Knowledge

Vorticity

Source 📝

2335: 1250: 1005: 2111: 1478: 1245:{\displaystyle {\begin{aligned}{\boldsymbol {\omega }}=\nabla \times \mathbf {v} =\left({\dfrac {\partial v_{z}}{\partial y}}-{\dfrac {\partial v_{y}}{\partial z}},{\dfrac {\partial v_{x}}{\partial z}}-{\dfrac {\partial v_{z}}{\partial x}},{\dfrac {\partial v_{y}}{\partial x}}-{\dfrac {\partial v_{x}}{\partial y}}\right)\,.\end{aligned}}} 2609:
A rotating-vane vorticity meter was invented by Russian hydraulic engineer A. Ya. Milovich (1874–1958). In 1913 he proposed a cork with four blades attached as a device qualitatively showing the magnitude of the vertical projection of the vorticity and demonstrated a motion-picture photography of the
2664:
is the vorticity relative to the Earth induced by the air velocity field. This air velocity field is often modeled as a two-dimensional flow parallel to the ground, so that the relative vorticity vector is generally scalar rotation quantity perpendicular to the ground. Vorticity is positive when –
2639:
may be approximated by assuming that each spanwise segment of the wing has a semi-infinite trailing vortex behind it. It is then possible to solve for the strength of the vortices using the criterion that there be no flow induced through the surface of the wing. This procedure is called the vortex
2328:
Another way to visualize vorticity is to imagine that, instantaneously, a tiny part of the continuum becomes solid and the rest of the flow disappears. If that tiny new solid particle is rotating, rather than just moving with the flow, then there is vorticity in the flow. In the figure below, the
2159:, where most particles rotate about some straight axis, with speed inversely proportional to their distances to that axis. A small parcel of continuum that does not straddle the axis will be rotated in one sense but sheared in the opposite sense, in such a way that their mean angular velocity 1922: 1353: 1849: 2490: 2361:), the vorticity field can be modeled by a collection of discrete vortices, the vorticity being negligible everywhere except in small regions of space surrounding the axes of the vortices. This is true in the case of two-dimensional 2152:, all particles travel parallel to the axis of the pipe; but faster near that axis, and practically stationary next to the walls. The vorticity will be zero on the axis, and maximum near the walls, where the shear is largest. 2613:
Rotating-vane vorticity meters are commonly shown in educational films on continuum mechanics (famous examples include the NCFMF's "Vorticity" and "Fundamental Principles of Flow" by Iowa Institute of Hydraulic Research).
2560: 2856: 773: 1642: 2106:{\displaystyle {\boldsymbol {\Omega }}={\frac {1}{2}}\left\quad {\text{or}}\quad \Omega _{ij}={\frac {1}{2}}\left({\frac {\partial v_{i}}{\partial x_{j}}}-{\frac {\partial v_{i}}{\partial x_{i}}}\right).} 1473:{\displaystyle {\begin{aligned}{\boldsymbol {\omega }}=\nabla \times \mathbf {v} =\left({\frac {\partial v_{y}}{\partial x}}-{\frac {\partial v_{x}}{\partial y}}\right)\mathbf {e} _{z}\,.\end{aligned}}} 905: 1358: 1010: 1739: 2192: 2185: 2178: 2307: 2300: 2293: 2279: 2272: 2265: 80: 1731: 1709: 1664: 967: 933: 855: 822: 701: 1914: 2577:) is the integral of the vorticity across a cross-section of the tube, and is the same everywhere along the tube (because vorticity has zero divergence). It is a consequence of 1885: 2573:
is the surface in the continuum formed by all vortex lines passing through a given (reducible) closed curve in the continuum. The 'strength' of a vortex tube (also called
1526: 993: 730: 1345: 1572: 2402: 796: 2791: 1549: 2879: 1684: 1596: 1316: 1296: 1276: 662:
motion of a continuum near some point (the tendency of something to rotate), as would be seen by an observer located at that point and traveling along with the
3286: 2376:
Vorticity is useful for understanding how ideal potential flow solutions can be perturbed to model real flows. In general, the presence of viscosity causes a
2701:). The absolute vorticity of an air mass will change if the air mass is stretched (or compressed) in the vertical direction, but the potential vorticity is 2585:) that in an inviscid fluid the 'strength' of the vortex tube is also constant with time. Viscous effects introduce frictional losses and time dependence. 2380:
of vorticity away from the vortex cores into the general flow field; this flow is accounted for by a diffusion term in the vorticity transport equation.
3727: 2498: 2799: 738: 3251: 1255:
In words, the vorticity tells how the velocity vector changes when one moves by an infinitesimal distance in a direction perpendicular to it.
3014: 629: 3256:"Professor Milovich's float", as Joukovsky refers this vorticity meter to, is schematically shown in figure on page 196 of Collected works. 2596:. This phenomenon occurs in the formation of a bathtub vortex in outflowing water, and the build-up of a tornado by rising air currents. 3629: 1604: 2665:
looking down onto the Earth's surface – the wind turns counterclockwise. In the northern hemisphere, positive vorticity is called
2141: 2680:
is computed from the air velocity relative to an inertial frame, and therefore includes a term due to the Earth's rotation, the
3720: 3670: 3661: 3652: 2155:
Conversely, a flow may have zero vorticity even though its particles travel along curved trajectories. An example is the ideal
674:
and provides a convenient framework for understanding a variety of complex flow phenomena, such as the formation and motion of
3684: 3869: 3423: 3404: 876: 3180: 2717:
of air masses in the atmosphere over the timescale of a few days, particularly when viewed on levels of constant entropy.
1844:{\displaystyle \Omega _{ij}=\varepsilon _{ijk}\omega _{k},\qquad \omega _{i}={\frac {1}{2}}\varepsilon _{ijk}\Omega _{jk}} 4176: 2754:(GCMs), vorticity may be one of the predicted variables, in which case the corresponding time-dependent equation is a 3889: 3713: 3618: 3585: 3571: 3554: 3537: 3520: 3481: 3464: 3442: 3383: 3147: 3088: 3060: 622: 3488: 4037: 3283: 2955: 2582: 36: 4084: 3268: 595: 2396:
is a line which is everywhere tangent to the local vorticity vector. Vortex lines are defined by the relation
3916: 3884: 3831: 3371: 3076: 2898: 2744: 2721: 2253: 1714: 1692: 1647: 950: 916: 838: 805: 684: 296: 133: 4166: 3218: 2960: 2645: 2641: 1495: 1484: 615: 336: 222: 2592:
of the square of its magnitude) can be intensified when a vortex line is extended — a phenomenon known as
4145: 2970: 2649: 2351: 1894: 825: 291: 200: 83: 1857: 4079: 3836: 3302:
Scheeler, Martin W.; van Rees, Wim M.; Kedia, Hridesh; Kleckner, Dustin; Irvine, William T. M. (2017).
2903: 2702: 2329:
left subfigure demonstrates no vorticity, and the right subfigure demonstrates existence of vorticity.
