Knowledge

Superparamagnetism

Source đź“ť

644: 2551:, since in the latter case, but not the former, the ferromagnetic clusters will have time to respond to the field by flipping their magnetization. The precise dependence can be calculated from the NĂ©el–Arrhenius equation, assuming that the neighboring clusters behave independently of one another (if clusters interact, their behavior becomes more complicated). It is also possible to perform magneto-optical AC susceptibility measurements with magneto-optically active superparamagnetic materials such as iron oxide nanoparticles in the visible wavelength range. 31: 657: 1315: 760:. This is possible when their diameter is below 3–50 nm, depending on the materials. In this condition, it is considered that the magnetization of the nanoparticles is a single giant magnetic moment, sum of all the individual magnetic moments carried by the atoms of the nanoparticle. Those in the field of superparamagnetism call this "macro-spin approximation". 1948: 723:. In the absence of an external magnetic field, when the time used to measure the magnetization of the nanoparticles is much longer than the NĂ©el relaxation time, their magnetization appears to be on average zero; they are said to be in the superparamagnetic state. In this state, an external magnetic field is able to magnetize the nanoparticles, similarly to a 1118:, the magnetization will not flip during the measurement, so the measured magnetization will be what the instantaneous magnetization was at the beginning of the measurement. In the former case, the nanoparticle will appear to be in the superparamagnetic state whereas in the latter case it will appear to be “blocked” in its initial state. 1802: 1002:
This length of time can be anywhere from a few nanoseconds to years or much longer. In particular, it can be seen that the NĂ©el relaxation time is an exponential function of the grain volume, which explains why the flipping probability becomes rapidly negligible for bulk materials or large
2528: 1372:
is applied to an assembly of superparamagnetic nanoparticles, their magnetic moments tend to align along the applied field, leading to a net magnetization. The magnetization curve of the assembly, i.e. the magnetization as a function of the applied field, is a reversible S-shaped
1298: 771:. The stable orientations define the nanoparticle’s so called “easy axis”. At finite temperature, there is a finite probability for the magnetization to flip and reverse its direction. The mean time between two flips is called the Néel relaxation time 2184: 1492: 2542:
measurements, where an applied magnetic field varies in time, and the magnetic response of the system is measured. A superparamagnetic system will show a characteristic frequency dependence: When the frequency is much higher than
880: 1600: 1161:. In several experiments, the measurement time is kept constant but the temperature is varied, so the transition between superparamagnetism and blocked state is seen as a function of the temperature. The temperature for which 1943:{\displaystyle \chi ={\begin{cases}\displaystyle {\frac {n\mu _{0}\mu ^{2}}{k_{\text{B}}T}}&{\text{for the 1st case}}\\\displaystyle {\frac {n\mu _{0}\mu ^{2}}{3k_{\text{B}}T}}&{\text{for the 2nd case}}\end{cases}}} 2736:
Cornia, Andrea; Barra, Anne-Laure; Bulicanu, Vladimir; Clérac, Rodolphe; Cortijo, Miguel; Hillard, Elizabeth A.; Galavotti, Rita; Lunghi, Alessandro; Nicolini, Alessio; Rouzières, Mathieu; Sorace, Lorenzo (2020-02-03).
2301: 2095:
where the measurement time and the relaxation time have comparable magnitude. In this case, a frequency-dependence of the susceptibility can be observed. For a randomly oriented sample, the complex susceptibility is:
3231: 2427: 1993:
and so a larger susceptibility. This explains why superparamagnetic nanoparticles have a much larger susceptibility than standard paramagnets: they behave exactly as a paramagnet with a huge magnetic moment.
2373: 1738: 1116: 1076: 2594: 1199: 1159: 2415: 1362: 2586:. As of July 2020 drives with densities of approximately 1 Tbit/in are available commercially. This is at the limit for conventional magnetic recording that was predicted in 1999. 1381:
If all the particles are identical (same energy barrier and same magnetic moment), their easy axes are all oriented parallel to the applied field and the temperature is low enough (
2601:(BPR) avoids the use of fine-grained media and is another possibility. In addition, magnetic recording technologies based on topological distortions of the magnetization, known as 2222: 2597:(MAMR), which use materials that are stable at much smaller sizes. They require localized heating or microwave excitation before the magnetic orientation of a bit can be changed. 1211: 2066: 2033: 1984: 2102: 1036: 914: 796: 2093: 3228: 947: 719:. In sufficiently small nanoparticles, magnetization can randomly flip direction under the influence of temperature. The typical time between two flips is called the 1794: 1641: 1121:
The state of the nanoparticle (superparamagnetic or blocked) depends on the measurement time. A transition between superparamagnetism and blocked state occurs when
1774: 1667: 1408: 804: 1519: 688: 2229: 2523:{\displaystyle \tau {\frac {\mathrm {d} M}{\mathrm {d} t}}+M=\tau \chi _{\text{b}}{\frac {\mathrm {d} H}{\mathrm {d} t}}+\chi _{\text{sp}}H} 1078:, the nanoparticle magnetization will flip several times during the measurement, then the measured magnetization will average to zero. If 979:
associated with the magnetization moving from its initial easy axis direction, through a “hard plane”, to the other easy axis direction.
2969:"R. Wood, "The feasibility of magnetic recording at 1 Terabit per square inch", IEEE Trans. Magn., Vol. 36, No. 1, pp. 36-42, Jan 2000" 3262: 2308: 681: 3175: 2719: 749:. Superparamagnetism is different from this standard transition since it occurs below the Curie temperature of the material. 2953: 2698:
Néel, L. (1949). "Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites".
1674: 1081: 1041: 3024:
Shiroishi, Y.; Fukuda, K.; Tagawa, I.; Iwasaki, H.; Takenoiri, S.; Tanaka, H.; Mutoh, H.; Yoshikawa, N. (October 2009).
2739:"The Origin of Magnetic Anisotropy and Single-Molecule Magnet Behavior in Chromium(II)-Based Extended Metal Atom Chains" 3148: 1164: 1124: 2421:
From this frequency-dependent susceptibility, the time-dependence of the magnetization for low-fields can be derived:
1306:
Equivalently, blocking temperature is the temperature below which a material shows slow relaxation of magnetization.
