Knowledge

Tornadogenesis

Source đź“ť

40: 132:
from a smaller and smaller area on the ground. As the updraft intensifies, it creates an area of low pressure at the surface. This pulls the focused mesocyclone down, in the form of a visible condensation funnel. As the funnel descends, the RFD also reaches the ground, creating a gust front that can cause severe damage a good distance from the tornado. Usually, the funnel cloud begins causing damage on the ground (becoming a tornado) within a few minutes of the RFD reaching the ground.
52: 20: 92:. There are various ways this may come about and thus various forms and sub-forms of tornadoes. Although each tornado is unique, most kinds of tornadoes go through a life cycle of formation, maturation, and dissipation. The process by which a tornado dissipates or decays, occasionally conjured as tornadolysis, is of particular interest for study as is tornadogenesis, longevity, and 142:
Many envision a top-down process in which a mid-level mesocyclone first forms and couples with a low-level mesocyclone or tornadocyclone, with a vortex then forming below the cloud base and becoming a concentrated vortex due to convergence upon reaching the surface. However, observation history and
203:
Landspouts are tornadoes that do not form from mesocyclones. They are similar in appearance and structure to fair-weather waterspouts, except that they form over land instead of water. They are thought to form similarly to weaker waterspouts in that they form during the growth stage of convective
188:
bands, lines of frictional convergence from nearby landmasses, or surface troughs. Waterspouts normally develop as their parent clouds are in the process of development. It is theorized that they spin upward as they move up the surface boundary from the horizontal shear near the surface, and then
131:
As the mesocyclone lowers below the cloud base, it begins to take in cool, moist air from the downdraft region of the storm. The convergence of this cool air and the warm air in the updraft causes a rotating wall cloud to form. The RFD also focuses the mesocyclone's base, causing it to siphon air
171:
Waterspouts are defined as tornadoes over water. However, while some waterspouts are supercellular (also known as "tornadic waterspouts"), forming in a process similar to that of their land-based counterparts, most are much weaker and caused by different processes of atmospheric dynamics. They
244:
Mesovortices or mini-swirls within intense tropical cyclones, particularly within eyewalls, may lead to tornadoes. Embedded supercells may produce mesocyclonic tornadoes in the right front quadrant of the cyclone, or in certain situations within its outer rainbands.
259:
Most fire or volcanic eruption–induced whirlwinds are not tornadic vortices. However, on rare occasion, circulations with large wildfires, conflagrations, or ejecta do reach an ambient cloud base. In extremely rare cases,
35:, which continues descending simultaneously as a circulation builds near the surface, kicking up dust and other debris. Finally, the visible funnel extends to the ground, and the tornado begins causing major damage. 189:
stretch upward to the cloud once the low level shear vortex aligns with a developing cumulus or thunderstorm. Their parent cloud can be as innocuous as a moderate cumulus, or as significant as a supercell.
135:
Field studies have shown that in order for a supercell to produce a tornado, the RFD needs to be no more than a few kelvin cooler than the updraft. The
70:
forms. There are many types of tornadoes, varying in methods of formation. Despite ongoing scientific study and high-profile research projects such as
491: 143:
more modern research indicates that many tornadoes form first near the surface or simultaneously from the surface to low and mid levels aloft.
120:(RFD). This downdraft accelerates as it approaches the ground, and drags the rotating mesocyclone towards the ground with it. Storm relative 74:, tornadogenesis is a volatile process and the intricacies of many of the mechanisms of tornado formation are still poorly understood. 116:
a few miles up in the atmosphere. As rainfall in the storm increases, it drags with it an area of quickly descending air known as the
875: 440: 399: 136: 124:(SRH) has been shown to play a role in tornado development and strength. SRH is horizontal vorticity that is parallel to the 637:
Ben-Amots N (2016) “Dynamics and thermodynamics of tornado: Rotation effects” Atmospheric Research, v. 178-179, pp. 320-328
299:"Volatility of Tornadogenesis: An Ensemble of Simulated Nontornadic and Tornadic Supercells in VORTEX2 Environments" 623: 598: 364: 339: 693:"Tornadogenesis: Our current understanding, forecasting considerations, and questions to guide future research" 84:. Tornado formation is caused by the stretching and aggregating/merging of environmental and/or storm-induced 128:
of the storm and is tilted upwards when it is taken up by the updraft, thus creating vertical vorticity.
531:"Surface In Situ Observations within the Outflow of Forward-Flank Downdrafts of Supercell Thunderstorms" 278: 205: 121: 380: 846: 484: 804: 400:"Dissipation Characteristics of Tornadic Vortex Signatures Associated with Long-Duration Tornadoes" 904: 692: 579: 155: 236:
regions. Mesocyclonic tornadoes may also form from embedded supercells within squall lines.
39: 819: 778: 735: 707: 610: 542: 411: 351: 310: 125: 117: 108:
tornadoes, which have a recognizable pattern of formation. The cycle begins when a strong
505: 139:(FFD) also seems to be warmer within tornadic supercells than in non-tornadic supercells. 8: 727: 823: 782: 739: 711: 614: 546: 451: 415: 355: 314: 835: 853: 839: 688: 560: 469: 93: 857: 909: 827: 786: 747: 743: 719: 715: 618: 550: 419: 359: 318: 261: 233: 185: 44: 77:
A tornado is a violently rotating column of air in contact with the surface and a
831: 638: 71: 800: 762: 664: 599:"Descending and Nondescending Tornadic Vortex Signatures Detected by WSR-88Ds" 898: 564: 424: 212: 56: 650: 323: 298: 273: 109: 32: 381:"Tornadogenesis in supercell storms: What We Know and What We Don't Know" 229: 181: 113: 890:
Simulation and visualization of thunderstorms, tornadoes, and downbursts
59:
in the United States, a loosely-defined area that is prone to tornadoes.
51: 578:
Jana, Houser; H. Bluestein; A. Seimon; J. Snyder; K. Thiem (Dec 2018).
254: 177: 166: 81: 78: 28: 791: 766: 555: 530: 208: 198: 105: 85: 24: 879: 173: 665:"EF-0 Landspout Tornado near Grand Junction, MI, on June 30, 2017" 577: 19: 858:"Tornadogenesis: Unknowns. What's Left to Learn About Tornadoes?" 67: 89: 651:
Using the WSR-88D to Predict East Central Florida Waterspouts.
27:
tornado. First, the rain-free cloud base lowers as a rotating
447: 624:
10.1175/1520-0434(1999)014<0625:DANTVS>2.0.CO;2
529:
Shabbott, Christopher J.; Markowski, Paul M. (2006-05-01).
365:
10.1175/1520-0469(1997)054<0113:TWAWAD>2.0.CO;2
852: 799: 180:
in areas where wind comes together (convergence), such as
438: 847:
Tornadogenesis in Supercells: The Three Main Ingredients
687: 662: 580:"Rapid-Scan Mobile Radar Observations of Tornadogenesis" 883: 385:
Symposium on the Challenges of Severe Convective Storms
340:"Tornadogenesis with and without a Dynamic Pipe Effect" 331: 232:(QLCS, quasi-linear convective systems), most often in 761: 730:(2015). "A review of supercell and tornado dynamics". 248: 55:
A diagram showing the contributing weather systems to
767:"What We Know and Don't Know About Tornado Formation" 432: 397: 47:. Note the faint dust swirl beneath the funnel cloud. 889: 337: 146:
See the dynamics, thermodynamics and energy source.
596: 296: 228:Tornadoes sometimes form from mesovortices within 528: 896: 439:Doswell, Moller, Anderson; et al. (2005). 387:. Atlanta, GA: American Meteorological Society. 264:with tornadic mesocyclones have been observed. 639:https://doi.org/10.1016/j.atmosres.2016.03.025 656: 586:. Washington, DC: American Geophysical Union. 726: 398:French, Michael M.; D. M. Kingfield (2019). 378: 23:A sequence of images showing the birth of a 856:; J. Straka; K. Kanak; et al. (2009). 338:Trapp, R. Jeffrey; R. Davies-Jones (1997). 663:National Weather Service (June 30, 2017). 204:clouds by the ingestion and tightening of 790: 622: 554: 490:CS1 maint: multiple names: authors list ( 423: 363: 322: 176:-laden environments with little vertical 803:; Yvette Richardson (July–August 2013). 379:Davies-Jones, Robert (28 January 2006). 50: 38: 18: 297:Coffer, Brice E.; M. D. Parker (2017). 897: 510:NOAA National Severe Storms Laboratory 597:Trapp, R. J.; E. D. Mitchell (1999). 571: 391: 290: 239: 31:. This lowering concentrates into a 649:Barry K. Choy and Scott M. Spratt. 249:Fire whirls and pyro-tornadogenesis 13: 681: 372: 14: 921: 755: 441:"Advanced Spotters' Field Guide" 16:Process by which a tornado forms 643: 631: 218: 149: 99: 748:10.1016/j.atmosres.2014.04.007 720:10.1016/j.atmosres.2008.09.015 691:; Y.P. Richardson (Jul 2009). 590: 522: 498: 160: 88:that tightens into an intense 1: 284: 192: 832:10.1080/00431672.2013.800413 43:Tornadogenesis occurring in 7: 874:Tornadogenesis research by 404:J. Appl. Meteorol. Climatol 267: 10: 926: 279:Convective storm detection 252: 196: 164: 153: 66:is the process by which a 448:US Department of Commerce 765:; Y. Richardson (2014). 653:Retrieved on 2006-10-25. 425:10.1175/JAMC-D-18-0187.1 104:Classical tornadoes are 805:"How to Make a Tornado" 324:10.1175/MWR-D-17-0152.1 223: 137:forward flank downdraft 535:Monthly Weather Review 60: 48: 36: 156:Misoscale meteorology 154:Further information: 54: 42: 22: 880:Paul Markowski et al 876:Erik Rasmussen et al 734:. 158–159: 274–291. 728:Davies-Jones, Robert 172:normally develop in 118:rear flank downdraft 112:develops a rotating 863:. Rasmussen Systems 824:2013Weawi..66d..12M 783:2014PhT....67i..26M 740:2015AtmRe.158..274D 712:2009AtmRe..93....3M 615:1999WtFor..14..625T 547:2006MWRv..134.1422S 416:2019JApMC..58..317F 356:1997JAtS...54..113T 315:2017MWRv..145.4605C 689:Markowski, Paul M. 61: 49: 37: 884:Josh Wurman et al 792:10.1063/PT.3.2514 556:10.1175/MWR3131.1 477:External link in 309:(11): 4605–4625. 240:Tropical cyclones 215:tower's updraft. 917: 888:Dr. Leigh Orf's 871: 869: 868: 862: 843: 809: 796: 794: 751: 723: 697: 676: 675: 673: 671: 660: 654: 647: 641: 635: 629: 628: 626: 603:Wea. Forecasting 594: 588: 587: 584:AGU Fall Meeting 575: 569: 568: 558: 541:(5): 1422–1441. 526: 520: 519: 517: 516: 506:"Tornado Basics" 502: 496: 495: 488: 482: 481: 480:|publisher= 475: 473: 465: 463: 462: 456: 450:. Archived from 445: 436: 430: 429: 427: 395: 389: 388: 376: 370: 369: 367: 335: 329: 328: 326: 294: 234:middle latitudes 45:Falcon, Colorado 925: 924: 920: 919: 918: 916: 915: 914: 895: 894: 866: 864: 860: 854:Rasmussen, Erik 807: 801:Markowski, Paul 763:Markowski, Paul 758: 695: 684: 682:Further reading 679: 669: 667: 661: 657: 648: 644: 636: 632: 595: 591: 576: 572: 527: 523: 514: 512: 504: 503: 499: 489: 479: 478: 476: 467: 466: 460: 458: 454: 443: 437: 433: 396: 392: 377: 373: 336: 332: 295: 291: 287: 270: 262:pyrocumulonimbi 257: 251: 242: 226: 221: 201: 195: 169: 163: 158: 152: 102: 17: 12: 11: 5: 923: 913: 912: 907: 905:Tornadogenesis 893: 892: 886: 872: 850: 844: 797: 757: 756:External links 754: 753: 752: 724: 683: 680: 678: 677: 655: 642: 630: 609:(5): 625–639. 