947:
Mathematically, the vorticity of a three-dimensional flow is a pseudovector field, usually denoted by
4059: 3993: 3821: 2751: 207: 3926: 3778: 3608: 2149: 502: 497: 286: 279: 112: 3140:
Modern Classical Physics: Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics
3011: 1509: 976: 713: 4171: 4127: 4049: 3497: 3223: 2762: 2578: 1689:
Since vorticity is a axial vector, it can be associated with a second-order antisymmetric tensor
832: 565: 560: 229: 2485:{\displaystyle {\frac {dx}{\omega _{x}}}={\frac {dy}{\omega _{y}}}={\frac {dz}{\omega _{z}}}\,,} 1321: 3981: 3941: 3894: 3879: 3861: 117: 2743:) over a limited amount of time (a few days). In the 1950s, the first successful programs for 1554: 4028: 3921: 3911: 3874: 2694: 2563: 2132:
The vorticity may be nonzero even when all particles are flowing along straight and parallel
1318:-axis, and therefore can be expressed as a scalar field multiplied by a constant unit vector 996: 781: 540: 158: 2365:(i.e. two-dimensional zero viscosity flow), in which case the flowfield can be modeled as a 2357:
In many real flows where the viscosity can be neglected (more precisely, in flows with high
4107: 4074: 3976: 3971: 3936: 3315: 2729: 910: 378: 195: 175: 163: 107: 2767: 8: 4069: 4054: 3599: 2982: 2755: 2740: 2713:
flow predominates in the atmosphere, the potential vorticity is useful as an approximate
2689: 643: 580: 428: 321: 27: 3319: 3240:. Vol. 4. Moscow; Leningrad. 1937. pp. 193–216, 231–233 (abstract in English). 1531: 3841: 3349: 3245: 2987: 2965: 2918: 2864: 2681: 2347: 1888: 1669: 1581: 1488: 1301: 1281: 1261: 970: 704: 600: 234: 190: 185: 2121:
In a mass of continuum that is rotating like a rigid body, the vorticity is twice the
4181: 4122: 4018: 3906: 3748: 3697: 3581: 3567: 3550: 3533: 3516: 3477: 3460: 3438: 3419: 3400: 3379: 3341: 3333: 3143: 3084: 3056: 2933: 2666: 2593: 1504: 217: 168: 3705: 3353: 935:
is always perpendicular to the plane of the flow, and can therefore be considered a
3681: 3525: 3452: 3323: 2943: 2938: 2122: 858: 555: 530: 443: 418: 413: 368: 2652:, lift per unit of span is the product of circulation, airspeed, and air density. 3773: 3688: 3636: 3394: 3290: 3272: 3184: 3177: 3018: 2881:. In atmospheric science, helicity of the air motion is important in forecasting 2693:
is absolute vorticity divided by the vertical spacing between levels of constant
2589: 2358: 2125:
vector of that rotation. This is the case, for example, in the central core of a
866: 545: 469: 433: 383: 314: 303: 248: 150: 3612:". Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma. 4064: 2366: 2362: 2126: 862: 799: 667: 663: 550: 408: 373: 274: 180: 16:
Pseudovector field describing the local rotation of a continuum near some point
2644:. The strengths of the vortices are then summed to find the total approximate 1711:(the so-called vorticity or rotation tensor), which is said to be the dual of 4160: 3846: 3559: 3337: 3030: 2737: 2555:{\displaystyle {\boldsymbol {\omega }}=(\omega _{x},\omega _{y},\omega _{z})} 2370: 2137: 1492: 708: 590: 423: 3433:
Guyon, Etienne; Hulin, Jean-Pierre; Petit, Luc; Mitescu, Catalin D. (2001).
3328: 3303: 3051:
Guyon, Etienne; Hulin, Jean-Pierre; Petit, Luc; Mitescu, Catalin D. (2001).
2334: 4023: 3998: 3931: 3808: 3542: 3532:". Applied Mathematical Sciences, Vol 103, Springer-Verlag. March 1, 1994. 3345: 3235: 2913: 2851:{\displaystyle H(t)=\int _{V}\mathbf {v} \cdot {\boldsymbol {\omega }}\,dV} 2632: 2628: 2145: 1733:. The relation between the two quantities, in index notation, are given by 936: 768:{\displaystyle {\boldsymbol {\omega }}\equiv \nabla \times \mathbf {v} \,,} 655: 651: 575: 570: 535: 267: 2191: 2184: 2177: 4112: 3951: 3851: 3644: 2928: 2725: 2714: 2670: 2636: 1599: 675: 585: 488: 2306: 2299: 2292: 2278: 2271: 2264: 4117: 4089: 4003: 3798: 3783: 3763: 3135: 2992: 1487:(line integral of the velocity) along a closed path by the (classical) 870: 507: 403: 1891:. The vorticity tensor is simply the antisymmetric part of the tensor 3959: 3768: 3753: 3033:(2015), "Fluid Dynamics", in Nicholas J. Higham; et al. (eds.), 2908: 2882: 2710: 2706: 2377: 1575: 479: 474: 308: 3265: 4137: 4099: 4013: 3758: 3304:"Complete measurement of helicity and its dynamics in vortex tubes" 2133: 1258:
In a two-dimensional flow where the velocity is independent of the
659: 458: 363: 343: 329: 3633:". School of the Environment, University of Leeds. September 2001. 4008: 3609:
A Primer on Vorticity for Application in Supercells and Tornadoes
2886: 2698: 2346:
The evolution of the vorticity field in time is described by the
212: 3671:
Kelvin's vorticity theorem for incompressible or barotropic flow
2610:
float's motion on the water surface in a model of a river bend.
3199:(1967), Section 2.6, Cambridge University Press ISBN 0521098173 2923: 2156: 1637:{\displaystyle {\boldsymbol {\omega }}\cdot (\mathbf {n} \,dA)} 824:
could be determined by marking parts of a continuum in a small
671: 353: 3816: 3301: 3284:
Films by Hunter Rouse — IIHR — Hydroscience & Engineering
2733: 2286:
Relative velocities (magnified) around the highlighted point
257: 3653:
The vorticity equation: incompressible and barotropic fluids
3416:
Introduction to Theoretical and Computational Fluid Dynamics
2252:
is the distance to the center of the vortex and ∝ indicates
3793: 2673:; the nomenclature is reversed in the Southern Hemisphere. 2588:
In a three-dimensional flow, vorticity (as measured by the
1298:-component, the vorticity vector is always parallel to the 3826: 942: 393: 3692:". (includes a collection of FORTRAN vorticity program) 3221:(1914). "On the motion of water at a turn of a river". 900:{\displaystyle \nabla \cdot {\boldsymbol {\omega }}=0.} 3432: 3050: 3735: 3513:
Elementary Account Of Vorticity And Related Equations
2867: 2802: 2770: 2501: 2405: 1925: 1897: 1860: 1742: 1717: 1695: 1672: 1650: 1607: 1584: 1557: 1534: 1512: 1356: 1324: 1304: 1284: 1264: 1201: 1169: 1137: 1105: 1073: 1041: 1008: 979: 953: 919: 879: 841: 808: 784: 741: 716: 687: 39: 2724:
is the simplest way for forecasting the movement of
3580:", 3rd ed. Academic Press, Orlando, Florida. 1985. 2750:In modern numerical weather forecasting models and 869:. By its own definition, the vorticity vector is a 3055:. Oxford University Press. pp. 105, 268–310. 2873: 2850: 2785: 2554: 2484: 2258:Absolute velocities around the highlighted point: 2105: 1908: 1879: 1843: 1725: 1703: 1678: 1658: 1636: 1590: 1566: 1543: 1520: 1472: 1339: 1310: 1290: 1270: 1244: 987: 961: 927: 899: 849: 816: 790: 767: 724: 695: 74: 3515:". Cambridge University Press. January 30, 2005. 3023: 4158: 2604: 2383: 3492:"' The Weather Channel Interactive, Inc.. 2004. 3162: 3134: 3392: 3217: 3037:, Princeton University Press, pp. 467–476 3035:The Princeton Companion to Applied Mathematics 3721: 828:of the point in question, and watching their 623: 3870:Convective available potential energy (CAPE) 3295: 3266:National Committee for Fluid Mechanics Films 1483:The vorticity is also related to the flow's 861:vector of those particles relative to their 3628:ENVI 2210 – Atmosphere and Ocean Dynamics, 3142:. Princeton University Press. p. 741. 3046: 3044: 3012:Lecture Notes from University of Washington 2761:Related to the concept of vorticity is the 835:as they move along the flow. The vorticity 75:{\displaystyle J=-D{\frac {d\varphi }{dx}}} 3728: 3714: 3566:". Van Nostrand Reinhold, New York. 1977. 3413: 3250:: CS1 maint: location missing publisher ( 3178:Introduction to Astrophysical Gas Dynamics 2861:where the integral is over a given volume 2140:(that is, if the flow speed varies across 630: 616: 3641:Astronomy 202: Astrophysical Gas Dynamics 3451: 3327: 3097: 2976: 2841: 2478: 1624: 1462: 1234: 761: 3662:Interpretation of the vorticity equation 3041: 3370: 3083:. Oxford University Press. p. 10. 3075: 3029: 2837: 2655: 2503: 1726:{\displaystyle {\boldsymbol {\omega }}} 1719: 1704:{\displaystyle {\boldsymbol {\Omega }}} 1659:{\displaystyle {\boldsymbol {\omega }}} 1652: 1609: 1362: 1014: 962:{\displaystyle {\boldsymbol {\omega }}} 955: 928:{\displaystyle {\boldsymbol {\omega }}} 921: 887: 850:{\displaystyle {\boldsymbol {\omega }}} 843: 817:{\displaystyle {\boldsymbol {\omega }}} 810: 743: 696:{\displaystyle {\boldsymbol {\omega }}} 689: 4159: 3698:Mesoscale Compressible Community (MC2) 3393:Landau, L. D.; Lifshitz, E.M. (1987). 943:Mathematical definition and properties 3709: 3549:". Cambridge University Press; 2002. 3476:, Pitman Publishing Limited, London 3156: 2617: 995:describing the continuum motion. In 3832:Convective condensation level (CCL) 3578:Mathematical Methods for Physicists 2599: 1909:{\displaystyle \nabla \mathbf {v} } 13: 4038:Equivalent potential temperature ( 3623:". Foundations of Fluid Mechanics. 3505: 2079: 2064: 2042: 2027: 1994: 1963: 1949: 1898: 1880:{\displaystyle \varepsilon _{ijk}} 1829: 1744: 1666:is the vorticity at the center of 1561: 1436: 1421: 1406: 1391: 1369: 1219: 1204: 1187: 1172: 1155: 1140: 1123: 1108: 1091: 1076: 1059: 1044: 1021: 880: 785: 750: 14: 4193: 3890:Conditional symmetric instability 3736:Meteorological data and variables 3702:". (Potential vorticity analysis) 3591: 3547:Vorticity and Incompressible Flow 3457:An Introduction to Fluid Dynamics 3197:An Introduction to Fluid Dynamics 2949: 2648:about the wing. According to the 666:. It is an important quantity in 3837:Lifting condensation level (LCL) 3125:Guyon, et al (2001), pp. 289–290 2829: 2350:, which can be derived from the 2333: 2305: 2298: 2291: 2277: 2270: 2263: 2190: 2183: 2176: 1967: 1953: 1927: 1902: 1697: 1620: 1514: 1452: 1376: 1028: 981: 757: 718: 3822:Cloud condensation nuclei (CCN) 3364: 3277: 3259: 3211: 3202: 3189: 3171: 1992: 1986: 1788: 4085:Wet-bulb potential temperature 3927:Level of free convection (LFC) 3459:, Cambridge University Press, 3138:; Blandford, Roger D. (2017). 3128: 3119: 3110: 3069: 3005: 2812: 2806: 2780: 2774: 2622: 2549: 2510: 1972: 1960: 1631: 1616: 1331: 681:Mathematically, the vorticity 1: 4128:Pressure-gradient force (PGF) 4050:Sea surface temperature (SST) 3885:Convective momentum transport 2998: 2899:Barotropic vorticity equation 2745:numerical weather forecasting 2722:barotropic vorticity equation 2605:Rotating-vane vorticity meter 2384:Vortex lines and vortex tubes 2248:is the velocity of the flow, 3942:Bulk Richardson number (BRN) 3619:Vorticity Transport Theorems 3603:". Scienceworld.wolfram.com. 2669:, and negative vorticity is 2642:computational fluid dynamics 2583:Kelvin's circulation theorem 2341: 2148:within a pipe with constant 1521:{\displaystyle \mathbf {n} } 988:{\displaystyle \mathbf {v} } 865:, oriented according to the 725:{\displaystyle \mathbf {v} } 7: 4146:Maximum potential intensity 3912:Free convective layer (FCL) 3875:Convective inhibition (CIN) 3700:Real-Time Model Predictions 3617:Navier–Stokes Equations -- 3437:. Oxford University Press. 