an introductory treatment of the statistical mechanics and an elementary derivation of the Eyring equation, see: Lowry and Richardson,
4259:
Given these limitations, several alternatives to transition state theory have been proposed. A brief discussion of these theories follows.
2446: 4347: 1534:{\displaystyle k^{A\rightarrow B}={\frac {\omega _{a}\omega _{H}}{2\pi \gamma }}\exp \left(-{\frac {E_{H}-E_{A}}{k_{\text{B}}T}}\right)} 1905: 1402:
In the overdamped (or "diffusive") regime, the transition rate from state A to B is related to the resonant frequency of the wells via
3477: 3649:{\displaystyle \Delta \Delta G^{\ddagger }=\Delta G_{\mathrm {A} }^{\ddagger }-\Delta G_{\mathrm {B} }^{\ddagger }+\Delta G^{\circ }} 420: 309: 119:) for a particular reaction if its rate constant has been experimentally determined. (The notation refers to the value of interest 5397: 1767: 1347:
The concept of potential energy surface was very important in the development of TST. The foundation of this concept was laid by
887: 4665:
Luo, G.; Kuech, T. F.; Morgan, D. (2018). "Transition state redox during dynamical processes in semiconductors and insulators".
3019: 4318: 24: 4317:
Using vibrational perturbation theory, effects such as tunnelling and variational effects can be accounted for within the
4306: 2803:{\displaystyle k=\kappa {\frac {k_{\text{B}}T}{h}}e^{\frac {\Delta S^{\ddagger }}{R}}e^{\frac {-\Delta H^{\ddagger }}{RT}}} 206:
The activated complexes can convert into products, and kinetic theory can be used to calculate the rate of this conversion.
150:. TST is also referred to as "activated-complex theory", "absolute-rate theory", and "theory of absolute reaction rates". 200:. The details of how these complexes are formed are not important. The saddle point itself is called the transition state. 153:
Before the development of TST, the Arrhenius rate law was widely used to determine energies for the reaction barrier. The
5636: 5513: 4268: 1753:
will not be justified, and the argument presented below does not constitute a true "derivation" of the Eyring equation.
5470: 878: 3156:
is the change in the number of molecules on forming the transition state. (Thus, for a bimolecular gas-phase process,
5777: 5417: 5024: 4842: 4780: 4653: 4468:"Some applications of the transition state method to the calculation of reaction velocities, especially in solution" 4167:{\displaystyle \Delta \Delta G^{\ddagger }=\Delta G_{\mathrm {A} }^{\ddagger }-\Delta G_{\mathrm {B} }^{\ddagger }} 3968: 3745:{\displaystyle \Delta G^{\circ }=G_{\mathrm {S} _{\mathrm {A} }}^{\circ }-G_{\mathrm {S} _{\mathrm {B} }}^{\circ }} 1399:
wells; a well for state A, an upside-down well representing the potential energy barrier, and a well for state B.
2229: 1018: 3118:, they are not equivalent. For a condensed-phase (e.g., solution-phase) or unimolecular gas-phase reaction step, 5293:"Extracting meaningful standard enthalpies and entropies of activation for surface reactions from kinetic rates" 5685: 5680: 5490: 4940: 4904: 4867: 4579: 2327: 1992: 5850: 5845: 5135:"Protein dynamics and catalysis: The problems of transition state theory and the subtlety of dynamic control" 1242: 237: 1884:
reactants are in equilibrium only with , the activated complexes that were reactants in the immediate past.
838:
Lewis applied his treatment to the following reaction and obtained good agreement with experimental result.
157:
derives from empirical observations and ignores any mechanistic considerations, such as whether one or more
5410: 4380: 3464: 3967:
Analogously, every 1.36 kcal/mol difference in the free energy of activation results in a factor of 10 in
5876: 4439:
Truhlar, D. G.; Garrett, B. C.; Klippenstein, S. J. (1996). "Current Status of Transition-State Theory".
4182:, first-order rate constants, and reaction half-life at a given temperature. At 298 K, a reaction with Δ 981:
made an essential contribution by treating the progress of a chemical reaction as a motion of a point in
5871: 5815: 5505: 3005: 2297:. Every vibration does not necessarily lead to the formation of product, so a proportionality constant 502: 5542: 5442: 407: 203:
The activated complexes are in a special equilibrium (quasi-equilibrium) with the reactant molecules.
3333: 2697:, the rate constant expression can be expanded, to give an alternative form of the Eyring equation: 5772: 4232:
10 s at 298 K. This is a negligible rate: the half-life is 12 orders of magnitude longer than the
1675: 197: 147: 80: 5621: 1574: 1547: 994: 828: 820: 228: 4305:
An expansion of TST to the reactions when two spin-states are involved simultaneously is called
3330:
Given the relationship between equilibrium constant and the forward and reverse rate constants,
5575: 4797: 4248:
Transition state theory is also based on the assumption that atomic nuclei behave according to
1714: 1355: 399: 224: 131: 4964:
Carpenter, Barry K. (31 December 1998). "Dynamic Behavior of Organic Reactive Intermediates".
603:
introduced the concept of standard Gibbs energy of activation. His relation can be written as
5805: 5737: 5595: 5585: 2300: 1722: 1601: 1314: 998: 859: 231:
describing the temperature dependence of the equilibrium constant for a reversible reaction:
158: 139: 96: 5183: 2317:, referred to as the transmission coefficient, is introduced to account for this effect. So 5800: 5528: 5257: 5195: 5092: 4684: 4608: 1893: 1648: 1621: 1335: 1002: 990: 391: 135: 127:
is the difference between the enthalpy of the transition state and that of the reactants.)
64: 4088:{\displaystyle {\frac {}{}}=10^{-\Delta \Delta G^{\ddagger }/(1.36\ \mathrm {kcal/mol} )}} 3182:
in the Arrhenius equation; for a unimolecular, single-step process, the rough equivalence
2280: 1317:
of the bond. This expression is very important since it is the first time that the factor
1295: 567:
was referred to as the frequency factor (now called the pre-exponential coefficient), and
8: 5810: 5742: 5727: 5670: 4249: 4233: 863: 673:{\displaystyle k\propto \exp \left({\frac {-\Delta ^{\ddagger }G^{\ominus }}{RT}}\right)} 5261: 5207: 5199: 5096: 4688: 4612: 2980:
The rate constant expression from transition state theory can be used to calculate the Δ
5835: 5605: 5434: 5383:
Schramm, V.L., Enzymatic Transition State Theory and Transition State Analogue Design.
5320: 5159: 5134: 5057: 4981: 4700: 4674: 4624: 1276: 494: 154: 5341:
Anslyn, Eric V.; Doughtery, Dennis A., Transition State Theory and Related Topics. In
4570:
Anslyn, E. V.; Dougherty, D. A. (2006). "Transition State Theory and Related Topics".
2208:{\displaystyle {\frac {d}{dt}}=k^{\ddagger }^{\ddagger }=k^{\ddagger }K^{\ddagger }=k} 1394:
By modeling reactions as Langevin motion along a one dimensional reaction coordinate,
1386:
through a saddle point lower than the one on the surface of the initial ground state.
5830: 5825: 5787: 5732: 5651: 5631: 5567: 5369:
Radzicka, A.; Woldenden, R., Transition State and Multisubstrate$ Analog Inhibitors.
5324: 5312: 5273: 5230: 5164: 5065: 5020: 4997: 4989: 4946: 4936: 4910: 4900: 4893: 4873: 4863: 4838: 4776: 4649: 4628: 4575: 4483: 4385: 3956:{\displaystyle \Delta G^{\circ }=G_{\mathrm {A} }^{\circ }-G_{\mathrm {B} }^{\circ }} 1983: 871: 414:
proposed a similar expression for the rate constant of a reaction, given as follows:
189: 60: 5348:
Cleland, W.W., Isotope Effects: Determination of Enzyme Transition State Structure.
4704: 4419: 3452:{\displaystyle \Delta G^{\circ }=\Delta G_{1}^{\ddagger }-\Delta G_{-1}^{\ddagger }} 3320:{\displaystyle \Delta V^{\ddagger }:=(\partial \Delta G^{\ddagger }/\partial P)_{T}} 5762: 5711: 5665: 5304: 5265: 5203: 5154: 5146: 5100: 5049: 4973: 4692: 4641: 4616: 4515: 4475: 4448: 4423: 4414: 4334: 3001: 867: 832: 824: 411: 72: 1348: 978: 600: 5840: 5752: 5701: 4928: 1718: 1359: 1284: 1085:
He obtained the following equation for the rate constant of the forward reaction
173: 143: 4978:
10.1002/(SICI)1521-3773(19981231)37:24<3340::AID-ANIE3340>3.0.CO;2-1
3886:{\displaystyle {\frac {}{}}=10^{-\Delta G^{\circ }/(1.36\ \mathrm {kcal/mol} )}} 5547: 5536: 5308: 4438: 3239: 5376:
Schramm, VL., Enzymatic Transition States and Transition State Analog Design.
4899:. Richardson, Kathleen Schueller. (3rd ed.). New York: Harper & Row. 4696: 5865: 5795: 5767: 5675: 5626: 5600: 5292: 5069: 5061: 4993: 4985: 4620: 4487: 4418:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 4390: 4339: 2975: 2368:, statistical mechanics leads to a temperature dependent expression given as 1705:
For general damping (overdamped or underdamped), there is a similar formula.
1378: 56: 5402: 5269: 4950: 4914: 4427: 4178:
Using the Eyring equation, there is a straightforward relationship between Δ
5747: 5553: 5460: 5450: 5234: 5168: 5150: 5001: 4877: 2814:
For correct dimensionality, the equation needs to have an extra factor of (
1395: 215:
In the development of TST, three approaches were taken as summarized below
193: 108: 32: 19: 5277: 4467: 2996:(the volume of activation) using experimental rate data. These so-called 2436:{\displaystyle K^{\ddagger }={\frac {k_{\text{B}}T}{h\nu }}K^{\ddagger '}} 5706: 5641: 4479: 1331:, which is a critical component of TST, has appeared in a rate equation. 982: 4519: 4506:
Laidler, K.; King, C. (1983). "Development of transition-state theory".
