Knowledge

Thom–Mather stratified space

Source 📝

1686: 1522: 1095: 1374: 60:
and are required to fit together in a certain way. Thom–Mather stratified spaces provide a purely topological setting for the study of singularities analogous to the more differential-geometric theory of
395: 695: 271: 1363: 923: 140: 1234: 1181: 549: 728: 791: 656: 488: 1303: 1555: 298: 196: 950: 817: 1128: 1003: 758: 422: 1263: 974: 840: 620: 593: 573: 442: 216: 160: 88:(top dimension, codimension 1 boundary, codimension 2 corners), real or complex analytic varieties, or orbit spaces of smooth transformation groups. 1245:
One of the original motivations for stratified spaces were decomposing singular spaces into smooth chunks. For example, given a singular variety
17: 1008: 1517:{\displaystyle {\text{Spec}}\left(\mathbb {C} /\left(x^{4}+y^{4}+z^{4}\right)\right)\xleftarrow {(0,0,0)} {\text{Spec}}(\mathbb {C} )} 1727: 306: 661: 227: 1308: 847: 1637: 99: 1186: 1670: 1624: 1611: 1133: 493: 700: 1746: 1701: 763: 1590: 625: 1305:, which is the singular locus. This may not be a smooth variety, so taking the iterated singularity locus 1751: 1720: 1633: 447: 74: 1660: 1268: 1529: 596: 279: 177: 1756: 1365:
will eventually give a natural stratification. A simple algebreo-geometric example is the singular
1098: 1761: 81: 1713: 928: 1648: 1585: 796: 85: 1107: 982: 737: 73:
was also a topologically stratified space, with the same strata. Another proof was given by
400: 8: 1575: 1570: 1558: 1248: 959: 825: 605: 578: 558: 427: 201: 145: 70: 1666: 1656: 46: 1595: 171: 37: 167: 163: 62: 551:
is a continuous function. These data need to satisfy the following conditions.
1697: 1740: 1665:. Chicago Lectures in Mathematics. Chicago, IL: University of Chicago Press. 731: 1620: 1607: 1366: 1644: 66: 1090:{\displaystyle (\pi _{Y},\rho _{Y}):T_{Y}\cap X\to Y\times (0,+\infty )} 1580: 1652:, Bulletin of the American Mathematical Society 75 (1969), pp.240-284. 1474: 1693: 57: 31: 1685: 1236:(both over the common domain of both sides of the equation). 390:{\displaystyle \{(T_{X}),(\pi _{X}),(\rho _{X})\ |X\in S\}} 80:
Basic examples of Thom–Mather stratified spaces include
1532: 1377: 1311: 1271: 1251: 1189: 1136: 1110: 1011: 985: 962: 931: 850: 828: 799: 766: 740: 703: 664: 628: 608: 581: 561: 496: 450: 430: 403: 309: 282: 230: 204: 180: 148: 102: 690:{\displaystyle Y\cap {\overline {X}}\neq \emptyset } 266:{\displaystyle V=\bigsqcup _{X\in {\mathcal {S}}}X,} 162:
is a topological space (often we require that it is
1662:
The topological classification of stratified spaces
