Knowledge

Superparamagnetism

Source đź“ť

655: 2562:, since in the latter case, but not the former, the ferromagnetic clusters will have time to respond to the field by flipping their magnetization. The precise dependence can be calculated from the NĂ©el–Arrhenius equation, assuming that the neighboring clusters behave independently of one another (if clusters interact, their behavior becomes more complicated). It is also possible to perform magneto-optical AC susceptibility measurements with magneto-optically active superparamagnetic materials such as iron oxide nanoparticles in the visible wavelength range. 42: 668: 1326: 771:. This is possible when their diameter is below 3–50 nm, depending on the materials. In this condition, it is considered that the magnetization of the nanoparticles is a single giant magnetic moment, sum of all the individual magnetic moments carried by the atoms of the nanoparticle. Those in the field of superparamagnetism call this "macro-spin approximation". 1959: 734:. In the absence of an external magnetic field, when the time used to measure the magnetization of the nanoparticles is much longer than the NĂ©el relaxation time, their magnetization appears to be on average zero; they are said to be in the superparamagnetic state. In this state, an external magnetic field is able to magnetize the nanoparticles, similarly to a 1129:, the magnetization will not flip during the measurement, so the measured magnetization will be what the instantaneous magnetization was at the beginning of the measurement. In the former case, the nanoparticle will appear to be in the superparamagnetic state whereas in the latter case it will appear to be “blocked” in its initial state. 1813: 1013:
This length of time can be anywhere from a few nanoseconds to years or much longer. In particular, it can be seen that the NĂ©el relaxation time is an exponential function of the grain volume, which explains why the flipping probability becomes rapidly negligible for bulk materials or large
2539: 1383:
is applied to an assembly of superparamagnetic nanoparticles, their magnetic moments tend to align along the applied field, leading to a net magnetization. The magnetization curve of the assembly, i.e. the magnetization as a function of the applied field, is a reversible S-shaped
1309: 782:. The stable orientations define the nanoparticle’s so called “easy axis”. At finite temperature, there is a finite probability for the magnetization to flip and reverse its direction. The mean time between two flips is called the Néel relaxation time 2195: 1503: 2553:
measurements, where an applied magnetic field varies in time, and the magnetic response of the system is measured. A superparamagnetic system will show a characteristic frequency dependence: When the frequency is much higher than
891: 1611: 1172:. In several experiments, the measurement time is kept constant but the temperature is varied, so the transition between superparamagnetism and blocked state is seen as a function of the temperature. The temperature for which 1954:{\displaystyle \chi ={\begin{cases}\displaystyle {\frac {n\mu _{0}\mu ^{2}}{k_{\text{B}}T}}&{\text{for the 1st case}}\\\displaystyle {\frac {n\mu _{0}\mu ^{2}}{3k_{\text{B}}T}}&{\text{for the 2nd case}}\end{cases}}} 2747:
Cornia, Andrea; Barra, Anne-Laure; Bulicanu, Vladimir; Clérac, Rodolphe; Cortijo, Miguel; Hillard, Elizabeth A.; Galavotti, Rita; Lunghi, Alessandro; Nicolini, Alessio; Rouzières, Mathieu; Sorace, Lorenzo (2020-02-03).
2312: 2106:
where the measurement time and the relaxation time have comparable magnitude. In this case, a frequency-dependence of the susceptibility can be observed. For a randomly oriented sample, the complex susceptibility is:
3242: 2438: 2004:
and so a larger susceptibility. This explains why superparamagnetic nanoparticles have a much larger susceptibility than standard paramagnets: they behave exactly as a paramagnet with a huge magnetic moment.
2384: 1749: 1127: 1087: 2605: 1210: 1170: 2426: 1373: 2597:. As of July 2020 drives with densities of approximately 1 Tbit/in are available commercially. This is at the limit for conventional magnetic recording that was predicted in 1999. 1392:
If all the particles are identical (same energy barrier and same magnetic moment), their easy axes are all oriented parallel to the applied field and the temperature is low enough (
2612:(BPR) avoids the use of fine-grained media and is another possibility. In addition, magnetic recording technologies based on topological distortions of the magnetization, known as 2233: 2608:(MAMR), which use materials that are stable at much smaller sizes. They require localized heating or microwave excitation before the magnetic orientation of a bit can be changed. 1222: 2077: 2044: 1995: 2113: 1047: 925: 807: 2104: 3239: 958: 730:. In sufficiently small nanoparticles, magnetization can randomly flip direction under the influence of temperature. The typical time between two flips is called the 1805: 1652: 1132:
The state of the nanoparticle (superparamagnetic or blocked) depends on the measurement time. A transition between superparamagnetism and blocked state occurs when
1785: 1678: 1419: 815: 1530: 699: 2240: 2534:{\displaystyle \tau {\frac {\mathrm {d} M}{\mathrm {d} t}}+M=\tau \chi _{\text{b}}{\frac {\mathrm {d} H}{\mathrm {d} t}}+\chi _{\text{sp}}H} 1089:, the nanoparticle magnetization will flip several times during the measurement, then the measured magnetization will average to zero. If 990:
associated with the magnetization moving from its initial easy axis direction, through a “hard plane”, to the other easy axis direction.
2980:"R. Wood, "The feasibility of magnetic recording at 1 Terabit per square inch", IEEE Trans. Magn., Vol. 36, No. 1, pp. 36-42, Jan 2000" 3273: 2319: 692: 3186: 2730: 760:. Superparamagnetism is different from this standard transition since it occurs below the Curie temperature of the material. 2964: 2709:
Néel, L. (1949). "Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites".
1685: 1092: 1052: 3035:
Shiroishi, Y.; Fukuda, K.; Tagawa, I.; Iwasaki, H.; Takenoiri, S.; Tanaka, H.; Mutoh, H.; Yoshikawa, N. (October 2009).
2750:"The Origin of Magnetic Anisotropy and Single-Molecule Magnet Behavior in Chromium(II)-Based Extended Metal Atom Chains" 3159: 1175: 1135: 2432:
From this frequency-dependent susceptibility, the time-dependence of the magnetization for low-fields can be derived:
1317:
Equivalently, blocking temperature is the temperature below which a material shows slow relaxation of magnetization.