4533:
Laidler, K.; King, C. (1998). "A lifetime of transition-state theory".
3250:
The volume of activation is found by taking the partial derivative of Δ
816: 596:
to the molecular dynamics directly responsible for chemical reactions.
5316: 5104: 5053: 4833:
Steinfeld, Jeffrey L.; Francisco, Joseph S.; Hase, William L. (1999).
4771:
Steinfeld, Jeffrey L.; Francisco, Joseph S.; Hase, William L. (1999).
4452: 5757: 4209: 2506:{\displaystyle K^{\ddagger '}=:e^{\frac {-\Delta G^{\ddagger }}{RT}}} 1867: 1031: 44: 36: 16:
Theory describing the reaction rates of elementary chemical reactions
5221:
Pauling, L. (1948). "Chemical Achievement and Hope for the Future".
4596: 1046: 4679: 4365: 2525:, a new rate constant expression can be written, which is given as 877:
It was not until 1912 when the French chemist A. Berthoud used the
84: 5083:
Eyring, H. (1935). "The Activated Complex in Chemical Reactions".
1971:{\displaystyle K^{\ddagger }={\frac {\ce {^{\ddagger }}}{\ce {}}}} 1377:
A year after the Eyring and Polanyi construction, Hans Pelzer and
1005:
and kinetic theory to the rate constant of the reverse reaction,
68: 3554:{\displaystyle {\frac {}{}}=e^{-\Delta \Delta G^{\ddagger }/RT}} 5355:
Laidler, K.; King, C., Development of transition-state theory.
1702:
is the temperature of the system times the Boltzmann constant.
483:{\displaystyle {\frac {d\ln k}{dT}}={\frac {\Delta E}{RT^{2}}}} 372:{\displaystyle {\frac {d\ln K}{dT}}={\frac {\Delta U}{RT^{2}}}} 184:
The basic ideas behind transition state theory are as follows:
2063:
Therefore, the rate equation for the production of product is
1857:{\displaystyle {\ce {{A}+{B}<=>{^{\ddagger }}->{P}}}} 5660: 5019:. Sausalito, CA, USA: University Science Books. p. 374. 4664: 4569: 5291:
Doyle, Peter J.; Savara, Aditya; Raiman, Stephen S. (2020).
5132: 5248:
Radzicka, A.; Wolfenden, R. (1995). "A proficient enzyme".
4346:
This proposal was formalized by Wolfenden and coworkers at
956:{\displaystyle {\frac {d\ln k}{dT}}={\frac {a-bT}{RT^{2}}}} 3971:
for a kinetically-controlled process at room temperature:
3072:{\displaystyle \Delta G^{\ddagger }=-RT\ln K^{\ddagger '}} 2976:
Inferences from TST and relationship with Arrhenius theory
1012:, for the reversible dissociation of a diatomic molecule. 5480: 5247: 4267:
Any form of TST, such as microcanonical variational TST,
3254:
with respect to pressure (holding temperature constant):
1382:
determined by the motion of the system through that col.
83:, but it has been successful in calculating the standard 5120:
Principles of Adsorption and Reactions on Solid Surfaces
1708: 4465: 3752:
term if A and B are formed from two different species S
807:
However, the nature of the constant was still unclear.
4935:. Wilen, Samuel H., Mander, Lewis N. New York: Wiley. 4832: 4770: 4262: 3111:, is often equated with Arrhenius's activation energy 3016:
in transition state theory to be the energy such that
1806: 1246: 268: 4597:"Zur Theorie der Reaktionsgeschwindigkeiten in Gasen" 4291: 4101: 3980: 3899: 3781: 3670: 3567: 3480: 3390: 3336: 3260: 3022: 2827: 2706: 2534: 2449: 2377: 2330: 2303: 2283: 2232: 2072: 1995: 1908: 1770: 1678: 1672:
is the energy of bottom of the well for state A, and
1651: 1624: 1604: 1577: 1550: 1411: 1298: 1245: 1094: 1021: 890: 693: 612: 505: 423: 312: 240: 5362:
Laidler, K., A lifetime of transition-state theory.
130:
This theory was developed simultaneously in 1935 by
4532: 4505: 1389: 881:law to obtain an expression for the rate constant. 854: 5181: 5033: 4892: 4166: 4087: 3955: 3885: 3744: 3648: 3553: 3451: 3373: 3319: 3071: 2952: 2802: 2669: 2505: 2435: 2352: 2309: 2289: 2261: 2207: 2051: 1970: 1856: 1694: 1664: 1637: 1610: 1590: 1563: 1533: 1304: 1260: 1228: 1074: 955: 796: 672: 548: 482: 371: 295: 5290: 5008: 4775:(2nd ed.). Prentice-Hall. pp. 289–293. 4274: 1814: 1813: 1796: 1795: 1713:One of the most important features introduced by 276: 275: 258: 257: 5863: 4798:"Symbolism and terminology in chemical kinetics" 4761:, 3rd ed. (Harper & Row, 1987), pp. 248–253. 4366:Adsorption on surfaces and reactions on surfaces 5014: 4717: 4594: 4197:≈ 2.3 hours, figures that are often rounded to 1756: 5039: 5015:Dougherty, Dennis A.; Anslyn, Eric V. (2006). 4574:. University Science Books. pp. 365–373. 4554: 188:Rates of reaction can be studied by examining 23:Figure 1: Reaction coordinate diagram for the 5432: 5418: 4957: 4307:nonadiabatic transition state theory (NA-TST) 1268:is the dissociation energy at absolute zero, 1075:{\displaystyle {\ce {AB <=> {A}+ {B}}}} 4860:Determination of organic reaction mechanisms 4837:(2nd ed.). Prentice-Hall. p. 302. 4722:. Oxford University Press. pp. 109–111. 4283: 2262:{\displaystyle k=k^{\ddagger }K^{\ddagger }} 1899:for the quasi-equilibrium can be written as 1342: 493:Integration of this expression leads to the 5297:Reaction Kinetics, Mechanisms and Catalysis 5220: 5175: 4348:University of North Carolina at Chapel Hill 2818:) for reactions that are not unimolecular: 810: 5425: 5411: 5345:University Science Books: 2006; pp 365–373 5082: 2968:is the standard concentration 1 mol⋅L and 2052:{\displaystyle ^{\ddagger }=K^{\ddagger }} 1571:is the frequency of the well for state A, 218: 5158: 5117: 4963: 4895:Mechanism and theory in organic chemistry 4857: 4759:Mechanism and Theory in Organic Chemistry 4678: 4550: 4548: 2353:{\displaystyle k^{\ddagger }=\kappa \nu } 1645:is the energy of the top of the barrier, 5042:Journal of the American Chemical Society 1887: 1866: 296:{\displaystyle {\ce {{A}<=> {B}}}} 18: 5133:Pineda, J. R.; Schwartz, S. D. (2006). 4966:Angewandte Chemie International Edition 4795: 4648:(3rd ed., Harper & Row 1987), p.88 4228:of about 60 kcal/mol, corresponding to 1789: 1261:{\displaystyle \textstyle E^{\ominus }} 974:are constants related to energy terms. 