916:
is thus the average length of time that it takes for the nanoparticle’s magnetization to randomly flip as a result of
2937: 2380: 674: 661: 3223: 1321: 3026:"Y. Shiroishi et al., "Future Options for HDD Storage", IEEE Trans. Magn., Vol. 45, No. 10, pp. 3816-22, Sep. 2009" 2590: 2564: 1303:
For typical laboratory measurements, the value of the logarithm in the previous equation is in the order of 20–25.
643: 2802:
Gittleman, J. I.; Abeles, B.; Bozowski, S. (1974). "Superparamagnetism and relaxation effects in granular Ni-SiO
3410: 3187: 1011:
Let us imagine that the magnetization of a single superparamagnetic nanoparticle is measured and let us define
745:
Normally, any ferromagnetic or ferrimagnetic material undergoes a transition to a paramagnetic state above its
436: 3255: 1293:{\displaystyle T_{\text{B}}={\frac {KV}{k_{\text{B}}\ln \left({\frac {\tau _{\text{m}}}{\tau _{0}}}\right)}}} 3350: 767:, the magnetic moment has usually only two stable orientations antiparallel to each other, separated by an 611: 91: 2195: 2179:{\displaystyle \chi (\omega )={\frac {\chi _{\text{sp}}+i\omega \tau \chi _{\text{b}}}{1+i\omega \tau }}} 3149:"Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites" 3405: 2638: 2038: 2005: 2002:
There is no time-dependence of the magnetization when the nanoparticles are either completely blocked (
1956: 616: 241: 1014: 892: 774: 506: 181: 1817: 740: 720: 3248: 2668: 753: 501: 496: 22: 2071: 586: 3307: 2598: 2583: 2539: 728: 191: 596: 3185:
Weller, D.; Moser, A. (1999). "Thermal Effect Limits in Ultrahigh Density Magnetic Recording".
2673: 2648: 2576: 925: 581: 521: 491: 441: 161: 51: 2922:
Magnetics Conference, 2000. INTERMAG 2000 Digest of Technical Papers. 2000 IEEE International
2652: 1644: 621: 236: 221: 2547:, there will be a different magnetic response than when the frequency is much lower than 1/Ď„ 3196: 3100: 2890: 2825: 1779: 917: 211: 101: 1750: 1619: 1487:{\displaystyle M(H)\approx n\mu \tanh \left({\frac {\mu _{0}H\mu }{k_{\text{B}}T}}\right)} 8: 3345: 1374: 764: 451: 261: 111: 3200: 3104: 2894: 2829: 3330: 3064: 3045: 2779: 989: 875:{\displaystyle \tau _{\text{N}}=\tau _{0}\exp \left({\frac {KV}{k_{\text{B}}T}}\right)} 591: 566: 314: 1652: 3290: 3171: 3124: 3116: 2933: 2878: 2816: 2784: 2766: 2715: 1741: 1595:{\displaystyle M(H)\approx n\mu L\left({\frac {\mu _{0}H\mu }{k_{\text{B}}T}}\right)} 746: 561: 406: 296: 216: 3049: 3377: 3204: 3108: 3091:
Fert, Albert; Cros, Vincent; Sampaio, JoĂŁo (2013-03-01). "Skyrmions on the track".
3037: 2980: 2925: 2898: 2833: 2774: 2758: 2750: 266: 231: 226: 186: 156: 126: 86: 46: 2852: 2754: 3235: 2634: 2560: 757: 576: 526: 396: 151: 63: 2998: 2738: 3367: 3340: 3335: 3325: 3025: 2999:"Hitachi achieves nanotechnology milestone for quadrupling terabyte hard drive" 2929: 2656: 976: 768: 648: 626: 606: 601: 556: 476: 411: 309: 196: 41: 3041: 2968: 3399: 3362: 3357: 3297: 3120: 2954:"Computer History Museum: HDD Areal Density reaches 1 terabitper square inch" 2770: 716: 713: 709: 337: 318: 300: 201: 121: 2837: 531: 3285: 3128: 2788: 1989:
It can be seen from these equations that large nanoparticles have a larger
551: 541: 511: 471: 466: 446: 291: 271: 131: 3112: 2296:{\textstyle \chi _{\text{sp}}={\frac {n\mu _{0}\mu ^{2}}{3k_{\text{B}}T}}} 3069: 2762: 571: 546: 516: 461: 456: 388: 30: 3372: 2879:"Magneto-optical harmonic susceptometry of superparamagnetic materials" 2620: 1499:
If all the particles are identical and the temperature is high enough (
734: 724: 481: 323: 116: 3208: 2984: 2902: 3271: 2563:
due to the minimum size of particles that can be used. This limit on
705: 536: 486: 359: 206: 106: 1314: 3382: 2602: 96: 2644:
Magnetic separation: cell-, DNA-, protein- separation, RNA fishing
3002: 416: 401: 364: 355: 350: 2589:
Future hard disk technologies currently in development include:
1377:. This function is quite complicated but for some simple cases: 949:
is a length of time, characteristic of the material, called the
3065:"Will Toshiba's Bit-Patterned Drives Change the HDD Landscape?" 369: 345: 76: 2368:{\textstyle \chi _{\text{b}}={\frac {n\mu _{0}\mu ^{2}}{3KV}}} 1986:
if the easy axes of the nanoparticles are randomly oriented.
