Knowledge

Locally finite collection

Source 📝

368:
containing a point intersects the closure of a set, it necessarily intersects the set itself, hence a neighborhood can intersect at most the same number of closures (it may intersect fewer, since two distinct, indeed disjoint, sets can have the same closure). The converse, however, can fail if the
267:, meaning that every point of the space belongs to only finitely many sets in the collection. Point finiteness is a strictly weaker notion, as illustrated by the collection of intervals 990: 755: 902: 650: 544: 415: 393: 327: 216: 129: 1078: 1024: 305: 167: 805: 251: 835: 618: 571: 1258: 1238: 1218: 1198: 1178: 1158: 1138: 1118: 1098: 1044: 926: 855: 779: 690: 670: 591: 510: 486: 466: 446: 347: 190: 41: 109:
collection of subsets of a topological space is locally finite. Infinite collections can also be locally finite: for example, the collection of subsets of
395:
the collection of all open sets is not locally finite, but the collection of all closures of these sets is locally finite (since the only closures are
1574: 428:
is not closed in general. However, the union of a locally finite collection of closed sets is closed. To see this we note that if
1304: 1537: 1509: 1490: 935: 94: 448:
is a point outside the union of this locally finite collection of closed sets, we merely choose a neighbourhood
48: 707: 370: 860: 1569: 1564: 623: 515: 398: 376: 310: 199: 112: 1276:, is countable. This is proved by a similar argument as in the result above for compact spaces. 1331: 1273: 1049: 995: 196:
collection of subsets need not be locally finite, as shown by the collection of all subsets of
270: 134: 87: 784: 221: 813: 596: 549: 8: 1529: 1243: 1223: 1203: 1183: 1163: 1143: 1123: 1103: 1083: 1029: 911: 840: 808: 764: 675: 655: 576: 495: 471: 451: 431: 332: 193: 175: 26: 1543: 1533: 1505: 1486: 1478: 354: 350: 79: 1327: 1269: 546:
thus giving an index to each of these sets. Then for each set, choose an open set
1519: 1320: 1316: 83: 758: 254: 71: 488:
that intersects this collection at only finitely many of these sets. Define a
1558: 1525: 1312: 701: 264: 1547: 361: 59: 1308: 905: 425: 106: 52: 692:
that does not intersect the union of this collection of closed sets.
489: 418: 357:, and this is the reason why every paracompact space is metacompact. 1383: 1455: 929: 365: 63: 1371: 1443: 1407: 360:
If a collection of sets is locally finite, the collection of the
170: 1395: 1359: 75: 20: 1140:
intersects only a finite number of subsets in the collection
329:, which is point finite, but not locally finite at the point 369:
closures of the sets are not distinct. For example, in the
364:
is also locally finite. The reason for this is that if an
1334:, every σ-locally finite collection of sets is countable. 1300:
if it is a countable union of locally finite collections.
1284:
A collection of subsets of a topological space is called
1349: 1347: 593:
that doesn't intersect it. The intersection of all such
1419: 1303:
The σ-locally finite notion is a key ingredient in the
1279: 1431: 1344: 1246: 1226: 1206: 1186: 1166: 1146: 1126: 1106: 1086: 1052: 1032: 998: 938: 914: 863: 843: 816: 787: 767: 710: 678: 658: 626: 599: 579: 552: 518: 498: 474: 454: 434: 401: 379: 335: 313: 273: 224: 202: 178: 137: 115: 97:
has different meanings in other mathematical fields.