823:studied the rate of the reaction using 410:. Based on experimental work, in 1889, 251: 63:. The theory assumes a special type of 5864: 5451:Unimolecular nucleophilic substitution 4545: 4329: 1598:is the frequency of the barrier well, 5461:Bimolecular nucleophilic substitution 5406: 5184:"Variational Transition State Theory" 4927: 4890: 4186:= 23 kcal/mol has a rate constant of 3765:thermodynamically-controlled reaction 3087:can then be inferred by determining Δ 1709:Justification for the Eyring equation 25:bimolecular nucleophilic substitution 4933:Stereochemistry of organic compounds 4312: 3381:, the Eyring equation implies that 5514:Electrophilic aromatic substitution 5208:10.1146/annurev.pc.35.100184.001111 4557:Theories of Chemical Reaction Rates 4472:Transactions of the Faraday Society 4300: 4263:Generalized transition state theory 3008:. The free energy of activation, Δ 13: 5481:Nucleophilic internal substitution 5471:Nucleophilic aromatic substitution 4474:, vol. 31, pp. 875–894, 4415:Compendium of Chemical Terminology 4292:Improved canonical variational TST 4153: 4144: 4130: 4121: 4105: 4102: 4076: 4073: 4070: 4062: 4059: 4056: 4053: 4025: 4022: 4001: 3988: 3942: 3922: 3900: 3874: 3871: 3868: 3860: 3857: 3854: 3851: 3823: 3802: 3789: 3729: 3723: 3700: 3694: 3671: 3633: 3619: 3610: 3596: 3587: 3571: 3568: 3525: 3522: 3501: 3488: 3463:Another implication of TST is the 3428: 3407: 3391: 3301: 3283: 3280: 3261: 3023: 3000:give insight into the nature of a 2896: 2866: 2775: 2745: 2599: 2517:Combining the new expressions for 2478: 1871:Figure 2: Potential energy diagram 1117: 760: 714: 636: 456: 386:is the change in internal energy, 345: 14: 5888: 5391: 5357:The Journal of Physical Chemistry 5343:Modern Physical Organic Chemistry 5182:Truhlar, D.; Garrett, B. (1984). 5017:Modern Physical Organic Chemistry 4572:Modern Physical Organic Chemistry 4224:isomerization of 2-butene has a Δ 3133:. For other gas-phase reactions, 4929:Eliel, Ernest L. (Ernest Ludwig) 4466:M. G. Evans, M. Polanyi (1935), 3103:at different temperatures. 1390:Kramers theory of reaction rates 855:Statistical-mechanical treatment 549:{\displaystyle k=Ae^{-E_{a}/RT}} 5637:Lindemann–Hinshelwood mechanism 5385:Journal of Biological Chemistry 5284: 5241: 5214: 5126: 5111: 5076: 4921: 4884: 4851: 4826: 4789: 4764: 4751: 4726: 4711: 4658: 4324: 3469:kinetically-controlled reaction 993:. In 1919, Austrian physicist 5686:Outer sphere electron transfer 5681:Inner sphere electron transfer 5491:Nucleophilic acyl substitution 4835:Chemical Kinetics and Dynamics 4773:Chemical Kinetics and Dynamics 4635: 4588: 4563: 4526: 4499: 4459: 4432: 4403: 4275:Microcanonical variational TST 4239: 4190:8.4 × 10 s and a half life of 4080: 4043: 4005: 3997: 3992: 3984: 3878: 3841: 3806: 3798: 3793: 3785: 3505: 3497: 3492: 3484: 3374:{\displaystyle K=k_{1}/k_{-1}} 3308: 3277: 2935: 2921: 2202: 2194: 2191: 2183: 2174: 2166: 2163: 2155: 2123: 2114: 2087: 2079: 2046: 2038: 2035: 2027: 2005: 1996: 1986:of the transition state AB is 1961: 1955: 1950: 1944: 1932: 1926: 1845: 1834: 1828: 1816: 1791: 1420: 1334:In 1920, the American chemist 1291:is thermodynamic temperature, 879:Maxwell–Boltzmann distribution 278: 253: 210: 1: 5851:Diffusion-controlled reaction 5378:Annual Review of Biochemistry 5335: 2364:For the equilibrium constant 1695:{\displaystyle k_{\text{B}}T} 165:) and the activation energy ( 5387:2007, 282, (39), 28297-28300 4858:Carpenter, Barry K. (1984). 3174:The entropy of activation, Δ 1757:Quasi-equilibrium assumption 67:(quasi-equilibrium) between 7: 5506:Electrophilic substitutions 4720:Introduction to nanoscience 4374: 1591:{\displaystyle \omega _{H}} 1564:{\displaystyle \omega _{a}} 10: 5893: 5816:Energy profile (chemistry) 5778:More O'Ferrall–Jencks plot 5443:Nucleophilic substitutions 5364:The Chemical Intelligencer 5309:10.1007/s11144-020-01747-2 4805:Pure and Applied Chemistry 4796:Laidler, Keith J. (1981). 4535:The Chemical Intelligencer 4216:of about 11 kcal/mol with 3238:values that depend on the 3006:physical organic chemistry 5846:Michaelis–Menten kinetics 5786: 5720: 5694: 5650: 5614: 5566: 5527: 5504: 5441: 5398:Simple application of TST 4891:Lowry, Thomas H. (1987). 4697:10.1038/s41427-018-0010-0 4284:Canonical variational TST 4269:canonical variational TST 3664:above, there is an extra 3660:(In the expression for ΔΔ 3467:: the product ratio of a 1343:Potential energy surfaces 408:thermodynamic temperature 179: 172:). TST, which led to the 81:potential energy surfaces 5773:Potential energy surface 5652:Electron/Proton transfer 5537:Unimolecular elimination 4718:Lindsay, Stuart (2010). 4621:10.1002/andp.19193641504 4595:Herzfeld, K. E. (1919). 4396: 4381:Curtin–Hammett principle 3465:Curtin–Hammett principle 2219:where the rate constant 1618:is the viscous damping, 811:Kinetic-theory treatment 599:In 1910, French chemist 198:potential energy surface 148:University of Manchester 5821:Transition state theory 5622:Intramolecular reaction 5548:Bimolecular elimination 5270:10.1126/science.7809611 4734:"23.2: Kramers' Theory" 4555:Laidler, K. J. (1969). 4428:10.1351/goldbook.T06470 4420:transition state theory 3079:holds. The parameters Δ 2681:Since, by definition, Δ 2310:{\displaystyle \kappa } 1611:{\displaystyle \gamma } 995:Karl Ferdinand Herzfeld 829:kinetic theory of gases 219:Thermodynamic treatment 121:at the transition state 49:transition state theory 5615:Unimolecular reactions 5576:Electrophilic addition 5151:10.1098/rstb.2006.1877 5139:Phil. Trans. R. Soc. B 4168: 4089: 3957: 3887: 3767:, every difference of 3746: 3650: 3555: 3453: 3375: 3321: 3073: 2954: 2804: 2671: 2507: 2437: 2354: 2311: 2291: 2263: 2209: 2053: 1972: 1872: 1858: 1696: 1666: 1639: 1612: 1592: 1565: 1535: 1306: 1262: 1230: 1076: 1056: 957: 798: 674: 563:is the rate constant. 550: 484: 400:universal gas constant 373: 297: 159:reactive intermediates 40: 5806:Rate-determining step 5738:Reactive intermediate 5596:Free-radical addition 5586:Nucleophilic addition 5529:Elimination reactions 5371:Methods in Enzymology 5350:Methods in Enzymology 5188:Annu. Rev. Phys. Chem 4169: 4090: 3958: 3888: 3747: 3651: 3556: 3454: 3376: 3322: 3074: 2998:activation parameters 2972:is the molecularity. 2955: 2805: 2672: 2508: 2438: 2355: 2312: 2292: 2264: 2210: 2054: 1973: 1888:Plausibility argument 1870: 1859: 1697: 1667: 1665:{\displaystyle E_{A}} 1640: 1638:{\displaystyle E_{H}} 1613: 1593: 1566: 1536: 1315:vibrational frequency 1307: 1263: 1231: 1077: 1027: 999:statistical mechanics 958: 860:Statistical mechanics 799: 675: 551: 485: 374: 298: 140:Meredith Gwynne Evans 97:entropy of activation 22: 5801:Equilibrium constant 5359:1983, 87, (15), 2657 4738:Chemistry LibreTexts 4480:10.1039/tf9353100875 4099: 3978: 3897: 3779: 3668: 3565: 3478: 3388: 3334: 3258: 3020: 2825: 2704: 2532: 2447: 2375: 2328: 2321:can be rewritten as 2301: 2290:{\displaystyle \nu } 2281: 2230: 2070: 1993: 1906: 1894:equilibrium constant 1768: 1676: 1649: 1622: 1602: 1575: 1548: 1409: 1336:Richard Chace Tolman 1305:{\displaystyle \nu } 1296: 1243: 1092: 1019: 1003:equilibrium constant 991:Richard Chace Tolman 888: 691: 610: 503: 421: 392:equilibrium constant 310: 238: 229:Van 't Hoff equation 136:Princeton University 107:), and the standard 65:chemical equilibrium 31:2) reaction between 5811:Reaction coordinate 5743:Radical (chemistry) 5728:Elementary reaction 5671:Grotthuss mechanism 5435:reaction mechanisms 5262:1995Sci...267...90R 5200:1984ARPC...35..159T 5145:(1472): 1433–1438. 