927:
is thus the average length of time that it takes for the nanoparticle’s magnetization to randomly flip as a result of
2948: 2391: 685: 672: 17: 3234: 1332: 3037:"Y. Shiroishi et al., "Future Options for HDD Storage", IEEE Trans. Magn., Vol. 45, No. 10, pp. 3816-22, Sep. 2009" 2601: 2575: 1314:
For typical laboratory measurements, the value of the logarithm in the previous equation is in the order of 20–25.
654: 2813:
Gittleman, J. I.; Abeles, B.; Bozowski, S. (1974). "Superparamagnetism and relaxation effects in granular Ni-SiO
3421: 3198: 1022:
Let us imagine that the magnetization of a single superparamagnetic nanoparticle is measured and let us define
756:
Normally, any ferromagnetic or ferrimagnetic material undergoes a transition to a paramagnetic state above its
447: 3266: 1304:{\displaystyle T_{\text{B}}={\frac {KV}{k_{\text{B}}\ln \left({\frac {\tau _{\text{m}}}{\tau _{0}}}\right)}}} 3361: 778:, the magnetic moment has usually only two stable orientations antiparallel to each other, separated by an 622: 102: 2206: 2190:{\displaystyle \chi (\omega )={\frac {\chi _{\text{sp}}+i\omega \tau \chi _{\text{b}}}{1+i\omega \tau }}} 3160:"Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites" 3416: 2649: 2049: 2016: 2013:
There is no time-dependence of the magnetization when the nanoparticles are either completely blocked (
1967: 627: 252: 1025: 903: 785: 517: 192: 1828: 751: 731: 3259: 2679: 764: 512: 507: 33: 2082: 597: 3318: 2609: 2594: 2550: 739: 202: 607: 3196:
Weller, D.; Moser, A. (1999). "Thermal Effect Limits in Ultrahigh Density Magnetic Recording".
2684: 2659: 2587: 936: 592: 532: 502: 452: 172: 62: 2933:
Magnetics Conference, 2000. INTERMAG 2000 Digest of Technical Papers. 2000 IEEE International
2663: 1655: 632: 247: 232: 2558:, there will be a different magnetic response than when the frequency is much lower than 1/Ď„ 3207: 3111: 2901: 2836: 1790: 928: 222: 112: 1761: 1630: 1498:{\displaystyle M(H)\approx n\mu \tanh \left({\frac {\mu _{0}H\mu }{k_{\text{B}}T}}\right)} 8: 3356: 1385: 775: 462: 272: 122: 3211: 3115: 2905: 2840: 3341: 3075: 3056: 2790: 1000: 886:{\displaystyle \tau _{\text{N}}=\tau _{0}\exp \left({\frac {KV}{k_{\text{B}}T}}\right)} 602: 577: 325: 1663: 3301: 3182: 3135: 3127: 2944: 2889: 2827: 2795: 2777: 2726: 1752: 1606:{\displaystyle M(H)\approx n\mu L\left({\frac {\mu _{0}H\mu }{k_{\text{B}}T}}\right)} 757: 572: 417: 307: 227: 3060: 3388: 3215: 3119: 3102:
Fert, Albert; Cros, Vincent; Sampaio, JoĂŁo (2013-03-01). "Skyrmions on the track".
3048: 2991: 2936: 2909: 2844: 2785: 2769: 2761: 277: 242: 237: 197: 167: 137: 97: 57: 2863: 2765: 3246: 2645: 2571: 768: 587: 537: 407: 162: 74: 3009: 2749: 3378: 3351: 3346: 3336: 3036: 3010:"Hitachi achieves nanotechnology milestone for quadrupling terabyte hard drive" 2940: 2667: 987: 779: 659: 637: 617: 612: 567: 487: 422: 320: 207: 52: 3052: 2979: 3410: 3373: 3368: 3308: 3131: 2965:"Computer History Museum: HDD Areal Density reaches 1 terabitper square inch" 2781: 727: 724: 720: 348: 329: 311: 212: 132: 2848: 542: 3296: 3139: 2799: 2000:
It can be seen from these equations that large nanoparticles have a larger
562: 552: 522: 482: 477: 457: 302: 282: 142: 3123: 2307:{\textstyle \chi _{\text{sp}}={\frac {n\mu _{0}\mu ^{2}}{3k_{\text{B}}T}}} 3080: 2773: 582: 557: 527: 472: 467: 399: 41: 3383: 2890:"Magneto-optical harmonic susceptometry of superparamagnetic materials" 2631: 1510:
If all the particles are identical and the temperature is high enough (
745: 735: 492: 334: 127: 3219: 2995: 2913: 3282: 2574:
due to the minimum size of particles that can be used. This limit on
716: 547: 497: 370: 217: 117: 1325: 3393: 2613: 107: 2655:
Magnetic separation: cell-, DNA-, protein- separation, RNA fishing
3013: 427: 412: 375: 366: 361: 2600:
Future hard disk technologies currently in development include:
1388:. This function is quite complicated but for some simple cases: 960:
is a length of time, characteristic of the material, called the
3076:"Will Toshiba's Bit-Patterned Drives Change the HDD Landscape?" 380: 356: 87: 2379:{\textstyle \chi _{\text{b}}={\frac {n\mu _{0}\mu ^{2}}{3KV}}} 1997:
if the easy axes of the nanoparticles are randomly oriented.