1358:{\displaystyle \mathrm {Sing} (\mathrm {Sing} (X))} 918:{\displaystyle X=\{v\in T_{X}\ |\ \rho _{X}(v)=0\}} 1549: 1516: 1357: 1297: 1257: 1228: 1175: 1122: 1089: 997: 968: 944: 917: 834: 811: 785: 752: 722: 689: 650: 614: 587: 567: 543: 482: 436: 416: 389: 292: 265: 210: 190: 154: 135:{\displaystyle (V,{\mathcal {S}},{\mathfrak {J}})} 134: 1229:{\displaystyle \rho _{Y}\circ \pi _{X}=\rho _{Y}} 575:is a locally closed subset and the decomposition 1738: 1176:{\displaystyle \pi _{Y}\circ \pi _{X}=\pi _{Y}} 544:{\displaystyle \rho _{X}:T_{X}\to [0,+\infty )} 84:(top dimension and codimension 1 boundary) and 1721: 912: 857: 384: 310: 52:that has been decomposed into pieces called 1265:, there is a naturally defined subvariety, 96:A Thom–Mather stratified space is a triple 1728: 1714: 1655: 1630:, Invent. Math. 72 (1983), no. 1, 77--129. 723:{\displaystyle Y\subseteq {\overline {X}}} 1507: 1389: 730:. This condition implies that there is a 786:{\displaystyle Y\subset {\overline {X}}} 622:satisfies the axiom of the frontier: if 424:is an open neighborhood of the stratum 14: 1739: 651:{\displaystyle X,Y\in {\mathcal {S}}} 1680: 483:{\displaystyle \pi _{X}:T_{X}\to X} 444:(called the tubular neighborhood), 285: 124: 77:in 1970, inspired by Thom's proof. 24: 1649:Ensembles et morphismes stratifiés 1339: 1336: 1333: 1330: 1322: 1319: 1316: 1313: 1298:{\displaystyle \mathrm {Sing} (X)} 1282: 1279: 1276: 1273: 1081: 684: 643: 535: 250: 183: 114: 25: 1773: 1684: 1617:, Springer-Verlag, Berlin, 1988. 1550:{\displaystyle {\text{Spec}}(-)} 490:is a continuous retraction, and 293:{\displaystyle {\mathfrak {J}}} 1638:Notes on topological stability 1544: 1538: 1511: 1503: 1493: 1475: 1411: 1393: 1352: 1349: 1343: 1326: 1292: 1286: 1084: 1069: 1060: 1038: 1012: 903: 897: 880: 538: 523: 520: 474: 371: 364: 351: 345: 332: 326: 313: 191:{\displaystyle {\mathcal {S}}} 129: 103: 34:, a branch of mathematics, an 18:Topologically stratified space 13: 1: 1601: 91: 1700:. You can help Knowledge by 778: 715: 676: 43:Thom–Mather stratified space 7: 1641:, Harvard University, 1970. 1564: 1240: 65:. They were introduced by 10: 1778: 1679: 1591:Thom's first isotopy lemma 945:{\displaystyle \rho _{X}} 1628:Intersection homology II 1104:For each pair of strata 979:For each pair of strata 71:Whitney stratified space 69:, who showed that every 1615:Stratified Morse theory 812:{\displaystyle Y\neq X} 82:manifolds with boundary 1551: 1518: 1359: 1299: 1259: 1230: 1177: 1124: 1123:{\displaystyle Y<X} 1091: 999: 998:{\displaystyle Y<X} 970: 946: 919: 836: 813: 787: 754: 753:{\displaystyle Y<X} 724: 691: 652: 616: 589: 569: 545: 484: 438: 418: 391: 294: 267: 212: 198:is a decomposition of 192: 156: 136: 86:manifolds with corners 1747:Generalized manifolds 1586:Intersection homology 1552: 1519: 1360: 1300: 1260: 1231: 1178: 1125: 1092: 1000: 971: 952:can be viewed as the 947: 920: 842:is a smooth manifold. 