Knowledge

Hypersurface

Source 📝

1840: 1490:
These two processes projective completion and restriction to an affine subspace are inverse one to the other. Therefore, an affine hypersurface and its projective completion have essentially the same properties, and are often considered as two points-of-view for the same hypersurface.
1474: 1027: 598: 173: 1314: 758: 867: 1162: 1226: 500:. In the case of possibly reducible hypersurfaces, this result may be restated as follows: hypersurfaces are exactly the algebraic sets whose all irreducible components have dimension 342: 1559: 543: 437:, which are the common zeros, if any, of the defining polynomial and its partial derivatives. In particular, a real algebraic hypersurface is not necessarily a manifold. 1087: 416: 763:
is a real hypersurface without any real point, which is defined over the rational numbers. It has no rational point, but has many points that are rational over the
663: 1322: 891: 1664: 83:
A hypersurface in a (Euclidean, affine, or projective) space of dimension two is a plane curve. In a space of dimension three, it is a surface.
1656: 1771: 363:. It may depend on the authors or the context whether a reducible polynomial defines a hypersurface. For avoiding ambiguity, the term 1495: 556: 434: 92: 1637: 1729: 2068: 1097:, and the points of the projective hypersurface that belong to this affine space form an affine hypersurface of equation 1874: 1824: 1242: 695: 475: 258: 179: 523:
coefficients. In this case the algebraically closed field over which the points are defined is generally the field
804: 1100: 1764: 1167: 423: 283: 1233: 1714: 1564:
in the affine space of dimension three has a unique singular point, which is at infinity, in the direction
449: 2063: 1859: 1709: 1498:, while its projective completion has singular points. In this case, one says that the affine surface is 616: 2078: 1757: 1512: 1794: 1704: 526: 2002: 1997: 1977: 445:
Hypersurfaces have some specific properties that are not shared with other algebraic varieties.
352: 73: 492:. This is the geometric interpretation of the fact that, in a polynomial ring over a field, the 370:
As for algebraic varieties, the coefficients of the defining polynomial may belong to any fixed
1987: 1982: 1962: 1740:
Visualization of hypersurfaces and multivariable (objective) functions by partial globalization
1090: 1042: 799: 468: 464: 356: 1625: 1992: 1972: 1967: 1059: 36: 471:) define the same hypersurface, then one is the product of the other by a nonzero constant. 391: 641: 493: 456:
if and only if the defining polynomial of the hypersurface has a power that belongs to the
8: 1869: 1864: 1721: 1469:{\displaystyle P(x_{0},x_{1},\ldots ,x_{n})=x_{0}^{d}p(x_{1}/x_{0},\ldots ,x_{n}/x_{0}),} 457: 371: 1678:
Lima, Elon L. (1988). "The Jordan-Brouwer separation theorem for smooth hypersurfaces".
2043: 1884: 1839: 1733: 1604: 1589: 378: 359:. When this is not the case, the hypersurface is not an algebraic variety, but only an 2073: 1879: 1633: 1599: 1503: 764: 274: 77: 44: 1809: 1691: 1687: 787: 69: 1854: 1799: 1022:{\displaystyle P(cx_{0},cx_{1},\ldots ,cx_{n})=c^{d}P(x_{0},x_{1},\ldots ,x_{n})} 620: 497: 243: 222: 195: 61: 1936: 1921: 1739: 1725: 667: 546: 2057: 1926: 1652: 1584: 453: 360: 246: 239: 1946: 1804: 1594: 1094: 628: 624: 485: 386: 65: 2031: 1814: 520: 199: 32: 16:
Manifold or algebraic variety of dimension n in a space of dimension n+1
2026: 1906: 1053: 604:
of the hypersurface. Often, it is left to the context whether the term
28: 2007: 1916: 1829: 1780: 250: 1931: 1894: 1819: 881: 683: 203: 40: 20: 1941: 1041:
of the hypersurface are the points of the projective space whose
611:
If the coefficients of the defining polynomial belong to a field
1632:. Providence: American Mathematical Society. pp. 143–188. 80:, at least locally (near every point), and sometimes globally. 277:
that may be defined by a single implicit equation of the form
1898: 1749: 460:
generated by the defining polynomials of the algebraic set.