3418:. Oxford University Press. 3378:. Oxford University Press. 2892: 2562:is the vorticity vector in 2167: 2116: 10: 4198: 4080:Wet-bulb globe temperature 3937:Maximum parcel level (MPL) 3606:Doswell III, Charles A., " 3399:(2nd ed.). Elsevier. 2752:general circulation models 2304: 2297: 2290: 2276: 2269: 2262: 2189: 2182: 2175: 2161:about their center of mass 1340:{\displaystyle {\hat {z}}} 4177:Meteorological quantities 4136: 4098: 4060:Thermodynamic temperature 3994:Forest fire weather index 3950: 3860: 3807: 3741: 3643:". Astronomy Department, 3501:". Integrated Publishing. 3376:Elementary Fluid Dynamics 3271:October 21, 2016, at the 3081:Elementary Fluid Dynamics 3017:October 16, 2015, at the 2285: 2243: 2212:Parallel flow with shear 2170: 1887:is the three-dimensional 658:that describes the local 3982:Equivalent temperature ( 3895:Convective temperature ( 3779:Surface weather analysis 3530:Vorticity and Turbulence 2747:utilized that equation. 1567:{\displaystyle d\Gamma } 857:would be twice the mean 134:Clausius–Duhem (entropy) 84:Fick's laws of diffusion 4029:Potential temperature ( 3774:Surface solar radiation 3564:Physical Fluid Dynamics 3545:, Andrea L. Bertozzi, " 3414:Pozrikidis, C. (2011). 3329:10.1126/science.aam6897 3289:April 21, 2016, at the 3224:Matematicheskii Sbornik 2971:Kutta–Joukowski theorem 2695:(potential) temperature 2650:Kutta–Joukowski theorem 2352:Navier–Stokes equations 2144:). For example, in the 1278:-coordinate and has no 791:{\displaystyle \nabla } 292:Navier–Stokes equations 230:Material failure theory 4019:Relative humidity (RH) 3907:Equilibrium level (EL) 3880:Convective instability 3435:Physical Hydrodynamics 3208:Batchelor, section 5.2 3183:June 14, 2011, at the 3053:Physical Hydrodynamics 2885:and the potential for 2875: 2852: 2787: 2556: 2486: 2199:Rigid-body-like vortex 2107: 1910: 1881: 1845: 1727: 1705: 1680: 1660: 1638: 1592: 1568: 1545: 1522: 1474: 1341: 1312: 1292: 1272: 1246: 989: 973:of the velocity field 963: 929: 901: 851: 818: 792: 769: 726: 697: 76: 3597:Weisstein, Eric W., " 3472:Clancy, L.J. (1975), 3163:Kundu P and Cohen I. 3116:Acheson (1990), p. 15 2876: 2853: 2788: 2671:anticyclonic rotation 2581:(or equivalently, of 2564:Cartesian coordinates 2557: 2487: 2108: 1911: 1882: 1846: 1728: 1706: 1681: 1661: 1639: 1593: 1569: 1546: 1523: 1475: 1342: 1313: 1293: 1273: 1247: 997:Cartesian coordinates 990: 964: 930: 902: 852: 819: 793: 770: 727: 698: 287:Bernoulli's principle 280:Archimedes' principle 77: 4108:Atmospheric pressure 4075:Wet-bulb temperature 3977:Dry-bulb temperature 3972:Dew point depression 3526:Chorin, Alexandre J. 2977:Atmospheric sciences 2904:D'Alembert's paradox 2865: 2800: 2786:{\displaystyle H(t)} 2768: 2656:Atmospheric sciences 2635:distribution over a 2579:Helmholtz's theorems 2499: 2403: 1923: 1895: 1858: 1740: 1715: 1693: 1670: 1648: 1605: 1582: 1555: 1532: 1510: 1354: 1322: 1302: 1282: 1262: 1006: 977: 951: 917: 911:two-dimensional flow 877: 839: 806: 782: 739: 714: 685: 668:the dynamical theory 379:Cohesion (chemistry) 201:Infinitesimal strain 37: 4167:Continuum mechanics 4070:Virtual temperature 4055:Temperature anomaly 3749:Adiabatic processes 3320:2017Sci...357..487S 2983:Prognostic equation 2966:Vorticity equations 2756:prognostic equation 2741:geopotential height 2690:potential vorticity 2215:Irrotational vortex 2157:irrotational vortex 644:continuum mechanics 297:Poiseuille equation 28:Continuum mechanics 22:Part of a series on 3842:Precipitable water 3687:2004-06-22 at the 3626:Parker, Douglas, " 2988:Carl-Gustaf Rossby 2919:Velocity potential 2871: 2848: 2783: 2682:Coriolis parameter 2678:absolute vorticity 2662:relative vorticity 2552: 2482: 2348:vorticity equation 2103: 1906: 1889:Levi-Civita tensor 1877: 1841: 1723: 1701: 1676: 1656: 1634: 1588: 1564: 1551:, the circulation 1544:{\displaystyle dA} 1541: 1518: 1491:. Namely, for any 1470: 1468: 1337: 1308: 1288: 1268: 1242: 1240: 1227: 1195: 1163: 1131: 1099: 1067: 985: 959: 925: 897: 847: 814: 788: 765: 722: 693: 654:(or axial vector) 503:Magnetorheological 498:Electrorheological 235:Fracture mechanics 72: 4154: 4153: 4123:Pressure gradient 3932:Lifted index (LI) 3425:978-0-19-975207-2 3406:978-0-08-057073-0 3314:(6350): 487–491. 