Knowledge

Superfluid helium-4

Source šŸ“

341: 229:, launched in January 1983 to gather infrared data was cooled by 73 kilograms of superfluid helium, maintaining a temperature of 1.6 K (āˆ’271.55 Ā°C). When used in conjunction with helium-3, temperatures as low as 40 mK are routinely achieved in extreme low temperature experiments. The helium-3, in liquid state at 3.2 K, can be evaporated into the superfluid helium-4, where it acts as a gas due to the latter's properties as a Boseā€“Einstein condensate. This evaporation pulls energy from the overall system, which can be pumped out in a way completely analogous to normal refrigeration techniques. 949: 349: 264:
is a fairly high velocity so superfluid helium can flow relatively easily up the wall of containers, over the top, and down to the same level as the surface of the liquid inside the container, in a siphon effect. It was, however, observed, that the flow through nanoporous membrane becomes restricted if the pore diameter is less than 0.7 nm (i.e. roughly three times the classical diameter of helium atom), suggesting the unusual hydrodynamic properties of He arise at larger scale than in the classical liquid helium.
3123: 1017: 454: 333: 3393:
excitations if the flow velocity was less than the sound velocity. In this model, the sound velocity is the "critical velocity" above which superfluidity is destroyed. (Helium-4 actually has a lower flow velocity than the sound velocity, but this model is useful to illustrate the concept.) Landau also showed that the sound wave and other excitations could equilibrate with one another and flow separately from the rest of the helium-4, which is known as the "condensate".
207:. Referred to as superfluid helium droplet spectroscopy (SHeDS), it is of great interest in studies of gas molecules, as a single molecule solvated in a superfluid medium allows a molecule to have effective rotational freedom, allowing it to behave similarly to how it would in the "gas" phase. Droplets of superfluid helium also have a characteristic temperature of about 0.4 K which cools the solvated molecule(s) to its ground or nearly ground 5706: 1025: 442: 6426: 273:
remains perfectly stationary. Once the first critical angular velocity is reached, the superfluid will form a vortex. The vortex strength is quantized, that is, a superfluid can only spin at certain "allowed" values. Rotation in a normal fluid, like water, is not quantized. If the rotation speed is increased more and more quantized vortices will be formed which arrange in nice patterns similar to the
2667:). The vessels are connected by a so-called superleak. This is a tube, filled with a very fine powder, so the flow of the normal component is blocked. However, the superfluid component can flow through this superleak without any problem (below a critical velocity of about 20 cm/s). In the steady state 263:
Many ordinary liquids, like alcohol or petroleum, creep up solid walls, driven by their surface tension. Liquid helium also has this property, but, in the case of He-IV, the flow of the liquid in the layer is not restricted by its viscosity but by a critical velocity which is about 20 cm/s. This
3407:
The Landau theory does not elaborate on the microscopic structure of the superfluid component of liquid helium. The first attempts to create a microscopic theory of the superfluid component itself were done by London and subsequently, Tisza. Other microscopical models have been proposed by different
3396:
From the momentum and flow velocity of the excitations he could then define a "normal fluid" density, which is zero at zero temperature and increases with temperature. At the so-called Lambda temperature, where the normal fluid density equals the total density, the helium-4 is no longer superfluid.
272:
Another fundamental property becomes visible if a superfluid is placed in a rotating container. Instead of rotating uniformly with the container, the rotating state consists of quantized vortices. That is, when the container is rotated at speeds below the first critical angular velocity, the liquid
254:
Superfluids, such as helium-4 below the lambda point, exhibit many unusual properties. A superfluid acts as if it were a mixture of a normal component, with all the properties of a normal fluid, and a superfluid component. The superfluid component has zero viscosity and zero entropy. Application of
3363:
the volume flow. The normal flow is balanced by a flow of the superfluid component from the cold to the hot end. At the end sections a normal to superfluid conversion takes place and vice versa. So heat is transported, not by heat conduction, but by convection. This kind of heat transport is very
186:
time, thus increasing or decreasing the defect density respectively, it was shown, via torsional oscillator experiment, that the supersolid fraction could be made to range from 20% to completely non-existent. This suggested that the supersolid nature of helium-4 is not intrinsic to helium-4 but a
1683: 3392:
phenomenological and semi-microscopic theory of superfluidity of helium-4 earned him the Nobel Prize in physics, in 1962. Assuming that sound waves are the most important excitations in helium-4 at low temperatures, he showed that helium-4 flowing past a wall would not spontaneously create
391:
Below the lambda line the liquid can be described by the so-called two-fluid model. It behaves as if it consists of two components: a normal component, which behaves like a normal fluid, and a superfluid component with zero viscosity and zero entropy. The ratios of the respective densities
3445:
The models are based on the simplified form of the inter-particle potential between helium-4 atoms in the superfluid phase. Namely, the potential is assumed to be of the hard-sphere type. In these models the famous Landau (roton) spectrum of excitations is qualitatively reproduced.
290:
that they obey. Specifically, the superfluidity of helium-4 can be regarded as a consequence of Boseā€“Einstein condensation in an interacting system. On the other hand, helium-3 atoms are fermions, and the superfluid transition in this system is described by a generalization of the
58:. The substance, which resembles other liquids such as helium I (conventional, non-superfluid liquid helium), flows without friction past any surface, which allows it to continue to circulate over obstructions and through pores in containers which hold it, subject only to its own 457:
Fig. 5. The liquid helium is in the superfluid phase. As long as it remains superfluid, it creeps up the wall of the cup as a thin film. It comes down on the outside, forming a drop which will fall into the liquid below. Another drop will form ā€“ and so on ā€“ until the cup is
3470:-like behaviour of the element's interior density and interparticle interaction potential. The long-wavelength part is the quantum many-body theory of such elements which deals with their dynamics and interactions. The approach provides a unified description of the 2480: 619:
is the velocity of the superfluid component. The time derivative is the so-called hydrodynamic derivative, i.e. the rate of increase of the velocity when moving with the fluid. In the case of superfluid He in the gravitational field the force is given by
372:
of He. It is a pressure-temperature (p-T) diagram indicating the solid and liquid regions separated by the melting curve (between the liquid and solid state) and the liquid and gas region, separated by the vapor-pressure line. This latter ends in the
881: 285:
Although the phenomenologies of the superfluid states of helium-4 and helium-3 are very similar, the microscopic details of the transitions are very different. Helium-4 atoms are bosons, and their superfluidity can be understood in terms of the
140:
lines in superfluid helium. In the 1960s, Rayfield and Reif established the existence of quantized vortex rings. Packard has observed the intersection of vortex lines with the free surface of the fluid, and Avenel and Varoquaux have studied the
384:
Figure 1 also shows the Ī»-line. This is the line that separates two fluid regions in the phase diagram indicated by He-I and He-II. In the He-I region the helium behaves like a normal fluid; in the He-II region the helium is superfluid.
1499: 2123: 552: 3436:
around 1955, developed microscopic theories for the roton, which was shortly observed with inelastic neutron experiments by Palevsky. Later on, Feynman admitted that his model gives only qualitative agreement with experiment.
408:) the density of the normal (superfluid) component, and Ļ (the total density), depends on temperature and is represented in figure 3. By lowering the temperature, the fraction of the superfluid density increases from zero at 255:
heat to a spot in superfluid helium results in a flow of the normal component which takes care of the heat transport at relatively high velocity (up to 20 cm/s) which leads to a very high effective thermal conductivity.
1849: 1028:
Fig. 8. Demonstration of the fountain effect. A capillary tube is "closed" at one end by a superleak and is placed into a bath of superfluid helium and then heated. The helium flows up through the tube and squirts like a
2833: 1117: 2356: 698: 2205:= 9.8 m/s this corresponds with a liquid-helium column of 56 meter height. So, in many experiments, the fountain pressure has a bigger effect on the motion of the superfluid helium than gravity. 3262: 2318: 3890:
Avenel, O.; Varoquaux, E. (1985). "Observation of Singly Quantized Dissipation Events Obeying the Josephson Frequency Relation in the Critical Flow of Superfluid ^{4}He through an Aperture".
770: 4687: 4579:
Van Alphen, W. M.; Van Haasteren, G. J.; De Bruyn Ouboter, R.; Taconis, K. W. (1966). "The dependence of the critical velocity of the superfluid on channel diameter and film thickness".
388:
The name lambda-line comes from the specific heat ā€“ temperature plot which has the shape of the Greek letter Ī». See figure 2, which shows a peak at 2.172 K, the so-called Ī»-point of He.
762:
the vertical coordinate. Thus we get the equation which states that the thermodynamics of a certain constant will be amplified by the force of the natural gravitational acceleration
2554: 3085: 4615: 2565:
shows that the superfluid component is accelerated by gradients in the pressure and in the gravitational field, as usual, but also by a gradient in the fountain pressure.
2020: 1483: 1452: 3361: 2199: 617: 472: 182:. When helium-4 is cooled below about 200 mK under high pressures, a fraction (ā‰ˆ1%) of the solid appears to become superfluid. By quench cooling or lengthening the 2962: 4746:
Alonso, J. L.; Ares, F.; Brun, J. L. (October 5, 2018). "Unraveling the Landau's consistence criterion and the meaning of interpenetration in the "Two-Fluid" Model".
1756: 3305: 1227: 2998: 2010: 3031: 2922: 2698: 2665: 2632: 1983: 1895: 3187: 3160: 3114: 2599: 2166: 1746: 1421: 1389: 1331: 1299: 1187: 1160: 930: 581: 970: 720: 168:
which also exhibit superfluidity. This work with ultra-cold atomic gases has allowed scientists to study the region in between these two extremes, known as the
1947: 1921: 1357: 3368:
where heat is transported via gasā€“liquid conversion. The high thermal conductivity of He-II is applied for stabilizing superconducting magnets such as in the
5323:
A. V. Avdeenkov & K. G. Zloshchastiev (2011). "Quantum Bose liquids with logarithmic nonlinearity: Self-sustainability and emergence of spatial extent".
3325: 2889: 2869: 1719: 1267: 1247: 1052: 1010: 990: 760: 740: 3119:
In an experiment, arranged as in figure 8, a fountain can be created. The fountain effect is used to drive the circulation of He in dilution refrigerators.
344:
Fig. 2. Heat capacity of liquid He at saturated vapor pressure as function of the temperature. The peak at T=2.17 K marks a (second-order) phase transition.
3828: 5270:
K. G. Zloshchastiev (2012). "Volume element structure and roton-maxon-phonon excitations in superfluid helium beyond the Gross-Pitaevskii approximation".