1964:
The latter susceptibility is also valid for all temperatures
978:
is the nanoparticle’s magnetic anisotropy energy density and
385: 82: 3251: 3034: 1525:), then, irrespective of the orientations of the easy axes: 1947: 2570:
Superparamagnetism sets a limit on the storage density of
2746: 92: 2812: 2008: 809:
and is given by the following Néel–Arrhenius equation:
2394: 2322: 2243: 2209: 1787:
function is the magnetic susceptibility of the sample
1744:{\textstyle L(x)={\frac {1}{\tanh(x)}}-{\frac {1}{x}}} 1688: 1666: 1633: 1335: 2929:
Magnetic recording beyond the superparamagnetic limit
2441: 2116: 2085: 2052: 2019: 1970: 1888: 1831: 1816: 1793: 1764: 1533: 1422: 1225: 1178: 1138: 1095: 1055: 1028: 939: 906: 818: 788: 763:
Superparamagnetism occurs in nanoparticles which are
3240:
Powerpoint presentation on Superparamagnetism in pdf
2314:
is the susceptibility in the superparamagnetic state
1122:{\displaystyle \tau _{\text{m}}\ll \tau _{\text{N}}} 1082:{\displaystyle \tau _{\text{m}}\gg \tau _{\text{N}}} 746:
The NĂ©el relaxation in the absence of magnetic field
2719:(in French; an English translation is available in 2590:. It has an estimated limit of 100 to 200 Gbit/in. 2533: 2420: 2378: 2306: 2227: 2189: 2098: 2071: 2038: 1989: 1953: 1799: 1779: 1743: 1672: 1646: 1605: 1497: 1367: 1303: 1204: 1164: 1121: 1081: 1041: 952: 919: 885: 801: 3181:. New York: Gordon and Breach. pp. 407–427. 1205:{\displaystyle \tau _{\text{m}}=\tau _{\text{N}}} 1165:{\displaystyle \tau _{\text{m}}=\tau _{\text{N}}} 972:); its typical value is between 10 and 10 second. 3408: 2549:A superparamagnetic system can be measured with 2421:{\textstyle \tau ={\frac {\tau _{\text{N}}}{2}}} 3101: 2887: 1368:{\textstyle \tanh \left({\frac {1}{3}}x\right)} 3235:Superparamagnetism of Co-Ferrite Nanoparticles 2888:Vandendriessche, Stefaan; et al. (2013). 1414:)), then the magnetization of the assembly is 3267: 2079:). There is, however, a narrow window around 1625:is the density of nanoparticles in the sample 1320: 693: 1329:Langevin function (red line), compared with 3195: 3274: 3260: 2638: 2386:is the susceptibility in the blocked state 700: 686: 40: 2789: 742:is much larger than that of paramagnets. 2565: 1680:is the magnetic moment of a nanoparticle 1324: 3175:An English translation is available in 2725:. Gordon and Breach. pp. 407–427. 2625: 1017: 14: 3409: 3073: 2926: 2428:is the relaxation time of the assembly 3255: 3176: 2720: 2702: 2606:microwave-assisted magnetic recording 2235:is the frequency of the applied field 2228:{\textstyle {\frac {\omega }{2\pi }}} 3157: 2977: 2864:"Introduction to: AC susceptibility" 2708: 2009:Time dependence of the magnetization 2861: 2046:) or completely superparamagnetic ( 24: 2593:Current hard disk technology uses 2505: 2495: 2459: 2449: 25: 3433: 3228: 2072:{\displaystyle T\gg T_{\text{B}}} 2039:{\displaystyle T\ll T_{\text{B}}} 1990:{\displaystyle T>T_{\text{B}}} 2602:heat-assisted magnetic recording 2586:Older hard disk technology uses 1379:When an external magnetic field 1042:{\displaystyle \tau _{\text{m}}} 920:{\displaystyle \tau _{\text{N}}} 802:{\displaystyle \tau _{\text{N}}} 667: 666: 653: 3095: 3067: 3028: 2620: 2544: 3199:IEEE Transactions on Magnetics 3074:Murray, Matthew (2010-08-19). 3041:IEEE Transactions on Magnetics 3002: 2984:IEEE Transactions on Magnetics 2971: 2957: 2920: 2881: 2855: 2806: 2740: 2126: 2120: 1774: 1768: 1722: 1716: 1698: 1692: 1543: 1537: 1432: 1426: 968:(its reciprocal is called the 774:Because of the nanoparticle’s 13: 1: 3281: 2766:10.1021/acs.inorgchem.9b02994 2690: 3362:ferromagnetic superconductor 3179:Selected Works of Louis NĂ©el 2723:Selected Works of Louis NĂ©el 2099:{\displaystyle T_{\text{B}}} 1049:as the measurement time. If 767:, i.e. composed of a single 7: 2673: 10: 3438: 3150: 2941:10.1109/INTMAG.2000.872350 2650:magnetic resonance imaging 1321:Effect of a magnetic field 749: 253:Spin gapless semiconductor 3329: 3289: 3053:10.1109/TMAG.2009.2024879 2978:Wood, R. (January 2000). 