5097:1935JChPh...3..107E 5048:(41): 10163–10176. 4862:. New York: Wiley. 4689:2018npgAM..10...45L 4613:1919AnP...364..635H 4520:10.1021/j100238a002 4447:(31): 12771–12800. 4330:Enzymatic reactions 4250:classical mechanics 4234:age of the universe 4163: 4140: 3952: 3932: 3741: 3712: 3629: 3606: 3448: 3424: 1802: 1055: 1045: 864:James Clerk Maxwell 264: 225:Jacobus van 't Hoff 190:activated complexes 5877:Chemistry theories 5836:Arrhenius equation 5606:Oxidative addition 5568:Addition reactions 5373:1995, 249, 284–312 5352:1995, 249, 341–373 5223:American Scientist 5122:. New York: Wiley. 5118:Masel, R. (1996). 4821:See p.765, note m. 4667:NPG Asia Materials 4601:Annalen der Physik 4343:reactive species. 4164: 4147: 4124: 4085: 3953: 3936: 3916: 3883: 3760:in equilibrium.) 3742: 3716: 3687: 3646: 3613: 3590: 3551: 3449: 3431: 3410: 3371: 3317: 3069: 2950: 2800: 2667: 2503: 2433: 2350: 2307: 2287: 2259: 2205: 2049: 1968: 1873: 1854: 1821: 1692: 1662: 1635: 1608: 1588: 1561: 1531: 1302: 1277:Boltzmann constant 1258: 1257: 1226: 1072: 953: 794: 670: 546: 495:Arrhenius equation 480: 369: 293: 283: 155:Arrhenius equation 61:chemical reactions 41: 5872:Chemical kinetics 5859: 5858: 5831:Activated complex 5826:Activation energy 5788:Chemical kinetics 5733:Reaction dynamics 5632:Photodissociation 5380:1998, 67, 693–720 5105:10.1063/1.1749604 5054:10.1021/ja0016809 4972:(24): 3340–3350. 4646:Chemical Kinetics 4453:10.1021/jp953748q 4386:Electron transfer 4313:Semiclassical TST 4051: 4009: 3849: 3810: 3509: 2918: 2883: 2857: 2847: 2797: 2762: 2736: 2726: 2650: 2640: 2621: 2587: 2577: 2500: 2416: 2401: 2200: 2189: 2172: 2161: 2120: 2099: 2085: 2044: 2033: 2002: 1984:chemical activity 1966: 1960: 1949: 1931: 1851: 1833: 1823: 1783: 1775: 1686: 1524: 1517: 1466: 1220: 1176: 1169: 1130: 1069: 1061: 1025: 977:Two years later, 951: 915: 872:Leopold Pfaundler 788: 737: 664: 478: 448: 394:of the reaction, 367: 337: 290: 285: 245: 5884: 5763:Collision theory 5712:Matrix isolation 5666:Harpoon reaction 5543:E1cB-elimination 5427: 5420: 5413: 5404: 5403: 5366:1998, 4, (3), 39 5329: 5328: 5288: 5282: 5281: 5245: 5239: 5238: 5218: 5212: 5211: 5179: 5173: 5172: 5162: 5130: 5124: 5123: 5115: 5109: 5108: 5080: 5074: 5073: 5037: 5031: 5030: 5012: 5006: 5005: 4961: 4955: 4954: 4925: 4919: 4918: 4898: 4888: 4882: 4881: 4855: 4849: 4848: 4830: 4824: 4823: 4818: 4816: 4811:. IUPAC: 753–771 4802: 4793: 4787: 4786: 4768: 4762: 4755: 4749: 4748: 4746: 4745: 4730: 4724: 4723: 4715: 4709: 4708: 4682: 4662: 4656: 4642:Keith J. Laidler 4639: 4633: 4632: 4592: 4586: 4585: 4567: 4561: 4560: 4552: 4543: 4542: 4530: 4524: 4523: 4503: 4497: 4496: 4495: 4494: 4463: 4457: 4456: 4436: 4430: 4407: 4335:Enzymes catalyze 4301:Nonadiabatic TST 4173: 4171: 4170: 4165: 4162: 4157: 4156: 4139: 4134: 4133: 4117: 4116: 4094: 4092: 4091: 4086: 4084: 4083: 4079: 4069: 4049: 4042: 4037: 4036: 4010: 4008: 4004: 3995: 3991: 3982: 3962: 3960: 3959: 3954: 3951: 3946: 3945: 3931: 3926: 3925: 3912: 3911: 3892: 3890: 3889: 3884: 3882: 3881: 3877: 3867: 3847: 3840: 3835: 3834: 3811: 3809: 3805: 3796: 3792: 3783: 3751: 3749: 3748: 3743: 3740: 3735: 3734: 3733: 3732: 3726: 3711: 3706: 3705: 3704: 3703: 3697: 3683: 3682: 3655: 3653: 3652: 3647: 3645: 3644: 3628: 3623: 3622: 3605: 3600: 3599: 3583: 3582: 3560: 3558: 3557: 3552: 3550: 3549: 3542: 3537: 3536: 3510: 3508: 3504: 3495: 3491: 3482: 3458: 3456: 3455: 3450: 3447: 3442: 3423: 3418: 3403: 3402: 3380: 3378: 3377: 3372: 3370: 3369: 3357: 3352: 3351: 3326: 3324: 3323: 3318: 3316: 3315: 3300: 3295: 3294: 3273: 3272: 3078: 3076: 3075: 3070: 3068: 3067: 3066: 3035: 3034: 3002:transition state 2959: 2957: 2956: 2951: 2949: 2948: 2933: 2932: 2920: 2919: 2917: 2909: 2908: 2907: 2891: 2885: 2884: 2879: 2878: 2877: 2864: 2858: 2853: 2849: 2848: 2845: 2838: 2809: 2807: 2806: 2801: 2799: 2798: 2796: 2788: 2787: 2786: 2770: 2764: 2763: 2758: 2757: 2756: 2743: 2737: 2732: 2728: 2727: 2724: 2717: 2676: 2674: 2673: 2668: 2666: 2665: 2664: 2651: 2646: 2642: 2641: 2638: 2631: 2623: 2622: 2620: 2612: 2611: 2610: 2594: 2588: 2583: 2579: 2578: 2575: 2568: 2560: 2559: 2550: 2549: 2512: 2510: 2509: 2504: 2502: 2501: 2499: 2491: 2490: 2489: 2473: 2464: 2463: 2462: 2442: 2440: 2439: 2434: 2432: 2431: 2430: 2417: 2415: 2407: 2403: 2402: 2399: 2392: 2387: 2386: 2359: 2357: 2356: 2351: 2340: 2339: 2316: 2314: 2313: 2308: 2296: 2294: 2293: 2288: 2268: 2266: 2265: 2260: 2258: 2257: 2248: 2247: 2214: 2212: 2211: 2206: 2201: 2198: 2190: 2187: 2173: 2170: 2162: 2159: 2154: 2153: 2144: 2143: 2131: 2130: 2121: 2118: 2113: 2112: 2100: 2098: 2090: 2086: 2083: 2074: 2058: 2056: 2055: 2050: 2045: 2042: 2034: 2031: 2026: 2025: 2013: 2012: 2003: 2000: 1977: 1975: 1974: 1969: 1967: 1965: 1964: 1958: 1953: 1947: 1941: 1940: 1935: 1929: 1923: 1918: 1917: 1863: 1861: 1860: 1855: 1853: 1852: 1849: 1844: 1843: 1842: 1837: 1831: 1824: 1822: 1820: 1819: 1812: 1804: 1803: 1801: 1794: 1786: 1784: 1781: 1776: 1773: 1701: 1699: 1698: 1693: 1688: 1687: 1684: 1671: 1669: 1668: 1663: 1661: 1660: 1644: 1642: 1641: 1636: 1634: 1633: 1617: 1615: 1614: 1609: 1597: 1595: 1594: 1589: 1587: 1586: 1570: 1568: 1567: 1562: 1560: 1559: 1540: 1538: 1537: 1532: 1530: 1526: 1525: 1523: 1519: 1518: 1515: 1508: 1507: 1506: 1494: 1493: 1483: 1467: 1465: 1454: 1453: 1452: 1443: 1442: 1432: 1427: 1426: 1311: 1309: 1308: 1303: 1267: 1265: 1264: 1259: 1256: 1255: 1235: 1233: 1232: 1227: 1225: 1221: 1219: 1211: 1210: 1209: 1196: 1184: 1180: 1179: 1178: 1177: 1175: 1171: 1170: 1167: 1160: 1152: 1131: 1126: 1122: 1121: 1120: 1109: 1104: 1103: 1081: 1079: 1078: 1073: 1071: 1070: 1067: 1062: 1059: 1057: 1054: 1044: 1043: 1023: 962: 960: 959: 954: 952: 950: 949: 948: 935: 921: 916: 914: 906: 892: 868:Ludwig Boltzmann 833:Collision theory 825:collision theory 803: 801: 800: 795: 793: 789: 787: 779: 778: 777: 768: 767: 754: 742: 738: 733: 732: 731: 722: 721: 711: 679: 677: 676: 671: 669: 665: 663: 655: 654: 653: 644: 643: 630: 555: 553: 552: 547: 545: 544: 537: 532: 531: 489: 487: 486: 481: 479: 477: 476: 475: 462: 454: 449: 447: 439: 425: 412:Svante Arrhenius 378: 376: 375: 370: 368: 366: 365: 364: 351: 343: 338: 336: 328: 314: 302: 300: 299: 294: 292: 291: 288: 286: 284: 282: 281: 274: 266: 265: 263: 256: 248: 246: 243: 111:of activation (Δ 95:), the standard 91:, also written Δ 87:of activation (Δ 73:transition state 5892: 5891: 5887: 5886: 5885: 5883: 5882: 5881: 5862: 5861: 5860: 5855: 5841:Eyring equation 5782: 5753:Stereochemistry 5716: 5702:Solvent effects 5690: 5646: 5610: 5591: 5581: 5562: 5557: 5523: 5519: 5500: 5496: 5486: 5476: 5466: 5456: 5437: 5431: 5394: 5338: 5333: 5332: 5289: 5285: 5256:(5194): 90–93. 