3482:
excitations, and has noteworthy agreement with experiment: with one essential parameter to fit one reproduces at high accuracy the Landau roton spectrum,
169: 445:
Fig. 4. Helium II will "creep" along surfaces in order to find its own level ā€“ after a short while, the levels in the two containers will equalize. The
187:
property of helium-4 and disorder. Some emerging theories posit that the supersolid signal observed in helium-4 was actually an observation of either a
5538:
Liquid Helium II, Superfluid: demonstrations of Lambda point transition/viscosity paradox /two fluid model/fountain effect/creeping film/ second sound.
3490:
of superfluid helium-4. This model utilizes the general theory of quantum Bose liquids with logarithmic nonlinearities which is based on introducing a
3412:. To date, a number of models of this kind have been proposed, including: models with vortex rings, hard-sphere models, and Gaussian cluster theories. 85:
particle, which can form bosons only by pairing with itself at much lower temperatures, in a weaker process that is similar to the electron pairing in
3408:
authors. Their main objective is to derive the form of the inter-particle potential between helium atoms in superfluid state from first principles of
1678:{\displaystyle \mu (p,T)=\mu (0,0)+\int _{0}^{p}V_{m}(p^{\prime },0)\mathrm {d} p^{\prime }-\int _{0}^{T}S_{m}(p,T^{\prime })\mathrm {d} T^{\prime }.} 5597: 5082:
T. D. Lee; K. Huang & C. N. Yang (1957). "Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature Properties".
4312: 1020:
Fig. 7. Demonstration of the fountain pressure. The two vessels are connected by a superleak through which only the superfluid component can pass.
6160: 625: 5611: 2714: 4075:
Sophie, A; Rittner C (2006). "Observation of Classical Rotational Inertia and Nonclassical Supersolid Signals in Solid 4 He below 250 mK".
3701: 2168:
is called the fountain pressure. It can be calculated from the entropy of He which, in turn, can be calculated from the heat capacity. For
3749:
Hall, H. E.; Vinen, W. F. (1956). "The Rotation of Liquid Helium II. II. The Theory of Mutual Friction in Uniformly Rotating Helium II".
3203: 2234: 145:
in superfluid helium-4. In 2006, a group at the University of Maryland visualized quantized vortices by using small tracer particles of
5643: 2601:
can show up as a real pressure. Figure 7 shows two vessels both containing He-II. The left vessel is supposed to be at zero kelvins (
4054: 3420:
Landau thought that vorticity entered superfluid helium-4 by vortex sheets, but such sheets have since been shown to be unstable.
3400:
To explain the early specific heat data on superfluid helium-4, Landau posited the existence of a type of excitation he called a "
6457: 3548: 3189:
connected by a tube filled with He-II. When heat is applied to the hot end a pressure builds up at the hot end according to Eq.
3364:
effective, so the thermal conductivity of He-II is very much better than the best materials. The situation is comparable with
5471: 4635: 4495: 377:
where the difference between gas and liquid disappears. The diagram shows the remarkable property that He is liquid even at
3424:
and, later independently, Feynman showed that vorticity enters by quantized vortex lines. They also developed the idea of
6153: 5542: 3463: 3404:", but as better data became available he considered that the "roton" was the same as a high momentum version of sound. 4978: 4651:
Staas, F. A.; Severijns, A. P.; Van Der Waerden, H. C.bM. (1975). "A dilution refrigerator with superfluid injection".
69:
of helium atoms. This condensation occurs in liquid helium-4 at a far higher temperature (2.17 K) than it does in
5452: 5444: 5419: 4566: 4528: 3038: 2475:{\displaystyle \rho _{0}{\frac {\mathrm {d} {\vec {v}}_{s}}{\mathrm {d} t}}=-{\vec {\nabla }}(p+\rho _{0}gz-p_{f}).} 130: 129:
on August 2, 1911, the same day that he observed superconductivity in mercury. It has since been described through
5117:
L. Liu; L. S. Liu & K. W. Wong (1964). "Hard-Sphere Approach to the Excitation Spectrum in Liquid Helium II".
449:
also covers the interior of the larger container; if it were not sealed, the helium II would creep out and escape.
5910: 374: 3865: 6146: 5980: 5905: 5636: 3586: 340: 161: 5431: 6430: 6092: 5920: 3454:
This is a two-scale approach which describes the superfluid component of liquid helium-4. It consists of two
467:
The equation of motion for the superfluid component, in a somewhat simplified form, is given by Newton's law
418:
It is possible to create density waves of the normal component (and hence of the superfluid component since Ļ
316: 102: 6102: 5975: 5720: 5390: 3568: 287: 66: 5152:
A. P. Ivashin & Y. M. Poluektov (2011). "Short-wave excitations in non-local Gross-Pitaevskii model".
941:
shows that, in the case of the superfluid component, the force contains a term due to the gradient of the
6392: 5548:
Rousseau, V. G. (2014). "Superfluid density in continuous and discrete spaces: Avoiding misconceptions".
876:{\displaystyle M_{4}{\frac {\mathrm {d} {\vec {v}}_{s}}{\mathrm {d} t}}=-{\vec {\nabla }}(\mu +M_{4}gz).} 218:, which allow the measurement of some theoretically predicted gravitational effects (for an example, see 5594: 4478:
Buckingham, M.J.; Fairbank, W.M. (1961). "Chapter III The Nature of the Ī»-Transition in Liquid Helium".
2501: 6407: 6207: 5456: 5378:, III. The Many-Worlds Interpretation of Quantum Mechanics: the theory of the universal wave function. 236:
to lower temperatures. So far the limit is 1.19 K, but there is a potential to reach 0.7 K.
6237: 6222: 5629: 114: 3852: 932:
is below a certain critical value, which usually is determined by the diameter of the flow channel.
6380: 6375: 6304: 6279: 6264: 6259: 6254: 6127: 6026: 5656: 2201:
the fountain pressure is equal to 0.692 bar. With a density of liquid helium of 125 kg/m and
6462: 6021: 1457: 1426: 5379: 3330: 2171: 586: 6467: 6452: 6397: 6319: 6046: 6036: 5786: 5781: 4985: 3847: 183: 122: 6370: 6344: 6169: 4443:
Keesom, W.H.; Keesom, A.P. (1935). "New measurements on the specific heat of liquid helium".
3513: 3369: 2927: 179: 98: 6309: 6232: 5965: 5725: 5567: 5489: 5342: 5289: 5228: 5171: 5126: 5091: 5056: 5014: 4943: 4908: 4863: 4816: 4765: 4699: 4660: 4588: 4452: 4417: 4364: 4269: 4208: 4155: 4094: 4009: 3949: 3899: 3839: 3801: 3758: 3713: 3666: 3621: 3523: 3495: 3283: 3126:
Fig. 9. Transport of heat by a counterflow of the normal and superfluid components of He-II
1988: 1197: 153: 4734:
Critical velocities and mutual friction in He-He mixtures at low temperatures below 100 mK
3195:. This pressure drives the normal component from the hot end to the cold end according to 2967: 8: 6402: 6360: 6329: 6289: 6274: 6249: 5940: 5832: 5822: 5735: 5690: 5354: 5206: 5041: 4999: 3508: 3491: 3003: 2894: 2670: 2637: 2604: 208: 5571: 5493: 5346: 5293: 5232: 5175: 5130: 5095: 5060: 5018: 4947: 4912: 4867: 4820: 4807:
F. London (1938). "The Ī»-Phenomenon of Liquid Helium and the Bose-Einstein Degeneracy".
4769: 4703: 4664: 4592: 4456: 4421: 4368: 4273: 4212: 4159: 4098: 4051: 4013: 3953: 3903: 3843: 3805: 3762: 3717: 3670: 3625: 2891:
apply to the left and right side of the superleak respectively. In this particular case
1958: 1870: 945:. This is the origin of the remarkable properties of He-II such as the fountain effect. 315:.) A unified description of superconductivity and superfluidity is possible in terms of 6294: 6184: 6087: 6016: 5850: 5583: 5557: 5358: 5332: 5305: 5279: 5252: 5218: 5187: 5161: 4881: 4832: 4789: 4755: 4385: 4352: 4333: 4316: 4293: 4259: 4232: 4198: 4171: 4145: 4118: 4084: 4033: 3975: 3774: 3682: 3639: 3455: 3165: 3138: 3092: 2577: 2144: 1724: 1394: 1362: 1304: 1272: 1165: 1138: 942: 935:
In classical mechanics the force is often the gradient of a potential energy. Eq. 
908: 559: 312: 156:
from pairs of ultra-cold fermionic atoms. Under certain conditions, fermion pairs form
4955: 4627: 4487: 4464: 3089:
This means that the pressure in the right vessel is equal to the fountain pressure at
955: 705: 199:
Recently in the field of chemistry, superfluid helium-4 has been successfully used in
6339: 6227: 6197: 6192: 6117: 6112: 6082: 6041: 5930: 5882: 5867: 5760: 5730: 5587: 5467: 5448: 5415: 5362: 5309: 5244: 5191: 4974: 4781: 4715: 4672: 4631: 4600: 4562: 4524: 4491: 4390: 4337: 4285: 4224: 4175: 4110: 4025: 3967: 3915: 3861: 3778: 3731: 3538: 3533: 3528: 3409: 2118:{\displaystyle \int _{0}^{T}S_{m}(p,T^{\prime })\mathrm {d} T^{\prime }=V_{m0}p_{f}.} 1926: 1900: 1336: 274: 157: 86: 5256: 4793: 4408:
Swenson, C. (1950). "The Liquid-Solid Transformation in Helium near Absolute Zero".
4353:"Limited Quantum Helium Transportation through Nano-channels by Quantum Fluctuation" 4297: 4236: 4122: 948: 547:{\displaystyle {\vec {F}}=M_{4}{\frac {\mathrm {d} {\vec {v}}_{s}}{\mathrm {d} t}}.} 415:
to one at zero kelvins. Below 1 K the helium is almost completely superfluid.
6244: 6072: 5695: 5575: 5497: 5350: 5297: 5236: 5179: 5134: 5099: 5064: 5022: 4973:. World Scientific Series in 20th century Physics. Vol. 27. World Scientific. 4951: 4916: 4885: 4871: 4836: 4824: 4773: 4707: 4668: 4623: 4596: 4510:
E.L. Andronikashvili Zh. Ɖksp. Teor. Fiz, Vol.16 p.780 (1946), Vol.18 p. 424 (1948)
4483: 4460: 4425: 4380: 4372: 4325: 4277: 4250:
Pollet, L; Boninsegni M (2007). "Superfuididty of Grain Boundaries in Solid 4 He".