2934:Vortex stretching 2874:{\displaystyle V} 2667:cyclonic rotation 2618:Specific sciences 2594:vortex stretching 2476: 2451: 2426: 2324: 2323: 2093: 2056: 2017: 1990: 1942: 1810: 1679:{\displaystyle C} 1591:{\displaystyle C} 1443: 1413: 1334: 1311:{\displaystyle z} 1291:{\displaystyle z} 1271:{\displaystyle z} 1226: 1194: 1162: 1130: 1098: 1066: 969:, defined as the 640: 639: 515: 514: 449: 448: 218:Contact mechanics 141: 140: 70: 4189: 3730: 3723: 3716: 3707: 3706: 3637:Graham, James R. 3615:Cramer, M. S., " 3543:Majda, Andrew J. 3489:Weather Glossary 3469: 3453:Batchelor, G. K. 3448: 3429: 3410: 3389: 3358: 3357: 3331: 3299: 3293: 3281: 3275: 3263: 3257: 3255: 3249: 3241: 3233:. Reprinted in: 3232: 3215: 3209: 3206: 3200: 3195:G.K. Batchelor, 3193: 3187: 3175: 3169: 3168: 3160: 3154: 3153: 3132: 3126: 3123: 3117: 3114: 3108: 3101: 3095: 3094: 3073: 3067: 3066: 3048: 3039: 3038: 3027: 3021: 3009: 2944:Wingtip vortices 2939:Horseshoe vortex 2880: 2878: 2877: 2872: 2857: 2855: 2854: 2849: 2840: 2832: 2827: 2826: 2792: 2790: 2789: 2784: 2640:panel method of 2600:Vorticity meters 2561: 2559: 2558: 2553: 2548: 2547: 2535: 2534: 2522: 2521: 2506: 2491: 2489: 2488: 2483: 2477: 2475: 2474: 2465: 2457: 2452: 2450: 2449: 2440: 2432: 2427: 2425: 2424: 2415: 2407: 2337: 2309: 2302: 2295: 2281: 2274: 2267: 2251: 2247: 2239: 2238: 2236: 2235: 2230: 2227: 2209: 2194: 2187: 2180: 2168: 2123:angular velocity 2112: 2110: 2109: 2104: 2099: 2095: 2094: 2092: 2091: 2090: 2077: 2076: 2075: 2062: 2057: 2055: 2054: 2053: 2040: 2039: 2038: 2025: 2018: 2010: 2005: 2004: 1991: 1988: 1985: 1981: 1980: 1979: 1970: 1956: 1943: 1935: 1930: 1915: 1913: 1912: 1907: 1905: 1886: 1884: 1883: 1878: 1876: 1875: 1850: 1848: 1847: 1842: 1840: 1839: 1827: 1826: 1811: 1803: 1798: 1797: 1784: 1783: 1774: 1773: 1755: 1754: 1732: 1730: 1729: 1724: 1722: 1710: 1708: 1707: 1702: 1700: 1685: 1683: 1682: 1677: 1665: 1663: 1662: 1657: 1655: 1643: 1641: 1640: 1635: 1623: 1612: 1597: 1595: 1594: 1589: 1573: 1571: 1570: 1565: 1550: 1548: 1547: 1542: 1527: 1525: 1524: 1519: 1517: 1505:normal direction 1502: 1479: 1477: 1476: 1471: 1469: 1461: 1460: 1455: 1449: 1445: 1444: 1442: 1434: 1433: 1432: 1419: 1414: 1412: 1404: 1403: 1402: 1389: 1379: 1365: 1346: 1344: 1343: 1338: 1336: 1335: 1327: 1317: 1315: 1314: 1309: 1297: 1295: 1294: 1289: 1277: 1275: 1274: 1269: 1251: 1249: 1248: 1243: 1241: 1233: 1229: 1228: 1225: 1217: 1216: 1215: 1202: 1196: 1193: 1185: 1184: 1183: 1170: 1164: 1161: 1153: 1152: 1151: 1138: 1132: 1129: 1121: 1120: 1119: 1106: 1100: 1097: 1089: 1088: 1087: 1074: 1068: 1065: 1057: 1056: 1055: 1042: 1031: 1017: 994: 992: 991: 986: 984: 968: 966: 965: 960: 958: 934: 932: 931: 926: 924: 906: 904: 903: 898: 890: 859:angular velocity 856: 854: 853: 848: 846: 823: 821: 820: 815: 813: 802:. Conceptually, 797: 795: 794: 789: 774: 772: 771: 766: 760: 746: 731: 729: 728: 723: 721: 702: 700: 699: 694: 692: 632: 625: 618: 464: 463: 429:Gay-Lussac's law 419:Combined gas law 369:Capillary action 254: 253: 97: 96: 81: 79: 78: 73: 71: 69: 61: 53: 19: 18: 4197: 4196: 4192: 4191: 4190: 4188: 4187: 4186: 4157: 4156: 4155: 4150: 4132: 4094: 4044: 3988: 3966: 3946: 3901: 3856: 3803: 3737: 3734: 3689:Wayback Machine 3594: 3511:Ohkitani, K., " 3508: 3506:Further reading 3467: 3445: 3426: 3407: 3396:Fluid Mechanics 3386: 3367: 3362: 3361: 3300: 3296: 3291:Wayback Machine 3282: 3278: 3273:Wayback Machine 3264: 3260: 3243: 3242: 3237:Collected works 3234: 3216: 3212: 3207: 3203: 3194: 3190: 3185:Wayback Machine 3176: 3172: 3165:Fluid Mechanics 3161: 3157: 3150: 3133: 3129: 3124: 3120: 3115: 3111: 3102: 3098: 3091: 3074: 3070: 3063: 3049: 3042: 3028: 3024: 3019:Wayback Machine 3010: 3006: 3001: 2979: 2956:Biot–Savart law 2952: 2895: 2866: 2863: 2862: 2836: 2828: 2822: 2818: 2801: 2798: 2797: 2769: 2766: 2765: 2658: 2625: 2620: 2607: 2602: 2590:volume integral 2543: 2539: 2530: 2526: 2517: 2513: 2502: 2500: 2497: 2496: 2470: 2466: 2458: 2456: 2445: 2441: 2433: 2431: 2420: 2416: 2408: 2406: 2404: 2401: 2400: 2386: 2359:Reynolds number 2344: 2257: 2254:proportionality 2249: 2245: 2231: 2228: 2225: 2224: 2222: 2217: 2216: 2201: 2200: 2171:Example flows: 2119: 2086: 2082: 2078: 2071: 2067: 2063: 2061: 2049: 2045: 2041: 2034: 2030: 2026: 2024: 2023: 2019: 2009: 1997: 1993: 1987: 1975: 1971: 1966: 1952: 1948: 1944: 1934: 1926: 1924: 1921: 1920: 1901: 1896: 1893: 1892: 1865: 1861: 1859: 1856: 1855: 1832: 1828: 1816: 1812: 1802: 1793: 1789: 1779: 1775: 1763: 1759: 1747: 1743: 1741: 1738: 1737: 1718: 1716: 1713: 1712: 1696: 1694: 1691: 1690: 1671: 1668: 1667: 1651: 1649: 1646: 1645: 1619: 1608: 1606: 1603: 1602: 1583: 1580: 1579: 1556: 1553: 1552: 1533: 1530: 1529: 1513: 1511: 1508: 1507: 1498: 1496:surface element 1489:Stokes' theorem 1467: 1466: 1456: 1451: 1450: 1435: 1428: 1424: 1420: 1418: 1405: 1398: 1394: 1390: 1388: 1387: 1383: 1375: 1361: 1357: 1355: 1352: 1351: 1326: 1325: 1323: 1320: 1319: 1303: 1300: 1299: 1283: 1280: 1279: 1263: 1260: 1259: 1239: 1238: 1218: 1211: 1207: 1203: 1200: 1186: 1179: 1175: 1171: 1168: 1154: 1147: 1143: 1139: 1136: 1122: 1115: 1111: 1107: 1104: 1090: 1083: 1079: 1075: 1072: 1058: 1051: 1047: 1043: 1040: 1039: 1035: 1027: 1013: 1009: 1007: 1004: 1003: 980: 978: 975: 974: 954: 952: 949: 948: 945: 920: 918: 915: 914: 886: 878: 875: 874: 867:right-hand rule 842: 840: 837: 836: 809: 807: 804: 803: 783: 780: 779: 756: 742: 740: 737: 736: 717: 715: 712: 711: 688: 686: 683: 682: 636: 607: 606: 605: 525: 517: 516: 470:Viscoelasticity 461: 451: 450: 438: 388: 384:Surface tension 348: 251: 249:Fluid mechanics 241: 240: 239: 153: 151:Solid mechanics 143: 142: 94: 86: 62: 54: 52: 38: 35: 34: 17: 12: 11: 5: 4195: 4185: 4184: 4179: 4174: 4172:Fluid dynamics 4169: 4152: 4151: 4149: 4148: 4142: 4140: 4134: 4133: 4131: 4130: 4125: 4120: 4115: 4110: 4104: 4102: 4096: 4095: 4093: 