29: 349:. The two concepts are used in the definitions of 1252: 1232: 1212: 1192: 1172: 1152: 1132: 1112: 1092: 1072: 1038: 1018: 984: 920: 896: 849: 837:that intersects a finite number of the subsets in 829: 799: 773: 749: 684: 664: 644: 612: 585: 565: 538: 504: 480: 460: 440: 409: 387: 341: 321: 299: 245: 210: 184: 161: 123: 55:only finitely many of the sets in the collection. 35: 1556: 1080:intersects only a finite number of subsets in 1026:intersects only a finite number of subsets in 1268:Every locally finite collection of sets in a 700:Every locally finite collection of sets in a 979: 939: 891: 864: 744: 717: 1307:, which states that a topological space is 985:{\displaystyle \{U_{k_{n}}|n\in 1\dots n\}} 263:Every locally finite collection of sets is 100: 1477: 1449: 1425: 1401: 1389: 1377: 403: 381: 315: 204: 117: 1517: 1499: 1461: 1437: 1413: 1365: 1353: 1557: 1100:. Since this union is the whole space 1263: 492:map from the collection of sets that 82:. It is fundamental in the study of 1280:Countably locally finite collections 695: 13: 1305:Nagata–Smirnov metrization theorem 750:{\displaystyle G=\{G_{a}|a\in A\}} 14: 1586: 47:if each point in the space has a 1575:Properties of topological spaces 897:{\displaystyle \{U_{x}|x\in X\}} 1504:(2nd ed.), Prentice Hall, 960: 878: 857:. Clearly the family of sets: 761:of subsets of a compact space 731: 294: 274: 240: 225: 156: 138: 1: 1485:. Berlin: Heldermann Verlag. 1471: 1319:, and has a σ-locally finite 928:, and therefore has a finite 645:{\displaystyle 1\leq i\leq k} 1337: 539:{\displaystyle {1,\dots ,k}} 410:{\displaystyle \mathbb {R} } 388:{\displaystyle \mathbb {R} } 322:{\displaystyle \mathbb {R} } 211:{\displaystyle \mathbb {R} } 124:{\displaystyle \mathbb {R} } 7: 1464:, p. 250 Theorem 40.3. 10: 1591: 1518:Willard, Stephen (2004) . 1500:Munkres, James R. (2000), 1180:is composed of subsets of 371:finite complement topology 1368:, p. 245 Lemma 39.1. 1073:{\displaystyle U_{k_{i}}} 1019:{\displaystyle U_{k_{i}}} 1296:countably locally finite 1046:, the union of all such 672:, is a neighbourhood of 704:is finite. Indeed, let 300:{\displaystyle (0,1/n)} 162:{\displaystyle (n,n+2)} 101:Examples and properties 23:of a topological space 1332:second-countable space 1274:second-countable space 1254: 1234: 1214: 1194: 1174: 1154: 1134: 1114: 1094: 1074: 1040: 1020: 986: 922: 898: 851: 831: 801: 800:{\displaystyle x\in X} 775: 751: 686: 666: 646: 614: 587: 567: 540: 506: 482: 462: 442: 424:An arbitrary union of 411: 389: 362:closures of these sets 343: 323: 301: 247: 246:{\displaystyle (-n,n)} 212: 186: 163: 125: 37: 1330:, in particular in a 1311:if and only if it is 1272:, in particular in a 1255: 1235: 1215: 1195: 1175: 1155: 1135: 1115: 1095: 1075: 1041: 1021: 987: 923: 899: 852: 832: 830:{\displaystyle U_{x}} 802: 776: 