600:
The set of the real points of a real hypersurface is the
593:{\displaystyle \mathbb {R} ^{n}\subset \mathbb {C} ^{n}.} 168:{\displaystyle x_{1}^{2}+x_{2}^{2}+\cdots +x_{n}^{2}-1=0} 1239:. That is, the equation of the projective completion is 519:
is a hypersurface that is defined by a polynomial with
257:
into two connected components; this is related to the
1515: 1494:
However, it may occur that an affine hypersurface is
1325: 1245: 1170: 1164:
Conversely, given an affine hypersurface of equation
1103: 1062: 894: 807: 698: 675:(in the case of the field of rational numbers, "over 644: 559: 553:
of a real hypersurface are the points that belong to
529: 452:, which asserts that a hypersurface contains a given 394: 286: 95: 54:, which is embedded in an ambient space of dimension 770: 1553: 1468: 1308: 1220: 1156: 1081: 1021: 861: 752: 657: 592: 537: 410: 336: 167: 1228:it defines a projective hypersurface, called its 2055: 1665:Proceedings of the American Mathematical Society 264: 1309:{\displaystyle P(x_{0},x_{1},\ldots ,x_{n})=0,} 753:{\displaystyle x_{0}^{2}+\cdots +x_{n}^{2}+1=0} 608:refers to all points or only to the real part. 496:of an ideal is 1 if and only if the ideal is a 474:Hypersurfaces are exactly the subvarieties of 1765: 1626:"Curves and Hypersurfaces in Euclidean Space" 377:, and the points of the hypersurface are the 355:. Generally the polynomial is supposed to be 888:have the same degree, or, equivalently that 862:{\displaystyle P(x_{0},x_{1},\ldots ,x_{n})} 463:A corollary of this theorem is that, if two 76:, the property of being defined by a single 1157:{\displaystyle P(1,x_{1},\ldots ,x_{n})=0.} 510: 1772: 1758: 1093:, the complement of this hyperplane is an 72:. Hypersurfaces share, with surfaces in a 1221:{\displaystyle p(x_{1},\ldots ,x_{n})=0,} 577: 562: 531: 337:{\displaystyle p(x_{1},\ldots ,x_{n})=0,} 27:is a generalization of the concepts of 2056: 216: 1753: 1738:P.A. Simionescu & D. Beal (2004) 1037:is the degree of the polynomial. The 631:), one says that the hypersurface is 178:defines an algebraic hypersurface of 1730:Foundations of Differential Geometry 1677: 188:in the Euclidean space of dimension 1671: 1657:"Orientability of hypersurfaces in 1630:Manifolds and Differential Geometry 1623: 777:projective (algebraic) hypersurface 448:One of the main such properties is 13: 14: 2090: 1680:The American Mathematical Monthly 771:Projective algebraic hypersurface 259:Jordan–Brouwer separation theorem 1838: 1232:, whose equation is obtained by 638:, and the points that belong to 1554:{\displaystyle x^{2}+y^{2}-1=0} 1692:10.1080/00029890.1988.11971963 1646: 1617: 1460: 1398: 1374: 1329: 1294: 