5246: 5242: 5219: 5215: 5180: 5176: 5131: 5127: 5116: 5112: 5081: 5077: 5038: 5034: 5027: 5013: 5009: 4962: 4958: 4943: 4926: 4922: 4907: 4889: 4885: 4870: 4856: 4852: 4845: 4831: 4827: 4814: 4812: 4800: 4794: 4790: 4783: 4769: 4765: 4756: 4752: 4743: 4741: 4732: 4731: 4727: 4716: 4712: 4663: 4659: 4640: 4636: 4607:(15): 635–667. 4593: 4589: 4582: 4568: 4564: 4553: 4546: 4531: 4527: 4504: 4500: 4492: 4490: 4464: 4460: 4437: 4433: 4408: 4404: 4399: 4377: 4368: 4332: 4327: 4315: 4303: 4294: 4286: 4277: 4265: 4242: 4207: 4196: 4158: 4152: 4151: 4135: 4129: 4128: 4112: 4108: 4100: 4097: 4096: 4065: 4052: 4038: 4032: 4028: 4018: 4014: 4000: 3996: 3987: 3983: 3981: 3979: 3976: 3975: 3947: 3941: 3940: 3927: 3921: 3920: 3907: 3903: 3898: 3895: 3894: 3863: 3850: 3836: 3830: 3826: 3819: 3815: 3801: 3797: 3788: 3784: 3782: 3780: 3777: 3776: 3759: 3755: 3736: 3728: 3727: 3722: 3721: 3720: 3707: 3699: 3698: 3693: 3692: 3691: 3678: 3674: 3669: 3666: 3665: 3640: 3636: 3624: 3618: 3617: 3601: 3595: 3594: 3578: 3574: 3566: 3563: 3562: 3538: 3532: 3528: 3518: 3514: 3500: 3496: 3487: 3483: 3481: 3479: 3476: 3475: 3443: 3435: 3419: 3414: 3398: 3394: 3389: 3386: 3385: 3362: 3358: 3353: 3347: 3343: 3335: 3332: 3331: 3311: 3307: 3296: 3290: 3286: 3268: 3264: 3259: 3256: 3255: 3218: 3192: 3162: 3139: 3124: 3117: 3059: 3058: 3054: 3030: 3026: 3021: 3018: 3017: 2978: 2938: 2934: 2928: 2924: 2910: 2903: 2899: 2892: 2890: 2886: 2873: 2869: 2865: 2863: 2859: 2844: 2840: 2839: 2837: 2826: 2823: 2822: 2789: 2782: 2778: 2771: 2769: 2765: 2752: 2748: 2744: 2742: 2738: 2723: 2719: 2718: 2716: 2705: 2702: 2701: 2657: 2656: 2652: 2637: 2633: 2632: 2630: 2613: 2606: 2602: 2595: 2593: 2589: 2574: 2570: 2569: 2567: 2555: 2551: 2545: 2541: 2533: 2530: 2529: 2492: 2485: 2481: 2474: 2472: 2468: 2455: 2454: 2450: 2448: 2445: 2444: 2423: 2422: 2418: 2408: 2398: 2394: 2393: 2391: 2382: 2378: 2376: 2373: 2372: 2335: 2331: 2329: 2326: 2325: 2302: 2299: 2298: 2282: 2279: 2278: 2253: 2249: 2243: 2239: 2231: 2228: 2227: 2197: 2186: 2169: 2158: 2149: 2145: 2139: 2135: 2126: 2122: 2117: 2108: 2104: 2091: 2082: 2075: 2073: 2071: 2068: 2067: 2041: 2030: 2021: 2017: 2008: 2004: 1999: 1994: 1991: 1990: 1954: 1943: 1942: 1936: 1925: 1924: 1922: 1913: 1909: 1907: 1904: 1903: 1890: 1848: 1838: 1827: 1826: 1825: 1815: 1808: 1807: 1805: 1797: 1790: 1788: 1787: 1785: 1780: 1772: 1771: 1769: 1766: 1765: 1759: 1745: 1731: 1711: 1683: 1679: 1677: 1674: 1673: 1656: 1652: 1650: 1647: 1646: 1629: 1625: 1623: 1620: 1619: 1603: 1600: 1599: 1582: 1578: 1576: 1573: 1572: 1555: 1551: 1549: 1546: 1545: 1514: 1510: 1509: 1502: 1498: 1489: 1485: 1484: 1482: 1478: 1474: 1455: 1448: 1444: 1438: 1434: 1433: 1431: 1416: 1412: 1410: 1407: 1406: 1396:Hendrik Kramers 1392: 1373: 1369: 1360:Michael Polanyi 1345: 1323: 1297: 1294: 1293: 1285:Planck constant 1274: 1251: 1247: 1244: 1241: 1240: 1212: 1205: 1201: 1197: 1195: 1191: 1166: 1162: 1161: 1153: 1151: 1147: 1143: 1136: 1132: 1116: 1115: 1111: 1110: 1108: 1099: 1095: 1093: 1090: 1089: 1066: 1058: 1047: 1036: 1032: 1026: 1022: 1020: 1017: 1016: 1011: 944: 940: 936: 922: 920: 907: 893: 891: 889: 886: 885: 857: 848: 844: 827:, based on the 815:In early 1900, 813: 780: 773: 769: 763: 759: 755: 753: 749: 727: 723: 717: 713: 712: 710: 706: 692: 689: 688: 656: 649: 645: 639: 635: 631: 629: 625: 611: 608: 607: 595: 584: 573: 533: 527: 523: 519: 515: 504: 501: 500: 471: 467: 463: 455: 453: 440: 426: 424: 422: 419: 418: 360: 356: 352: 344: 342: 329: 315: 313: 311: 308: 307: 287: 277: 270: 269: 267: 259: 252: 250: 249: 247: 242: 241: 239: 236: 235: 221: 213: 182: 174:Eyring equation 171: 144:Michael Polanyi 55:) explains the 30: 17: 12: 11: 5: 5890: 5880: 5879: 5874: 5857: 5856: 5854: 5853: 5848: 5843: 5838: 5833: 5828: 5823: 5818: 5813: 5808: 5803: 5798: 5792: 5790: 5784: 5783: 5781: 5780: 5775: 5770: 5765: 5760: 5755: 5750: 5745: 5740: 5735: 5730: 5724: 5722: 5721:Related topics 5718: 5717: 5715: 5714: 5709: 5704: 5698: 5696: 5695:Medium effects 5692: 5691: 5689: 5688: 5683: 5678: 5673: 5668: 5663: 5657: 5655: 5648: 5647: 5645: 5644: 5639: 5634: 5629: 5624: 5618: 5616: 5612: 5611: 5609: 5608: 5603: 5598: 5593: 5589: 5583: 5579: 5572: 5570: 5564: 5563: 5561: 5560: 5555: 5551: 5545: 5540: 5533: 5531: 5525: 5524: 5522: 5521: 5517: 5510: 5508: 5502: 5501: 5499: 5498: 5494: 5488: 5484: 5478: 5474: 5468: 5464: 5458: 5454: 5447: 5445: 5439: 5438: 5430: 5429: 5422: 5415: 5407: 5401: 5400: 5393: 5392:External links 5390: 5389: 5388: 5381: 5374: 5367: 5360: 5353: 5346: 5337: 5334: 5331: 5330: 5303:(2): 551–581. 5283: 5240: 5213: 5174: 5125: 5110: 5091:(2): 107–115. 5075: 5032: 5025: 5007: 4956: 4941: 4920: 4905: 4883: 4868: 4850: 4843: 4825: 4788: 4781: 4763: 4750: 4725: 4710: 4657: 4634: 4587: 4580: 4562: 4559:. McGraw-Hill. 4544: 4525: 4498: 4458: 4431: 4401: 4400: 4398: 4395: 4394: 4393: 4388: 4383: 4376: 4373: 4367: 4364: 4331: 4328: 4326: 4323: 4314: 4311: 4302: 4299: 4293: 4290: 4285: 4282: 4276: 4273: 4264: 4261: 4241: 4238: 4205: 4194: 4176: 4175: 4161: 4155: 4150: 4146: 4143: 4138: 4132: 4127: 4123: 4120: 4115: 4111: 4107: 4104: 4082: 4078: 4075: 4072: 4068: 4064: 4061: 4058: 4055: 4048: 4045: 4041: 4035: 4031: 4027: 4024: 4021: 4017: 4013: 4007: 4003: 3999: 3994: 3990: 3986: 3965: 3964: 3950: 3944: 3939: 3935: 3930: 3924: 3919: 3915: 3910: 3906: 3902: 3880: 3876: 3873: 3870: 3866: 3862: 3859: 3856: 3853: 3846: 3843: 3839: 3833: 3829: 3825: 3822: 3818: 3814: 3808: 3804: 3800: 3795: 3791: 3787: 3757: 3753: 3739: 3731: 3725: 3719: 3715: 3710: 3702: 3696: 3690: 3686: 3681: 3677: 3673: 3658: 3657: 3643: 3639: 3635: 3632: 3627: 3621: 3616: 3612: 3609: 3604: 3598: 3593: 3589: 3586: 3581: 3577: 3573: 3570: 3548: 3545: 3541: 3535: 3531: 3527: 3524: 3521: 3517: 3513: 3507: 3503: 3499: 3494: 3490: 3486: 3461: 3460: 3446: 3441: 3438: 3434: 