1953:
The latter susceptibility is also valid for all temperatures
967:
is the nanoparticle’s magnetic anisotropy energy density and
374: 71: 3240: 3023: 1514:), then, irrespective of the orientations of the easy axes: 1936: 2559:
Superparamagnetism sets a limit on the storage density of
2735: 81: 2801: 1997: 798:
and is given by the following Néel–Arrhenius equation:
2383: 2311: 2232: 2198: 1776:
function is the magnetic susceptibility of the sample
1733:{\textstyle L(x)={\frac {1}{\tanh(x)}}-{\frac {1}{x}}} 1677: 1655: 1622: 1324: 2918:
Magnetic recording beyond the superparamagnetic limit
2430: 2105: 2074: 2041: 2008: 1959: 1877: 1820: 1805: 1782: 1753: 1522: 1411: 1214: 1167: 1127: 1084: 1044: 1017: 928: 895: 807: 777: 752:
Superparamagnetism occurs in nanoparticles which are
3229:
Powerpoint presentation on Superparamagnetism in pdf
2303:
is the susceptibility in the superparamagnetic state
1111:{\displaystyle \tau _{\text{m}}\ll \tau _{\text{N}}} 1071:{\displaystyle \tau _{\text{m}}\gg \tau _{\text{N}}} 735:
The NĂ©el relaxation in the absence of magnetic field
2708:(in French; an English translation is available in 2579:. It has an estimated limit of 100 to 200 Gbit/in. 2522: 2409: 2367: 2295: 2216: 2178: 2087: 2060: 2027: 1978: 1942: 1788: 1768: 1732: 1661: 1635: 1594: 1486: 1356: 1292: 1193: 1153: 1110: 1070: 1030: 941: 908: 874: 790: 3170:. New York: Gordon and Breach. pp. 407–427. 1194:{\displaystyle \tau _{\text{m}}=\tau _{\text{N}}} 1154:{\displaystyle \tau _{\text{m}}=\tau _{\text{N}}} 961:); its typical value is between 10 and 10 second. 3397: 2538:A superparamagnetic system can be measured with 2410:{\textstyle \tau ={\frac {\tau _{\text{N}}}{2}}} 3090: 2876: 1357:{\textstyle \tanh \left({\frac {1}{3}}x\right)} 3224:Superparamagnetism of Co-Ferrite Nanoparticles 2877:Vandendriessche, Stefaan; et al. (2013). 1403:)), then the magnetization of the assembly is 3256: 2068:). There is, however, a narrow window around 1614:is the density of nanoparticles in the sample 1309: 682: 1318:Langevin function (red line), compared with 3184: 3263: 3249: 2627: 2375:is the susceptibility in the blocked state 689: 675: 29: 2778: 731:is much larger than that of paramagnets. 2554: 1669:is the magnetic moment of a nanoparticle 1313: 3164:An English translation is available in 2714:. Gordon and Breach. pp. 407–427. 2614: 1006: 3398: 3062: 2915: 2417:is the relaxation time of the assembly 3244: 3165: 2709: 2691: 2595:microwave-assisted magnetic recording 2224:is the frequency of the applied field 2217:{\textstyle {\frac {\omega }{2\pi }}} 3146: 2966: 2853:"Introduction to: AC susceptibility" 2697: 1998:Time dependence of the magnetization 2850: 2035:) or completely superparamagnetic ( 13: 2582:Current hard disk technology uses 2494: 2484: 2448: 2438: 14: 3422: 3217: 2061:{\displaystyle T\gg T_{\text{B}}} 2028:{\displaystyle T\ll T_{\text{B}}} 1979:{\displaystyle T>T_{\text{B}}} 2591:heat-assisted magnetic recording 2575:Older hard disk technology uses 1368:When an external magnetic field 1031:{\displaystyle \tau _{\text{m}}} 909:{\displaystyle \tau _{\text{N}}} 791:{\displaystyle \tau _{\text{N}}} 656: 655: 642: 3084: 3056: 3017: 2609: 2533: 3188:IEEE Transactions on Magnetics 3063:Murray, Matthew (2010-08-19). 3030:IEEE Transactions on Magnetics 2991: 2973:IEEE Transactions on Magnetics 2960: 2946: 2909: 2870: 2844: 2795: 2729: 2115: 2109: 1763: 1757: 1711: 1705: 1687: 1681: 1532: 1526: 1421: 1415: 957:(its reciprocal is called the 763:Because of the nanoparticle’s 1: 3270: 2755:10.1021/acs.inorgchem.9b02994 2679: 3351:ferromagnetic superconductor 3168:Selected Works of Louis NĂ©el 2712:Selected Works of Louis NĂ©el 2088:{\displaystyle T_{\text{B}}} 1038:as the measurement time. If 756:, i.e. composed of a single 7: 2662: 10: 3427: 3139: 2930:10.1109/INTMAG.2000.872350 2639:magnetic resonance imaging 1310:Effect of a magnetic field 738: 242:Spin gapless semiconductor 3318: 3278: 3042:10.1109/TMAG.2009.2024879 2967:Wood, R. (January 2000). 