1249: 1206: 1174: 1145: 1107: 1016: 971: 952: 898: 856: 811: 424:algebraically closed extension 322: 290: 265:Affine algebraic hypersurface 194:. This hypersurface is also a 1: 1779: 1610: 440: 538:{\displaystyle \mathbb {C} } 7: 1710:Encyclopedia of Mathematics 1578: 682:For example, the imaginary 238:, a smooth hypersurface is 10: 2095: 2069:Multi-dimensional geometry 876:indeterminates. As usual, 86:For example, the equation 2040: 2019: 1955: 1893: 1847: 1836: 1787: 679:" is generally omitted). 450:Hilbert's Nullstellensatz 249:smooth hypersurface is a 221:A hypersurface that is a 689:defined by the equation 619:(typically the field of 511:Real and rational points 433:A hypersurface may have 365:irreducible hypersurface 1082:{\displaystyle x_{0}=0} 469:square-free polynomials 467:(or more generally two 465:irreducible polynomials 353:multivariate polynomial 74:three-dimensional space 1555: 1470: 1310: 1222: 1158: 1091:hyperplane at infinity 1083: 1043:projective coordinates 1023: 878:homogeneous polynomial 863: 800:homogeneous polynomial 754: 659: 594: 539: 412: 411:{\displaystyle K^{n},} 338: 271:algebraic hypersurface 169: 39:. A hypersurface is a 1624:Lee, Jeffrey (2009). 1556: 1471: 1311: 1230:projective completion 1223: 1159: 1084: 1024: 864: 755: 660: 658:{\displaystyle k^{n}} 595: 540: 413: 339: 170: 1956:Dimensions by number 1746:20(10):665–81. 1513: 1500:singular at infinity 1323: 1243: 1168: 1101: 1060: 892: 805: 696: 642: 617:algebraically closed 557: 527: 392: 284: 93: 1744:The Visual Computer 1722:Shoshichi Kobayashi 1502:. For example, the 1394: 1052:If one chooses the 1029:for every constant 737: 713: 227:smooth hypersurface 217:Smooth hypersurface 198:, and is called a 152: 128: 110: 2064:Algebraic geometry 1885:Degrees of freedom 1788:Dimensional spaces 1734:Wiley Interscience 1605:Polar hypersurface 1590:Coble hypersurface 1551: 1466: 1380: 1306: 1218: 1154: 1079: 1019: 859: 765:Gaussian rationals 750: 723: 699: 655: 590: 535: 408: 334: 165: 138: 114: 96: 2051: 2050: 1860:Lebesgue covering 1825:Algebraic variety 1639:978-0-8218-4815-9 1600:Null hypersurface 1504:circular cylinder 1483:is the degree of 517:real hypersurface 275:algebraic variety 78:implicit equation 45:algebraic variety 2086: 2079:Dimension theory 1848:Other dimensions 1842: 1810:Projective space 1774: 1767: 1760: 1751: 1750: 1718: 1696: 1695: 1675: 1669: 1650: 1644: 1643: 1621: 1574: 1560: 1558: 1557: 1552: 1538: 1537: 1525: 1524: 1486: 1482: 1475: 1473: 1472: 1467: 1459: 1458: 1449: 1444: 1443: 1425: 1424: 1415: 1410: 1409: 1393: 1388: 1373: 1372: 1354: 1353: 1341: 1340: 1315: 1313: 1312: 1307: 1293: 1292: 1274: 1273: 1261: 1260: 1238: 