752: 687: 667: 647: 615: 613:{\displaystyle U_{i}} 588: 568: 566:{\displaystyle U_{i}} 541: 507: 483: 463: 443: 412: 390: 344: 324: 302: 248: 213: 187: 164: 126: 88:topological dimension 38: 1244: 1224: 1204: 1184: 1164: 1144: 1124: 1104: 1084: 1050: 1030: 996: 936: 912: 861: 841: 814: 785: 765: 757:be a locally finite 708: 676: 656: 624: 597: 577: 550: 516: 496: 472: 452: 432: 399: 377: 333: 311: 271: 222: 200: 176: 135: 113: 27: 1392:, Corollary 1.1.12. 93:Note that the term 16:Topological concept 1530:Dover Publications 1479:Engelking, Ryszard 1416:, Definition 20.2. 1264:In Lindelöf spaces 1250: 1230: 1210: 1190: 1170: 1150: 1130: 1120:, it follows that 1110: 1090: 1070: 1036: 1016: 982: 918: 894: 847: 827: 809:open neighbourhood 797: 771: 747: 682: 662: 642: 610: 583: 563: 536: 502: 478: 458: 438: 407: 385: 339: 319: 297: 243: 208: 182: 159: 121: 33: 1539:978-0-486-43479-7 1380:, Theorem 1.1.13. 1253:{\displaystyle G} 1233:{\displaystyle X} 1213:{\displaystyle G} 1193:{\displaystyle X} 1173:{\displaystyle G} 1153:{\displaystyle G} 1133:{\displaystyle X} 1113:{\displaystyle X} 1093:{\displaystyle G} 1039:{\displaystyle G} 921:{\displaystyle X} 850:{\displaystyle G} 781:. For each point 774:{\displaystyle X} 696:In compact spaces 685:{\displaystyle x} 665:{\displaystyle V} 652:intersected with 586:{\displaystyle x} 505:{\displaystyle V} 481:{\displaystyle x} 461:{\displaystyle V} 441:{\displaystyle x} 355:metacompact space 351:paracompact space 342:{\displaystyle 0} 185:{\displaystyle n} 80:topological space 70:is a property of 36:{\displaystyle X} 1582: 1570:General topology 1565:Families of sets 1551: 1521:General Topology 1514: 1496: 1483:General topology 1465: 1459: 1453: 1452:, Theorem 4.4.7. 1447: 1441: 1435: 1429: 1423: 1417: 1411: 1405: 1399: 1393: 1387: 1381: 1375: 1369: 1363: 1357: 1351: 1298: 1297: 1290: 1289: 1288:σ-locally finite 1259: 1257: 1256: 1251: 1239: 1237: 1236: 1231: 1219: 1217: 1216: 1211: 1200:every member of 1199: 1197: 1196: 1191: 1179: 1177: 1176: 1171: 1159: 1157: 1156: 1151: 1139: 1137: 1136: 1131: 1119: 1117: 1116: 1111: 1099: 1097: 1096: 1091: 1079: 1077: 1076: 1071: 1069: 1068: 1067: 1066: 1045: 1043: 1042: 1037: 1025: 1023: 1022: 1017: 1015: 1014: 1013: 1012: 991: 989: 988: 983: 963: 958: 957: 956: 955: 927: 925: 924: 919: 903: 901: 900: 895: 881: 876: 875: 856: 854: 853: 848: 836: 834: 833: 828: 826: 825: 806: 804: 803: 798: 780: 778: 777: 772: 756: 754: 753: 748: 734: 729: 728: 691: 689: 688: 683: 671: 669: 668: 663: 651: 649: 648: 643: 619: 617: 616: 611: 609: 608: 592: 590: 589: 584: 572: 570: 569: 564: 562: 561: 545: 543: 542: 537: 535: 511: 509: 508: 503: 487: 485: 484: 479: 467: 465: 464: 459: 447: 445: 444: 439: 416: 414: 413: 408: 406: 394: 392: 391: 386: 384: 348: 346: 345: 340: 328: 326: 325: 320: 318: 306: 304: 303: 298: 290: 252: 250: 249: 244: 217: 215: 214: 209: 207: 191: 189: 188: 183: 168: 166: 165: 160: 130: 128: 127: 122: 120: 68:local finiteness 42: 40: 39: 34: 19:A collection of 1590: 1589: 1585: 1584: 1583: 1581: 1580: 1579: 1555: 1554: 1540: 1512: 1493: 1474: 1469: 1468: 1460: 1456: 1448: 1444: 1436: 1432: 1424: 1420: 1412: 1408: 1404:, Lemma 5.1.24. 