1747:The initial slope of the 942:{\displaystyle \tau _{0}} 182:Electronic band structure 2684: 2669:Iron oxide nanoparticles 1607:In the above equations: 92:Bose–Einstein condensate 23:Condensed matter physics 3308:Van Vleck paramagnetism 3166:Kurti, N., ed. (1988). 2883:Applied Physics Letters 2838:10.1103/PhysRevB.9.3891 2710:Kurti, N., ed. (1988). 2628:Biomedical applications 2599:Bit-patterned recording 2584:perpendicular recording 2569:superparamagnetic limit 729:magnetic susceptibility 708:which appears in small 2916:Kryder, M. H. (2000). 2674:Single-molecule magnet 2649:targeted drug delivery 2577:longitudinal recording 2524: 2411: 2369: 2297: 2218: 2180: 2089: 2062: 2029: 1980: 1944: 1790: 1770: 1734: 1663: 1637: 1596: 1488: 1365: 1358: 1294: 1195: 1155: 1112: 1072: 1032: 943: 910: 876: 792: 741:NĂ©el relaxation theory 3411:Statistical mechanics 3113:10.1038/nnano.2013.29 3093:Nature Nanotechnology 2653:magnetic hyperthermia 2605:, have been proposed. 2555:Effect on hard drives 2525: 2412: 2370: 2298: 2219: 2181: 2090: 2063: 2030: 1981: 1945: 1791: 1789:{\displaystyle \chi } 1771: 1735: 1664: 1645:magnetic permeability 1638: 1636:{\textstyle \mu _{0}} 1597: 1489: 1359: 1317: 1295: 1196: 1156: 1113: 1073: 1033: 944: 911: 877: 793: 237:Topological insulator 2615:General applications 2428: 2381: 2309: 2230: 2196: 2103: 2072: 2039: 2006: 1957: 1803: 1780: 1769:{\displaystyle M(H)} 1751: 1675: 1653: 1620: 1520: 1409: 1322: 1212: 1203:blocking temperature 1165: 1125: 1082: 1042: 1015: 1007:Blocking temperature 926: 918:thermal fluctuations 893: 805: 775: 721:NĂ©el relaxation time 255:Electronic phenomena 102:Fermionic condensate 3378:amorphous magnetism 3346:superferromagnetism 3201:1999ITM....35.4423W 3105:2013NatNa...8..152F 2895:2013ApPhL.102p1903V 2830:1974PhRvB...9.3891G 2743:Inorganic Chemistry 2623:: tunable viscosity 1375:increasing function 998:is the temperature. 765:magnetic anisotropy 262:Quantum Hall effect 3331:antiferromagnetism 3303:superparamagnetism 3234:2008-12-03 at the 3005:. October 15, 2007 2520: 2407: 2365: 2293: 2214: 2176: 2085: 2058: 2025: 1976: 1940: 1935: 1925: 1865: 1786: 1766: 1730: 1659: 1633: 1592: 1484: 1366: 1354: 1290: 1191: 1151: 1108: 1068: 1028: 990:Boltzmann constant 939: 906: 872: 788: 702:Superparamagnetism 649:Physics portal 3406:Magnetic ordering 3393: 3392: 3291:superdiamagnetism 3279:Magnetic response 3209:10.1109/20.809134 3177:978-2-88124-300-4 3147:NĂ©el, L. (1949). 3036:(10): 3816–3822. 3001:(Press release). 2985:10.1109/20.824422 2903:10.1063/1.4801837 2851:Martien, Dinesh. 2817:Physical Review B 2721:978-2-88124-300-4 2540:AC susceptibility 2514: 2502: 2477: 2456: 2405: 2399: 2363: 2319: 2291: 2284: 2240: 2212: 2174: 2153: 2131: 2082: 2055: 2022: 1973: 1931: 1923: 1916: 1871: 1863: 1856: 1742:Langevin function 1728: 1715: 1662:{\textstyle \mu } 1586: 1579: 1478: 1471: 1344: 1288: 1281: 1268: 1246: 1222: 1188: 1175: 1148: 1135: 1105: 1092: 1065: 1052: 1025: 975:is therefore the 959:attempt frequency 903: 866: 859: 815: 785: 747:Curie temperature 727:. However, their 699: 698: 407:Granular material 175:Electronic phases 16:Form of magnetism 3418: 3265: 3258: 3251: 3242: 3241: 3212: 3195:(6): 4423–4439. 3181: 3163: 3153: 3133: 3132: 3088: 3082: 3081: 3079: 3077: 3060: 3054: 3053: 3021: 3015: 3014: 3012: 3010: 2995: 2989: 2988: 2964: 2958: 2957: 2950: 2944: 2943: 2913: 2907: 2906: 2889:(16): 161903–5. 2874: 2868: 2867: 2865: 2863: 2858:. Quantum Design 2857: 2848: 2842: 2841: 2824:(9): 3891–3897. 2799: 2793: 2792: 2782: 2749:(3): 1763–1777. 2733: 2727: 2725: 2707: 2695: 2567:is known as the 2561:hard disk drives 2529: 2527: 2526: 2521: 2516: 2515: 2512: 2503: 2501: 2497: 2491: 2487: 2481: 2479: 2478: 2475: 2457: 2455: 2451: 2445: 2441: 2435: 2416: 2414: 2413: 2408: 2406: 2401: 2400: 2397: 2391: 2374: 2372: 2371: 2366: 2364: 2362: 2351: 2350: 2349: 2340: 2339: 2326: 2321: 2320: 2317: 2302: 2300: 2299: 2294: 2292: 2290: 2286: 2285: 2282: 2272: 2271: 2270: 2261: 2260: 2247: 2242: 2241: 2238: 2223: 2221: 2220: 2215: 2213: 2211: 2200: 2185: 2183: 2182: 2177: 2175: 2173: 2156: 2155: 2154: 2151: 2133: 2132: 2129: 2122: 2094: 2092: 2091: 2086: 2084: 2083: 2080: 2067: 2065: 2064: 2059: 2057: 