1227: 1225: 1224: 1219: 1205: 1204: 1186: 1185: 1163: 1161: 1160: 1155: 1144: 1143: 1125: 1124: 1088: 1086: 1085: 1080: 1072: 1071: 1048: 1036: 1032: 1028: 1026: 1025: 1020: 1015: 1014: 996: 995: 983: 982: 967: 966: 951: 950: 929: 928: 913: 912: 887: 875: 868: 866: 865: 860: 855: 854: 836: 835: 823: 822: 798:is defined by a 797: 793: 788:projective space 785: 759: 757: 756: 751: 736: 731: 712: 707: 686: 678: 674: 664: 662: 661: 656: 654: 653: 637: 621:rational numbers 614: 599: 597: 596: 591: 586: 585: 580: 571: 570: 565: 544: 542: 541: 536: 534: 506: 491: 488:of dimension of 483: 429: 421: 417: 415: 414: 409: 404: 403: 384: 376: 367:is often used. 350: 343: 341: 340: 335: 321: 320: 302: 301: 253:, and separates 237: 210: 193: 187: 174: 172: 171: 166: 151: 146: 127: 122: 109: 104: 70:projective space 59: 53: 2094: 2093: 2089: 2088: 2087: 2085: 2084: 2083: 2054: 2053: 2052: 2047: 2036: 2015: 1951: 1889: 1843: 1834: 1800:Euclidean space 1783: 1778: 1703: 1700: 1699: 1676: 1672: 1651: 1647: 1640: 1622: 1618: 1613: 1581: 1565: 1533: 1529: 1520: 1516: 1514: 1511: 1510: 1484: 1480: 1454: 1450: 1445: 1439: 1435: 1420: 1416: 1411: 1405: 1401: 1389: 1384: 1368: 1364: 1349: 1345: 1336: 1332: 1324: 1321: 1320: 1288: 1284: 1269: 1265: 1256: 1252: 1244: 1241: 1240: 1236: 1200: 1196: 1181: 1177: 1169: 1166: 1165: 1139: 1135: 1120: 1116: 1102: 1099: 1098: 1067: 1063: 1061: 1058: 1057: 1046: 1034: 1030: 1010: 1006: 991: 987: 978: 974: 962: 958: 946: 942: 924: 920: 908: 904: 893: 890: 889: 885: 880:means that all 870: 850: 846: 831: 827: 818: 814: 806: 803: 802: 795: 791: 780: 773: 732: 727: 708: 703: 697: 694: 693: 684: 676: 672: 649: 645: 643: 640: 639: 635: 612: 581: 576: 575: 566: 561: 560: 558: 555: 554: 547:complex numbers 530: 528: 525: 524: 513: 501: 498:principal ideal 489: 478: 443: 427: 419: 399: 395: 393: 390: 389: 382: 374: 348: 316: 312: 297: 293: 285: 282: 281: 267: 233: 223:smooth manifold 219: 204: 196:smooth manifold 189: 182: 147: 142: 123: 118: 105: 100: 94: 91: 90: 62:Euclidean space 55: 48: 17: 12: 11: 5: 2092: 2082: 2081: 2076: 2071: 2066: 2049: 2048: 2041: 2038: 2037: 2035: 2034: 2029: 2023: 2021: 2017: 2016: 2014: 2013: 2005: 2000: 1995: 1990: 1985: 1980: 1975: 1970: 1965: 1959: 1957: 1953: 1952: 1950: 1949: 1944: 1939: 1937:Cross-polytope 1934: 1929: 1924: 1922:Hyperrectangle 1919: 1914: 1909: 1903: 1901: 1891: 1890: 1888: 1887: 1882: 1877: 1872: 1867: 1862: 1857: 1851: 1849: 1845: 1844: 1837: 1835: 1833: 1832: 1827: 1822: 1817: 1812: 1807: 1802: 1797: 1791: 1789: 1785: 1784: 1777: 1776: 1769: 1762: 1754: 1748: 1747: 1736: 1726:Katsumi Nomizu 1719: 1705:"Hypersurface" 1698: 1697: 1670: 1645: 1638: 1615: 1614: 1612: 