3430: 3427: 3422: 3417: 3413: 3409: 3406: 3401: 3397: 3393: 3368: 3365: 3361: 3356: 3350: 3346: 3342: 3339: 3314: 3310: 3306: 3303: 3299: 3293: 3289: 3285: 3282: 3279: 3276: 3271: 3267: 3263: 3240:standard state 3216: 3190: 3160: 3137: 3122: 3115: 3065: 3062: 3057: 3053: 3050: 3047: 3044: 3041: 3038: 3033: 3029: 3025: 2977: 2974: 2962: 2961: 2947: 2944: 2941: 2937: 2931: 2927: 2923: 2916: 2913: 2906: 2902: 2898: 2895: 2889: 2882: 2876: 2872: 2868: 2862: 2856: 2852: 2843: 2836: 2833: 2830: 2812: 2811: 2795: 2792: 2785: 2781: 2777: 2774: 2768: 2761: 2755: 2751: 2747: 2741: 2735: 2731: 2722: 2715: 2712: 2709: 2679: 2678: 2663: 2660: 2655: 2649: 2645: 2636: 2629: 2626: 2619: 2616: 2609: 2605: 2601: 2598: 2592: 2586: 2582: 2573: 2566: 2563: 2558: 2554: 2548: 2544: 2540: 2537: 2515: 2514: 2498: 2495: 2488: 2484: 2480: 2477: 2471: 2467: 2461: 2458: 2453: 2429: 2426: 2421: 2414: 2411: 2406: 2397: 2390: 2385: 2381: 2362: 2361: 2349: 2346: 2343: 2338: 2334: 2306: 2286: 2271: 2270: 2256: 2252: 2246: 2242: 2238: 2235: 2217: 2216: 2204: 2196: 2193: 2185: 2182: 2179: 2176: 2168: 2165: 2157: 2152: 2148: 2142: 2138: 2134: 2129: 2125: 2116: 2111: 2107: 2103: 2097: 2094: 2089: 2081: 2078: 2061: 2060: 2048: 2040: 2037: 2029: 2024: 2020: 2016: 2011: 2007: 1998: 1980: 1979: 1963: 1957: 1952: 1946: 1939: 1934: 1928: 1921: 1916: 1912: 1889: 1886: 1865: 1864: 1847: 1841: 1836: 1830: 1818: 1811: 1800: 1793: 1779: 1758: 1755: 1743: 1729: 1710: 1707: 1691: 1682: 1659: 1655: 1632: 1628: 1607: 1585: 1581: 1558: 1554: 1542: 1541: 1529: 1522: 1513: 1505: 1501: 1497: 1492: 1488: 1481: 1477: 1473: 1470: 1464: 1461: 1458: 1451: 1447: 1441: 1437: 1430: 1425: 1422: 1419: 1415: 1391: 1388: 1371: 1367: 1344: 1341: 1321: 1301: 1272: 1254: 1250: 1237: 1236: 1224: 1218: 1215: 1208: 1204: 1200: 1194: 1190: 1187: 1183: 1174: 1165: 1159: 1156: 1150: 1146: 1142: 1139: 1135: 1129: 1125: 1119: 1114: 1107: 1102: 1098: 1083: 1082: 1065: 1053: 1050: 1042: 1039: 1035: 1030: 1009: 964: 963: 947: 943: 939: 934: 931: 928: 925: 919: 913: 910: 905: 902: 899: 896: 856: 853: 846: 842: 812: 809: 805: 804: 792: 786: 783: 776: 772: 766: 762: 758: 752: 748: 745: 741: 736: 730: 726: 720: 716: 709: 705: 702: 699: 696: 681: 680: 668: 662: 659: 652: 648: 642: 638: 634: 628: 624: 621: 618: 615: 593: 582: 571: 557: 556: 543: 540: 536: 530: 526: 522: 518: 514: 511: 508: 491: 490: 474: 470: 466: 461: 458: 452: 446: 443: 438: 435: 432: 429: 380: 379: 363: 359: 355: 350: 347: 341: 335: 332: 327: 324: 321: 318: 304: 303: 280: 273: 262: 255: 220: 217: 212: 209: 208: 207: 204: 201: 181: 178: 169: 71:and activated 59:of elementary 57:reaction rates 28: 15: 9: 6: 4: 3: 2: 5889: 5878: 5875: 5873: 5870: 5869: 5867: 5852: 5849: 5847: 5844: 5842: 5839: 5837: 5834: 5832: 5829: 5827: 5824: 5822: 5819: 5817: 5814: 5812: 5809: 5807: 5804: 5802: 5799: 5797: 5796:Rate equation 5794: 5793: 5791: 5789: 5785: 5779: 5776: 5774: 5771: 5769: 5768:Arrow pushing 5766: 5764: 5761: 5759: 5756: 5754: 5751: 5749: 5746: 5744: 5741: 5739: 5736: 5734: 5731: 5729: 5726: 5725: 5723: 5719: 5713: 5710: 5708: 5705: 5703: 5700: 5699: 5697: 5693: 5687: 5684: 5682: 5679: 5677: 5676:Marcus theory 5674: 5672: 5669: 5667: 5664: 5662: 5659: 5658: 5656: 5653: 5649: 5643: 5640: 5638: 5635: 5633: 5630: 5628: 5627:Isomerization 5625: 5623: 5620: 5619: 5617: 5613: 5607: 5604: 5602: 5601:Cycloaddition 5599: 5597: 5594: 5587: 5584: 5577: 5574: 5573: 5571: 5569: 5565: 5559: 5552: 5549: 5546: 5544: 5541: 5538: 5535: 5534: 5532: 5530: 5526: 5515: 5512: 5511: 5509: 5507: 5503: 5492: 5489: 5482: 5479: 5472: 5469: 5462: 5459: 5452: 5449: 5448: 5446: 5444: 5440: 5436: 5428: 5423: 5421: 5416: 5414: 5409: 5408: 5405: 5399: 5396: 5395: 5386: 5382: 5379: 5375: 5372: 5368: 5365: 5361: 5358: 5354: 5351: 5347: 5344: 5340: 5339: 5326: 5322: 5318: 5314: 5310: 5306: 5302: 5298: 5294: 5287: 5279: 5275: 5271: 5267: 5263: 5259: 5255: 5251: 5244: 5236: 5232: 5228: 5224: 5217: 5209: 5205: 5201: 5197: 5193: 5189: 5185: 5178: 5170: 5166: 5161: 5156: 5152: 5148: 5144: 5140: 5136: 5129: 5121: 5114: 5106: 5102: 5098: 5094: 5090: 5086: 5085:J. Chem. Phys 5079: 5071: 5067: 5063: 5059: 5055: 5051: 5047: 5043: 5036: 5028: 5026:9781891389313 5022: 5018: 5011: 5003: 4999: 4995: 4991: 4987: 4983: 4979: 4975: 4971: 4967: 4960: 4952: 4948: 4944: 4938: 4934: 4930: 4924: 4916: 4912: 4908: 4902: 4897: 4896: 4887: 4879: 4875: 4871: 4865: 4861: 4854: 4846: 4844:0-13-737123-3 4840: 4836: 4829: 4822: 4810: 4806: 4799: 4792: 4784: 4782:0-13-737123-3 4778: 4774: 4767: 4760: 4754: 4739: 4735: 4729: 4721: 4714: 4706: 4702: 4698: 4694: 4690: 4686: 4681: 4676: 4672: 4668: 4661: 4655: 4654:0-06-043862-2 4651: 4647: 4643: 4638: 4630: 4626: 4622: 4618: 4614: 4610: 4606: 4602: 4598: 4591: 4583: 4577: 4573: 4566: 4558: 4551: 4549: 4540: 4536: 4529: 4521: 4517: 4513: 4509: 4508:J. Phys. Chem 4502: 4489: 4485: 4481: 4477: 4473: 4469: 4462: 4454: 4450: 4446: 4442: 4441:J. Phys. Chem 4435: 4429: 4425: 4421: 4417: 4416: 4411: 4406: 4402: 4392: 4391:Marcus theory 4389: 4387: 4384: 4382: 4379: 4378: 4372: 4363: 4359: 4355: 4351: 4349: 4344: 4341: 4340:Linus Pauling 4336: 4322: 4320: 4310: 4308: 4298: 4289: 4281: 4272: 4270: 4260: 4257: 4253: 4251: 4246: 4237: 4235: 4231: 4227: 4223: 4219: 4215: 4211: 4204: 4200: 4193: 4189: 4185: 4181: 4159: 4148: 4141: 4136: 4125: 4118: 4113: 4109: 4066: 4046: 4039: 4033: 4029: 4019: 4015: 4011: 3974: 3973: 3972: 3970: 3948: 3937: 3933: 3928: 3917: 3913: 3908: 3904: 3864: 3844: 3837: 3831: 3827: 3820: 3816: 3812: 3775: 3774: 3773: 3770: 3766: 3761: 3737: 3717: 3713: 3708: 3688: 3684: 3679: 3675: 3663: 3641: 3637: 3630: 3625: 3614: 3607: 3602: 3591: 3584: 3579: 3575: 3546: 3543: 3539: 3533: 3529: 3519: 3515: 3511: 3474: 3473: 3472: 3470: 3466: 3444: 3439: 3436: 3432: 3425: 3420: 3415: 3411: 3404: 3399: 3395: 3384: 3383: 3382: 3366: 3363: 3359: 3354: 3348: 3344: 3340: 3337: 3328: 3312: 3304: 3297: 3291: 3287: 3274: 3269: 3265: 3253: 3248: 3246: 3241: 3237: 3233: 3229: 3225: 3221: 3215: 3211: 3207: 3203: 3199: 3195: 3189: 3185: 3181: 3177: 3172: 3170: 3166: 3159: 3155: 3151: 3147: 3143: 3136: 3132: 3128: 3121: 3114: 3110: 3104: 3102: 3098: 3094: 3090: 3086: 3082: 3063: 3060: 3055: 3051: 3048: 3045: 3042: 3039: 3036: 3031: 3027: 3015: 3011: 3007: 3003: 2999: 2995: 2991: 2987: 2983: 2973: 2971: 2967: 2945: 2942: 2939: 2929: 2925: 2914: 2911: 2904: 2900: 2893: 2887: 2880: 2874: 2870: 2860: 2854: 2850: 2841: 2834: 2831: 2828: 2821: 2820: 2819: 2817: 2793: 2790: 2783: 2779: 