1400: 1396: 1388: 1384: 1376: 1372: 1364: 1360: 1352: 1345: 1340: 1295: 1294: 1287: 1286: 1282: 1266: 1245: 1242: 1241: 1225: 1222: 1221: 1220:must intersect 1205: 1202: 1201: 1185: 1182: 1181: 1165: 1162: 1161: 1145: 1142: 1141: 1125: 1122: 1121: 1105: 1102: 1101: 1085: 1082: 1081: 1062: 1058: 1057: 1053: 1051: 1048: 1047: 1031: 1028: 1027: 1008: 1004: 1003: 999: 997: 994: 993: 959: 951: 947: 946: 942: 937: 934: 933: 913: 910: 909: 877: 871: 867: 862: 859: 858: 842: 839: 838: 821: 817: 815: 812: 811: 786: 783: 782: 766: 763: 762: 730: 724: 720: 709: 706: 705: 698: 677: 674: 673: 657: 654: 653: 625: 622: 621: 604: 600: 598: 595: 594: 578: 575: 574: 557: 553: 551: 548: 547: 519: 517: 514: 513: 497: 494: 493: 473: 470: 469: 453: 450: 449: 433: 430: 429: 402: 400: 397: 396: 380: 378: 375: 374: 334: 331: 330: 314: 312: 309: 308: 286: 272: 269: 268: 223: 220: 219: 203: 201: 198: 197: 177: 174: 173: 136: 133: 132: 116: 114: 111: 110: 103: 84:paracompactness 28: 25: 24: 17: 12: 11: 5: 1588: 1578: 1577: 1572: 1567: 1553: 1552: 1538: 1515: 1510: 1497: 1491: 1473: 1470: 1467: 1466: 1454: 1450:Engelking 1989 1442: 1440:, p. 245. 1430: 1428:, p. 280. 1426:Engelking 1989 1418: 1406: 1402:Engelking 1989 1394: 1390:Engelking 1989 1382: 1378:Engelking 1989 1370: 1358: 1356:, p. 244. 1342: 1341: 1339: 1336: 1328:Lindelöf space 1281: 1278: 1270:Lindelöf space 1265: 1262: 1249: 1229: 1209: 1189: 1169: 1149: 1129: 1109: 1089: 1065: 1061: 1056: 1035: 1011: 1007: 1002: 981: 978: 975: 972: 969: 966: 962: 954: 950: 945: 941: 917: 893: 890: 887: 884: 880: 874: 870: 866: 846: 824: 820: 796: 793: 790: 770: 746: 743: 740: 737: 733: 727: 723: 719: 716: 713: 697: 694: 681: 661: 641: 638: 635: 632: 629: 607: 603: 582: 560: 556: 534: 531: 528: 525: 522: 512:intersects to 501: 477: 457: 437: 405: 383: 338: 317: 296: 293: 289: 285: 282: 279: 276: 255:natural number 242: 239: 236: 233: 230: 227: 206: 181: 158: 155: 152: 149: 146: 143: 140: 119: 102: 99: 95:locally finite 45:locally finite 43:is said to be 32: 15: 9: 6: 4: 3: 2: 1587: 1576: 1573: 1571: 1568: 1566: 1563: 1562: 1560: 1549: 1545: 1541: 1535: 1531: 1527: 1526:Mineola, N.Y. 1523: 1522: 1516: 1513: 1511:0-13-181629-2 1507: 1503: 1498: 1494: 1492:3-88538-006-4 1488: 1484: 1480: 1476: 1475: 1463: 1458: 1451: 1446: 1439: 1434: 1427: 1422: 1415: 1410: 1403: 1398: 1391: 1386: 1379: 1374: 1367: 1362: 1355: 1350: 1348: 1343: 1335: 1333: 1329: 1324: 1322: 1318: 1314: 1310: 1306: 1301: 1299: 1291: 1277: 1275: 1271: 