1609: 1608: 1607: 1602: 1597: 1592: 1587: 1580: 1577: 1562: 1561: 1550: 1547: 1544: 1541: 1536: 1532: 1528: 1523: 1519: 1501: 1477: 1476: 1465: 1462: 1457: 1453: 1448: 1442: 1438: 1434: 1431: 1428: 1423: 1419: 1414: 1408: 1404: 1400: 1397: 1392: 1387: 1383: 1379: 1376: 1371: 1367: 1363: 1360: 1357: 1352: 1348: 1344: 1339: 1335: 1331: 1328: 1305: 1302: 1299: 1296: 1291: 1287: 1283: 1280: 1277: 1272: 1268: 1264: 1259: 1255: 1251: 1248: 1231: 1217: 1214: 1211: 1208: 1203: 1199: 1195: 1192: 1189: 1184: 1180: 1176: 1173: 1153: 1150: 1147: 1142: 1138: 1134: 1131: 1128: 1123: 1119: 1115: 1112: 1109: 1106: 1078: 1075: 1070: 1066: 1040: 1018: 1013: 1009: 1005: 1002: 999: 994: 990: 986: 981: 977: 973: 970: 965: 961: 957: 954: 949: 945: 941: 938: 935: 932: 927: 923: 919: 916: 911: 907: 903: 900: 897: 879: 858: 853: 849: 845: 842: 839: 834: 830: 826: 821: 817: 813: 810: 778: 772: 769: 761: 760: 749: 746: 743: 740: 735: 730: 726: 722: 719: 716: 711: 706: 702: 652: 648: 589: 584: 579: 574: 569: 564: 533: 512: 509: 442: 439: 407: 402: 398: 345: 344: 333: 330: 327: 324: 319: 315: 311: 308: 305: 300: 296: 292: 289: 266: 263: 218: 215: 176: 175: 164: 161: 158: 155: 150: 145: 141: 137: 134: 131: 126: 121: 117: 113: 108: 103: 99: 60:, generally a 15: 9: 6: 4: 3: 2: 2091: 2080: 2077: 2075: 2072: 2070: 2067: 2065: 2062: 2061: 2059: 2046: 2045: 2039: 2033: 2030: 2028: 2025: 2024: 2022: 2018: 2012: 2010: 2006: 2004: 2001: 1999: 1996: 1994: 1991: 1989: 1986: 1984: 1981: 1979: 1976: 1974: 1971: 1969: 1966: 1964: 1961: 1960: 1958: 1954: 1948: 1945: 1943: 1940: 1938: 1935: 1933: 1930: 1928: 1927:Demihypercube 1925: 1923: 1920: 1918: 1915: 1913: 1910: 1908: 1905: 1904: 1902: 1900: 1896: 1892: 1886: 1883: 1881: 1878: 1876: 1873: 1871: 1868: 1866: 1863: 1861: 1858: 1856: 1853: 1852: 1850: 1846: 1841: 1831: 1828: 1826: 1823: 1821: 1818: 1816: 1813: 1811: 1808: 1806: 1803: 1801: 1798: 1796: 1793: 1792: 1790: 1786: 1782: 1775: 1770: 1768: 1763: 1761: 1756: 1755: 1752: 1745: 1741: 1737: 1735: 1731: 1727: 1723: 1720: 1716: 1712: 1711: 1706: 1702: 1701: 1693: 1689: 1685: 1681: 1674: 1668:22(1): 301,2 1667: 1666: 1661: 1660: 1654: 1653:Hans Samelson 1649: 1641: 1635: 1631: 1627: 1620: 1616: 1606: 1603: 1601: 1598: 1596: 1593: 1591: 1588: 1586: 1585:Affine sphere 1583: 1582: 1576: 1572: 1568: 1548: 1545: 1542: 1539: 1534: 1530: 1526: 1521: 1517: 1509: 1508: 1507: 1506:of equation 1505: 1499: 1497: 1492: 1488: 1463: 1455: 1451: 1446: 1440: 1436: 1432: 1429: 1426: 1421: 1417: 1412: 1406: 1402: 1395: 1390: 1385: 1381: 1377: 1369: 1365: 1361: 1358: 1355: 1350: 1346: 1342: 1337: 1333: 1326: 1319: 1318: 1317: 1303: 1300: 1297: 1289: 1285: 1281: 1278: 1275: 1270: 1266: 