4216: 4163: 4102: 4037: 4017: 3997: 3979: 3957: 3907: 3857: 3809: 3766: 3751:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
3721: 3686: 3674: 3643: 3629: 3487: 3475: 3310: 2874: 2854: 1704: 1252: 1232: 995: 975: 745: 725: 348: 142: 137: 126: 5240: 4281: 4220: 4167: 4106: 6314: 6299: 6269: 6217: 6212: 6062: 5915: 5652: 5601: 5477: 5301: 5207:"Roton-Maxon Spectrum and Stability of Trapped Dipolar Bose-Einstein Condensates" 4777: 4058: 3543: 3433: 352:
Fig. 3. Temperature dependence of the relative superfluid and normal components Ļ
219: 204: 164:. At the other limit, the fermions (most notably superconducting electrons) form 136:
In the 1950s, Hall and Vinen performed experiments establishing the existence of
47: 5606: 4136:
Sophie, A; Rittner C (2007). "Disorder and the Supersolid State of Solid 4 He".
3911: 1844:{\displaystyle \int _{0}^{p}V_{m}(p^{\prime },0)\mathrm {d} p^{\prime }=V_{m0}p} 6334: 6324: 5860: 5855: 5812: 5745: 5740: 5579: 5501: 5436: 3483: 3425: 3122: 304: 146: 78: 5616: 5183: 5138: 4578: 3813: 3792:
Rayfield, G.; Reif, F. (1964). "Quantized Vortex Rings in Superfluid Helium".
6446: 6385: 6284: 6097: 6077: 6000: 5960: 5895: 5827: 5750: 5103: 5068: 4785: 4711: 3934: 3735: 3518: 3459: 426:= constant) which are similar to ordinary sound waves. This effect is called 378: 369: 249: 200: 110: 106: 1016: 453: 191:
state or intrinsically superfluid grain boundaries in the helium-4 crystal.
6365: 6122: 5995: 5990: 5985: 5950: 5900: 5817: 5375: 5248: 5026: 4920: 4429: 4394: 4289: 4228: 4114: 4029: 3993: 3971: 3919: 3770: 3421: 427: 165: 5621: 5513: 4934:
Bijl, A; de Boer, J; Michels, A (1941). "Properties of liquid helium II".
4719: 3933:
Bewley, Gregory P.; Lathrop, Daniel P.; Sreenivasan, Katepalli R. (2006).
332: 6202: 6031: 5925: 5837: 5223: 4264: 4203: 4150: 4089: 2828:{\displaystyle p_{l}+\rho _{0}gz_{l}-p_{fl}=p_{r}+\rho _{0}gz_{r}-p_{fr}} 446: 296: 245: 233: 118: 65:
The formation of the superfluid is a manifestation of the formation of a
6138: 4688:"He flow in dilute He-He mixtures at temperatures between 10 and 150 mK" 4021: 2574:
has only mathematical meaning, but in special experimental arrangements
232:
Superfluid-helium technology is used to extend the temperature range of
5970: 5945: 5872: 5842: 5776: 5755: 3389: 3135:
Figure 9 depicts a heat-conduction experiment between two temperatures
1112:{\displaystyle \mathrm {d} \mu =V_{m}\mathrm {d} p-S_{m}\mathrm {d} T.} 292: 188: 175: 31: 4376: 4329: 3726: 336:
Fig. 1. Phase diagram of He. In this diagram is also given the Ī»-line.
4876: 4851: 4828: 4541: 3678: 3634: 3609: 3429: 3365: 1024: 215: 55: 5705: 3962: 3458:. The short-wavelength part describes the interior structure of the 6107: 5935: 5532: 5527: 4760: 3467: 300: 70: 35: 5562: 5337: 5322: 5284: 5166: 4622:. Progress in Low Temperature Physics. Vol. 13. p. 167. 1423:, so with constant pressure (see figure 6). In the first integral 441: 6067: 5955: 5890: 5807: 5802: 3657:
Allen, J. F.; Misener, A. D. (1938). "Flow of Liquid Helium II".
82: 59: 39: 5537: 4685: 4482:. Progress in Low Temperature Physics. Vol. 3. p. 80. 5676: 4736:, thesis, Appendix A, Eindhoven University of Technology, 1991. 4686:
Castelijns, C.; Kuerten, J.; De Waele, A.; Gijsman, H. (1985).
4616:"Chapter 3: Thermodynamics and Hydrodynamics of Heā€“He Mixtures" 3471: 308: 43: 5685: 5671: 4650: 4000:(2004). "Probable Observation of a Supersolid Helium Phase". 3479: 3401: 303:, and the attractive interaction between them is mediated by 74: 51: 5151: 4189:
Boninsegni, M; Prokofev (2006). "Superglass Phase of 4 He".
214:
Superfluids are also used in high-precision devices such as
5204: 5081: 4548:, Vol. 5, Academy of Sciences of the USSR, p. 71. 3373: 2556:
the density of liquid He at zero pressure and temperature.
693:{\displaystyle {\vec {F}}=-{\vec {\nabla }}(\mu +M_{4}gz).} 226: 5681: 5116: 5443:, Vol. I, "SUPERFLOW AND VORTEX LINES", pp. 1ā€“742, 4933: 3992: 3935:"Superfluid helium: Visualization of quantized vortices" 3932: 3587:"The Nobel Prize in Physics 1996 - Advanced Information" 5205:
Santos, L.; Shlyapnikov, G. V.; Lewenstein, M. (2003).
5000:"Atomic Theory of the Two-Fluid Model of Liquid Helium" 178:
may also have been discovered in 2004 by physicists at
3333: 3313: 3286: 3168: 3141: 3095: 3006: 2970: 2930: 2897: 2877: 2857: 2673: 2640: 2607: 2580: 2504: 2174: 2147: 1961: 1929: 1903: 1873: 1727: 1707: 1460: 1429: 1397: 1365: 1339: 1307: 1275: 1255: 1235: 1200: 1168: 1141: 998: 978: 958: 911: 748: 728: 708: 589: 562: 5432:
Department of Energy Office of Science: Superfluidity
5042:"Energy Spectrum of the Excitations in Liquid Helium" 5039: 3206: 3041: 2717: 2359: 2237: 2023: 1991: 1759: 1502: 1055: 773: 628: 475: 5617:
Video including superfluid helium's strange behavior
5397:. American Journal of Mathematics (1957) pp. 152ā€“156 3494:-type contribution to energy related to the quantum 5269: 3257:{\displaystyle \Delta p=-\eta _{n}Z{\dot {V}}_{n}.} 2313:{\displaystyle \mu (p,T)=\mu _{0}+V_{m0}(p-p_{f}).} 4971:Selected papers of Richard Feynman with commentary 4620:Thermodynamics and hydrodynamics of Heā€“He mixtures 4614:De Waele, A. Th. A. M.; Kuerten, J. G. M. (1992). 4477: 4249: 4188: 3355: 3319: 3299: 3256: 3181: 3154: 3108: 3079: 3025: 2992: 2956: 2916: 2883: 2863: 2827: 2692: 2659: 2626: 2593: 2548: 2474: 2312: 2193: 2160: 2117: 2004: 1977: 1941: 1915: 1889: 1843: 1740: 1713: 1677: 1477: 1446: 1415: 1383: 1351: 1325: 1293: 1261: 1241: 1221: 1181: 1154: 1111: 1004: 984: 964: 924: 875: 754: 734: 714: 692: 611: 575: 546: 3700:van Delft, Dirk; Kes, Peter (September 1, 2010). 1044:in more familiar form we use the general formula 73:(2.5 mK) because each atom of helium-4 is a 6444: 5464:Superconductivity, superfluids, and condensates. 4899:L. Tisza (1947). "The Theory of Liquid Helium". 4613: 4480:The nature of the Ī»-transition in liquid helium 4135: 4074: 3889: 3462:using a non-perturbative approach based on the 5533:http://web.mit.edu/newsoffice/2005/matter.html 5508:London, F. Superfluids (Wiley, New York, 1950) 4745: 4559:An introduction to the theory of superfluidity 3610:"Viscosity of Liquid Helium Below the Ī»-Point" 381:. He is only solid at pressures above 25 bar. 6154: 5637: 4997: 4968: 4442: 3791: 3699: 3656: 3449: 3384: 5651: 462: 280: 6425: 6161: 6147: 5644: 5630: 4542:"The theory of superfluidity of helium II" 3307:is the viscosity of the normal component, 1269:plane. First we integrate from the origin 1229:can be found by a line integration in the 6168: 5561: 5384: 5336: 5283: 5222: 5165: 4875: 4806: 4759: 4384: 4263: 4202: 4149: 4088: 3961: 3851: 3748: 3725: 3633: 3456:nested models linked via parametric space 952:Fig. 6. Integration path for calculating 152:In the early 2000s, physicists created a 5547: 4898: 4849: 3573:Encyclopedia of Condensed Matter Physics 3121: 1023: 1015: 947: 452: 440: 430:. Due to the temperature dependence of Ļ 347: 339: 331: 5476: 4407: 4310: 3826: 3607: 97:Known as a major facet in the study of 16:Superfluid form of the helium-4 isotope 6445: 5612:The Hindu article on superfluid states 5511:Philippe Lebrun & Laurent Tavian: 4324:. Vol. 710. pp. 034911ā€“1/8. 