837: 814: 788: 755: 725: 692: 653: 617: 590: 570: 546: 485: 439: 419: 417:{\displaystyle T_{X}} 392: 295: 268: 213: 193: 157: 137: 1530: 1375: 1371:      1309: 1269: 1249: 1187: 1134: 1108: 1009: 983: 960: 929: 848: 826: 797: 764: 738: 701: 662: 626: 606: 579: 559: 494: 448: 428: 401: 307: 280: 228: 202: 178: 146: 100: 1496: 56:; these strata are 1752:Singularity theory 1657:Weinberger, Shmuel 1625:MacPherson, Robert 1612:MacPherson, Robert 1576:Whitney conditions 1571:Singularity theory 1547: 1514: 1355: 1295: 1255: 1226: 1173: 1120: 1087: 1005:, the restriction 995: 966: 942: 915: 832: 809: 783: 750: 720: 687: 648: 612: 602:The decomposition 585: 565: 541: 480: 434: 414: 387: 290: 263: 256: 208: 188: 152: 132: 1709: 1708: 1536: 1501: 1497: 1381: 1258:{\displaystyle X} 969:{\displaystyle X} 956:from the stratum 954:distance function 886: 878: 835:{\displaystyle X} 781: 718: 679: 615:{\displaystyle S} 588:{\displaystyle S} 568:{\displaystyle X} 437:{\displaystyle X} 369: 237: 211:{\displaystyle V} 155:{\displaystyle V} 47:topological space 27:Topological space 16:(Redirected from 1769: 1730: 1723: 1716: 1694:topology-related 1688: 1681: 1676: 1596:stratified space 1556: 1554: 1553: 1548: 1537: 1534: 1523: 1521: 1520: 1515: 1510: 1502: 1499: 1470: 1469: 1465: 1464: 1460: 1459: 1458: 1446: 1445: 1433: 1432: 1418: 1392: 1382: 1379: 1364: 1362: 1361: 1356: 1342: 1325: 1304: 1302: 1301: 1296: 1285: 1264: 1262: 1261: 1256: 1235: 1233: 1232: 1227: 1225: 1224: 1212: 1211: 1199: 1198: 1182: 1180: 1179: 1174: 1172: 1171: 1159: 1158: 1146: 1145: 1129: 1127: 1126: 1121: 1096: 1094: 1093: 1088: 1053: 1052: 1037: 1036: 1024: 1023: 1004: 1002: 1001: 996: 975: 973: 972: 967: 951: 949: 948: 943: 941: 940: 924: 922: 921: 916: 896: 895: 884: 883: 876: 875: 874: 841: 839: 838: 833: 818: 816: 815: 810: 792: 790: 789: 784: 782: 774: 759: 757: 756: 751: 729: 727: 726: 721: 719: 711: 696: 694: 693: 688: 680: 672: 657: 655: 654: 649: 647: 646: 621: 619: 618: 613: 594: 592: 591: 586: 574: 572: 571: 566: 550: 548: 547: 542: 519: 518: 506: 505: 489: 487: 486: 481: 473: 472: 460: 459: 443: 441: 440: 435: 423: 421: 420: 415: 413: 412: 396: 394: 393: 388: 374: 367: 363: 362: 344: 343: 325: 324: 299: 297: 296: 291: 289: 288: 272: 270: 269: 264: 255: 254: 253: 217: 215: 214: 209: 197: 195: 194: 189: 187: 186: 172:second countable 161: 159: 158: 153: 141: 139: 138: 133: 128: 127: 118: 117: 38:stratified space 21: 1777: 1776: 1772: 1771: 1770: 1768: 1767: 1766: 1757:Stratifications 1737: 1736: 1735: 1734: 1673: 1604: 1567: 1533: 1531: 1528: 1527: 1506: 1498: 1454: 1450: 1441: 1437: 1428: 1424: 1423: 1419: 1414: 1388: 1387: 1383: 1378: 1376: 1373: 1372: 1329: 1312: 1310: 1307: 1306: 1272: 1270: 1267: 1266: 1250: 1247: 1246: 1243: 1220: 1216: 1207: 1203: 1194: 1190: 1188: 1185: 1184: 1167: 1163: 1154: 1150: 1141: 1137: 1135: 1132: 1131: 1109: 1106: 1105: 1048: 1044: 1032: 1028: 1019: 1015: 1010: 1007: 1006: 984: 981: 980: 961: 958: 957: 936: 932: 930: 927: 926: 891: 887: 879: 870: 866: 849: 846: 845: 827: 824: 823: 798: 795: 794: 773: 765: 762: 761: 760:if and only if 739: 736: 735: 710: 702: 699: 698: 671: 663: 660: 659: 642: 641: 627: 624: 623: 607: 604: 603: 580: 577: 576: 560: 557: 556: 514: 510: 501: 497: 495: 492: 491: 468: 464: 455: 451: 449: 446: 445: 429: 426: 425: 408: 404: 402: 399: 398: 370: 358: 354: 339: 