1262: 1257: 1253: 1246: 1235: 1229: 1215: 1212: 1209: 1201: 1197: 1193: 1190: 1187: 1182: 1178: 1171: 1151: 1148: 1140: 1136: 1132: 1129: 1126: 1121: 1117: 1113: 1110: 1104: 1096: 1092: 1076: 1073: 1068: 1064: 1055: 1050: 1045:are zeros of 1044: 1038: 1011: 1007: 1003: 1000: 997: 992: 988: 984: 979: 975: 968: 963: 959: 955: 947: 943: 939: 936: 933: 930: 925: 921: 917: 914: 909: 905: 901: 895: 883: 877: 873: 851: 847: 843: 840: 837: 832: 828: 824: 819: 815: 808: 801: 794:over a field 790:of dimension 789: 783: 779:of dimension 776: 768: 766: 747: 744: 741: 738: 733: 728: 724: 720: 717: 714: 709: 704: 700: 692: 691: 690: 688: 680: 670: 669: 650: 646: 634: 630: 626: 622: 618: 609: 607: 603: 587: 582: 572: 567: 552: 548: 522: 518: 508: 504: 499: 495: 487: 481: 477: 472: 470: 466: 461: 459: 455: 454:algebraic set 451: 446: 438: 436: 435:singularities 431: 425: 405: 400: 396: 388: 380: 373: 368: 366: 362: 361:algebraic set 358: 354: 331: 328: 325: 317: 313: 309: 306: 303: 298: 294: 287: 280: 279: 278: 276: 272: 262: 260: 256: 252: 248: 245: 241: 236: 230: 228: 224: 214: 212: 208: 201: 197: 192: 185: 181: 162: 159: 156: 153: 148: 143: 139: 135: 132: 129: 124: 119: 115: 111: 106: 101: 97: 89: 88: 87: 84: 81: 79: 75: 71: 67: 63: 58: 51: 47:of dimension 46: 42: 38: 34: 30: 26: 22: 2042: 2008: 1947:Hyperpyramid 1912:Hypersurface 1911: 1805:Affine space 1795:Vector space 1743: 1708: 1686:(1): 39–42. 1683: 1679: 1673: 1663: 1658: 1648: 1629: 1619: 1595:Dwork family 1570: 1566: 1563: 1493: 1489: 1478: 1234:homogenizing 1095:affine space 1056:of equation 1051: 871: 781: 774: 762: 681: 666: 633:defined over 632: 629:number field 625:finite field 615:that is not 610: 606:hypersurface 605: 601: 550: 516: 514: 502: 486:affine space 479: 473: 462: 447: 444: 432: 387:affine space 369: 364: 346: 270: 268: 254: 234: 231: 226: 225:is called a 220: 206: 190: 183: 177: 85: 82: 66:affine space 56: 49: 25:hypersurface 24: 18: 2032:Codimension 2011:-dimensions 1932:Hypersphere 1815:Free module 1496:nonsingular 551:real points 357:irreducible 200:hypersphere 33:plane curve 2058:Categories 2027:Hyperspace 1907:Hyperplane 1611:References 1054:hyperplane 441:Properties 240:orientable 29:hyperplane 1917:Hypercube 1895:Polytopes 1875:Minkowski 1870:Hausdorff 1865:Inductive 1830:Spacetime 1781:Dimension 1715:EMS Press 1540:− 1430:… 1359:… 1279:… 1191:… 1130:… 1001:… 934:… 882:monomials 841:… 718:⋯ 602:real part 573:⊂ 476:dimension 307:… 251:level set 244:connected 180:dimension 154:− 133:⋯ 2074:Surfaces 2044:Category 2020:See also 1820:Manifold 1732:Vol II, 1728:(1969), 1579:See also 1033:, where 668:rational 242:. Every 41:manifold 21:geometry 1942:Simplex 