3549:Timeline of low-temperature technology 1701:We are interested only in cases where 299:takes place between atoms rather than 6142: 5625: 5040:R. P. Feynman & M. Cohen (1956). 3829:"Vortex photography in liquid helium" 3440: 3379: 1897:is the molar volume of the liquid at 322: 5428:(IOP Publishing Ltd., Bristol, 1990) 5426:Superfluidity and Superconductivity, 4350: 3702:"The discovery of superconductivity" 3415: 3197: 2708: 2350: 2228: 2014: 2012:which has the dimension of pressure 1750: 1493: 1046: 1033: 764: 742:the gravitational acceleration, and 225:The Infrared Astronomical Satellite 5514:The technology of superfluid helium 5414:Taylor & Francis, London 2003, 3575:. Elsevier. 2005. pp. 128ā€“133. 2549:{\textstyle \rho _{0}=M_{4}/V_{m0}} 13: 5445:World Scientific (Singapore, 1989) 5403: 4852:"Transport Phenomena in Helium II" 3496:Everettā€“Hirschman entropy function 3207: 2419: 2400: 2374: 2081: 2072: 2063: 1817: 1808: 1793: 1667: 1658: 1649: 1602: 1593: 1578: 1462: 1431: 1099: 1078: 1057: 833: 814: 788: 650: 531: 505: 14: 6479: 5521: 5466:Oxford Univ. Press, Oxford 2005, 4561:(New York: W. A. Benjamin), 3130: 722:is the molar chemical potential, 327: 125:possibly observed the superfluid 6424: 5704: 5441:Gauge Fields in Condensed Matter 3464:logarithmic Schrƶdinger equation 1955:is also written as a product of 77:particle, by virtue of its zero 5528:Helium-4 Interactive Properties 5369: 5316: 5263: 5198: 5145: 5110: 5075: 5033: 4991: 4962: 4927: 4892: 4843: 4800: 4748:The European Physical Journal B 4739: 4726: 4679: 4644: 4607: 4572: 4551: 4534: 4513: 4504: 4471: 4436: 4401: 4344: 4304: 4243: 4182: 4129: 4068: 4044: 3986: 3926: 3080:{\displaystyle 0=p_{r}-p_{fr}.} 194: 50:in which matter behaves like a 5355:10.1088/0953-4075/44/19/195303 5325:J. Phys. B: At. Mol. Opt. Phys 4050:Moses Chan's Research Group. " 3883: 3820: 3785: 3742: 3693: 3650: 3601: 3579: 3561: 2466: 2428: 2422: 2385: 2304: 2285: 2253: 2241: 2068: 2049: 1804: 1785: 1654: 1635: 1589: 1570: 1539: 1527: 1518: 1506: 1410: 1398: 1378: 1366: 1320: 1308: 1288: 1276: 1216: 1204: 867: 842: 836: 799: 684: 659: 653: 635: 597: 516: 482: 1: 6093:Macroscopic quantum phenomena 5241:10.1103/PhysRevLett.90.250403 4986:Section IV (pages 313 to 414) 4956:10.1016/S0031-8914(41)90422-6 4628:10.1016/S0079-6417(08)60052-9 4519:S. J. Putterman (1974), 4488:10.1016/S0079-6417(08)60134-1 4465:10.1016/S0031-8914(35)90128-8 4282:10.1103/PhysRevLett.98.135301 4221:10.1103/PhysRevLett.96.135301 4168:10.1103/PhysRevLett.98.175302 4107:10.1103/PhysRevLett.97.165301 3555: 3327:some geometrical factor, and 583:is the molar mass of He, and 295:of superconductivity. In it, 239: 103:macroscopic quantum phenomena 6103:Order and disorder (physics) 4673:10.1016/0375-9601(75)90087-0 4601:10.1016/0031-9163(66)90958-9 3862:10.1016/0378-4363(82)90510-1 3827:Packard, Richard E. (1982). 1748:is practically constant. So 1478:{\textstyle \mathrm {d} p=0} 1447:{\textstyle \mathrm {d} T=0} 438:are also temperature waves. 258: 7: 5607:Superfluid phases of helium 5543:Physics Today February 2001 5424:D.R. Tilley and J. Tilley, 4557:Khalatnikov, I. M. (1965), 4523:(Amsterdam: North-Holland) 3912:10.1103/PhysRevLett.55.2704 3501: 3356:{\textstyle {\dot {V}}_{n}} 3270: 3191: 2841: 2702: 2570: 2561: 2488: 2344: 2338: 2326: 2222: 2216: 2210: 2194:{\textstyle T=T_{\lambda }} 2131: 1951: 1857: 1691: 1487: 1191: 1125: 1040: 937: 901: 889: 612:{\textstyle {\vec {v}}_{s}} 434:(figure 3) these waves in Ļ 267: 10: 6484: 6408:Thermoacoustic heat engine 5580:10.1103/PhysRevB.90.134503 5502:10.1103/RevModPhys.71.S318 5302:10.1140/epjb/e2012-30344-3 4969:Braun, L. M., ed. (2000). 4778:10.1140/epjb/e2018-90105-x 4318:AIP Conference Proceedings 4313:"Superfluid Vortex Cooler" 1189:the molar volume. With Eq. 243: 162:Boseā€“Einstein condensation 133:and microscopic theories. 92: 81:. Helium-3, however, is a 6458:Boseā€“Einstein condensates 6420: 6393:Immersive virtual reality 6353: 6183: 6176: 6055: 6009: 5881: 5795: 5769: 5713: 5702: 5664: 5482:Reviews of Modern Physics 5480:(1999). "Superfluidity". 5184:10.2478/s11534-010-0124-7 5139:10.1103/PhysRev.135.A1166 4988:deals with liquid helium. 3814:10.1103/PhysRev.136.A1194 3450:Gaussian cluster approach 3385:Landau two-fluid approach 1359:. Next we integrate from 1162:is the molar entropy and 307:fluctuations rather than 109:effect was discovered by 6376:Digital scent technology 6128:Thermo-dielectric effect 6027:Enthalpy of vaporization 5721:Boseā€“Einstein condensate 5595:superfluid hydrodynamics 5104:10.1103/PhysRev.106.1135 5069:10.1103/PhysRev.102.1189 4712:10.1103/PhysRevB.32.2870 4521:Superfluid Hydrodynamics 2957:{\textstyle z_{l}=z_{r}} 463:Superfluid hydrodynamics 288:Boseā€“Einstein statistics 281:Comparison with helium-3 67:Boseā€“Einstein condensate 6022:Enthalpy of sublimation 5211:Physical Review Letters 4351:Ohba, Tomonori (2016). 4311:Tanaeva, I. A. (2004). 3892:Physical Review Letters 1949:. The other term in Eq. 1038:In order to rewrite Eq. 317:gauge symmetry breaking 246:Helium Ā§ Helium II 6398:Magnetic refrigeration 6037:Latent internal energy 5787:Color-glass condensate 5600:March 3, 2016, at the 5380:Everett's Dissertation 5027:10.1103/PhysRev.94.262 4998:R. P. Feynman (1954). 4921:10.1103/PhysRev.72.838 4540:Landau, L. D. (1941), 4430:10.1103/PhysRev.79.626 4063:Penn State University, 3838:. 109ā€“110: 1474ā€“1484. 3771:10.1098/rspa.1956.0215 3357: 3321: 3301: 3300:{\textstyle \eta _{n}} 3258: 3183: 3156: 3127: 3110: 3081: 3027: 2994: 2958: 2918: 2885: 2865: 2829: 2694: 2661: 2628: 2595: 2550: 2476: 2314: 2195: 2162: 2119: 2006: 1979: 1943: 1917: 1891: 1845: 1742: 1715: 1679: 1479: 1448: 1417: 1385: 1353: 1327: 1295: 1263: 1243: 1223: 1222:{\textstyle \mu (p,T)} 1183: 1156: 1113: 1030: 1021: 1013: 1006: 986: 966: 926: 877: 756: 736: 716: 694: 613: 577: 548: 459: 450: 365: 345: 337: 6371:Cloak of invisibility 6170:Emerging technologies 5847:Magnetically ordered 3514:Large Hadron Collider 3370:Large Hadron Collider 3358: 3322: 3302: 3259: 3184: 3157: 3125: 3111: 3082: 3028: 2995: 2993:{\textstyle p_{fl}=0} 2959: 2919: 2886: 2866: 2830: 2695: 2662: 2634:) and zero pressure ( 2629: 2596: 2551: 2477: 2315: 2196: 2163: 2120: 2007: 2005:{\displaystyle p_{f}} 1980: 1944: 1918: 1892: 1846: 1743: 1716: 1680: 1480: 1449: 1418: 1386: 1354: 1328: 1296: 1264: 1244: 1224: 1184: 1157: 1114: 1027: 1019: 1007: 987: 967: 951: 927: 878: 757: 737: 717: 695: 614: 578: 549: 456: 444: 351: 343: 335: 277:in a superconductor. 180:Penn State University 99:quantum hydrodynamics 5726:Fermionic condensate 5410:Antony M. GuĆ©nault: 3608:Kapitza, P. (1938). 