1758:The initial slope of the 953:{\displaystyle \tau _{0}} 193:Electronic band structure 2695: 2680:Iron oxide nanoparticles 1618:In the above equations: 103:Bose–Einstein condensate 34:Condensed matter physics 3319:Van Vleck paramagnetism 3177:Kurti, N., ed. (1988). 2894:Applied Physics Letters 2849:10.1103/PhysRevB.9.3891 2721:Kurti, N., ed. (1988). 2639:Biomedical applications 2610:Bit-patterned recording 2595:perpendicular recording 2580:superparamagnetic limit 740:magnetic susceptibility 719:which appears in small 2927:Kryder, M. H. (2000). 2685:Single-molecule magnet 2660:targeted drug delivery 2588:longitudinal recording 2535: 2422: 2380: 2308: 2229: 2191: 2100: 2073: 2040: 1991: 1955: 1801: 1781: 1745: 1674: 1648: 1607: 1499: 1376: 1369: 1305: 1206: 1166: 1123: 1083: 1043: 954: 921: 887: 803: 752:NĂ©el relaxation theory 3422:Statistical mechanics 3124:10.1038/nnano.2013.29 3104:Nature Nanotechnology 2664:magnetic hyperthermia 2616:, have been proposed. 2566:Effect on hard drives 2536: 2423: 2381: 2309: 2230: 2192: 2101: 2074: 2041: 1992: 1956: 1802: 1800:{\displaystyle \chi } 1782: 1746: 1675: 1656:magnetic permeability 1649: 1647:{\textstyle \mu _{0}} 1608: 1500: 1370: 1328: 1306: 1207: 1167: 1124: 1084: 1044: 955: 922: 888: 804: 248:Topological insulator 2626:General applications 2439: 2392: 2320: 2241: 2207: 2114: 2083: 2050: 2017: 1968: 1814: 1791: 1780:{\displaystyle M(H)} 1762: 1686: 1664: 1631: 1531: 1420: 1333: 1223: 1214:blocking temperature 1176: 1136: 1093: 1053: 1026: 1018:Blocking temperature 937: 929:thermal fluctuations 904: 816: 786: 732:NĂ©el relaxation time 266:Electronic phenomena 113:Fermionic condensate 3389:amorphous magnetism 3357:superferromagnetism 3212:1999ITM....35.4423W 3116:2013NatNa...8..152F 2906:2013ApPhL.102p1903V 2841:1974PhRvB...9.3891G 2754:Inorganic Chemistry 2634:: tunable viscosity 1386:increasing function 1009:is the temperature. 776:magnetic anisotropy 273:Quantum Hall effect 3342:antiferromagnetism 3314:superparamagnetism 3245:2008-12-03 at the 3016:. October 15, 2007 2531: 2418: 2376: 2304: 2225: 2187: 2096: 2069: 2036: 1987: 1951: 1946: 1936: 1876: 1797: 1777: 1741: 1670: 1644: 1603: 1495: 1377: 1365: 1301: 1202: 1162: 1119: 1079: 1039: 1001:Boltzmann constant 950: 917: 883: 799: 713:Superparamagnetism 660:Physics portal 3417:Magnetic ordering 3404: 3403: 3302:superdiamagnetism 3290:Magnetic response 3220:10.1109/20.809134 3188:978-2-88124-300-4 3158:NĂ©el, L. (1949). 3047:(10): 3816–3822. 3012:(Press release). 2996:10.1109/20.824422 2914:10.1063/1.4801837 2862:Martien, Dinesh. 2828:Physical Review B 2732:978-2-88124-300-4 2551:AC susceptibility 2525: 2513: 2488: 2467: 2416: 2410: 2374: 2330: 2302: 2295: 2251: 2223: 2185: 2164: 2142: 2093: 2066: 2033: 1984: 1942: 1934: 1927: 1882: 1874: 1867: 1753:Langevin function 1739: 1726: 1673:{\textstyle \mu } 1597: 1590: 1489: 1482: 1355: 1299: 1292: 1279: 1257: 1233: 1199: 1186: 1159: 1146: 1116: 1103: 1076: 1063: 1036: 986:is therefore the 970:attempt frequency 914: 877: 870: 826: 796: 758:Curie temperature 738:. However, their 710: 709: 418:Granular material 186:Electronic phases 27:Form of magnetism 18:Superparamagnetic 16:(Redirected from 3429: 3276: 3269: 3262: 3253: 3252: 3223: 3206:(6): 4423–4439. 3192: 3174: 3164: 3144: 3143: 3099: 3093: 3092: 3090: 3088: 3071: 3065: 3064: 3032: 3026: 3025: 3023: 3021: 3006: 3000: 2999: 2975: 2969: 2968: 2961: 2955: 2954: 2924: 2918: 2917: 2900:(16): 161903–5. 2885: 2879: 2878: 2876: 2874: 2869:. Quantum Design 2868: 2859: 2853: 2852: 2835:(9): 3891–3897. 2810: 2804: 2803: 2793: 2760:(3): 1763–1777. 2744: 2738: 2736: 2718: 2706: 2578:is known as the 2572:hard disk drives 2540: 2538: 2537: 2532: 2527: 2526: 2523: 2514: 2512: 2508: 2502: 2498: 2492: 2490: 2489: 2486: 2468: 2466: 2462: 2456: 2452: 2446: 2427: 2425: 2424: 2419: 2417: 2412: 2411: 2408: 2402: 2385: 2383: 2382: 2377: 2375: 2373: 2362: 2361: 2360: 2351: 2350: 2337: 2332: 2331: 2328: 2313: 2311: 2310: 2305: 2303: 2301: 2297: 2296: 2293: 2283: 2282: 2281: 2272: 2271: 2258: 2253: 2252: 2249: 2234: 2232: 2231: 2226: 2224: 2222: 2211: 2196: 2194: 2193: 2188: 2186: 2184: 2167: 2166: 2165: 2162: 2144: 2143: 2140: 2133: 2105: 2103: 2102: 2097: 2095: 2094: 2091: 2078: 2076: 