335: 320: 316: 308: 305: 304: 284: 283: 281: 278: 277: 249: 248: 241: 229: 226: 225: 203: 200: 199: 182: 181: 179: 176: 175: 164:locally compact 147: 144: 143: 123: 122: 113: 112: 101: 98: 97: 94: 28: 23: 22: 15: 12: 11: 5: 1775: 1765: 1764: 1762:Topology stubs 1759: 1754: 1749: 1733: 1732: 1725: 1718: 1710: 1707: 1706: 1689: 1678: 1677: 1671: 1653: 1642: 1631: 1618: 1603: 1600: 1599: 1598: 1593: 1588: 1583: 1578: 1573: 1566: 1563: 1559:prime spectrum 1546: 1543: 1540: 1513: 1509: 1505: 1495: 1492: 1489: 1486: 1483: 1480: 1477: 1473: 1468: 1463: 1457: 1453: 1449: 1444: 1440: 1436: 1431: 1427: 1422: 1417: 1413: 1410: 1407: 1404: 1401: 1398: 1395: 1391: 1386: 1354: 1351: 1348: 1345: 1341: 1338: 1335: 1332: 1328: 1324: 1321: 1318: 1315: 1294: 1291: 1288: 1284: 1281: 1278: 1275: 1254: 1242: 1239: 1238: 1237: 1223: 1219: 1215: 1210: 1206: 1202: 1197: 1193: 1170: 1166: 1162: 1157: 1153: 1149: 1144: 1140: 1130:, there holds 1119: 1116: 1113: 1102: 1086: 1083: 1080: 1077: 1074: 1071: 1068: 1065: 1062: 1059: 1056: 1051: 1047: 1043: 1040: 1035: 1031: 1027: 1022: 1018: 1014: 994: 991: 988: 977: 965: 939: 935: 914: 911: 908: 905: 902: 899: 894: 890: 882: 873: 869: 865: 862: 859: 856: 853: 843: 831: 820: 808: 805: 802: 780: 777: 772: 769: 749: 746: 743: 734:among strata: 717: 714: 709: 706: 686: 683: 678: 675: 670: 667: 645: 640: 637: 634: 631: 611: 600: 597:locally finite 584: 564: 540: 537: 534: 531: 528: 525: 522: 517: 513: 509: 504: 500: 479: 476: 471: 467: 463: 458: 454: 433: 411: 407: 386: 383: 380: 377: 373: 366: 361: 357: 353: 350: 347: 342: 338: 334: 331: 328: 323: 319: 315: 312: 300:is the set of 287: 274: 273: 262: 259: 252: 247: 244: 240: 236: 233: 207: 185: 151: 131: 126: 121: 116: 111: 108: 105: 93: 90: 26: 9: 6: 4: 3: 2: 1774: 1763: 1760: 1758: 1755: 1753: 1750: 1748: 1745: 1744: 1742: 1731: 1726: 1724: 1719: 1717: 1712: 1711: 1705: 1703: 1699: 1696:article is a 1695: 1690: 1687: 1683: 1682: 1674: 1672:9780226885667 1668: 1664: 1663: 1658: 1654: 1651: 1650: 1646: 1643: 1640: 1639: 1635: 1632: 1629: 1626: 1622: 1621:Goresky, Mark 1619: 1616: 1613: 1609: 1608:Goresky, Mark 1606: 1605: 1597: 1594: 1592: 1589: 1587: 1584: 1582: 1579: 1577: 1574: 1572: 1569: 1568: 1562: 1560: 1541: 1524: 1490: 1487: 1484: 1481: 1478: 1471: 1466: 1461: 1455: 1451: 1447: 1442: 1438: 1434: 1429: 1425: 1420: 1415: 1408: 1405: 1402: 1399: 1396: 1384: 1369: 1368: 1346: 1289: 1252: 1221: 1217: 1213: 1208: 1204: 1200: 1195: 1191: 1168: 1164: 1160: 1155: 1151: 1147: 1142: 1138: 1117: 1114: 1111: 1103: 1100: 1078: 1075: 1072: 1066: 1063: 1057: 1054: 1049: 1045: 1041: 1033: 1029: 1025: 1020: 1016: 992: 989: 986: 978: 963: 955: 937: 933: 909: 906: 900: 892: 888: 871: 867: 863: 860: 854: 851: 844: 829: 822:Each stratum 821: 806: 803: 800: 775: 770: 767: 747: 744: 741: 733: 732:partial order 712: 707: 704: 681: 673: 668: 665: 638: 635: 632: 629: 609: 601: 598: 582: 562: 555:Each stratum 554: 553: 552: 532: 529: 526: 515: 511: 