2056: 2053: 2034: 2032: 2031: 2026: 2024: 2023: 2020: 1985: 1983: 1982: 1977: 1975: 1974: 1971: 1949: 1947: 1946: 1941: 1939: 1938: 1932: 1930:for the 2nd case 1929: 1924: 1922: 1918: 1917: 1914: 1904: 1903: 1902: 1893: 1892: 1879: 1872: 1870:for the 1st case 1869: 1864: 1862: 1858: 1857: 1854: 1847: 1846: 1845: 1836: 1835: 1822: 1795: 1793: 1792: 1787: 1775: 1773: 1772: 1767: 1739: 1737: 1736: 1731: 1729: 1721: 1716: 1714: 1694: 1668: 1666: 1665: 1660: 1642: 1640: 1639: 1634: 1632: 1631: 1601: 1599: 1598: 1593: 1591: 1587: 1585: 1581: 1580: 1577: 1570: 1563: 1562: 1552: 1493: 1491: 1490: 1485: 1483: 1479: 1477: 1473: 1472: 1469: 1462: 1455: 1454: 1444: 1363: 1361: 1360: 1355: 1353: 1349: 1345: 1337: 1299: 1297: 1296: 1291: 1289: 1287: 1286: 1282: 1280: 1279: 1270: 1269: 1266: 1260: 1248: 1247: 1244: 1237: 1229: 1224: 1223: 1220: 1200: 1198: 1197: 1192: 1190: 1189: 1186: 1177: 1176: 1173: 1160: 1158: 1157: 1152: 1150: 1149: 1146: 1137: 1136: 1133: 1117: 1115: 1114: 1109: 1107: 1106: 1103: 1094: 1093: 1090: 1077: 1075: 1074: 1069: 1067: 1066: 1063: 1054: 1053: 1050: 1037: 1035: 1034: 1029: 1027: 1026: 1023: 948: 946: 945: 940: 938: 937: 915: 913: 912: 907: 905: 904: 901: 881: 879: 878: 873: 871: 867: 865: 861: 860: 857: 850: 842: 830: 829: 817: 816: 813: 797: 795: 794: 789: 787: 786: 783: 691: 684: 677: 664: 659: 658: 651: 647: 646: 267:Spin Hall effect 157:Phase transition 127:Luttinger liquid 64:States of matter 47:Phase transition 33: 19: 18: 3426: 3425: 3421: 3420: 3419: 3417: 3416: 3415: 3396: 3395: 3394: 3389: 3319:Magnetic states 3314: 3274: 3269: 3236:Wayback Machine 3220: 3215: 3178: 3151: 3142: 3137: 3136: 3089: 3085: 3075: 3073: 3061: 3057: 3022: 3018: 3008: 3006: 2997: 2996: 2992: 2965: 2961: 2952: 2951: 2947: 2940: 2924:. p. 575. 2914: 2910: 2875: 2871: 2861: 2859: 2855: 2849: 2845: 2813: 2809: 2805: 2800: 2796: 2734: 2730: 2722: 2696: 2692: 2687: 2682: 2665: 2635:contrast agents 2630: 2617: 2612: 2557: 2550: 2546: 2536: 2511: 2507: 2493: 2492: 2483: 2482: 2480: 2474: 2470: 2447: 2446: 2437: 2436: 2434: 2429: 2426: 2425: 2396: 2392: 2390: 2382: 2379: 2378: 2352: 2345: 2341: 2335: 2331: 2327: 2325: 2316: 2312: 2310: 2307: 2306: 2281: 2277: 2273: 2266: 2262: 2256: 2252: 2248: 2246: 2237: 2233: 2231: 2228: 2227: 2204: 2199: 2197: 2194: 2193: 2157: 2150: 2146: 2128: 2124: 2123: 2121: 2104: 2101: 2100: 2079: 2075: 2073: 2070: 2069: 2052: 2048: 2040: 2037: 2036: 2019: 2015: 2007: 2004: 2003: 2000: 1970: 1966: 1958: 1955: 1954: 1934: 1933: 1928: 1926: 1913: 1909: 1905: 1898: 1894: 1888: 1884: 1880: 1878: 1874: 1873: 1868: 1866: 1853: 1849: 1848: 1841: 1837: 1831: 1827: 1823: 1821: 1813: 1812: 1804: 1801: 1800: 1781: 1778: 1777: 1752: 1749: 1748: 1720: 1698: 1693: 1676: 1673: 1672: 1654: 1651: 1650: 1627: 1623: 1621: 1618: 1617: 1576: 1572: 1571: 1558: 1554: 1553: 1551: 1547: 1521: 1518: 1517: 1513: 1468: 1464: 1463: 1450: 1446: 1445: 1443: 1439: 1410: 1407: 1406: 1402: 1387: 1336: 1335: 1331: 1323: 1320: 1319: 1312: 1275: 1271: 1265: 1261: 1259: 1255: 1243: 1239: 1238: 1230: 1228: 1219: 1215: 1213: 1210: 1209: 1185: 1181: 1172: 1168: 1166: 1163: 1162: 1145: 1141: 1132: 1128: 1126: 1123: 1122: 1102: 1098: 1089: 1085: 1083: 1080: 1079: 1062: 1058: 1049: 1045: 1043: 1040: 1039: 1022: 1018: 1016: 1013: 1012: 1009: 1003:nanoparticles. 987: 933: 929: 927: 924: 923: 900: 896: 894: 891: 890: 856: 852: 851: 843: 841: 837: 825: 821: 812: 808: 806: 803: 802: 782: 778: 776: 773: 772: 758:magnetic domain 743: 737: 695: 654: 641: 640: 633: 632: 631: 431: 423: 422: 421: 397:Amorphous solid 391: 381: 380: 379: 358: 340: 330: 329: 328: 317: 315:Antiferromagnet 308: 306:Superparamagnet 299: 286: 285:Magnetic phases 278: 277: 276: 256: 248: 247: 246: 176: 168: 167: 166: 152:Order parameter 146: 145:Phase phenomena 138: 137: 136: 66: 56: 17: 12: 11: 5: 3424: 3414: 3413: 3408: 3391: 3390: 3388: 3387: 3386: 3385: 3380: 3370: 3368:mictomagnetism 3365: 3360: 3355: 3354: 3353: 3348: 3341:ferromagnetism 3338: 3336:ferrimagnetism 3333: 3328: 3326:altermagnetism 3322: 3320: 3316: 3315: 3313: 3312: 3311: 3310: 3305: 3295: 3294: 3293: 3282: 3280: 3276: 3275: 3268: 3267: 3260: 3253: 3245: 3239: 3238: 3226: 3219: 3218:External links 3216: 3214: 3213: 3182: 3176: 3143: 3141: 3138: 3135: 3134: 3099:(3): 152–156. 