2075: 2070: 2068: 2067: 2064: 2045: 2043: 2042: 2037: 2035: 2034: 2031: 1996: 1994: 1993: 1988: 1986: 1985: 1982: 1960: 1958: 1957: 1952: 1950: 1949: 1943: 1941:for the 2nd case 1940: 1935: 1933: 1929: 1928: 1925: 1915: 1914: 1913: 1904: 1903: 1890: 1883: 1881:for the 1st case 1880: 1875: 1873: 1869: 1868: 1865: 1858: 1857: 1856: 1847: 1846: 1833: 1806: 1804: 1803: 1798: 1786: 1784: 1783: 1778: 1750: 1748: 1747: 1742: 1740: 1732: 1727: 1725: 1705: 1679: 1677: 1676: 1671: 1653: 1651: 1650: 1645: 1643: 1642: 1612: 1610: 1609: 1604: 1602: 1598: 1596: 1592: 1591: 1588: 1581: 1574: 1573: 1563: 1504: 1502: 1501: 1496: 1494: 1490: 1488: 1484: 1483: 1480: 1473: 1466: 1465: 1455: 1374: 1372: 1371: 1366: 1364: 1360: 1356: 1348: 1310: 1308: 1307: 1302: 1300: 1298: 1297: 1293: 1291: 1290: 1281: 1280: 1277: 1271: 1259: 1258: 1255: 1248: 1240: 1235: 1234: 1231: 1211: 1209: 1208: 1203: 1201: 1200: 1197: 1188: 1187: 1184: 1171: 1169: 1168: 1163: 1161: 1160: 1157: 1148: 1147: 1144: 1128: 1126: 1125: 1120: 1118: 1117: 1114: 1105: 1104: 1101: 1088: 1086: 1085: 1080: 1078: 1077: 1074: 1065: 1064: 1061: 1048: 1046: 1045: 1040: 1038: 1037: 1034: 959: 957: 956: 951: 949: 948: 926: 924: 923: 918: 916: 915: 912: 892: 890: 889: 884: 882: 878: 876: 872: 871: 868: 861: 853: 841: 840: 828: 827: 824: 808: 806: 805: 800: 798: 797: 794: 702: 695: 688: 675: 670: 669: 662: 658: 657: 278:Spin Hall effect 168:Phase transition 138:Luttinger liquid 75:States of matter 58:Phase transition 44: 30: 29: 21: 3437: 3436: 3432: 3431: 3430: 3428: 3427: 3426: 3407: 3406: 3405: 3400: 3330:Magnetic states 3325: 3285: 3280: 3247:Wayback Machine 3231: 3226: 3189: 3162: 3153: 3148: 3147: 3100: 3096: 3086: 3084: 3072: 3068: 3033: 3029: 3019: 3017: 3008: 3007: 3003: 2976: 2972: 2963: 2962: 2958: 2951: 2935:. p. 575. 2925: 2921: 2886: 2882: 2872: 2870: 2866: 2860: 2856: 2824: 2820: 2816: 2811: 2807: 2745: 2741: 2733: 2707: 2703: 2698: 2693: 2676: 2646:contrast agents 2641: 2628: 2623: 2568: 2561: 2557: 2547: 2522: 2518: 2504: 2503: 2494: 2493: 2491: 2485: 2481: 2458: 2457: 2448: 2447: 2445: 2440: 2437: 2436: 2407: 2403: 2401: 2393: 2390: 2389: 2363: 2356: 2352: 2346: 2342: 2338: 2336: 2327: 2323: 2321: 2318: 2317: 2292: 2288: 2284: 2277: 2273: 2267: 2263: 2259: 2257: 2248: 2244: 2242: 2239: 2238: 2215: 2210: 2208: 2205: 2204: 2168: 2161: 2157: 2139: 2135: 2134: 2132: 2115: 2112: 2111: 2090: 2086: 2084: 2081: 2080: 2063: 2059: 2051: 2048: 2047: 2030: 2026: 2018: 2015: 2014: 2011: 1981: 1977: 1969: 1966: 1965: 1945: 1944: 1939: 1937: 1924: 1920: 1916: 1909: 1905: 1899: 1895: 1891: 1889: 1885: 1884: 1879: 1877: 1864: 1860: 1859: 1852: 1848: 1842: 1838: 1834: 1832: 1824: 1823: 1815: 1812: 1811: 1792: 1789: 1788: 1763: 1760: 1759: 1731: 1709: 1704: 1687: 1684: 1683: 1665: 1662: 1661: 1638: 1634: 1632: 1629: 1628: 1587: 1583: 1582: 1569: 1565: 1564: 1562: 1558: 1532: 1529: 1528: 1524: 1479: 1475: 1474: 1461: 1457: 1456: 1454: 1450: 1421: 1418: 1417: 1413: 1398: 1347: 1346: 1342: 1334: 1331: 1330: 1323: 1286: 1282: 1276: 1272: 1270: 1266: 1254: 1250: 1249: 1241: 1239: 1230: 1226: 1224: 1221: 1220: 1196: 1192: 1183: 1179: 1177: 1174: 1173: 1156: 1152: 1143: 1139: 1137: 1134: 1133: 1113: 1109: 1100: 1096: 1094: 1091: 1090: 1073: 1069: 1060: 1056: 1054: 1051: 1050: 1033: 1029: 1027: 1024: 1023: 1020: 1014:nanoparticles. 998: 944: 940: 938: 935: 934: 911: 907: 905: 902: 901: 867: 863: 862: 854: 852: 848: 836: 832: 823: 819: 817: 814: 813: 793: 789: 787: 784: 783: 769:magnetic domain 754: 748: 706: 665: 652: 651: 644: 643: 642: 442: 434: 433: 432: 408:Amorphous solid 402: 392: 391: 390: 369: 351: 341: 340: 339: 328: 326:Antiferromagnet 319: 317:Superparamagnet 310: 297: 296:Magnetic phases 289: 288: 287: 267: 259: 258: 257: 187: 179: 178: 177: 163:Order parameter 157: 156:Phase phenomena 149: 148: 147: 77: 67: 28: 23: 22: 15: 12: 11: 5: 3435: 3425: 3424: 3419: 3402: 3401: 3399: 3398: 3397: 3396: 3391: 3381: 3379:mictomagnetism 3376: 3371: 3366: 3365: 3364: 3359: 3352:ferromagnetism 3349: 3347:ferrimagnetism 3344: 3339: 3337:altermagnetism 3333: 3331: 3327: 3326: 3324: 3323: 3322: 3321: 3316: 3306: 3305: 3304: 3293: 3291: 3287: 3286: 3279: 3278: 3271: 3264: 3256: 3250: 3249: 3237: 3230: 3229:External links 3227: 3225: 3224: 3193: 3187: 3154: 3152: 3149: 3146: 3145: 3110:(3): 152–156. 