4092: 4087: 4082: 4077: 4072: 4067: 4065:Vapor pressure 4062: 4057: 4052: 4047: 4042: 4035: 4026: 4021: 4016: 4011: 4006: 4001: 3996: 3991: 3986: 3979: 3974: 3969: 3964: 3956: 3954: 3948: 3947: 3945: 3944: 3939: 3934: 3929: 3924: 3919: 3914: 3909: 3904: 3899: 3892: 3887: 3882: 3877: 3872: 3866: 3864: 3858: 3857: 3855: 3854: 3849: 3844: 3839: 3834: 3829: 3824: 3819: 3813: 3811: 3805: 3804: 3802: 3801: 3796: 3791: 3786: 3781: 3776: 3771: 3766: 3761: 3756: 3751: 3745: 3743: 3739: 3738: 3733: 3732: 3725: 3718: 3710: 3704: 3703: 3693: 3682:Spherepack 3.1 3677: 3676: 3675: 3666: 3657: 3634: 3624: 3621:: Introduction 3613: 3604: 3593: 3592:External links 3590: 3589: 3588: 3574: 3560:Tritton, D. J. 3557: 3540: 3523: 3507: 3504: 3503: 3502: 3493: 3484: 3470: 3465: 3449: 3443: 3430: 3424: 3411: 3405: 3390: 3384: 3366: 3363: 3360: 3359: 3294: 3276: 3258: 3219:Joukovsky N.E. 3210: 3201: 3188: 3170: 3155: 3148: 3136:Thorne, Kip S. 3127: 3118: 3109: 3107:, Section 7.11 3103:Clancy, L.J., 3096: 3089: 3068: 3061: 3040: 3022: 3003: 3002: 3000: 2997: 2996: 2995: 2990: 2985: 2978: 2975: 2974: 2973: 2968: 2963: 2958: 2951: 2950:Fluid dynamics 2948: 2947: 2946: 2941: 2936: 2931: 2926: 2921: 2916: 2911: 2906: 2901: 2894: 2891: 2870: 2859: 2858: 2847: 2844: 2839: 2835: 2831: 2825: 2821: 2817: 2814: 2811: 2808: 2805: 2782: 2779: 2776: 2773: 2728:(that is, the 2657: 2654: 2624: 2621: 2619: 2616: 2606: 2603: 2601: 2598: 2551: 2546: 2542: 2538: 2533: 2529: 2525: 2520: 2516: 2512: 2509: 2505: 2493: 2492: 2481: 2473: 2469: 2464: 2461: 2455: 2448: 2444: 2439: 2436: 2430: 2423: 2419: 2414: 2411: 2394:vorticity line 2385: 2382: 2367:complex-valued 2363:potential flow 2343: 2340: 2339: 2338: 2326: 2325: 2322: 2321: 2320:Vorticity = 0 2318: 2317:Vorticity ≠ 0 2315: 2314:Vorticity ≠ 0 2311: 2310: 2303: 2296: 2288: 2287: 2283: 2282: 2275: 2268: 2260: 2259: 2241: 2240: 2213: 2210: 2196: 2195: 2188: 2181: 2173: 2172: 2136:, if there is 2127:Rankine vortex 2118: 2115: 2114: 2113: 2102: 2098: 2089: 2085: 2081: 2074: 2070: 2066: 2060: 2052: 2048: 2044: 2037: 2033: 2029: 2022: 2016: 2013: 2008: 2003: 2000: 1996: 1984: 1978: 1974: 1969: 1965: 1962: 1959: 1955: 1951: 1947: 1941: 1938: 1933: 1929: 1904: 1900: 1874: 1871: 1868: 1864: 1852: 1851: 1838: 1835: 1831: 1825: 1822: 1819: 1815: 1809: 1806: 1801: 1796: 1792: 1787: 1782: 1778: 1772: 1769: 1766: 1762: 1758: 1753: 1750: 1746: 1721: 1699: 1675: 1654: 1633: 1630: 1627: 1622: 1618: 1615: 1611: 1587: 1563: 1560: 1540: 1537: 1516: 1481: 1480: 1465: 1459: 1454: 1448: 1441: 1438: 1431: 1427: 1423: 1417: 1411: 1408: 1401: 1397: 1393: 1386: 1382: 1378: 1374: 1371: 1368: 1364: 1360: 1359: 1333: 1330: 1307: 1287: 1267: 1253: 1252: 1237: 1232: 1224: 1221: 1214: 1210: 1206: 1199: 1192: 1189: 1182: 1178: 1174: 1167: 1160: 1157: 1150: 1146: 1142: 1135: 1128: 1125: 1118: 1114: 1110: 1103: 1096: 1093: 1086: 1082: 1078: 1071: 1064: 1061: 1054: 1050: 1046: 1038: 1034: 1030: 1026: 1023: 1020: 1016: 1012: 1011: 983: 957: 944: 941: 923: 896: 893: 889: 885: 882: 863:center of mass 845: 812: 800:nabla operator 787: 776: 775: 764: 759: 755: 752: 749: 745: 720: 691: 638: 637: 635: 634: 627: 620: 612: 609: 608: 604: 603: 598: 593: 588: 583: 578: 573: 568: 563: 558: 553: 548: 543: 538: 533: 527: 526: 523: 522: 519: 518: 513: 512: 511: 510: 505: 500: 492: 491: 485: 484: 483: 482: 477: 472: 462: 457: 456: 453: 452: 447: 446: 440: 439: 437: 436: 431: 426: 421: 416: 411: 406: 400: 397: 396: 390: 389: 387: 386: 381: 376: 374:Chromatography 371: 366: 360: 357: 356: 350: 349: 347: 346: 327: 326: 325: 306: 294: 289: 277: 264: 261: 260: 252: 247: 246: 243: 242: 238: 237: 232: 227: 226: 225: 215: 210: 205: 204: 203: 198: 188: 183: 178: 173: 172: 171: 161: 155: 154: 149: 148: 145: 144: 139: 138: 137: 136: 128: 127: 123: 122: 121: 120: 115: 110: 102: 101: 95: 92: 91: 88: 87: 82: 68: 65: 60: 57: 51: 48: 45: 42: 31: 30: 24: 23: 15: 9: 6: 4: 3: 2: 4194: 4183: 4180: 4178: 4175: 4173: 4170: 4168: 4165: 4164: 4162: 4147: 4144: 4143: 4141: 4139: 4135: 4129: 4126: 4124: 4121: 4119: 4118:Barotropicity 4116: 4114: 4111: 4109: 4106: 4105: 4103: 4101: 4097: 4091: 4088: 4086: 4083: 4081: 4078: 4076: 4073: 4071: 4068: 4066: 4063: 4061: 4058: 4056: 4053: 4051: 4048: 4046: 4041: 4036: 4034: 4032: 4027: 4025: 4022: 4020: 4017: 4015: 4012: 4010: 4007: 4005: 4002: 4000: 3997: 3995: 3992: 3990: 3985: 3980: 3978: 3975: 3973: 3970: 3968: 3963: 3958: 3957: 3955: 3953: 3949: 3943: 3940: 3938: 3935: 3933: 3930: 3928: 3925: 3923: 3920: 3918: 3915: 3913: 3910: 3908: 3905: 3903: 3898: 3893: 3891: 3888: 3886: 3883: 3881: 3878: 3876: 3873: 3871: 3868: 3867: 3865: 3863: 3859: 3853: 3850: 3848: 3847:Precipitation 3845: 3843: 3840: 3838: 3835: 3833: 3830: 3828: 3825: 3823: 3820: 3818: 3815: 3814: 3812: 3810: 3806: 3800: 3797: 3795: 3792: 3790: 3787: 3785: 3782: 3780: 3777: 3775: 3772: 3770: 3767: 3765: 3762: 3760: 3757: 3755: 3752: 3750: 3747: 3746: 3744: 3740: 3731: 3726: 3724: 3719: 3717: 3712: 3711: 3708: 3701: 3699: 3694: 3691: 3690: 3686: 3683: 3678: 3673: 3672: 3667: 3664: 3663: 3658: 3655: 3654: 3649: 3648: 3646: 3642: 3638: 3635: 3632: 3631: 3625: 3622: 3620: 3614: 3611: 3610: 3605: 3602: 3601: 3596: 3595: 3587: 3586:0-12-059820-5 3583: 3579: 3576:Arfken, G., " 3575: 3573: 3572:0-19-854493-6 3569: 