589: 570: 521: 497: 431: 410:(2): 317–339. 390: 371: 350:(1): 113–133. 330: 288: 286: 283: 282: 281: 276: 269: 266: 253:Main article: 250: 247: 241: 238: 225: 222: 220: 217: 206:boundary layer 197:Main article: 194: 191: 165:Main article: 162: 159: 151: 148: 101: 98: 64:Tornadogenesis 15: 9: 6: 4: 3: 2: 922: 911: 908: 906: 903: 902: 900: 891: 887: 885: 881: 877: 873: 859: 855: 851: 848: 845: 841: 837: 833: 829: 825: 821: 817: 813: 806: 802: 798: 793: 788: 784: 780: 776: 772: 768: 764: 760: 759: 749: 745: 741: 737: 733: 729: 725: 721: 717: 713: 709: 706:(1–3): 3–10. 705: 701: 694: 690: 686: 685: 666: 659: 652: 646: 640: 634: 625: 620: 616: 612: 608: 604: 600: 593: 585: 581: 574: 566: 562: 557: 552: 548: 544: 540: 536: 532: 525: 511: 507: 501: 493: 486: 471: 457:on 2006-08-23 453: 449: 442: 435: 426: 421: 417: 413: 409: 405: 401: 394: 386: 382: 375: 366: 361: 357: 353: 349: 345: 344:J. Atmos. Sci 341: 334: 325: 320: 316: 312: 308: 304: 303:Mon. Wea. Rev 300: 293: 289: 280: 277: 275: 272: 271: 265: 263: 256: 246: 237: 235: 231: 216: 214: 210: 207: 200: 190: 187: 183: 179: 175: 168: 157: 147: 144: 140: 138: 133: 129: 127: 123: 119: 115: 111: 107: 106:supercellular 97: 95: 91: 87: 83: 80: 75: 73: 69: 65: 58: 57:Tornado Alley 53: 46: 41: 34: 30: 26: 25:supercellular 21: 865:. Retrieved 818:(4): 12–19. 815: 811: 777:(9): 26–31. 774: 770: 731: 703: 699: 668:. Retrieved 658: 645: 633: 606: 602: 592: 583: 573: 538: 534: 524: 513:. Retrieved 509: 500: 459:. Retrieved 452:the original 434: 407: 403: 393: 384: 374: 347: 343: 333: 306: 302: 292: 274:Cyclogenesis 258: 243: 230:squall lines 227: 219:Mesovortices 202: 182:land breezes 170: 150:Misocyclones 145: 141: 134: 130: 110:thunderstorm 103: 100:Mesocyclones 76: 63: 62: 33:funnel cloud 812:Weatherwise 771:Phys. Today 186:lake effect 161:Waterspouts 114:mesocyclone 899:Categories 867:2012-02-14 732:Atmos. Res 700:Atmos. Res 515:2023-10-19 461:2006-09-20 285:References 255:Fire whirl 213:cumuliform 193:Landspouts 178:wind shear 167:Waterspout 82:cloud base 79:cumuliform 29:wall cloud 840:191649696 565:1520-0493 209:vorticity 199:Landspout 94:intensity 86:vorticity 670:20 March 470:cite web 268:See also 174:moisture 122:helicity 910:Tornado 882:, also 820:Bibcode 779:Bibcode 736:Bibcode 708:Bibcode 611:Bibcode 543:Bibcode 412:Bibcode 352:Bibcode 311:Bibcode 211:by the 68:tornado 838:  563:  126:inflow 90:vortex 72:VORTEX 861:(ppt) 849:(NWS) 836:S2CID 808:(PDF) 696:(PDF) 455:(PDF) 444:(PDF) 878:and 672:2018 561:ISSN 492:link 485:help 224:QLCS 828:doi 787:doi 744:doi 716:doi 619:doi 551:doi 539:134 420:doi 360:doi 319:doi 307:145 901:: 834:. 826:. 816:66 814:. 810:. 785:. 775:67 773:. 769:. 742:. 714:. 704:93 702:. 698:. 617:. 607:14 605:. 601:. 582:. 559:. 549:. 537:. 533:. 508:. 474:: 472:}} 468:{{ 446:. 418:. 408:58 406:. 402:. 383:. 358:. 348:54 346:. 342:. 317:. 305:. 301:. 184:, 96:. 870:. 842:. 830:: 822:: 795:. 789:: 781:: 750:. 746:: 738:: 722:. 718:: 710:: 674:. 627:. 621:: 613:: 567:. 553:: 545:: 518:. 494:) 487:) 483:( 464:. 428:. 422:: 414:: 368:. 362:: 354:: 327:. 321:: 313::

Index


supercellular
wall cloud
funnel cloud

Falcon, Colorado

Tornado Alley
tornado
VORTEX
cumuliform
cloud base
vorticity
vortex
intensity
supercellular
thunderstorm
mesocyclone
rear flank downdraft
helicity
inflow
forward flank downdraft
Misoscale meteorology
Waterspout
moisture
wind shear
land breezes
lake effect
Landspout
boundary layer

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