3083: 3055: 3016: 2990: 2959: 2945: 2938: 2908: 2869: 2843: 2811: 2807: 2803: 2794: 2728: 2720: 2689: 2688: 2686: 2683: 2681: 2678: 2677: 2676: 2671: 2664: 2661: 2660: 2659: 2657:magnetofection 2645: 2642: 2629: 2626: 2625: 2624: 2616: 2613: 2611: 2608: 2607: 2606: 2587: 2580: 2556: 2553: 2548: 2544: 2535: 2532: 2531: 2530: 2519: 2510: 2506: 2500: 2496: 2490: 2486: 2473: 2469: 2466: 2463: 2460: 2454: 2450: 2444: 2440: 2433: 2419: 2418: 2404: 2395: 2389: 2386: 2376: 2361: 2358: 2355: 2348: 2344: 2338: 2334: 2330: 2324: 2315: 2304: 2289: 2280: 2276: 2269: 2265: 2259: 2255: 2251: 2245: 2236: 2225: 2210: 2207: 2203: 2187: 2186: 2172: 2169: 2166: 2163: 2160: 2149: 2145: 2142: 2139: 2136: 2127: 2120: 2117: 2114: 2111: 2108: 2078: 2051: 2047: 2044: 2018: 2014: 2011: 1999: 1996: 1969: 1965: 1962: 1951: 1950: 1937: 1927: 1921: 1912: 1908: 1901: 1897: 1891: 1887: 1883: 1876: 1875: 1867: 1861: 1852: 1844: 1840: 1834: 1830: 1826: 1819: 1818: 1816: 1811: 1808: 1785: 1765: 1762: 1759: 1756: 1745: 1744: 1727: 1724: 1719: 1713: 1710: 1707: 1704: 1701: 1697: 1692: 1689: 1686: 1683: 1680: 1670: 1658: 1648: 1630: 1626: 1615: 1605: 1604: 1603: 1602: 1590: 1584: 1575: 1569: 1566: 1561: 1557: 1550: 1546: 1543: 1540: 1537: 1534: 1531: 1528: 1525: 1511: 1497: 1496: 1495: 1482: 1476: 1467: 1461: 1458: 1453: 1449: 1442: 1438: 1435: 1432: 1429: 1426: 1423: 1420: 1417: 1414: 1400: 1385: 1352: 1348: 1343: 1340: 1334: 1330: 1327: 1311: 1308: 1301: 1300: 1285: 1278: 1274: 1264: 1258: 1254: 1251: 1242: 1236: 1233: 1227: 1218: 1201:is called the 1184: 1180: 1171: 1144: 1140: 1131: 1101: 1097: 1088: 1061: 1057: 1048: 1021: 1008: 1005: 1000: 999: 993: 985: 980: 977:energy barrier 962: 955:attempt period 936: 932: 921: 899: 884: 883: 870: 864: 855: 849: 846: 840: 836: 833: 828: 824: 820: 811: 781: 769:energy barrier 739:Main article: 736: 733: 697: 696: 694: 693: 686: 679: 671: 668: 667: 666: 665: 652: 635: 634: 630: 629: 624: 619: 614: 609: 604: 599: 594: 589: 584: 579: 574: 569: 564: 559: 554: 549: 544: 539: 534: 529: 524: 519: 514: 509: 504: 499: 494: 489: 484: 479: 474: 469: 464: 459: 454: 449: 444: 439: 433: 432: 429: 428: 425: 424: 420: 419: 414: 412:Liquid crystal 409: 404: 399: 393: 392: 387: 386: 383: 382: 378: 377: 372: 367: 362: 353: 348: 342: 341: 338:Quasiparticles 336: 335: 332: 331: 327: 326: 321: 312: 303: 297:Superdiamagnet 294: 288: 287: 284: 283: 280: 279: 275: 274: 269: 264: 258: 257: 254: 253: 250: 249: 245: 244: 239: 234: 229: 224: 222:Thermoelectric 219: 217:Superconductor 214: 209: 204: 199: 197:Mott insulator 194: 189: 184: 178: 177: 174: 173: 170: 169: 165: 164: 159: 154: 148: 147: 144: 143: 140: 139: 135: 134: 129: 124: 119: 114: 109: 104: 99: 94: 89: 84: 79: 74: 68: 67: 62: 61: 58: 57: 55: 54: 49: 44: 38: 35: 34: 26: 25: 15: 9: 6: 4: 3: 2: 3423: 3412: 3409: 3407: 3404: 3403: 3401: 3384: 3381: 3379: 3376: 3375: 3374: 3371: 3369: 3366: 3364: 3363:metamagnetism 3361: 3359: 3358:helimagnetism 3356: 3352: 3349: 3347: 3344: 3343: 3342: 3339: 3337: 3334: 3332: 3329: 3327: 3324: 3323: 3321: 3317: 3309: 3306: 3304: 3301: 3300: 3299: 3298:paramagnetism 3296: 3292: 3289: 3288: 3287: 3284: 3283: 3281: 3277: 3273: 3266: 3261: 3259: 3254: 3252: 3247: 3246: 3243: 3237: 3233: 3230: 3227: 3225: 3222: 3221: 3210: 3206: 3202: 3198: 3194: 3190: 3189: 3183: 3179: 3173: 3169: 3161: 3158:(in French). 3157: 3156:Ann. GĂ©ophys. 