3565: 3561: 3558: 3556: 3555:0-521-63948-4 3552: 3548: 3544: 3541: 3539: 3538:0-387-94197-5 3535: 3531: 3527: 3524: 3522: 3521:0-521-81984-9 3518: 3514: 3510: 3509: 3500: 3499: 3494: 3491: 3490: 3485: 3483: 3482:0-273-01120-0 3479: 3475: 3471: 3468: 3466:0-521-66396-2 3462: 3458: 3454: 3450: 3446: 3444:0-19-851746-7 3440: 3436: 3431: 3427: 3421: 3417: 3412: 3408: 3402: 3398: 3397: 3391: 3387: 3385:0-19-859679-0 3381: 3377: 3373: 3372:Acheson, D.J. 3369: 3368: 3355: 3351: 3347: 3343: 3339: 3335: 3330: 3325: 3321: 3317: 3313: 3309: 3305: 3298: 3292: 3288: 3285: 3280: 3274: 3270: 3267: 3262: 3253: 3247: 3239: 3238: 3230: 3226: 3225: 3220: 3214: 3205: 3198: 3192: 3186: 3182: 3179: 3174: 3166: 3159: 3151: 3149:9780691159027 3145: 3141: 3137: 3131: 3122: 3113: 3106: 3100: 3092: 3090:0-19-859679-0 3086: 3082: 3078: 3077:Acheson, D.J. 3072: 3064: 3062:0-19-851746-7 3058: 3054: 3047: 3045: 3036: 3032: 3031:Moffatt, H.K. 3026: 3020: 3016: 3013: 3008: 3004: 2994: 2991: 2989: 2986: 2984: 2981: 2980: 2972: 2969: 2967: 2964: 2962: 2959: 2957: 2954: 2953: 2945: 2942: 2940: 2937: 2935: 2932: 2930: 2927: 2925: 2922: 2920: 2917: 2915: 2912: 2910: 2907: 2905: 2902: 2900: 2897: 2896: 2890: 2888: 2884: 2868: 2845: 2842: 2833: 2823: 2819: 2815: 2809: 2803: 2796: 2795: 2794: 2793:, defined as 2777: 2771: 2764: 2759: 2757: 2753: 2748: 2746: 2742: 2739: 2735: 2731: 2727: 2723: 2718: 2716: 2712: 2708: 2704: 2700: 2696: 2692: 2691: 2685: 2683: 2679: 2674: 2672: 2668: 2663: 2653: 2651: 2647: 2643: 2638: 2634: 2630: 2615: 2611: 2597: 2595: 2591: 2586: 2584: 2580: 2576: 2572: 2567: 2565: 2544: 2540: 2536: 2531: 2527: 2523: 2518: 2514: 2507: 2479: 2471: 2467: 2462: 2459: 2453: 2446: 2442: 2437: 2434: 2428: 2421: 2417: 2412: 2409: 2399: 2398: 2397: 2395: 2391: 2381: 2379: 2374: 2372: 2371:complex plane 2369:field on the 2368: 2364: 2360: 2355: 2353: 2349: 2336: 2332: 2331: 2330: 2319: 2316: 2313: 2312: 2308: 2301: 2294: 2289: 2284: 2280: 2273: 2266: 2261: 2255: 2242: 2234: 2220: 2214: 2211: 2208: 2204: 2198: 2197: 2193: 2186: 2179: 2174: 2169: 2166: 2165: 2164: 2162: 2158: 2153: 2151: 2150:cross section 2147: 2143: 2139: 2135: 2130: 2128: 2124: 2100: 2096: 2087: 2083: 2072: 2068: 2058: 2050: 2046: 2035: 2031: 2020: 2014: 2011: 2006: 2001: 1998: 1982: 1976: 1957: 1945: 1939: 1936: 1931: 1919: 1918: 1917: 1890: 1872: 1869: 1866: 1862: 1836: 1833: 1823: 1820: 1817: 1813: 1807: 1804: 1799: 1794: 1790: 1785: 1780: 1776: 1770: 1767: 1764: 1760: 1756: 1751: 1748: 1736: 1735: 1734: 1687: 1673: 1628: 1625: 1613: 1601: 1585: 1577: 1558: 1538: 1535: 1506: 1501: 1497: 1494: 1493:infinitesimal 1490: 1486: 1463: 1457: 1446: 1439: 1429: 1425: 1415: 1409: 1399: 1395: 1384: 1380: 1372: 1366: 1350: 1349: 1348: 1328: 1305: 1285: 1265: 1256: 1235: 1230: 1222: 1212: 1208: 1197: 1190: 1180: 1176: 1165: 1158: 1148: 1144: 1133: 1126: 1116: 1112: 1101: 1094: 1084: 1080: 1069: 1062: 1052: 1048: 1036: 1032: 1024: 1018: 1002: 1001: 1000: 998: 972: 940: 938: 912: 907: 894: 891: 883: 872: 868: 864: 860: 834: 833:displacements 831: 827: 801: 762: 753: 747: 735: 734: 733: 710: 709:flow velocity 706: 679: 677: 673: 669: 665: 661: 657: 653: 649: 645: 633: 628: 626: 621: 619: 614: 613: 611: 610: 602: 599: 597: 594: 592: 589: 587: 584: 582: 579: 577: 574: 572: 569: 567: 564: 562: 559: 557: 554: 552: 549: 547: 544: 542: 539: 537: 534: 532: 529: 528: 521: 520: 509: 506: 504: 501: 499: 496: 495: 494: 493: 490: 487: 486: 481: 478: 476: 473: 471: 468: 467: 466: 465: 460: 455: 454: 445: 442: 441: 435: 432: 430: 427: 425: 422: 420: 417: 415: 414:Charles's law 412: 410: 407: 405: 402: 401: 399: 398: 395: 392: 391: 385: 382: 380: 377: 375: 372: 370: 367: 365: 362: 361: 359: 358: 355: 352: 351: 345: 342: 338: 335: 331: 328: 323: 322:non-Newtonian 320: 316: 312: 311: 310: 307: 305: 302: 298: 295: 293: 290: 288: 285: 281: 278: 276: 273: 269: 266: 265: 263: 262: 259: 256: 255: 250: 245: 244: 236: 233: 231: 228: 224: 221: 220: 219: 216: 214: 211: 209: 208:Compatibility 206: 202: 199: 197: 196:Finite strain 194: 193: 192: 189: 187: 184: 182: 179: 177: 174: 170: 167: 166: 165: 162: 160: 157: 156: 152: 147: 146: 135: 132: 131: 130: 129: 125: 124: 119: 116: 114: 111: 109: 106: 105: 104: 103: 100:Conservations 99: 98: 90: 89: 85: 66: 63: 58: 55: 49: 46: 43: 40: 33: 32: 29: 26: 25: 21: 20: 4039: 4030: 4024:Mixing ratio 3999:Haines Index 3983: 3961: 3896: 3809:Condensation 3788: 3696: 3680: 3669: 3660: 3651: 3640: 3630:9: Vorticity 3627: 3616: 3607: 3598: 3577: 3563: 3546: 3529: 3512: 3496: 3487: 3474:Aerodynamics 3473: 3456: 3434: 3415: 3395: 3375: 3365:Bibliography 3311: 3307: 3297: 3279: 3261: 3236: 3228: 3222: 3213: 3204: 3196: 3191: 3173: 3164: 3158: 3139: 3130: 3121: 3112: 3105:Aerodynamics 3104: 3099: 3080: 3071: 3052: 3034: 3025: 3007: 2914:Palinstrophy 2860: 2760: 2749: 2736:of 500  2726:Rossby waves 2719: 2688: 2686: 2677: 2675: 2661: 2659: 2629:aerodynamics 2626: 2612: 2608: 2587: 2574: 2570: 2568: 2494: 2393: 2389: 2387: 2375: 2356: 2345: 2327: 2232: 2218: 2206: 2202: 2160: 2154: 2146:laminar flow 2131: 2120: 1853: 1688: 1499: 1482: 1257: 1254: 946: 937:scalar field 908: 873:field since 829: 826:neighborhood 777: 680: 676:vortex rings 652:pseudovector 647: 641: 489:Smart fluids 434:Graham's law 340: 333: 318: 304:Pascal's law 300: 283: 271: 126:Inequalities 4113:Baroclinity 3960:Dew point ( 3952:Temperature 3852:Water vapor 3645:UC Berkeley 2961:Circulation 2929:Vortex tube 2646:circulation 2637:finite wing 2623:Aeronautics 2575:vortex flux 2571:vortex tube 2390:vortex line 2142:streamlines 1600:dot product 1485:circulation 508:Ferrofluids 409:Boyle's law 181:Hooke's law 159:Deformation 4161:Categories 4090:Wind chill 4004:Heat index 3862:Convection 3799:Wind shear 3784:Visibility 3764:Lapse rate 2999:References 2993:Hans Ertel 2889:activity. 