3094: 3066: 3027: 3001: 2970: 2956: 2949: 2919: 2880: 2854: 2822: 2818: 2814: 2805: 2739: 2731: 2700: 2699: 2697: 2694: 2692: 2689: 2688: 2687: 2682: 2675: 2672: 2671: 2670: 2668:magnetofection 2656: 2653: 2640: 2637: 2636: 2635: 2627: 2624: 2622: 2619: 2618: 2617: 2598: 2591: 2567: 2564: 2559: 2555: 2546: 2543: 2542: 2541: 2530: 2521: 2517: 2511: 2507: 2501: 2497: 2484: 2480: 2477: 2474: 2471: 2465: 2461: 2455: 2451: 2444: 2430: 2429: 2415: 2406: 2400: 2397: 2387: 2372: 2369: 2366: 2359: 2355: 2349: 2345: 2341: 2335: 2326: 2315: 2300: 2291: 2287: 2280: 2276: 2270: 2266: 2262: 2256: 2247: 2236: 2221: 2218: 2214: 2198: 2197: 2183: 2180: 2177: 2174: 2171: 2160: 2156: 2153: 2150: 2147: 2138: 2131: 2128: 2125: 2122: 2119: 2089: 2062: 2058: 2055: 2029: 2025: 2022: 2010: 2007: 1980: 1976: 1973: 1962: 1961: 1948: 1938: 1932: 1923: 1919: 1912: 1908: 1902: 1898: 1894: 1887: 1886: 1878: 1872: 1863: 1855: 1851: 1845: 1841: 1837: 1830: 1829: 1827: 1822: 1819: 1796: 1776: 1773: 1770: 1767: 1756: 1755: 1738: 1735: 1730: 1724: 1721: 1718: 1715: 1712: 1708: 1703: 1700: 1697: 1694: 1691: 1681: 1669: 1659: 1641: 1637: 1626: 1616: 1615: 1614: 1613: 1601: 1595: 1586: 1580: 1577: 1572: 1568: 1561: 1557: 1554: 1551: 1548: 1545: 1542: 1539: 1536: 1522: 1508: 1507: 1506: 1493: 1487: 1478: 1472: 1469: 1464: 1460: 1453: 1449: 1446: 1443: 1440: 1437: 1434: 1431: 1428: 1425: 1411: 1396: 1363: 1359: 1354: 1351: 1345: 1341: 1338: 1322: 1319: 1312: 1311: 1296: 1289: 1285: 1275: 1269: 1265: 1262: 1253: 1247: 1244: 1238: 1229: 1212:is called the 1195: 1191: 1182: 1155: 1151: 1142: 1112: 1108: 1099: 1072: 1068: 1059: 1032: 1019: 1016: 1011: 1010: 1004: 996: 991: 988:energy barrier 973: 966:attempt period 947: 943: 932: 910: 895: 894: 881: 875: 866: 860: 857: 851: 847: 844: 839: 835: 831: 822: 792: 780:energy barrier 750:Main article: 747: 744: 708: 707: 705: 704: 697: 690: 682: 679: 678: 677: 676: 663: 646: 645: 641: 640: 635: 630: 625: 620: 615: 610: 605: 600: 595: 590: 585: 580: 575: 570: 565: 560: 555: 550: 545: 540: 535: 530: 525: 520: 515: 510: 505: 500: 495: 490: 485: 480: 475: 470: 465: 460: 455: 450: 444: 443: 440: 439: 436: 435: 431: 430: 425: 423:Liquid crystal 420: 415: 410: 404: 403: 398: 397: 394: 393: 389: 388: 383: 378: 373: 364: 359: 353: 352: 349:Quasiparticles 347: 346: 343: 342: 338: 337: 332: 323: 314: 308:Superdiamagnet 305: 299: 298: 295: 294: 291: 290: 286: 285: 280: 275: 269: 268: 265: 264: 261: 260: 256: 255: 250: 245: 240: 235: 233:Thermoelectric 230: 228:Superconductor 225: 220: 215: 210: 208:Mott insulator 205: 200: 195: 189: 188: 185: 184: 181: 180: 176: 175: 170: 165: 159: 158: 155: 154: 151: 150: 146: 145: 140: 135: 130: 125: 120: 115: 110: 105: 100: 95: 90: 85: 79: 78: 73: 72: 69: 68: 66: 65: 60: 55: 49: 46: 45: 37: 36: 26: 9: 6: 4: 3: 2: 3434: 3423: 3420: 3418: 3415: 3414: 3412: 3395: 3392: 3390: 3387: 3386: 3385: 3382: 3380: 3377: 3375: 3374:metamagnetism 3372: 3370: 3369:helimagnetism 3367: 3363: 3360: 3358: 3355: 3354: 3353: 3350: 3348: 3345: 3343: 3340: 3338: 3335: 3334: 3332: 3328: 3320: 3317: 3315: 3312: 3311: 3310: 3309:paramagnetism 3307: 3303: 3300: 3299: 3298: 3295: 3294: 3292: 3288: 3284: 3277: 3272: 3270: 3265: 3263: 3258: 3257: 3254: 3248: 3244: 3241: 3238: 3236: 3233: 3232: 3221: 3217: 3213: 3209: 3205: 3201: 3200: 3194: 3190: 3184: 3180: 3172: 3169:(in French). 3168: 3167:Ann. GĂ©ophys. 