3150: 3145: 3144: 3130: 3126: 3122: 3118: 3114: 3110: 3106: 3102: 3098: 3094: 3087: 3072: 3071: 3066: 3059: 3051: 3047: 3043: 3039: 3035: 3031: 3027: 3020: 3004: 3000: 2994: 2986: 2982: 2978: 2974: 2970: 2963: 2955: 2949: 2941: 2939:0-7803-5943-7 2935: 2931: 2927: 2923: 2919: 2912: 2904: 2900: 2896: 2892: 2888: 2884: 2880: 2873: 2854: 2847: 2839: 2835: 2831: 2827: 2823: 2819: 2818: 2798: 2790: 2786: 2781: 2776: 2772: 2768: 2764: 2763:11380/1197352 2760: 2756: 2752: 2748: 2744: 2740: 2732: 2723: 2717: 2713: 2705: 2701: 2694: 2690: 2675: 2672: 2670: 2667: 2666: 2658: 2654: 2650: 2646: 2643: 2640: 2636: 2632: 2631: 2622: 2619: 2618: 2604: 2600: 2596: 2592: 2588: 2585: 2581: 2578: 2574: 2573: 2572: 2570: 2566: 2565:areal-density 2562: 2552: 2541: 2517: 2508: 2504: 2498: 2488: 2471: 2467: 2464: 2461: 2458: 2452: 2442: 2431: 2424: 2423: 2422: 2402: 2393: 2387: 2384: 2377: 2359: 2356: 2353: 2346: 2342: 2336: 2332: 2328: 2322: 2313: 2305: 2287: 2278: 2274: 2267: 2263: 2257: 2253: 2249: 2243: 2234: 2226: 2208: 2205: 2201: 2192: 2191: 2190: 2170: 2167: 2164: 2161: 2158: 2147: 2143: 2140: 2137: 2134: 2125: 2118: 2112: 2106: 2099: 2098: 2097: 2076: 2049: 2045: 2042: 2016: 2012: 2009: 1995: 1992: 1987: 1967: 1963: 1960: 1919: 1910: 1906: 1899: 1895: 1889: 1885: 1881: 1859: 1850: 1842: 1838: 1832: 1828: 1824: 1814: 1809: 1806: 1799: 1798: 1797: 1783: 1760: 1754: 1743: 1725: 1722: 1717: 1708: 1702: 1699: 1695: 1690: 1684: 1678: 1671: 1656: 1649: 1646: 1628: 1624: 1616: 1613: 1610: 1609: 1608: 1588: 1582: 1573: 1567: 1564: 1559: 1555: 1548: 1544: 1541: 1538: 1535: 1529: 1523: 1516: 1515: 1510: 1506: 1502: 1498: 1480: 1474: 1465: 1459: 1456: 1451: 1447: 1440: 1436: 1433: 1430: 1427: 1424: 1418: 1412: 1405: 1404: 1399: 1395: 1391: 1384: 1380: 1379: 1378: 1376: 1371: 1350: 1346: 1341: 1338: 1332: 1328: 1325: 1316: 1307: 1304: 1283: 1276: 1272: 1262: 1256: 1252: 1249: 1240: 1234: 1231: 1225: 1216: 1208: 1207: 1206: 1204: 1182: 1178: 1169: 1142: 1138: 1129: 1119: 1099: 1095: 1086: 1059: 1055: 1046: 1019: 1004: 997: 994: 991: 984: 981: 978: 974: 970: 966: 963: 960: 956: 952: 934: 930: 922: 919: 897: 889: 888: 887: 868: 862: 853: 847: 844: 838: 834: 831: 826: 822: 818: 809: 801: 800: 799: 779: 770: 766: 761: 759: 755: 754:single-domain 750: 748: 742: 732: 730: 726: 722: 718: 717:nanoparticles 715: 714:ferrimagnetic 711: 710:ferromagnetic 707: 704:is a form of 703: 692: 687: 685: 680: 678: 673: 672: 670: 669: 663: 653: 650: 645: 639: 638: 637: 636: 628: 625: 623: 620: 618: 615: 613: 610: 608: 605: 603: 600: 598: 595: 593: 590: 588: 585: 583: 580: 578: 575: 573: 570: 568: 565: 563: 560: 558: 555: 553: 550: 548: 545: 543: 540: 538: 535: 533: 530: 528: 525: 523: 520: 518: 515: 513: 510: 508: 505: 503: 500: 498: 495: 493: 490: 488: 485: 483: 480: 478: 475: 473: 470: 468: 465: 463: 460: 458: 455: 453: 450: 448: 445: 443: 440: 438: 437:Van der Waals 435: 434: 427: 426: 418: 415: 413: 410: 408: 405: 403: 400: 398: 395: 394: 390: 385: 384: 376: 373: 371: 368: 366: 363: 361: 357: 354: 352: 349: 347: 344: 343: 339: 334: 333: 325: 322: 320: 316: 313: 311: 307: 304: 302: 298: 295: 293: 290: 289: 282: 281: 273: 270: 268: 265: 263: 260: 259: 252: 251: 243: 240: 238: 235: 233: 232:Ferroelectric 230: 228: 227:Piezoelectric 225: 223: 220: 218: 215: 213: 210: 208: 205: 203: 202:Semiconductor 200: 198: 195: 193: 190: 188: 185: 183: 180: 179: 172: 171: 163: 160: 158: 155: 153: 150: 149: 142: 141: 133: 130: 128: 125: 123: 122:Superfluidity 120: 118: 115: 113: 110: 108: 105: 103: 100: 98: 95: 93: 90: 88: 85: 83: 80: 78: 75: 73: 70: 69: 65: 60: 59: 53: 50: 48: 45: 43: 40: 39: 37: 36: 32: 28: 27: 24: 21: 20: 3302: 3286:diamagnetism 3192: 3186: 3167: 3159: 3155: 3096: 3092: 3086: 3074:. Retrieved 3068: 3058: 3033: 3029: 3019: 3007:. Retrieved 2993: 2979:(1): 36–42. 2976: 2972: 2962: 2948: 2921: 2917: 2911: 2886: 2882: 2872: 2860:. Retrieved 2846: 2821: 2815: 2797: 2746: 2742: 2731: 2711: 2703: 2700:Ann. GĂ©ophys 2699: 2693: 2647:Treatments: 2610:Applications 2568: 2558: 2537: 2534:Measurements 2420: 2188: 2001: 1990: 1988: 1952: 1746: 1611: 1606: 1508: 1504: 1500: 1397: 1393: 1389: 1382: 1369: 1367: 1364:(blue line). 1305: 1302: 1202: 1120: 1010: 1001: 995: 982: 972: 971:its volume. 968: 964: 958: 954: 951:attempt time 950: 885: 762: 751: 744: 701: 700: 567:von Klitzing 305: 272:Kondo effect 132:Time crystal 112:Fermi liquid 3070:PC Magazine 2593:(HAMR) and 389:Soft matter 310:Ferromagnet 3400:Categories 3373:spin glass 2680:References 2621:Ferrofluid 725:paramagnet 532:Louis NĂ©el 522:Schrieffer 430:Scientists 324:Spin glass 319:Metamagnet 301:Paramagnet 117:Supersolid 3272:Magnetism 3162:: 99–136. 3121:1748-3387 2806:and Ni-Al 2771:0020-1669 2706:: 99–136. 