3524:Polariton superfluid 3331: 3311: 3284: 3204: 3166: 3139: 3093: 3039: 3026:{\textstyle T_{l}=0} 3004: 2968: 2928: 2917:{\textstyle p_{l}=0} 2895: 2875: 2855: 2715: 2693:{\textstyle v_{s}=0} 2671: 2660:{\textstyle p_{l}=0} 2638: 2627:{\textstyle T_{l}=0} 2605: 2578: 2502: 2357: 2235: 2172: 2145: 2021: 1989: 1959: 1927: 1901: 1871: 1757: 1725: 1705: 1500: 1458: 1427: 1395: 1363: 1337: 1305: 1273: 1253: 1233: 1198: 1166: 1139: 1053: 996: 976: 956: 909: 771: 746: 726: 706: 626: 587: 560: 473: 154:Fermionic condensate 46:. A superfluid is a 6403:Phased-array optics 6361:Acoustic levitation 5941:Chemical ionization 5833:Programmable matter 5823:Quantum spin liquid 5691:Supercritical fluid 5572:2014PhRvB..90m4503R 5494:1999RvMPS..71..318L 5391:I.I. Hirschman, Jr. 5347:2011JPhB...44s5303A 5294:2012EPJB...85..273Z 5233:2003PhRvL..90y0403S 5176:2011CEJPh...9..857I 5131:1964PhRv..135.1166L 5125:(5A): A1166ā€“A1172. 5096:1957PhRv..106.1135L 5061:1956PhRv..102.1189F 5019:1954PhRv...94..262F 4948:1941Phy.....8..655B 4913:1947PhRv...72..838T 4868:1938Natur.141..913T 4821:1938Natur.141..643L 4770:2018EPJB...91..226A 4704:1985PhRvB..32.2870C 4665:1975PhLA...53..327S 4593:1966PhL....20..474V 4457:1935Phy.....2..557K 4422:1950PhRv...79..626S 4369:2016NatSR...628992O 4274:2007PhRvL..98m5301P 4213:2006PhRvL..96m5301W 4160:2007PhRvL..98q5302R 4099:2006PhRvL..97p5301R 4022:10.1038/nature02220 4014:2004Natur.427..225K 3954:2006Natur.441..588B 3904:1985PhRvL..55.2704A 3871:on November 7, 2017 3844:1982PhyBC.109.1474P 3806:1964PhRv..136.1194R 3763:1956RSPSA.238..215H 3718:2010PhT....63i..38V 3671:1938Natur.142..643A 3626:1938Natur.141...74K 3509:Douglas D. Osheroff 2336:Substitution of Eq. 2038: 1978:{\textstyle V_{m0}} 1890:{\textstyle V_{m0}} 1774: 1624: 1559: 702:In this expression 360:/Ļ as functions of 20:Superfluid helium-4 6088:Leidenfrost effect 6017:Enthalpy of fusion 5782:Quarkā€“gluon plasma 5412:Basic superfluids. 5154:Cent. Eur. J. Phys 4732:Zeegers, J. C. H. 4546:Journal of Physics 4357:Scientific Reports 4057:2013-04-08 at the 3589:. Nobel Foundation 3466:; it suggests the 3441:Hard-sphere models 3432:in the 1940s, and 3380:Microscopic theory 3353: 3317: 3297: 3254: 3182:{\textstyle T_{L}} 3179: 3155:{\textstyle T_{H}} 3152: 3128: 3109:{\textstyle T_{r}} 3106: 3077: 3023: 2990: 2954: 2914: 2881: 2861: 2851:where the indexes 2825: 2690: 2657: 2624: 2594:{\textstyle p_{f}} 2591: 2546: 2472: 2310: 2191: 2161:{\textstyle p_{f}} 2158: 2115: 2024: 2002: 1975: 1939: 1913: 1887: 1841: 1760: 1741:{\textstyle V_{m}} 1738: 1711: 1675: 1610: 1545: 1475: 1454:and in the second 1444: 1416:{\textstyle (p,T)} 1413: 1384:{\textstyle (p,0)} 1381: 1349: 1326:{\textstyle (p,0)} 1323: 1294:{\textstyle (0,0)} 1291: 1259: 1239: 1219: 1182:{\textstyle V_{m}} 1179: 1155:{\textstyle S_{m}} 1152: 1109: 1031: 1022: 1014: 1002: 982: 962: 943:chemical potential 925:{\textstyle v_{s}} 922: 873: 752: 732: 712: 690: 609: 576:{\textstyle M_{4}} 573: 544: 460: 451: 366: 346: 338: 323:Macroscopic theory 313:fermion condensate 158:diatomic molecules 6440: 6439: 6416: 6415: 6223:complexity theory 6208:cellular automata 6136: 6135: 6118:Superheated vapor 6113:Superconductivity 6083:Equation of state 5931:Flash evaporation 5883:Phase transitions 5868:String-net liquid 5761:Photonic molecule 5731:Degenerate matter 5550:Physical Review B 5472:978-0-19-850756-7 5462:James F. Annett: 5395:A note on entropy 4850:L. Tisza (1938). 4815:(3571): 643ā€“644. 4692:Physical Review B 4653:Physics Letters A 4637:978-0-444-89109-9 4497:978-0-444-53309-8 4377:10.1038/srep28992 4330:10.1063/1.1774894 4008:(6971): 225ā€“227. 3898:(24): 2704ā€“2707. 3727:10.1063/1.3490499 3539:Superdiamagnetism 3534:Quantum gyroscope 3529:Quantum acoustics 3416:Vortex ring model 3410:quantum mechanics 3344: 3278: 3277: 3242: 3033:). Consequently, 2849: 2848: 2496: 2495: 2425: 2408: 2388: 2334: 2333: 2226:obtains the form 2139: 2138: 1865: 1864: 1721:is small so that 1699: 1698: 1133: 1132: 1034:Fountain pressure 965:{\textstyle \mu } 897: 896: 839: 822: 802: 715:{\textstyle \mu } 656: 638: 600: 539: 519: 485: 275:Abrikosov lattice 170:BEC-BCS crossover 87:superconductivity 6475: 6428: 6427: 6305:machine learning 6280:key distribution 6265:image processing 6255:error correction 6181: 6180: 6163: 6156: 6149: 6140: 6139: 6073:Compressed fluid 5708: 5653:States of matter 5646: 5639: 5632: 5623: 5622: 5591: 5565: 5505: 5488:(2): S318ā€“S323. 5455:(also available 5398: 5388: 5382: 5373: 5367: 5366: 5340: 5320: 5314: 5313: 5287: 5267: 5261: 5260: 5226: 5224:cond-mat/0301474 5202: 5196: 5195: 5169: 5149: 5143: 5142: 5114: 5108: 5107: 5090:(6): 1135ā€“1145. 5079: 5073: 5072: 5055:(5): 1189ā€“1204. 5046: 5037: 5031: 5030: 5004: 4995: 4989: 4984: 4966: 4960: 4959: 4931: 4925: 4924: 4896: 4890: 4889: 4879: 4877:10.1038/141913a0 4847: 4841: 4840: 4829:10.1038/141643a0 4804: 4798: 4797: 4763: 4743: 4737: 4730: 4724: 4723: 4698:(5): 2870ā€“2886. 4683: 4677: 4676: 4648: 4642: 4641: 4611: 4605: 4604: 4576: 4570: 4555: 4549: 4538: 4532: 4517: 4511: 4508: 4502: 4501: 4475: 4469: 4468: 4440: 4434: 4433: 4405: 4399: 4398: 4388: 4348: 4342: 4341: 4323: 4308: 4302: 4301: 4267: 4265:cond-mat/0702159 4247: 4241: 4240: 4206: 4204:cond-mat/0603003 4186: 4180: 4179: 4153: 4151:cond-mat/0702665 4133: 4127: 4126: 4092: 4090:cond-mat/0604528 4072: 4066: 4048: 4042: 4041: 3990: 3984: 3983: 3965: 3939: 3930: 3924: 3923: 3887: 3881: 3880: 3878: 3876: 3870: 3864:. Archived from 3855: 3833: 3824: 3818: 3817: 3789: 3783: 3782: 3746: 3740: 3739: 3729: 3697: 3691: 3690: 3679:10.1038/142643a0 3654: 3648: 3647: 3637: 3635:10.1038/141074a0 3605: 3599: 3598: 3596: 3594: 3583: 3577: 3576: 3565: 3488:structure factor 3362: 3360: 3359: 3354: 3352: 3351: 3346: 3345: 3337: 3326: 3324: 3323: 3318: 3306: 3304: 3303: 3298: 3296: 3295: 3272: 3263: 3261: 3260: 3255: 3250: 3249: 3244: 3243: 3235: 3228: 3227: 3198: 3188: 3186: 3185: 3180: 3178: 3177: 3161: 3159: 3158: 3153: 3151: 3150: 3115: 3113: 3112: 3107: 3105: 3104: 3086: 3084: 3083: 3078: 3073: 3072: 3057: 3056: 3032: 3030: 3029: 3024: 3016: 3015: 2999: 2997: 2996: 2991: 2983: 2982: 2963: 2961: 2960: 2955: 2953: 2952: 2940: 2939: 2923: 2921: 2920: 2915: 2907: 2906: 2890: 2888: 2887: 2882: 2870: 2868: 2867: 2862: 2843: 2834: 2832: 2831: 2826: 2824: 2823: 2808: 2807: 2795: 2794: 2782: 2781: 2769: 2768: 2753: 2752: 2740: 2739: 2727: 2726: 2709: 2699: 2697: 2696: 2691: 2683: 2682: 2666: 2664: 2663: 2658: 2650: 2649: 2633: 2631: 2630: 2625: 2617: 2616: 2600: 2598: 2597: 2592: 2590: 2589: 2555: 2553: 2552: 2547: 2545: 2544: 2532: 2527: 2526: 2514: 2513: 2490: 2481: 2479: 2478: 2473: 2465: 2464: 2446: 2445: 2427: 2426: 2418: 2409: 2407: 2403: 2397: 2396: 2395: 2390: 2389: 2381: 2377: 2371: 2369: 2368: 2351: 2328: 2319: 2317: 2316: 2311: 2303: 2302: 2284: 2283: 2268: 2267: 2229: 2204: 2200: 2198: 2197: 2192: 2190: 2189: 2167: 2165: 2164: 2159: 2157: 2156: 2133: 2124: 2122: 2121: 2116: 2111: 2110: 2101: 2100: 2085: 2084: 2075: 2067: 2066: 2048: 2047: 2037: 2032: 2015: 2011: 2009: 2008: 2003: 2001: 2000: 1984: 1982: 1981: 1976: 1974: 1973: 1948: 1946: 1945: 1942:{\textstyle p=0} 1940: 1922: 1920: 1919: 1916:{\textstyle T=0} 1914: 1896: 1894: 1893: 1888: 1886: 1885: 1859: 1850: 1848: 1847: 1842: 1837: 1836: 1821: 1820: 1811: 1797: 1796: 1784: 1783: 1773: 1768: 1751: 1747: 1745: 1744: 1739: 1737: 1736: 1720: 1718: 1717: 1712: 1693: 1684: 1682: 1681: 1676: 1671: 1670: 1661: 1653: 1652: 1634: 1633: 1623: 1618: 1606: 1605: 1596: 1582: 1581: 