1880:Fractal 1717:, 2001 1655:(1969) 687:-sphere 385:in the 247:compact 211:-sphere 37:surface 1899:shapes 1636:  1479:where 1316:with 1039:points 549:. The 494:height 484:of an 422:is an 418:where 347:where 273:is an 202:or an 43:or an 35:, and 2003:Eight 1998:Seven 1978:Three 1855:Krull 1569:= 0, 786:in a 671:over 627:or a 458:ideal 379:zeros 372:field 351:is a 68:or a 64:, an 1988:Five 1983:Four 1963:Zero 1897:and 1724:and 1634:ISBN 665:are 623:, a 521:real 209:– 1) 23:, a 1993:Six 1973:Two 1968:One 1688:doi 1662:", 1573:= 0 1089:as 884:of 874:+ 1 869:in 784:– 1 545:of 505:– 1 482:– 1 426:of 381:of 269:An 232:In 186:− 1 52:− 1 19:In 2060:: 1742:, 1713:, 1707:, 1684:95 1682:. 1628:. 1575:. 1487:. 1152:0. 1049:. 775:A 767:. 515:A 507:. 430:. 261:. 229:. 213:. 31:, 2009:n 1773:e 1766:t 1759:v 1694:. 1690:: 1659:R 1642:. 1571:y 1567:x 1549:0 1546:= 1543:1 1535:2 1531:y 1527:+ 1522:2 1518:x 1485:P 1481:d 1464:, 1461:) 1456:0 1452:x 1447:/ 1441:n 1437:x 1433:, 1427:, 1422:0 1418:x 1413:/ 1407:1 1403:x 1399:( 1396:p 1391:d 1386:0 1382:x 1378:= 1375:) 1370:n 1366:x 1362:, 1356:, 1351:1 1347:x 1343:, 1338:0 1334:x 1330:( 1327:P 1304:, 1301:0 1298:= 1295:) 1290:n 1286:x 1282:, 1276:, 1271:1 1267:x 1263:, 1258:0 1254:x 1250:( 1247:P 1237:p 1216:, 1213:0 1210:= 1207:) 1202:n 1198:x 1194:, 1188:, 1183:1 1179:x 1175:( 1172:p 1149:= 1146:) 1141:n 1137:x 1133:, 1127:, 1122:1 1118:x 1114:, 1111:1 1108:( 1105:P 1077:0 1074:= 1069:0 1065:x 1047:P 1035:d 1031:c 1017:) 1012:n 1008:x 1004:, 998:, 993:1 989:x 985:, 980:0 976:x 972:( 969:P 964:d 960:c 956:= 953:) 948:n 944:x 940:c 937:, 931:, 926:1 922:x 918:c 915:, 910:0 906:x 902:c 899:( 896:P 886:P 872:n 857:) 852:n 848:x 844:, 838:, 833:1 829:x 825:, 820:0 816:x 812:( 809:P 796:k 792:n 782:n 748:0 745:= 742:1 739:+ 734:2 729:n 725:x 721:+ 715:+ 710:2 705:0 701:x 685:n 677:k 673:k 651:n 647:k 636:k 613:k 588:. 583:n 578:C 568:n 563:R 532:C 503:n 490:n 480:n 428:k 420:K 406:, 401:n 397:K 383:p 375:k 349:p 332:, 329:0 326:= 323:) 318:n 314:x 310:, 304:, 299:1 295:x 291:( 288:p 255:R 235:R 207:n 205:( 191:n 184:n 163:0 160:= 157:1 149:2 144:n 140:x 136:+ 130:+ 125:2 120:2 116:x 112:+ 107:2 102:1 98:x 57:n 50:n

Index

geometry
hyperplane
plane curve
surface
manifold
algebraic variety
Euclidean space
affine space
projective space
three-dimensional space
implicit equation
dimension
smooth manifold
hypersphere
(n – 1)-sphere
smooth manifold
orientable
connected
compact
level set
Jordan–Brouwer separation theorem
algebraic variety
multivariate polynomial
irreducible
algebraic set
field
zeros
affine space
algebraically closed extension
singularities

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.