1261: 1247: 1227: 1207: 1187: 1167: 1147: 1127: 1107: 1087: 1063: 1059: 1054: 1033: 1009: 1005: 1000: 992:. Since each 976: 973: 970: 967: 964: 952: 948: 943: 931: 915: 907: 888: 885: 882: 872: 868: 844: 822: 818: 810: 794: 791: 788: 768: 760: 741: 738: 735: 725: 721: 714: 711: 703: 702:compact space 693: 679: 659: 639: 636: 633: 630: 627: 605: 601: 580: 558: 554: 532: 529: 526: 523: 520: 499: 491: 475: 455: 435: 427: 422: 420: 372: 367: 363: 358: 356: 352: 336: 291: 287: 283: 280: 277: 266: 261: 259: 256: 237: 234: 231: 228: 195: 179: 172: 153: 150: 147: 144: 141: 108: 98: 96: 91: 89: 85: 81: 77: 73: 69: 65: 61: 56: 54: 50: 49:neighbourhood 46: 30: 22: 1520: 1501: 1482: 1462:Munkres 2000 1457: 1445: 1438:Munkres 2000 1433: 1421: 1414:Willard 2004 1409: 1397: 1385: 1373: 1366:Munkres 2000 1361: 1354:Munkres 2000 1325: 1302: 1293: 1285: 1283: 1267: 1160:. And since 807:, choose an 699: 423: 359: 265:point finite 262: 257: 218:of the form 131:of the form 104: 92: 67: 60:mathematical 57: 44: 18: 1260:is finite. 573:containing 426:closed sets 72:collections 1559:Categories 1472:References 1309:metrizable 906:open cover 53:intersects 1338:Citations 1317:Hausdorff 974:… 968:∈ 886:∈ 792:∈ 739:∈ 637:≤ 631:≤ 527:… 490:bijective 419:empty set 229:− 194:countable 62:field of 1502:Topology 1481:(1989). 930:subcover 417:and the 366:open set 64:topology 1313:regular 1240:, thus 171:integer 169:for an 76:subsets 58:In the 21:subsets 1548:115240 1546:  1536:  1508:  1489:  904:is an 759:family 253:for a 107:finite 1326:In a 78:of a 51:that 1544:OCLC 1534:ISBN 1506:ISBN 1487:ISBN 1321:base 620:for 353:and 192:. A 86:and 1292:or 908:of 468:of 421:). 373:on 307:in 74:of 1561:: 1542:. 1532:. 1528:: 1524:. 1346:^ 1323:. 1315:, 932:: 260:. 105:A 90:. 66:, 1550:. 1495:. 1248:G 1228:X 1208:G 1188:X 1168:G 1148:G 1128:X 1108:X 1088:G 1064:i 1060:k 1055:U 1034:G 1010:i 1006:k 1001:U 980:} 977:n 971:1 965:n 961:| 953:n 949:k 944:U 940:{ 916:X 892:} 889:X 883:x 879:| 873:x 869:U 865:{ 845:G 823:x 819:U 795:X 789:x 769:X 745:} 742:A 736:a 732:| 726:a 722:G 718:{ 715:= 712:G 680:x 660:V 640:k 634:i 628:1 606:i 602:U 581:x 559:i 555:U 533:k 530:, 524:, 521:1 500:V 476:x 456:V 436:x 404:R 382:R 337:0 316:R 295:) 292:n 288:/ 284:1 281:, 278:0 275:( 258:n 241:) 238:n 235:, 232:n 226:( 205:R 180:n 157:) 154:2 151:+ 148:n 145:, 142:n 139:( 118:R 31:X

Index

subsets
neighbourhood
intersects
mathematical
topology
collections
subsets
topological space
paracompactness
topological dimension
locally finite
finite
integer
countable
natural number
point finite
paracompact space
metacompact space
closures of these sets
open set
finite complement topology
empty set
closed sets
bijective
compact space
family
open neighbourhood
open cover
subcover
Lindelöf space

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