507: 502: 498: 477: 469: 465: 461: 456: 452: 431: 409: 405: 381: 378: 375: 359: 355: 348: 340: 336: 329: 321: 317: 303: 260: 257: 245: 242: 238: 234: 231: 224: 223: 222: 221: 205: 173: 169: 165: 149: 119: 109: 106: 89: 87: 83: 78: 76: 72: 68: 64: 59: 55: 51: 48: 44: 40: 39: 33: 19: 1702:expanding it 1691: 1661: 1647: 1636: 1627: 1614: 1525: 1370: 1367:hypersurface 1244: 953: 302:control data 301: 275: 219: 95: 79: 53: 49: 42: 35: 29: 75:John Mather 1741:Categories 1634:Mather, J. 1602:References 1581:Stratifold 1099:submersion 92:Definition 1542:− 1218:ρ 1205:π 1201:∘ 1192:ρ 1165:π 1152:π 1148:∘ 1139:π 1082:∞ 1067:× 1061:→ 1055:∩ 1030:ρ 1017:π 934:ρ 889:ρ 864:∈ 804:≠ 779:¯ 771:⊂ 716:¯ 708:⊆ 685:∅ 682:≠ 677:¯ 669:∩ 639:∈ 536:∞ 521:→ 499:ρ 475:→ 453:π 379:∈ 356:ρ 337:π 246:∈ 239:⨆ 168:Hausdorff 67:René Thom 58:manifolds 36:abstract 1659:(1994). 1645:Thom, R. 1565:See also 1472:← 1241:Examples 32:topology 1557:is the 697:, then 220:strata, 63:Whitney 41:, or a 1669:  1526:where 885:  877:  397:where 368:  170:, and 142:where 54:strata 1692:This 1097:is a 925:. So 218:into 45:is a 1698:stub 1667:ISBN 1535:Spec 1500:Spec 1380:Spec 1183:and 1115:< 990:< 793:and 745:< 658:and 276:and 595:is 174:), 30:In 1743:: 1623:; 1610:; 1561:. 166:, 1729:e 1722:t 1715:v 1704:. 1675:. 1545:) 1539:( 1512:) 1508:C 1504:( 1494:) 1491:0 1488:, 1485:0 1482:, 1479:0 1476:( 1467:) 1462:) 1456:4 1452:z 1448:+ 1443:4 1439:y 1435:+ 1430:4 1426:x 1421:( 1416:/ 1412:] 1409:z 1406:, 1403:y 1400:, 1397:x 1394:[ 1390:C 1385:( 1353:) 1350:) 1347:X 1344:( 1340:g 1337:n 1334:i 1331:S 1327:( 1323:g 1320:n 1317:i 1314:S 1293:) 1290:X 1287:( 1283:g 1280:n 1277:i 1274:S 1253:X 1222:Y 1214:= 1209:X 1196:Y 1169:Y 1161:= 1156:X 1143:Y 1118:X 1112:Y 1101:. 1085:) 1079:+ 1076:, 1073:0 1070:( 1064:Y 1058:X 1050:Y 1046:T 1042:: 1039:) 1034:Y 1026:, 1021:Y 1013:( 993:X 987:Y 976:. 964:X 938:X 913:} 910:0 907:= 904:) 901:v 898:( 893:X 881:| 872:X 868:T 861:v 858:{ 855:= 852:X 830:X 819:. 807:X 801:Y 776:X 768:Y 748:X 742:Y 713:X 705:Y 674:X 666:Y 644:S 636:Y 633:, 630:X 610:S 599:. 583:S 563:X 539:) 533:+ 530:, 527:0 524:[ 516:X 512:T 508:: 503:X 478:X 470:X 466:T 462:: 457:X 432:X 410:X 406:T 385:} 382:S 376:X 372:| 365:) 360:X 352:( 349:, 346:) 341:X 333:( 330:, 327:) 322:X 318:T 314:( 311:{ 286:J 261:, 258:X 251:S 243:X 235:= 232:V 206:V 184:S 150:V 130:) 125:J 120:, 115:S 110:, 107:V 104:( 50:X 20:)

Index

Topologically stratified space
topology
stratified space
topological space
manifolds
Whitney
René Thom
Whitney stratified space
John Mather
manifolds with boundary
manifolds with corners
locally compact
Hausdorff
second countable
locally finite
partial order
submersion
hypersurface
prime spectrum
Singularity theory
Whitney conditions
Stratifold
Intersection homology
Thom's first isotopy lemma
stratified space
Goresky, Mark
MacPherson, Robert
Goresky, Mark
MacPherson, Robert
Mather, J.

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.