1569: 1568: 1558: 1553: 1494: 1484: 1482: 1481: 1476: 1465: 1453: 1451: 1450: 1445: 1434: 1422: 1420: 1419: 1414: 1390: 1388: 1387: 1382: 1358: 1356: 1355: 1352:{\textstyle T=0} 1350: 1332: 1330: 1329: 1324: 1300: 1298: 1297: 1292: 1268: 1266: 1265: 1260: 1248: 1246: 1245: 1240: 1228: 1226: 1225: 1220: 1188: 1186: 1185: 1180: 1178: 1177: 1161: 1159: 1158: 1153: 1151: 1150: 1127: 1118: 1116: 1115: 1110: 1102: 1097: 1096: 1081: 1076: 1075: 1060: 1047: 1011: 1009: 1008: 1003: 991: 989: 988: 983: 971: 969: 968: 963: 931: 929: 928: 923: 921: 920: 891: 882: 880: 879: 874: 860: 859: 841: 840: 832: 823: 821: 817: 811: 810: 809: 804: 803: 795: 791: 785: 783: 782: 765: 761: 759: 758: 753: 741: 739: 738: 733: 721: 719: 718: 713: 699: 697: 696: 691: 677: 676: 658: 657: 649: 640: 639: 631: 618: 616: 615: 610: 608: 607: 602: 601: 593: 582: 580: 579: 574: 572: 571: 553: 551: 550: 545: 540: 538: 534: 528: 527: 526: 521: 520: 512: 508: 502: 500: 499: 487: 486: 478: 368:Figure 1 is the 203:techniques as a 143:Josephson effect 138:quantized vortex 131:phenomenological 127:phase transition 6483: 6482: 6478: 6477: 6476: 6474: 6473: 6472: 6443: 6442: 6441: 6436: 6412: 6349: 6260:finite automata 6172: 6167: 6137: 6132: 6063:Baryonic matter 6051: 6005: 5976:Saturated fluid 5916:Crystallization 5877: 5851:Antiferromagnet 5791: 5765: 5709: 5700: 5660: 5650: 5602:Wayback Machine 5524: 5519: 5406: 5404:Further reading 5401: 5389: 5385: 5374: 5370: 5321: 5317: 5272:Eur. Phys. J. B 5268: 5264: 5203: 5199: 5150: 5146: 5115: 5111: 5080: 5076: 5044: 5038: 5034: 5002: 4996: 4992: 4981: 4967: 4963: 4932: 4928: 4897: 4893: 4848: 4844: 4805: 4801: 4744: 4740: 4731: 4727: 4684: 4680: 4649: 4645: 4638: 4612: 4608: 4581:Physics Letters 4577: 4573: 4556: 4552: 4539: 4535: 4518: 4514: 4509: 4505: 4498: 4476: 4472: 4441: 4437: 4410:Physical Review 4406: 4402: 4349: 4345: 4321: 4309: 4305: 4252:Phys. Rev. Lett 4248: 4244: 4191:Phys. Rev. Lett 4187: 4183: 4138:Phys. Rev. Lett 4134: 4130: 4077:Phys. Rev. Lett 4073: 4069: 4059:Wayback Machine 4049: 4045: 3991: 3987: 3963:10.1038/441588a 3937: 3931: 3927: 3888: 3884: 3874: 3872: 3868: 3853:10.1.1.210.8701 3831: 3825: 3821: 3794:Physical Review 3790: 3786: 3747: 3743: 3698: 3694: 3655: 3651: 3606: 3602: 3592: 3590: 3585: 3584: 3580: 3569:"Superfluidity" 3567: 3566: 3562: 3558: 3553: 3544:Superfluid film 3504: 3452: 3443: 3434:Richard Feynman 3418: 3387: 3382: 3347: 3336: 3335: 3334: 3332: 3329: 3328: 3312: 3309: 3308: 3291: 3287: 3285: 3282: 3281: 3245: 3234: 3233: 3232: 3223: 3219: 3205: 3202: 3201: 3173: 3169: 3167: 3164: 3163: 3146: 3142: 3140: 3137: 3136: 3133: 3100: 3096: 3094: 3091: 3090: 3065: 3061: 3052: 3048: 3040: 3037: 3036: 3011: 3007: 3005: 3002: 3001: 2975: 2971: 2969: 2966: 2965: 2948: 2944: 2935: 2931: 2929: 2926: 2925: 2902: 2898: 2896: 2893: 2892: 2876: 2873: 2872: 2856: 2853: 2852: 2816: 2812: 2803: 2799: 2790: 2786: 2777: 2773: 2761: 2757: 2748: 2744: 2735: 2731: 2722: 2718: 2716: 2713: 2712: 2678: 2674: 2672: 2669: 2668: 2645: 2641: 2639: 2636: 2635: 2612: 2608: 2606: 2603: 2602: 2585: 2581: 2579: 2576: 2575: 2537: 2533: 2528: 2522: 2518: 2509: 2505: 2503: 2500: 2499: 2460: 2456: 2441: 2437: 2417: 2416: 2399: 2398: 2391: 2380: 2379: 2378: 2373: 2372: 2370: 2364: 2360: 2358: 2355: 2354: 2298: 2294: 2276: 2272: 2263: 2259: 2236: 2233: 2232: 2202: 2185: 2181: 2173: 2170: 2169: 2152: 2148: 2146: 2143: 2142: 2106: 2102: 2093: 2089: 2080: 2076: 2071: 2062: 2058: 2043: 2039: 2033: 2028: 2022: 2019: 2018: 1996: 1992: 1990: 1987: 1986: 1985:and a quantity 1966: 1962: 1960: 1957: 1956: 1928: 1925: 1924: 1902: 1899: 1898: 1878: 1874: 1872: 1869: 1868: 1829: 1825: 1816: 1812: 1807: 1792: 1788: 1779: 1775: 1769: 1764: 1758: 1755: 1754: 1732: 1728: 1726: 1723: 1722: 1706: 1703: 1702: 1666: 1662: 1657: 1648: 1644: 1629: 1625: 1619: 1614: 1601: 1597: 1592: 1577: 1573: 1564: 1560: 1554: 1549: 1501: 1498: 1497: 1461: 1459: 1456: 1455: 1430: 1428: 1425: 1424: 1396: 1393: 1392: 1364: 1361: 1360: 1338: 1335: 1334: 1306: 1303: 1302: 1274: 1271: 1270: 1254: 1251: 1250: 1234: 1231: 1230: 1199: 1196: 1195: 1173: 1169: 1167: 1164: 1163: 1146: 1142: 1140: 1137: 1136: 1098: 1092: 1088: 1077: 1071: 1067: 1056: 1054: 1051: 1050: 1036: 997: 994: 993: 977: 974: 973: 957: 954: 953: 916: 912: 910: 907: 906: 855: 851: 831: 830: 813: 812: 805: 794: 793: 792: 787: 786: 784: 778: 774: 772: 769: 768: 747: 744: 743: 727: 724: 723: 707: 704: 703: 672: 668: 648: 647: 630: 629: 627: 624: 623: 603: 592: 591: 590: 588: 585: 584: 567: 563: 561: 558: 557: 530: 529: 522: 511: 510: 509: 504: 503: 501: 495: 491: 477: 476: 474: 471: 470: 465: 437: 433: 425: 421: 414: 407: 403: 399: 395: 359: 355: 330: 325: 283: 270: 261: 252: 242: 220:Gravity Probe B 205:quantum solvent 197: 95: 48:state of matter 42:of the element 17: 12: 11: 5: 6481: 6471: 6470: 6465: 6463:Fluid dynamics 6460: 6455: 6438: 6437: 6435: 6434: 6421: 6418: 6417: 6414: 6413: 6411: 6410: 6405: 6400: 6395: 6390: 6389: 6388: 6378: 6373: 6368: 6363: 6357: 6355: 6351: 6350: 6348: 6347: 6342: 6337: 6332: 6327: 6322: 6320:neural network 6317: 6312: 6307: 6302: 6297: 6292: 6287: 6282: 6277: 6272: 6267: 6262: 6257: 6252: 6247: 6242: 6241: 6240: 6230: 6225: 6220: 6215: 6210: 6205: 6200: 6195: 6189: 6187: 6178: 6174: 6173: 6166: 6165: 6158: 6151: 6143: 6134: 6133: 6131: 6130: 6125: 6120: 6115: 6110: 6105: 6100: 6095: 6090: 6085: 6080: 6075: 6070: 6065: 6059: 6057: 6053: 6052: 6050: 6049: 6044: 6042:Trouton's rule 6039: 6034: 6029: 6024: 6019: 6013: 6011: 6007: 6006: 6004: 6003: 5998: 5993: 5988: 5983: 5978: 5973: 5968: 5963: 5958: 5953: 5948: 5943: 5938: 5933: 5928: 5923: 5918: 5913: 5911:Critical point 5908: 5903: 5898: 5893: 5887: 5885: 5879: 5878: 5876: 5875: 5870: 5865: 5864: 5863: 5858: 5853: 5845: 5840: 5835: 5830: 5825: 5820: 5815: 5813:Liquid crystal 5810: 5805: 5799: 5797: 5793: 5792: 5790: 5789: 5784: 5779: 5773: 5771: 5767: 5766: 5764: 5763: 5758: 5753: 5748: 5746:Strange matter 5743: 5741:Rydberg matter 5738: 5733: 5728: 5723: 5717: 5715: 5711: 5710: 5703: 5701: 5699: 5698: 5693: 5688: 5679: 5674: 5668: 5666: 5662: 5661: 5649: 5648: 5641: 5634: 5626: 5620: 5619: 5614: 5609: 5604: 5592: 5556:(13): 134503. 5545: 5540: 5535: 5530: 5523: 5522:External links 5520: 5518: 5517: 5509: 5506: 5474: 5460: 5437:Hagen Kleinert 5434: 5429: 5422: 5407: 5405: 5402: 5400: 5399: 5383: 5368: 5331:(19): 195303. 5315: 5262: 5217:(25): 250403. 5197: 5160:(3): 857ā€“864. 5144: 5109: 5074: 5032: 4990: 4980:978-9810241315 4979: 4961: 4942:(7): 655ā€“675. 4926: 4907:(9): 838ā€“854. 4891: 4842: 4799: 4738: 4725: 4678: 4643: 4636: 4606: 4571: 4550: 4533: 4512: 4503: 4496: 4470: 4435: 4400: 4343: 4303: 4258:(13): 135301. 4242: 4197:(13): 135301. 4181: 4144:(17): 175302. 4128: 4083:(16): 165301. 