3161: 3156: 3155: 3141: 3137: 3133: 3129: 3125: 3121: 3117: 3113: 3109: 3105: 3098: 3083: 3082: 3077: 3070: 3062: 3058: 3054: 3050: 3046: 3042: 3038: 3031: 3015: 3011: 3005: 2997: 2993: 2989: 2985: 2981: 2974: 2966: 2960: 2952: 2950:0-7803-5943-7 2946: 2942: 2938: 2934: 2930: 2923: 2915: 2911: 2907: 2903: 2899: 2895: 2891: 2884: 2865: 2858: 2850: 2846: 2842: 2838: 2834: 2830: 2829: 2809: 2801: 2797: 2792: 2787: 2783: 2779: 2775: 2774:11380/1197352 2771: 2767: 2763: 2759: 2755: 2751: 2743: 2734: 2728: 2724: 2716: 2712: 2705: 2701: 2686: 2683: 2681: 2678: 2677: 2669: 2665: 2661: 2657: 2654: 2651: 2647: 2643: 2642: 2633: 2630: 2629: 2615: 2611: 2607: 2603: 2599: 2596: 2592: 2589: 2585: 2584: 2583: 2581: 2577: 2576:areal-density 2573: 2563: 2552: 2528: 2519: 2515: 2509: 2499: 2482: 2478: 2475: 2472: 2469: 2463: 2453: 2442: 2435: 2434: 2433: 2413: 2404: 2398: 2395: 2388: 2370: 2367: 2364: 2357: 2353: 2347: 2343: 2339: 2333: 2324: 2316: 2298: 2289: 2285: 2278: 2274: 2268: 2264: 2260: 2254: 2245: 2237: 2219: 2216: 2212: 2203: 2202: 2201: 2181: 2178: 2175: 2172: 2169: 2158: 2154: 2151: 2148: 2145: 2136: 2129: 2123: 2117: 2110: 2109: 2108: 2087: 2060: 2056: 2053: 2027: 2023: 2020: 2006: 2003: 1998: 1978: 1974: 1971: 1930: 1921: 1917: 1910: 1906: 1900: 1896: 1892: 1870: 1861: 1853: 1849: 1843: 1839: 1835: 1825: 1820: 1817: 1810: 1809: 1808: 1794: 1771: 1765: 1754: 1736: 1733: 1728: 1719: 1713: 1710: 1706: 1701: 1695: 1689: 1682: 1667: 1660: 1657: 1639: 1635: 1627: 1624: 1621: 1620: 1619: 1599: 1593: 1584: 1578: 1575: 1570: 1566: 1559: 1555: 1552: 1549: 1546: 1540: 1534: 1527: 1526: 1521: 1517: 1513: 1509: 1491: 1485: 1476: 1470: 1467: 1462: 1458: 1451: 1447: 1444: 1441: 1438: 1435: 1429: 1423: 1416: 1415: 1410: 1406: 1402: 1395: 1391: 1390: 1389: 1387: 1382: 1361: 1357: 1352: 1349: 1343: 1339: 1336: 1327: 1318: 1315: 1294: 1287: 1283: 1273: 1267: 1263: 1260: 1251: 1245: 1242: 1236: 1227: 1219: 1218: 1217: 1215: 1193: 1189: 1180: 1153: 1149: 1140: 1130: 1110: 1106: 1097: 1070: 1066: 1057: 1030: 1015: 1008: 1005: 1002: 995: 992: 989: 985: 981: 977: 974: 971: 967: 963: 945: 941: 933: 930: 908: 900: 899: 898: 879: 873: 864: 858: 855: 849: 845: 842: 837: 833: 829: 820: 812: 811: 810: 790: 781: 777: 772: 770: 766: 765:single-domain 761: 759: 753: 743: 741: 737: 733: 729: 728:nanoparticles 726: 725:ferrimagnetic 722: 721:ferromagnetic 718: 715:is a form of 714: 703: 698: 696: 691: 689: 684: 683: 681: 680: 674: 664: 661: 656: 650: 649: 648: 647: 639: 636: 634: 631: 629: 626: 624: 621: 619: 616: 614: 611: 609: 606: 604: 601: 599: 596: 594: 591: 589: 586: 584: 581: 579: 576: 574: 571: 569: 566: 564: 561: 559: 556: 554: 551: 549: 546: 544: 541: 539: 536: 534: 531: 529: 526: 524: 521: 519: 516: 514: 511: 509: 506: 504: 501: 499: 496: 494: 491: 489: 486: 484: 481: 479: 476: 474: 471: 469: 466: 464: 461: 459: 456: 454: 451: 449: 448:Van der Waals 446: 445: 438: 437: 429: 426: 424: 421: 419: 416: 414: 411: 409: 406: 405: 401: 396: 395: 387: 384: 382: 379: 377: 374: 372: 368: 365: 363: 360: 358: 355: 354: 350: 345: 344: 336: 333: 331: 327: 324: 322: 318: 315: 313: 309: 306: 304: 301: 300: 293: 292: 284: 281: 279: 276: 274: 271: 270: 263: 262: 254: 251: 249: 246: 244: 243:Ferroelectric 241: 239: 238:Piezoelectric 236: 234: 231: 229: 226: 224: 221: 219: 216: 214: 213:Semiconductor 211: 209: 206: 204: 201: 199: 196: 194: 191: 190: 183: 182: 174: 171: 169: 166: 164: 161: 160: 153: 152: 144: 141: 139: 136: 134: 133:Superfluidity 131: 129: 126: 124: 121: 119: 116: 114: 111: 109: 106: 104: 101: 99: 96: 94: 91: 89: 86: 84: 81: 80: 76: 71: 70: 64: 61: 59: 56: 54: 51: 50: 48: 47: 43: 39: 38: 35: 32: 31: 19: 3313: 3297:diamagnetism 3203: 3197: 3178: 3170: 3166: 3107: 3103: 3097: 3085:. Retrieved 3079: 3069: 3044: 3040: 3030: 3018:. Retrieved 3004: 2990:(1): 36–42. 2987: 2983: 2973: 2959: 2932: 2928: 2922: 2897: 2893: 2883: 2871:. Retrieved 2857: 2832: 2826: 2808: 2757: 2753: 2742: 2722: 2714: 2711:Ann. GĂ©ophys 2710: 2704: 2658:Treatments: 2621:Applications 2579: 2569: 2548: 2545:Measurements 2431: 2199: 2012: 2001: 1999: 1963: 1757: 1622: 1617: 1519: 1515: 1511: 1408: 1404: 1400: 1393: 1380: 1378: 1375:(blue line). 1316: 1313: 1213: 1131: 1021: 1012: 1006: 993: 983: 982:its volume. 979: 975: 969: 965: 962:attempt time 961: 896: 773: 762: 755: 712: 711: 578:von Klitzing 316: 283:Kondo effect 143:Time crystal 123:Fermi liquid 3081:PC Magazine 2604:(HAMR) and 400:Soft matter 321:Ferromagnet 3411:Categories 3384:spin glass 2691:References 2632:Ferrofluid 736:paramagnet 543:Louis NĂ©el 533:Schrieffer 441:Scientists 335:Spin glass 330:Metamagnet 312:Paramagnet 128:Supersolid 3283:Magnetism 3173:: 99–136. 3132:1748-3387 2817:and Ni-Al 2782:0020-1669 2717:: 99–136. 