2772: 2766: 2759: 2753: 2749: 2739: 2733: 2729: 2720: 2713: 2710: 2707: 2700: 2699: 2698: 2696: 2692: 2688: 2684: 2661: 2658: 2653: 2647: 2643: 2634: 2627: 2624: 2617: 2614: 2607: 2603: 2596: 2590: 2584: 2580: 2571: 2564: 2561: 2556: 2552: 2546: 2542: 2538: 2535: 2528: 2527: 2526: 2524: 2520: 2496: 2493: 2486: 2482: 2475: 2469: 2465: 2459: 2456: 2451: 2427: 2424: 2419: 2412: 2409: 2404: 2395: 2388: 2383: 2379: 2371: 2370: 2369: 2367: 2347: 2344: 2341: 2336: 2332: 2324: 2323: 2322: 2320: 2304: 2284: 2276: 2254: 2250: 2244: 2240: 2236: 2233: 2226: 2225: 2224: 2222: 2180: 2177: 2150: 2146: 2140: 2136: 2132: 2127: 2109: 2105: 2101: 2095: 2092: 2076: 2066: 2065: 2064: 2022: 2018: 2014: 2009: 1989: 1988: 1987: 1985: 1937: 1919: 1914: 1910: 1902: 1901: 1900: 1898: 1895: 1885: 1881: 1877: 1869: 1839: 1809: 1798: 1777: 1764: 1763: 1762: 1754: 1752: 1748: 1742: 1738: 1734: 1728: 1724: 1720: 1716: 1706: 1703: 1689: 1680: 1657: 1653: 1630: 1626: 1605: 1583: 1579: 1556: 1552: 1527: 1520: 1511: 1503: 1499: 1495: 1490: 1486: 1479: 1475: 1471: 1468: 1462: 1459: 1456: 1449: 1445: 1439: 1435: 1428: 1423: 1417: 1413: 1405: 1404: 1403: 1400: 1397: 1387: 1383: 1380: 1379:Eugene Wigner 1375: 1364: 1361: 1357: 1352: 1350: 1349:René Marcelin 1340: 1337: 1332: 1330: 1326: 1320: 1316: 1312: 1299: 1290: 1286: 1282: 1278: 1271: 1252: 1248: 1222: 1216: 1213: 1206: 1202: 1198: 1192: 1188: 1185: 1181: 1172: 1163: 1157: 1154: 1148: 1144: 1140: 1137: 1133: 1127: 1123: 1112: 1105: 1100: 1096: 1088: 1087: 1086: 1063: 1051: 1048: 1040: 1037: 1033: 1028: 1015: 1014: 1013: 1008: 1004: 1000: 996: 992: 986: 984: 980: 979:René Marcelin 975: 973: 969: 945: 941: 937: 932: 929: 926: 923: 917: 911: 908: 903: 900: 897: 894: 884: 883: 882: 880: 875: 873: 869: 865: 861: 852: 849: 839: 836: 834: 830: 826: 822: 821:William Lewis 818: 808: 790: 784: 781: 774: 770: 764: 756: 750: 746: 743: 739: 734: 728: 724: 718: 707: 703: 700: 697: 694: 687: 686: 685: 666: 660: 657: 650: 646: 640: 632: 626: 622: 619: 616: 613: 606: 605: 604: 602: 601:René Marcelin 597: 592: 588: 581: 577: 570: 566: 562: 541: 538: 534: 528: 524: 520: 516: 512: 509: 506: 499: 498: 497: 496: 472: 468: 464: 459: 450: 444: 441: 436: 433: 430: 427: 417: 416: 415: 413: 409: 405: 401: 397: 393: 389: 385: 361: 357: 353: 348: 339: 333: 330: 325: 322: 319: 316: 306: 305: 271: 260: 234: 233: 232: 230: 227:proposed the 226: 216: 205: 202: 199: 195: 191: 187: 186: 185: 177: 175: 168: 164: 160: 156: 151: 149: 145: 141: 137: 133: 128: 126: 122: 118: 114: 110: 106: 102: 98: 94: 90: 86: 82: 76: 74: 70: 66: 62: 58: 54: 50: 46: 38: 34: 26: 21: 5820: 5748:Molecularity 5384: 5377: 5370: 5363: 5356: 5349: 5342: 5300: 5296: 5286: 5253: 5249: 5243: 5229:(1): 50–58. 5226: 5222: 5216: 5191: 5187: 5177: 5142: 5138: 5128: 5119: 5113: 5088: 5084: 5078: 5045: 5041: 5035: 5016: 5010: 4969: 4965: 4959: 4932: 4923: 4894: 4886: 4859: 4853: 4834: 4828: 4820: 4813:. Retrieved 4808: 4804: 4791: 4772: 4766: 4758: 4753: 4742:. Retrieved 4740:. 2021-01-17 4737: 4728: 4719: 4713: 4673:(4): 45–51. 4670: 4666: 4660: 4645: 4637: 4604: 4600: 4590: 4571: 4565: 4556: 4538: 4534: 4528: 4514:(15): 2657. 4511: 4507: 4501: 4491:, retrieved 4471: 4461: 4444: 4440: 4434: 4413: 4405: 4369: 4360: 4356: 4352: 4345: 4333: 4325:Applications 4316: 4304: 4295: 4287: 4278: 4266: 4258: 4254: 4247: 4243: 4229: 4225: 4221: 4217: 4213: 4202: 4198: 4191: 4187: 4183: 4179: 4177: 3966: 3768: 3762: 3661: 3659: 3462: 3329: 3251: 3249: 3244: 3235: 3231: 3227: 3223: 3219: 3213: 3209: 3205: 3201: 3197: 3193: 3187: 3183: 3179: 3175: 3173: 3168: 3164: 3157: 3153: 3149: 3145: 3141: 3134: 3130: 3126: 3119: 3112: 3108: 3105: 3100: 3096: 3092: 3088: 3084: 3080: 3013: 3009: 2997: 2993: 2992:, and even Δ 2989: 2985: 2981: 2979: 2969: 2965: 2963: 2815: 2813: 2694: 2690: 2686: 2682: 2680: 2522: 2518: 2516: 2365: 2363: 2318: 2274: 2272: 2223:is given by 2220: 2218: 2062: 1981: 1896: 1891: 1882: 1878: 1874: 1760: 1750: 1746: 1740: 1736: 1732: 1726: 1712: 1704: 1543: 1401: 1393: 1384: 1376: 1365: 1356:Henry Eyring 1353: 1346: 1333: 1328: 1324: 1318: 1292: 1288: 1280: 1269: 1238: 1084: 1006: 987: 976: 971: 967: 965: 876: 858: 850: 840: 837: 814: 806: 682: 598: 590: 586: 579: 575: 568: 564: 560: 558: 492: 403: 395: 387: 383: 381: 222: 214: 194:saddle point 183: 166: 162: 152: 132:Henry Eyring 129: 124: 120: 116: 112: 109:Gibbs energy 104: 100: 92: 88: 77: 52: 48: 42: 33:bromomethane 5707:Cage effect 5642:RRKM theory 5558:elimination 5194:: 159–189. 4321:formalism. 4240:Limitations 3969:selectivity 3226:) exp(2 + Δ 3200:) exp(1 + Δ 983:phase space 211:Development 75:complexes. 5866:Categories 5336:References 4942:0471016705 4906:0060440848 4869:0471893692 4744:2023-06-11 4680:1712.01686 4581:1891389319 4493:2024-05-07 4210:chair flip 817:Max Trautz 134:, then at 5758:Catalysis 5654:reactions 5325:211836011 5070:0002-7863 5062:1520-5126 4994:1433-7851 4986:1521-3773 4629:122909496 4488:0014-7672 4222:cis/trans 4201:10 s and 4160:‡ 4145:Δ 4142:− 4137:‡ 4122:Δ 4114:‡ 4106:Δ 4103:Δ 4034:‡ 4026:Δ 4023:Δ 4020:− 3949:∘ 3934:− 3929:∘ 3909:∘ 3901:Δ 3832:∘ 3824:Δ 3821:− 3738:∘ 3714:− 3709:∘ 3680:∘ 3672:Δ 3642:∘ 3634:Δ 3626:‡ 3611:Δ 3608:− 3603:‡ 3588:Δ 3580:‡ 3572:Δ 3569:Δ 3534:‡ 3526:Δ 3523:Δ 3520:− 3445:‡ 3437:− 3429:Δ 3426:− 3421:‡ 3408:Δ 3400:∘ 3392:Δ 3364:− 3302:∂ 3292:‡ 3284:Δ 3281:∂ 3270:‡ 3262:Δ 3152:, where Δ 3061:‡ 3052:⁡ 3040:− 3032:‡ 3024:Δ 2943:− 2930:⊖ 2905:‡ 2897:Δ 2894:− 2875:‡ 2867:Δ 2835:κ 2784:‡ 2776:Δ 2773:− 2754:‡ 2746:Δ 2714:κ 2659:‡ 2628:κ 2608:‡ 2600:Δ 2597:− 2565:κ 2557:‡ 2547:‡ 2487:‡ 2479:Δ 2476:− 2457:‡ 2425:‡ 2413:ν 2384:‡ 2348:ν 2345:κ 2337:‡ 2305:κ 2285:ν 2255:‡ 2245:‡ 2151:‡ 2141:‡ 2128:‡ 2110:‡ 2023:‡ 2010:‡ 1938:‡ 1915:‡ 1846:⟶ 1840:‡ 1817:⇀ 1810:− 1799:− 1792:↽ 1606:γ 1580:ω 1553:ω 1496:− 1480:− 1472:⁡ 1463:γ 1460:π 1446:ω 1436:ω 1421:→ 1354:In 1931, 1300:ν 1253:⊖ 1207:⊖ 1199:− 1189:⁡ 1158:ν 1149:− 1141:− 1038:− 927:− 901:⁡ 775:⊖ 765:‡ 761:Δ 757:− 747:⁡ 729:⊖ 719:‡ 715:Δ 704:⁡ 698:∝ 651:⊖ 641:‡ 637:Δ 633:− 623:⁡ 617:∝ 521:− 457:Δ 434:⁡ 346:Δ 323:⁡ 279:⇀ 272:− 261:− 254:↽ 223:In 1884, 192:near the 138:, and by 69:reactants 45:chemistry 37:hydroxide 5235:18920436 5169:16873129 5002:29711290 4951:27642721 4931:(1994). 4915:14214254 4815:9 August 4705:67780897 4541:(3): 39. 