4067: 4043: 3985: 3925: 3882: 3819: 3784: 3741: 3692: 3649: 3600: 3578: 3559: 3557: 3554: 3552: 3551: 3546: 3541: 3536: 3531: 3526: 3521: 3516: 3511: 3505: 3503: 3500: 3484:sound velocity 3451: 3448: 3442: 3439: 3426:quantum vortex 3417: 3414: 3390:L. D. Landau's 3386: 3383: 3381: 3378: 3350: 3343: 3340: 3320:{\textstyle Z} 3316: 3294: 3290: 3276: 3275: 3266: 3264: 3253: 3248: 3241: 3238: 3231: 3226: 3222: 3218: 3215: 3212: 3209: 3176: 3172: 3149: 3145: 3132: 3131:Heat transport 3129: 3103: 3099: 3076: 3071: 3068: 3064: 3060: 3055: 3051: 3047: 3044: 3022: 3019: 3014: 3010: 2989: 2986: 2981: 2978: 2974: 2951: 2947: 2943: 2938: 2934: 2913: 2910: 2905: 2901: 2884:{\textstyle r} 2880: 2864:{\textstyle l} 2860: 2847: 2846: 2837: 2835: 2822: 2819: 2815: 2811: 2806: 2802: 2798: 2793: 2789: 2785: 2780: 2776: 2772: 2767: 2764: 2760: 2756: 2751: 2747: 2743: 2738: 2734: 2730: 2725: 2721: 2689: 2686: 2681: 2677: 2656: 2653: 2648: 2644: 2623: 2620: 2615: 2611: 2588: 2584: 2543: 2540: 2536: 2531: 2525: 2521: 2517: 2512: 2508: 2494: 2493: 2484: 2482: 2471: 2468: 2463: 2459: 2455: 2452: 2449: 2444: 2440: 2436: 2433: 2430: 2424: 2421: 2415: 2412: 2406: 2402: 2394: 2387: 2384: 2376: 2367: 2363: 2332: 2331: 2322: 2320: 2309: 2306: 2301: 2297: 2293: 2290: 2287: 2282: 2279: 2275: 2271: 2266: 2262: 2258: 2255: 2252: 2249: 2246: 2243: 2240: 2188: 2184: 2180: 2177: 2155: 2151: 2137: 2136: 2127: 2125: 2114: 2109: 2105: 2099: 2096: 2092: 2088: 2083: 2079: 2074: 2070: 2065: 2061: 2057: 2054: 2051: 2046: 2042: 2036: 2031: 2027: 1999: 1995: 1972: 1969: 1965: 1938: 1935: 1932: 1912: 1909: 1906: 1884: 1881: 1877: 1863: 1862: 1853: 1851: 1840: 1835: 1832: 1828: 1824: 1819: 1815: 1810: 1806: 1803: 1800: 1795: 1791: 1787: 1782: 1778: 1772: 1767: 1763: 1735: 1731: 1714:{\textstyle p} 1710: 1697: 1696: 1687: 1685: 1674: 1669: 1665: 1660: 1656: 1651: 1647: 1643: 1640: 1637: 1632: 1628: 1622: 1617: 1613: 1609: 1604: 1600: 1595: 1591: 1588: 1585: 1580: 1576: 1572: 1567: 1563: 1557: 1552: 1548: 1544: 1541: 1538: 1535: 1532: 1529: 1526: 1523: 1520: 1517: 1514: 1511: 1508: 1505: 1474: 1471: 1468: 1464: 1443: 1440: 1437: 1433: 1412: 1409: 1406: 1403: 1400: 1380: 1377: 1374: 1371: 1368: 1348: 1345: 1342: 1322: 1319: 1316: 1313: 1310: 1290: 1287: 1284: 1281: 1278: 1262:{\textstyle T} 1258: 1242:{\textstyle p} 1238: 1218: 1215: 1212: 1209: 1206: 1203: 1176: 1172: 1149: 1145: 1131: 1130: 1121: 1119: 1108: 1105: 1101: 1095: 1091: 1087: 1084: 1080: 1074: 1070: 1066: 1063: 1059: 1035: 1032: 1005:{\textstyle T} 1001: 985:{\textstyle p} 981: 961: 919: 915: 905:only holds if 895: 894: 885: 883: 872: 869: 866: 863: 858: 854: 850: 847: 844: 838: 835: 829: 826: 820: 816: 808: 801: 798: 790: 781: 777: 755:{\textstyle z} 751: 735:{\textstyle g} 731: 711: 689: 686: 683: 680: 675: 671: 667: 664: 661: 655: 652: 646: 643: 637: 634: 606: 599: 596: 570: 566: 543: 537: 533: 525: 518: 515: 507: 498: 494: 490: 484: 481: 464: 461: 435: 431: 423: 419: 412: 405: 401: 397: 393: 375:critical point 357: 353: 329: 328:Thermodynamics 326: 324: 321: 297:Cooper pairing 282: 279: 269: 266: 260: 257: 241: 238: 196: 193: 147:solid hydrogen 94: 91: 15: 9: 6: 4: 3: 2: 6480: 6469: 6468:Superfluidity 6466: 6464: 6461: 6459: 6456: 6454: 6453:Liquid helium 6451: 6450: 6448: 6433: 6432: 6423: 6422: 6419: 6409: 6406: 6404: 6401: 6399: 6396: 6394: 6391: 6387: 6386:Plasma window 6384: 6383: 6382: 6379: 6377: 6374: 6372: 6369: 6367: 6364: 6362: 6359: 6358: 6356: 6352: 6346: 6345:teleportation 6343: 6341: 6338: 6336: 6333: 6331: 6328: 6326: 6323: 6321: 6318: 6316: 6313: 6311: 6308: 6306: 6303: 6301: 6298: 6296: 6293: 6291: 6288: 6286: 6283: 6281: 6278: 6276: 6273: 6271: 6268: 6266: 6263: 6261: 6258: 6256: 6253: 6251: 6248: 6246: 6243: 6239: 6236: 6235: 6234: 6231: 6229: 6226: 6224: 6221: 6219: 6216: 6214: 6211: 6209: 6206: 6204: 6201: 6199: 6196: 6194: 6191: 6190: 6188: 6186: 6182: 6179: 6175: 6171: 6164: 6159: 6157: 6152: 6150: 6145: 6144: 6141: 6129: 6126: 6124: 6121: 6119: 6116: 6114: 6111: 6109: 6106: 6104: 6101: 6099: 6098:Mpemba effect 6096: 6094: 6091: 6089: 6086: 6084: 6081: 6079: 6078:Cooling curve 6076: 6074: 6071: 6069: 6066: 6064: 6061: 6060: 6058: 6054: 6048: 6045: 6043: 6040: 6038: 6035: 6033: 6030: 6028: 6025: 6023: 6020: 6018: 6015: 6014: 6012: 6008: 6002: 6001:Vitrification 5999: 5997: 5994: 5992: 5989: 5987: 5984: 5982: 5979: 5977: 5974: 5972: 5969: 5967: 5966:Recombination 5964: 5962: 5961:Melting point 5959: 5957: 5954: 5952: 5949: 5947: 5944: 5942: 5939: 5937: 5934: 5932: 5929: 5927: 5924: 5922: 5919: 5917: 5914: 5912: 5909: 5907: 5906:Critical line 5904: 5902: 5899: 5897: 5896:Boiling point 5894: 5892: 5889: 5888: 5886: 5884: 5880: 5874: 5871: 5869: 5866: 5862: 5859: 5857: 5854: 5852: 5849: 5848: 5846: 5844: 5841: 5839: 5836: 5834: 5831: 5829: 5828:Exotic matter 5826: 5824: 5821: 5819: 5816: 5814: 5811: 5809: 5806: 5804: 5801: 5800: 5798: 5794: 5788: 5785: 5783: 5780: 5778: 5775: 5774: 5772: 5768: 5762: 5759: 5757: 5754: 5752: 5749: 5747: 5744: 5742: 5739: 5737: 5734: 5732: 5729: 5727: 5724: 5722: 5719: 5718: 5716: 5712: 5707: 5697: 5694: 5692: 5689: 5687: 5683: 5680: 5678: 5675: 5673: 5670: 5669: 5667: 5663: 5658: 5654: 5647: 5642: 5640: 5635: 5633: 5628: 5627: 5624: 5618: 5615: 5613: 5610: 5608: 5605: 5603: 5599: 5596: 5593: 5589: 5585: 5581: 5577: 5573: 5569: 5564: 5559: 5555: 5551: 5546: 5544: 5541: 5539: 5536: 5534: 5531: 5529: 5526: 5525: 5516: 5515: 5510: 5507: 5503: 5499: 5495: 5491: 5487: 5483: 5479: 5475: 5473: 5469: 5465: 5461: 5458: 5454: 5453:9971-5-0210-0 5450: 5446: 5442: 5438: 5435: 5433: 5430: 5427: 5423: 5421: 5420:0-7484-0891-6 5417: 5413: 5409: 5408: 5396: 5392: 5387: 5381: 5377: 5372: 5364: 5360: 5356: 5352: 5348: 5344: 5339: 5334: 5330: 5326: 5319: 5311: 5307: 5303: 5299: 5295: 5291: 5286: 5281: 5277: 5273: 5266: 5258: 5254: 5250: 5246: 5242: 5238: 5234: 5230: 5225: 5220: 5216: 5212: 5208: 5201: 5193: 5189: 5185: 5181: 5177: 5173: 5168: 5163: 5159: 5155: 5148: 5140: 5136: 5132: 5128: 5124: 5120: 5113: 5105: 5101: 5097: 5093: 5089: 5085: 5078: 5070: 5066: 5062: 5058: 5054: 5050: 5043: 5036: 5028: 5024: 5020: 5016: 5012: 5008: 5001: 4994: 4987: 4982: 4976: 4972: 4965: 4957: 4953: 4949: 4945: 4941: 4937: 4930: 4922: 4918: 4914: 4910: 4906: 4902: 4895: 4887: 4883: 4878: 4873: 4869: 4865: 4862:(3577): 913. 4861: 4857: 4853: 4846: 4838: 4834: 4830: 4826: 4822: 4818: 4814: 4810: 4803: 4795: 4791: 4787: 4783: 4779: 4775: 4771: 4767: 4762: 4757: 4753: 4749: 4742: 4735: 4729: 4721: 4717: 4713: 4709: 4705: 4701: 4697: 4693: 4689: 4682: 4674: 4670: 4666: 4662: 4658: 4654: 4647: 4639: 4633: 4629: 4625: 4621: 4617: 4610: 4602: 4598: 4594: 4590: 4586: 4582: 4575: 4568: 4567:0-7382-0300-9 4564: 4560: 4554: 4547: 4543: 4537: 4530: 4529:0-444-10681-2 4526: 4522: 4516: 4507: 4499: 4493: 4489: 4485: 4481: 4474: 4466: 4462: 4458: 4454: 4450: 4446: 4439: 4431: 4427: 4423: 4419: 4415: 4411: 4404: 4396: 4392: 4387: 4382: 4378: 4374: 4370: 4366: 4362: 4358: 4354: 4347: 4339: 4335: 4331: 4327: 4320: 4319: 4314: 4307: 4299: 4295: 4291: 4287: 4283: 4279: 4275: 4271: 4266: 4261: 4257: 4253: 4246: 4238: 4234: 4230: 4226: 4222: 4218: 4214: 4210: 4205: 4200: 4196: 4192: 4185: 4177: 4173: 4169: 4165: 4161: 4157: 4152: 4147: 4143: 4139: 4132: 4124: 4120: 4116: 4112: 4108: 4104: 4100: 4096: 4091: 4086: 4082: 4078: 4071: 4064: 4060: 4056: 4053: 4047: 4039: 4035: 4031: 4027: 4023: 4019: 4015: 4011: 4007: 4003: 3999: 3998:M. H. W. Chan 3995: 3989: 3981: 3977: 3973: 3969: 3964: 3959: 3955: 3951: 3948:(7093): 588. 