2644:Imaging: 2614:skyrmions 2520:χ 2483:χ 2479:τ 2443:τ 2405:τ 2396:τ 2354:μ 2344:μ 2325:χ 2275:μ 2265:μ 2246:χ 2220:π 2213:ω 2182:τ 2179:ω 2159:χ 2155:τ 2152:ω 2137:χ 2124:ω 2118:χ 2057:≫ 2024:≪ 1907:μ 1897:μ 1850:μ 1840:μ 1818:χ 1795:χ 1729:− 1714:⁡ 1668:μ 1658:of vacuum 1636:μ 1579:μ 1567:μ 1553:μ 1547:≈ 1471:μ 1459:μ 1448:⁡ 1442:μ 1436:≈ 1340:⁡ 1284:τ 1274:τ 1264:⁡ 1194:τ 1181:τ 1154:τ 1141:τ 1111:τ 1107:≪ 1098:τ 1071:τ 1067:≫ 1058:τ 1031:τ 942:τ 909:τ 846:⁡ 834:τ 821:τ 791:τ 717:magnetism 623:Abrikosov 538:Josephson 508:Van Vleck 498:Luttinger 371:Polariton 303:Diamagnet 223:Conductor 218:Semimetal 203:Insulator 118:Fermi gas 3394:spin ice 3243:Archived 3140:23459548 3061:24634675 2825:films". 2800:31967457 2674:See also 673:Category 628:Ginzburg 603:Laughlin 563:Kadanoff 518:Shockley 503:Anderson 458:von Laue 108:Bose gas 3208:Bibcode 3151:Sources 3112:Bibcode 3014:Hitachi 2902:Bibcode 2837:Bibcode 2791:7901656 1751:is the 1654:is the 999:is the 897:where: 633:Leggett 608:Störmer 593:Bednorz 553:Giaever 523:Bardeen 513:Hubbard 488:Peierls 478:Onsager 428:Polymer 413:Colloid 376:Polaron 367:Plasmon 362:Exciton 3185:  3138:  3130:  3087:21 Aug 3059:  2947:  2873:15 Apr 2798:  2788:  2780:  2729:  2200:where 671:  638:Parisi 598:MĂĽller 588:Rohrer 583:Binnig 573:Wilson 568:Fisher 528:Cooper 493:Landau 381:Magnon 357:Phonon 198:Plasma 98:Plasma 88:Liquid 53:Phases 3163:(PDF) 3057:S2CID 3020:1 Sep 2867:(PDF) 2696:Notes 2652:(MRI) 1407:/(10 1399:< 548:Esaki 473:Bloch 468:Debye 463:Bragg 453:Onnes 386:Roton 83:Solid 3183:ISBN 3136:PMID 3128:ISSN 3089:2010 3022:2011 2945:ISBN 2875:2017 2796:PMID 2778:ISSN 2727:ISBN 1975:> 1711:tanh 1445:tanh 1337:tanh 618:Tsui 613:Yang 558:Kohn 483:Mott 3216:doi 3120:doi 3049:doi 2992:doi 2937:doi 2910:doi 2898:102 2845:doi 2786:PMC 2770:hdl 2762:doi 2648:in 2554:1/Ď„ 964:or 843:exp 723:or 173:QCP 93:Gas 63:QCP 3413:: 3214:. 3204:35 3202:. 3165:. 3134:. 3126:. 3118:. 3106:. 3078:. 3055:. 3045:45 3043:. 3039:. 2988:36 2986:. 2982:. 2943:. 2931:. 2908:. 2896:. 2892:. 2843:. 2831:. 2794:. 2784:. 2776:. 2768:. 2758:59 2756:. 2752:. 2737:). 2713:. 2666:, 2662:, 2582:. 2524:sp 2250:sp 2141:sp 1807:: 1516:KV 1514:≳ 1405:KV 1403:≲ 1261:ln 1216:: 984:KV 3275:e 3268:t 3261:v 3222:. 3218:: 3210:: 3191:. 3171:5 3142:. 3122:: 3114:: 3108:8 3091:. 3063:. 3051:: 3024:. 2998:. 2994:: 2967:. 2953:. 2939:: 2916:. 2912:: 2904:: 2877:. 2851:. 2847:: 2839:: 2833:9 2823:3 2821:O 2819:2 2815:2 2802:. 2772:: 2764:: 2735:. 2715:5 2560:N 2556:N 2529:H 2516:+ 2510:t 2506:d 2500:H 2496:d 2487:b 2476:= 2473:M 2470:+ 2464:t 2460:d 2454:M 2450:d 2414:2 2409:N 2399:= 2371:V 2368:K 2365:3 2358:2 2348:0 2340:n 2334:= 2329:b 2299:T 2294:B 2290:k 2286:3 2279:2 2269:0 2261:n 2255:= 2217:2 2176:i 2173:+ 2170:1 2163:b 2149:i 2146:+ 2130:= 2127:) 2121:( 2092:B 2088:T 2065:B 2061:T 2054:T 2032:B 2028:T 2021:T 2002:ÎĽ 1983:B 1979:T 1972:T 1931:T 1926:B 1922:k 1918:3 1911:2 1901:0 1893:n 1871:T 1866:B 1862:k 1854:2 1844:0 1836:n 1826:{ 1821:= 1775:) 1772:H 1769:( 1766:M 1737:x 1734:1 1723:) 1720:x 1717:( 1707:1 1702:= 1699:) 1696:x 1693:( 1690:L 1640:0 1623:n 1600:) 1594:T 1589:B 1585:k 1576:H 1571:0 1560:( 1556:L 1550:n 1544:) 1541:H 1538:( 1535:M 1523:B 1520:k 1518:/ 1512:T 1505:. 1492:) 1486:T 1481:B 1477:k 1468:H 1463:0 1452:( 1439:n 1433:) 1430:H 1427:( 1424:M 1412:B 1409:k 1401:T 1397:B 1394:T 1381:H 1362:) 1358:x 1353:3 1350:1 1344:( 1295:) 1288:0 1278:m 1268:( 1256:B 1252:k 1246:V 1243:K 1237:= 1232:B 1228:T 1198:N 1190:= 1185:m 1158:N 1150:= 1145:m 1115:N 1102:m 1075:N 1062:m 1035:m 1007:T 1003:. 997:B 994:k 980:V 976:K 946:0 931:. 913:N 893:, 880:) 874:T 869:B 865:k 859:V 856:K 850:( 838:0 830:= 825:N 795:N 701:e 694:t 687:v 20:)

Index

Superparamagnetic
Condensed matter physics

Phases
Phase transition
QCP
States of matter
Solid
Liquid
Gas
Plasma
Bose–Einstein condensate
Bose gas
Fermionic condensate
Fermi gas
Fermi liquid
Supersolid
Superfluidity
Luttinger liquid
Time crystal
Order parameter
Phase transition
QCP
Electronic band structure
Plasma
Insulator
Mott insulator
Semiconductor
Semimetal
Conductor

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