4375:See also 3144:+ (1 − Δ 3064:′ 2662:′ 2460:′ 2428:′ 1982:So, the 1029:⇌ 997:applied 85:enthalpy 35:and the 5317:1606821 5278:7809611 5258:Bibcode 5250:Science 5196:Bibcode 5160:1647311 5093:Bibcode 4878:9894996 4685:Bibcode 4609:Bibcode 4212:has a Δ 3014:defined 1719:Polanyi 1283:is the 1275:is the 1001:to the 841:2HI → H 398:is the 390:is the 382:where Δ 146:of the 5433:Basic 5323:  5315:  5276:  5233:  5167:  5157:  5068:  5060:  5023:  5000:  4992:  4984:  4949:  4939:  4913:  4903:  4876:  4866:  4841:  4779:  4703:  4652:  4627:  4578:  4486:  4050:  3848:  3763:For a 3208:) (or 2964:where 2273:Here, 1715:Eyring 1544:where 1239:where 966:where 870:, and 559:where 402:, and 180:Theory 5661:Redox 5497:Acyl) 5321:S2CID 5058:eISSN 4982:eISSN 4801:(PDF) 4701:S2CID 4675:arXiv 4625:S2CID 4410:IUPAC 4397:Notes 4319:SCTST 3756:and S 3083:and Δ 3012:, is 1723:Evans 1366:H + H 196:of a 39:anion 5550:(E2) 5539:(E1) 5313:OSTI 5274:PMID 5231:PMID 5165:PMID 5066:ISSN 5021:ISBN 4998:PMID 4990:ISSN 4947:OCLC 4937:ISBN 4911:OCLC 4901:ISBN 4874:OCLC 4864:ISBN 4839:ISBN 4817:2019 4777:ISBN 4650:ISBN 4576:ISBN 4484:ISSN 4047:1.36 3845:1.36 2521:and 1721:and 1374:+ H 1358:and 970:and 819:and 589:and 578:and 142:and 115:or Δ 103:or Δ 5520:Ar) 5477:Ar) 5305:doi 5301:129 5266:doi 5254:267 5204:doi 5155:PMC 5147:doi 5143:361 5101:doi 5050:doi 5046:122 4974:doi 4693:doi 4617:doi 4605:364 4516:doi 4476:doi 4449:doi 4445:100 4424:doi 4422:". 4230:k ~ 4218:k ~ 4206:1/2 4199:k ~ 4195:1/2 4188:k ≈ 3212:= ( 3186:= ( 3171:) 3169:RT. 3167:+ 2 3163:= Δ 3140:= Δ 3125:= Δ 3091:= Δ 2988:, Δ 2984:, Δ 2685:= Δ 1469:exp 1370:→ H 1313:is 1186:exp 845:+ I 744:exp 701:exp 620:exp 406:is 123:; Δ 53:TST 43:In 5868:: 5588:(A 5578:(A 5516:(S 5493:(S 5487:i) 5483:(S 5473:(S 5467:2) 5463:(S 5457:1) 5453:(S 5319:. 5311:. 5299:. 5295:. 5272:. 5264:. 5252:. 5227:36 5225:. 5202:. 5192:35 5190:. 5186:. 5163:. 5153:. 5141:. 5137:. 5099:. 5087:. 5064:. 5056:. 5044:. 4996:. 4988:. 4980:. 4970:37 4968:. 4945:. 4909:. 4872:. 4819:. 4809:53 4807:. 4803:. 4736:. 4699:. 4691:. 4683:. 4671:10 4669:. 4644:, 4623:. 4615:. 4603:. 4599:. 4547:^ 4537:. 4512:87 4510:. 4482:, 4470:, 4443:. 4412:, 4309:. 4236:. 4174:). 4016:10 3963:). 3817:10 3769:RT 3656:). 3275::= 3150:RT 3131:RT 3129:+ 3095:– 3049:ln 2513:). 2466:=: 2119:AB 2001:AB 1930:AB 1832:AB 1717:, 1287:, 1279:, 1024:AB 1010:−1 898:ln 866:, 831:. 431:ln 320:ln 99:(Δ 47:, 27:(S 5592:) 5590:N 5582:) 5580:E 5556:i 5554:E 5518:E 5495:N 5485:N 5475:N 5465:N 5455:N 5426:e 5419:t 5412:v 5327:. 5307:: 5280:. 5268:: 5260:: 5237:. 5210:. 5206:: 5198:: 5171:. 5149:: 5107:. 5103:: 5095:: 5089:3 5072:. 5052:: 5029:. 5004:. 4976:: 4953:. 4917:. 4880:. 4847:. 4785:. 4747:. 4707:. 4695:: 4687:: 4677:: 4631:. 4619:: 4611:: 4584:. 4539:4 4522:. 4518:: 4478:: 4455:. 4451:: 4426:: 4226:G 4214:G 4203:t 4192:t 4184:G 4180:G 4154:B 4149:G 4131:A 4126:G 4119:= 4110:G 4095:( 4081:) 4077:l 4074:o 4071:m 4067:/ 4063:l 4060:a 4057:c 4054:k 4044:( 4040:/ 4030:G 4012:= 4006:] 4002:B 3998:[ 3993:] 3989:A 3985:[ 3943:B 3938:G 3923:A 3918:G 3914:= 3905:G 3893:( 3879:) 3875:l 3872:o 3869:m 3865:/ 3861:l 3858:a 3855:c 3852:k 3842:( 3838:/ 3828:G 3813:= 3807:] 3803:B 3799:[ 3794:] 3790:A 3786:[ 3758:B 3754:A 3730:B 3724:S 3718:G 3701:A 3695:S 3689:G 3685:= 3676:G 3662:G 3638:G 3631:+ 3620:B 3615:G 3597:A 3592:G 3585:= 3576:G 3561:( 3547:T 3544:R 3540:/ 3530:G 3516:e 3512:= 3506:] 3502:B 3498:[ 3493:] 3489:A 3485:[ 3459:. 3440:1 3433:G 3416:1 3412:G 3405:= 3396:G 3367:1 3360:k 3355:/ 3349:1 3345:k 3341:= 3338:K 3313:T 3309:) 3305:P 3298:/ 3288:G 3278:( 3266:V 3252:G 3245:S 3243:Δ 3236:S 3232:R 3230:/ 3228:S 3224:h 3222:/ 3220:T 3217:B 3214:k 3210:A 3206:R 3204:/ 3202:S 3198:h 3196:/ 3194:T 3191:B 3188:k 3184:A 3180:A 3176:S 3165:H 3161:a 3158:E 3154:n 3148:) 3146:n 3142:H 3138:a 3135:E 3127:H 3123:a 3120:E 3116:a 3113:E 3109:H 3101:S 3099:Δ 3097:T 3093:H 3089:G 3085:S 3081:H 3056:K 3046:T 3043:R 3037:= 3028:G 3010:G 2994:V 2990:S 2986:H 2982:G 2970:m 2966:c 2960:, 2946:m 2940:1 2936:) 2926:c 2922:( 2915:T 2912:R 2901:H 2888:e 2881:R 2871:S 2861:e 2855:h 2851:T 2846:B 2842:k 2832:= 2829:k 2816:c 2810:. 2794:T 2791:R 2780:H 2767:e 2760:R 2750:S 2740:e 2734:h 2730:T 2725:B 2721:k 2711:= 2708:k 2695:S 2693:Δ 2691:T 2689:– 2687:H 2683:G 2677:. 2654:K 2648:h 2644:T 2639:B 2635:k 2625:= 2618:T 2615:R 2604:G 2591:e 2585:h 2581:T 2576:B 2572:k 2562:= 2553:K 2543:k 2539:= 2536:k 2523:K 2519:k 2497:T 2494:R 2483:G 2470:e 2452:K 2443:( 2420:K 2410:h 2405:T 2400:B 2396:k 2389:= 2380:K 2366:K 2360:. 2342:= 2333:k 2319:k 2275:k 2269:. 2251:K 2241:k 2237:= 2234:k 2221:k 2215:, 2203:] 2199:B 2195:[ 2192:] 2188:A 2184:[ 2181:k 2178:= 2175:] 2171:B 2167:[ 2164:] 2160:A 2156:[ 2147:K 2137:k 2133:= 2124:] 2115:[ 2106:k 2102:= 2096:t 2093:d 2088:] 2084:P 2080:[ 2077:d 2059:. 2047:] 2043:B 2039:[ 2036:] 2032:A 2028:[ 2019:K 2015:= 2006:] 1997:[ 1978:. 1962:] 1959:B 1956:[ 1951:] 1948:A 1945:[ 1933:] 1927:[ 1920:= 1911:K 1897:K 1850:P 1835:] 1829:[ 1782:B 1778:+ 1774:A 1751:h 1749:/ 1747:T 1744:B 1741:k 1737:h 1735:/ 1733:T 1730:B 1727:k 1690:T 1685:B 1681:k 1658:A 1654:E 1631:H 1627:E 1584:H 1557:a 1528:) 1521:T 1516:B 1512:k 1504:A 1500:E 1491:H 1487:E 1476:( 1457:2 1450:H 1440:a 1429:= 1424:B 1418:A 1414:k 1372:2 1368:2 1329:h 1327:/ 1325:T 1322:B 1319:k 1289:T 1281:h 1273:B 1270:k 1249:E 1223:) 1217:T 1214:R 1203:E 1193:( 1182:) 1173:T 1168:B 1164:k 1155:h 1145:e 1138:1 1134:( 1128:h 1124:T 1118:B 1113:k 1106:= 1101:1 1097:k 1068:B 1064:+ 1060:A 1052:1 1049:k 1041:1 1034:k 1007:k 972:b 968:a 946:2 942:T 938:R 933:T 930:b 924:a 918:= 912:T 909:d 904:k 895:d 847:2 843:2 791:) 785:T 782:R 771:H 751:( 740:) 735:R 725:S 708:( 695:k 667:) 661:T 658:R 647:G 627:( 614:k 594:a 591:E 587:A 583:a 580:E 576:A 572:a 569:E 565:A 561:k 542:T 539:R 535:/ 529:a 525:E 517:e 513:A 510:= 507:k 473:2 469:T 465:R 460:E 451:= 445:T 442:d 437:k 428:d 404:T 396:R 388:K 384:U 362:2 358:T 354:R 349:U 340:= 334:T 331:d 326:K 317:d 289:B 244:A 170:a 167:E 163:A 125:H 117:G 113:G 105:S 101:S 93:H 89:H 51:( 29:N

Index


bimolecular nucleophilic substitution
bromomethane
hydroxide
chemistry
reaction rates
chemical reactions
chemical equilibrium
reactants
transition state
potential energy surfaces
enthalpy
entropy of activation
Gibbs energy
Henry Eyring
Princeton University
Meredith Gwynne Evans
Michael Polanyi
University of Manchester
Arrhenius equation
reactive intermediates
Eyring equation
activated complexes
saddle point
potential energy surface
Jacobus van 't Hoff
Van 't Hoff equation
equilibrium constant
universal gas constant
thermodynamic temperature

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.