2883:supercells 1574:along the 871:solenoidal 561:Gay-Lussac 524:Scientists 424:Fick's law 404:Atmosphere 223:frictional 176:Plasticity 164:Elasticity 3789:Vorticity 3769:Lightning 3754:Advection 3600:Vorticity 3498:Vorticity 3455:(2000) , 3338:0036-8075 3246:cite book 2909:Enstrophy 2838:ω 2834:⋅ 2820:∫ 2711:adiabatic 2709:flow. As 2707:adiabatic 2703:conserved 2541:ω 2528:ω 2515:ω 2504:ω 2468:ω 2443:ω 2418:ω 2378:diffusion 2342:Evolution 2163:is zero. 2134:pathlines 2080:∂ 2065:∂ 2059:− 2043:∂ 2028:∂ 1995:Ω 1964:∇ 1958:− 1950:∇ 1928:Ω 1899:∇ 1863:ε 1830:Ω 1814:ε 1791:ω 1777:ω 1761:ε 1745:Ω 1720:ω 1698:Ω 1653:ω 1614:⋅ 1610:ω 1576:perimeter 1562:Γ 1528:and area 1437:∂ 1422:∂ 1416:− 1407:∂ 1392:∂ 1373:× 1370:∇ 1363:ω 1332:^ 1220:∂ 1205:∂ 1198:− 1188:∂ 1173:∂ 1156:∂ 1141:∂ 1134:− 1124:∂ 1109:∂ 1092:∂ 1077:∂ 1070:− 1060:∂ 1045:∂ 1025:× 1022:∇ 1015:ω 956:ω 922:ω 888:ω 884:⋅ 881:∇ 844:ω 811:ω 786:∇ 754:× 751:∇ 748:≡ 744:ω 690:ω 648:vorticity 601:Truesdell 531:Bernoulli 480:Rheometer 475:Rheometry 315:Newtonian 309:Viscosity 59:φ 47:− 4182:Rotation 4138:Velocity 4100:Pressure 4014:Humidity 3917:Helicity 3759:Buoyancy 3685:Archived 3374:(1990). 3354:23287311 3346:28774926 3287:Archived 3269:Archived 3181:Archived 3079:(1990). 3015:Archived 2893:See also 2887:tornadic 2763:helicity 2117:Examples 1916:, i.e., 830:relative 660:spinning 459:Rheology 364:Adhesion 344:Pressure 330:Buoyancy 275:Dynamics 113:Momentum 4009:Humidex 3922:K Index 3742:General 3316:Bibcode 3308:Science 2730:troughs 2699:entropy 2237:⁠ 2223:⁠ 1598:is the 798:is the 707:of the 703:is the 546:Charles 354:Liquids 268:Statics 213:Bending 3584:  3570:  3553:  3536:  3519:  3480:  3463:  3441:  3422:  3403:  3382:  3352:  3344:  3336:  3146:  3087:  3059:  2924:Vortex 2734:ridges 2715:tracer 2705:in an 2631:, the 2495:where 2244:where 1854:where 1644:where 778:where 672:fluids 596:Stokes 591:Pascal 581:Navier 576:Newton 566:Graham 541:Cauchy 444:Plasma 339:  337:Mixing 332:  317:  299:  282:  270:  258:Fluids 191:Strain 186:Stress 169:linear 118:Energy 3817:Cloud 3350:S2CID 2138:shear 1503:with 909:In a 656:field 650:is a 571:Hooke 551:Euler 536:Boyle 394:Gases 3794:Wind 3582:ISBN 3568:ISBN 3551:ISBN 3534:ISBN 3517:ISBN 3478:ISBN 3461:ISBN 3439:ISBN 3420:ISBN 3401:ISBN 3380:ISBN 3342:PMID 3334:ISSN 3252:link 3144:ISBN 3085:ISBN 3057:ISBN 2732:and 2720:The 2697:(or 2687:The 2676:The 2660:The 2633:lift 971:curl 705:curl 664:flow 586:Noll 556:Fick 108:Mass 93:Laws 3827:Fog 3639:, " 3562:, " 3528:, " 3324:doi 3312:357 2738:hPa 2627:In 2392:or 1578:of 670:of 642:In 4163:: 3674:". 3665:". 3656:". 3647:. 3348:. 3340:. 3332:. 3322:. 3310:. 3306:. 3248:}} 3244:{{ 3229:28 3227:. 3043:^ 2758:. 2684:. 2569:A 2566:. 2388:A 2373:. 2354:. 2221:∝ 2205:∝ 2129:. 1989:or 1686:. 1347:: 999:: 939:. 913:, 895:0. 732:: 678:. 646:, 4045:) 4043:e 4040:θ 4033:) 4031:θ 3989:) 3987:e 3984:T 3967:) 3965:d 3962:T 3902:) 3900:c 3897:T 3729:e 3722:t 3715:v 3695:" 3679:" 3668:" 3659:" 3650:" 3495:" 3486:" 3447:. 3428:. 3409:. 3388:. 3356:. 3326:: 3318:: 3254:) 3231:. 3167:. 3152:. 3093:. 3065:. 2869:V 2846:V 2843:d 2830:v 2824:V 2816:= 2813:) 2810:t 2807:( 2804:H 2781:) 2778:t 2775:( 2772:H 2550:) 2545:z 2537:, 2532:y 2524:, 2519:x 2511:( 2508:= 2480:, 2472:z 2463:z 2460:d 2454:= 2447:y 2438:y 2435:d 2429:= 2422:x 2413:x 2410:d 2256:. 2250:r 2246:v 2233:r 2229:/ 2226:1 2219:v 2207:r 2203:v 2101:. 2097:) 2088:i 2084:x 2073:i 2069:v 2051:j 2047:x 2036:i 2032:v 2021:( 2015:2 2012:1 2007:= 2002:j 1999:i 1983:] 1977:T 1973:) 1968:v 1961:( 1954:v 1946:[ 1940:2 1937:1 1932:= 1903:v 1873:k 1870:j 1867:i 1837:k 1834:j 1824:k 1821:j 1818:i 1808:2 1805:1 1800:= 1795:i 1786:, 1781:k 1771:k 1768:j 1765:i 1757:= 1752:j 1749:i 1674:C 1632:) 1629:A 1626:d 1621:n 1617:( 1586:C 1559:d 1539:A 1536:d 1515:n 1500:C 1464:. 1458:z 1453:e 1447:) 1440:y 1430:x 1426:v 1410:x 1400:y 1396:v 1385:( 1381:= 1377:v 1367:= 1329:z 1306:z 1286:z 1266:z 1236:. 1231:) 1223:y 1213:x 1209:v 1191:x 1181:y 1177:v 1166:, 1159:x 1149:z 1145:v 1127:z 1117:x 1113:v 1102:, 1095:z 1085:y 1081:v 1063:y 1053:z 1049:v 1037:( 1033:= 1029:v 1019:= 982:v 892:= 763:, 758:v 719:v 631:e 624:t 617:v 341:¡ 334:¡ 324:) 319:¡ 313:( 301:¡ 284:¡ 272:¡ 67:x 64:d 56:d 50:D 44:= 41:J

Index

Continuum mechanics
Fick's laws of diffusion
Mass
Momentum
Energy
Clausius–Duhem (entropy)
Solid mechanics
Deformation
Elasticity
linear
Plasticity
Hooke's law
Stress
Strain
Finite strain
Infinitesimal strain
Compatibility
Bending
Contact mechanics
frictional
Material failure theory
Fracture mechanics
Fluid mechanics
Fluids
Statics
Dynamics
Archimedes' principle
Bernoulli's principle
Navier–Stokes equations
Poiseuille equation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