2633:Imaging: 2603:skyrmions 2509:χ 2472:χ 2468:τ 2432:τ 2394:τ 2385:τ 2343:μ 2333:μ 2314:χ 2264:μ 2254:μ 2235:χ 2209:π 2202:ω 2171:τ 2168:ω 2148:χ 2144:τ 2141:ω 2126:χ 2113:ω 2107:χ 2046:≫ 2013:≪ 1896:μ 1886:μ 1839:μ 1829:μ 1807:χ 1784:χ 1718:− 1703:⁡ 1657:μ 1647:of vacuum 1625:μ 1568:μ 1556:μ 1542:μ 1536:≈ 1460:μ 1448:μ 1437:⁡ 1431:μ 1425:≈ 1329:⁡ 1273:τ 1263:τ 1253:⁡ 1183:τ 1170:τ 1143:τ 1130:τ 1100:τ 1096:≪ 1087:τ 1060:τ 1056:≫ 1047:τ 1020:τ 931:τ 898:τ 835:⁡ 823:τ 810:τ 780:τ 706:magnetism 612:Abrikosov 527:Josephson 497:Van Vleck 487:Luttinger 360:Polariton 292:Diamagnet 212:Conductor 207:Semimetal 192:Insulator 107:Fermi gas 3383:spin ice 3232:Archived 3129:23459548 3050:24634675 2814:films". 2789:31967457 2663:See also 662:Category 617:Ginzburg 592:Laughlin 552:Kadanoff 507:Shockley 492:Anderson 447:von Laue 97:Bose gas 3197:Bibcode 3140:Sources 3101:Bibcode 3003:Hitachi 2891:Bibcode 2826:Bibcode 2780:7901656 1740:is the 1643:is the 988:is the 886:where: 622:Leggett 597:Störmer 582:Bednorz 542:Giaever 512:Bardeen 502:Hubbard 477:Peierls 467:Onsager 417:Polymer 402:Colloid 365:Polaron 356:Plasmon 351:Exciton 3174:  3127:  3119:  3076:21 Aug 3048:  2936:  2862:15 Apr 2787:  2777:  2769:  2718:  2189:where 660:  627:Parisi 587:MĂĽller 577:Rohrer 572:Binnig 562:Wilson 557:Fisher 517:Cooper 482:Landau 370:Magnon 346:Phonon 187:Plasma 87:Plasma 77:Liquid 42:Phases 3152:(PDF) 3046:S2CID 3009:1 Sep 2856:(PDF) 2685:Notes 2641:(MRI) 1396:/(10 1388:< 537:Esaki 462:Bloch 457:Debye 452:Bragg 442:Onnes 375:Roton 72:Solid 3172:ISBN 3125:PMID 3117:ISSN 3078:2010 3011:2011 2934:ISBN 2864:2017 2785:PMID 2767:ISSN 2716:ISBN 1964:> 1700:tanh 1434:tanh 1326:tanh 607:Tsui 602:Yang 547:Kohn 472:Mott 3205:doi 3109:doi 3038:doi 2981:doi 2926:doi 2899:doi 2887:102 2834:doi 2775:PMC 2759:hdl 2751:doi 2637:in 2543:1/Ď„ 953:or 832:exp 712:or 162:QCP 82:Gas 52:QCP 3402:: 3203:. 3193:35 3191:. 3154:. 3123:. 3115:. 3107:. 3095:. 3067:. 3044:. 3034:45 3032:. 3028:. 2977:36 2975:. 2971:. 2932:. 2920:. 2897:. 2885:. 2881:. 2832:. 2820:. 2783:. 2773:. 2765:. 2757:. 2747:59 2745:. 2741:. 2726:). 2702:. 2655:, 2651:, 2571:. 2513:sp 2239:sp 2130:sp 1796:: 1505:KV 1503:≳ 1394:KV 1392:≲ 1250:ln 1205:: 973:KV 3264:e 3257:t 3250:v 3211:. 3207:: 3199:: 3180:. 3160:5 3131:. 3111:: 3103:: 3097:8 3080:. 3052:. 3040:: 3013:. 2987:. 2983:: 2956:. 2942:. 2928:: 2905:. 2901:: 2893:: 2866:. 2840:. 2836:: 2828:: 2822:9 2812:3 2810:O 2808:2 2804:2 2791:. 2761:: 2753:: 2724:. 2704:5 2549:N 2545:N 2518:H 2505:+ 2499:t 2495:d 2489:H 2485:d 2476:b 2465:= 2462:M 2459:+ 2453:t 2449:d 2443:M 2439:d 2403:2 2398:N 2388:= 2360:V 2357:K 2354:3 2347:2 2337:0 2329:n 2323:= 2318:b 2288:T 2283:B 2279:k 2275:3 2268:2 2258:0 2250:n 2244:= 2206:2 2165:i 2162:+ 2159:1 2152:b 2138:i 2135:+ 2119:= 2116:) 2110:( 2081:B 2077:T 2054:B 2050:T 2043:T 2021:B 2017:T 2010:T 1991:ÎĽ 1972:B 1968:T 1961:T 1920:T 1915:B 1911:k 1907:3 1900:2 1890:0 1882:n 1860:T 1855:B 1851:k 1843:2 1833:0 1825:n 1815:{ 1810:= 1764:) 1761:H 1758:( 1755:M 1726:x 1723:1 1712:) 1709:x 1706:( 1696:1 1691:= 1688:) 1685:x 1682:( 1679:L 1629:0 1612:n 1589:) 1583:T 1578:B 1574:k 1565:H 1560:0 1549:( 1545:L 1539:n 1533:) 1530:H 1527:( 1524:M 1512:B 1509:k 1507:/ 1501:T 1494:. 1481:) 1475:T 1470:B 1466:k 1457:H 1452:0 1441:( 1428:n 1422:) 1419:H 1416:( 1413:M 1401:B 1398:k 1390:T 1386:B 1383:T 1370:H 1351:) 1347:x 1342:3 1339:1 1333:( 1284:) 1277:0 1267:m 1257:( 1245:B 1241:k 1235:V 1232:K 1226:= 1221:B 1217:T 1187:N 1179:= 1174:m 1147:N 1139:= 1134:m 1104:N 1091:m 1064:N 1051:m 1024:m 996:T 992:. 986:B 983:k 969:V 965:K 935:0 920:. 902:N 882:, 869:) 863:T 858:B 854:k 848:V 845:K 839:( 827:0 819:= 814:N 784:N 690:e 683:t 676:v

Index

Condensed matter physics

Phases
Phase transition
QCP
States of matter
Solid
Liquid
Gas
Plasma
Bose–Einstein condensate
Bose gas
Fermionic condensate
Fermi gas
Fermi liquid
Supersolid
Superfluidity
Luttinger liquid
Time crystal
Order parameter
Phase transition
QCP
Electronic band structure
Plasma
Insulator
Mott insulator
Semiconductor
Semimetal
Conductor
Superconductor

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