3947: 3943: 3936: 3929: 3921: 3917: 3913: 3909: 3905: 3901: 3897: 3893: 3886: 3867: 3863: 3859: 3854: 3849: 3845: 3841: 3837: 3830: 3823: 3815: 3811: 3807: 3803: 3800:(5A): A1194. 3799: 3795: 3788: 3780: 3776: 3772: 3768: 3764: 3760: 3757:(1213): 215. 3756: 3752: 3745: 3737: 3733: 3728: 3723: 3719: 3715: 3711: 3707: 3706:Physics Today 3703: 3696: 3688: 3684: 3680: 3676: 3672: 3668: 3665:(3597): 643. 3664: 3660: 3653: 3645: 3641: 3636: 3631: 3627: 3623: 3619: 3615: 3611: 3604: 3588: 3582: 3574: 3570: 3564: 3560: 3550: 3547: 3545: 3542: 3540: 3537: 3535: 3532: 3530: 3527: 3525: 3522: 3520: 3519:London moment 3517: 3515: 3512: 3510: 3507: 3506: 3499: 3497: 3493: 3489: 3485: 3481: 3477: 3473: 3469: 3465: 3461: 3460:fluid element 3457: 3447: 3438: 3435: 3431: 3427: 3423: 3413: 3411: 3405: 3403: 3398: 3394: 3391: 3377: 3375: 3371: 3367: 3348: 3341: 3338: 3314: 3292: 3288: 3274: 3267: 3265: 3251: 3246: 3239: 3236: 3229: 3224: 3220: 3216: 3213: 3210: 3200: 3199: 3196: 3194: 3193: 3174: 3170: 3147: 3143: 3124: 3120: 3117: 3101: 3097: 3087: 3074: 3069: 3066: 3062: 3058: 3053: 3049: 3045: 3042: 3034: 3020: 3017: 3012: 3008: 2987: 2984: 2979: 2976: 2972: 2949: 2945: 2941: 2936: 2932: 2911: 2908: 2903: 2899: 2878: 2858: 2845: 2838: 2836: 2820: 2817: 2813: 2809: 2804: 2800: 2796: 2791: 2787: 2783: 2778: 2774: 2770: 2765: 2762: 2758: 2754: 2749: 2745: 2741: 2736: 2732: 2728: 2723: 2719: 2711: 2710: 2707: 2705: 2704: 2687: 2684: 2679: 2675: 2654: 2651: 2646: 2642: 2621: 2618: 2613: 2609: 2586: 2582: 2573: 2572: 2566: 2564: 2563: 2557: 2541: 2538: 2534: 2529: 2523: 2519: 2515: 2510: 2506: 2492: 2485: 2483: 2469: 2461: 2457: 2453: 2450: 2447: 2442: 2438: 2434: 2431: 2413: 2410: 2404: 2392: 2382: 2365: 2361: 2353: 2352: 2349: 2347: 2346: 2341: 2340: 2330: 2323: 2321: 2307: 2299: 2295: 2291: 2288: 2280: 2277: 2273: 2269: 2264: 2260: 2256: 2250: 2247: 2244: 2238: 2231: 2230: 2227: 2225: 2224: 2219: 2218: 2213: 2212: 2206: 2186: 2182: 2178: 2175: 2153: 2149: 2141:The pressure 2135: 2128: 2126: 2112: 2107: 2103: 2097: 2094: 2090: 2086: 2077: 2059: 2055: 2052: 2044: 2040: 2034: 2029: 2025: 2017: 2016: 2013: 1997: 1993: 1970: 1967: 1963: 1954: 1953: 1936: 1933: 1930: 1910: 1907: 1904: 1882: 1879: 1875: 1861: 1854: 1852: 1838: 1833: 1830: 1826: 1822: 1813: 1801: 1798: 1789: 1780: 1776: 1770: 1765: 1761: 1753: 1752: 1749: 1733: 1729: 1708: 1695: 1688: 1686: 1672: 1663: 1645: 1641: 1638: 1630: 1626: 1620: 1615: 1611: 1607: 1598: 1586: 1583: 1574: 1565: 1561: 1555: 1550: 1546: 1542: 1536: 1533: 1530: 1524: 1521: 1515: 1512: 1509: 1503: 1496: 1495: 1492: 1490: 1489: 1472: 1469: 1466: 1441: 1438: 1435: 1407: 1404: 1401: 1375: 1372: 1369: 1346: 1343: 1340: 1317: 1314: 1311: 1285: 1282: 1279: 1256: 1236: 1213: 1210: 1207: 1201: 1194: 1193: 1174: 1170: 1147: 1143: 1129: 1122: 1120: 1106: 1103: 1093: 1089: 1085: 1082: 1072: 1068: 1064: 1061: 1049: 1048: 1045: 1043: 1042: 1026: 1018: 999: 979: 972:at arbitrary 959: 950: 946: 944: 940: 939: 933: 917: 913: 904: 903: 893: 886: 884: 870: 864: 861: 856: 852: 848: 845: 827: 824: 818: 806: 796: 779: 775: 767: 766: 763: 749: 729: 709: 700: 687: 681: 678: 673: 669: 665: 662: 644: 641: 632: 621: 604: 594: 568: 564: 554: 541: 535: 523: 513: 496: 492: 488: 479: 468: 455: 448: 443: 439: 429: 416: 411: 389: 386: 382: 380: 379:absolute zero 376: 371: 370:phase diagram 363: 350: 342: 334: 320: 318: 314: 310: 306: 302: 298: 294: 289: 278: 276: 265: 256: 251: 250:superfluidity 247: 237: 235: 230: 228: 223: 221: 217: 212: 210: 206: 202: 201:spectroscopic 192: 190: 185: 181: 177: 173: 171: 167: 163: 159: 155: 150: 148: 144: 139: 134: 132: 128: 124: 120: 116: 115:John F. Allen 112: 111:Pyotr Kapitsa 108: 107:superfluidity 104: 100: 90: 88: 84: 80: 76: 72: 68: 63: 61: 57: 53: 49: 45: 41: 37: 33: 29: 25: 21: 6429: 6366:Anti-gravity 6310:metamaterial 6238:post-quantum 6233:cryptography 6123:Superheating 5996:Vaporization 5991:Triple point 5986:Supercooling 5951:Lambda point 5901:Condensation 5818:Time crystal 5796:Other states 5736:Quantum Hall 5553: 5549: 5512: 5485: 5481: 5463: 5447:; Paperback 5440: 5425: 5411: 5394: 5386: 5376:Hugh Everett 5371: 5328: 5324: 5318: 5275: 5271: 5265: 5214: 5210: 5200: 5157: 5153: 5147: 5122: 5118: 5112: 5087: 5083: 5077: 5052: 5048: 5035: 5010: 5006: 4993: 4970: 4964: 4939: 4935: 4929: 4904: 4900: 4894: 4859: 4855: 4845: 4812: 4808: 4802: 4751: 4747: 4741: 4733: 4728: 4695: 4691: 4681: 4656: 4652: 4646: 4619: 4609: 4584: 4580: 4574: 4558: 4553: 4545: 4536: 4520: 4515: 4506: 4479: 4473: 4448: 4444: 4438: 4413: 4409: 4403: 4360: 4356: 4346: 4317: 4306: 4255: 4251: 4245: 4194: 4190: 4184: 4141: 4137: 4131: 4080: 4076: 4070: 4062: 4046: 4005: 4001: 3988: 3945: 3941: 3928: 3895: 3891: 3885: 3873:. Retrieved 3866:the original 3835: 3822: 3797: 3793: 3787: 3754: 3750: 3744: 3712:(9): 38ā€“43. 3709: 3705: 3695: 3662: 3658: 3652: 3620:(3558): 74. 3617: 3613: 3603: 3593:February 10, 3591:. Retrieved 3581: 3572: 3563: 3453: 3444: 3422:Lars Onsager 3419: 3406: 3399: 3395: 3388: 3279: 3268: 3190: 3134: 3118: 3088: 3035: 2850: 2839: 2701: 2569: 2567: 2560: 2558: 2497: 2486: 2343: 2337: 2335: 2324: 2221: 2215: 2209: 2207: 2140: 2129: 1950: 1866: 1855: 1700: 1689: 1486: 1190: 1134: 1123: 1039: 1037: 936: 934: 900: 898: 887: 701: 622: 555: 469: 466: 428:second sound 417: 409: 390: 387: 383: 367: 361: 284: 271: 262: 253: 231: 224: 213: 198: 195:Applications 174: 166:Cooper pairs 160:and undergo 151: 135: 96: 64: 27: 23: 19: 18: 6381:Force field 6330:programming 6290:logic clock 6275:information 6250:electronics 6032:Latent heat 5981:Sublimation 5926:Evaporation 5861:Ferromagnet 5856:Ferrimagnet 5838:Dark matter 5770:High energy 5478:Leggett, A. 4754:(10): 226. 3875:November 7, 3492:dissipative 447:Rollin film 234:cryocoolers 176:Supersolids 119:Don Misener 6447:Categories 6295:logic gate 6193:algorithms 6047:Volatility 6010:Quantities 5971:Regelation 5946:Ionization 5921:Deposition 5873:Superglass 5843:Antimatter 5777:QCD matter 5756:Supersolid 5751:Superfluid 5714:Low energy 5278:(8): 273. 5013:(2): 262. 4761:1806.11034 4659:(4): 327. 4587:(5): 474. 4451:(1): 557. 4416:(4): 626. 4052:Supersolid 3556:References 3366:heat pipes 2568:So far Eq. 1491:we obtain 1485:. With Eq. 400:/Ļ, with Ļ 293:BCS theory 244:See also: 240:Properties 216:gyroscopes 209:rovibronic 189:superglass 54:with zero 32:superfluid 6340:simulator 6228:computing 6198:amplifier 5588:118518974 5563:1403.5472 5363:119248001 5338:1108.0847 5310:118545094 5285:1204.4652 5192:118633189 5167:1004.0442 5119:Phys. Rev 5084:Phys. Rev 5049:Phys. Rev 5007:Phys. Rev 4901:Phys. Rev 4786:1434-6028 4363:: 28992. 4338:109758743 4176:119469548 3848:CiteSeerX 3836:Physica B 3779:120738827 3736:0031-9228 3430:Arie Bijl 3342:˙ 3289:η 3240:˙ 3221:η 3217:− 3208:Δ 3059:− 2810:− 2788:ρ 2755:− 2733:ρ 2507:ρ 2454:− 2439:ρ 2423:→ 2420:∇ 2414:− 2386:→ 2362:ρ 2292:− 2261:μ 2239:μ 2208:With Eqs. 2187:λ 2082:′ 2064:′ 2026:∫ 1818:′ 1794:′ 1762:∫ 1668:′ 1650:′ 1612:∫ 1608:− 1603:′ 1579:′ 1547:∫ 1525:μ 1504:μ 1202:μ 1086:− 1062:μ 1029:fountain. 960:μ 899:Eq.  846:μ 837:→ 834:∇ 828:− 800:→ 710:μ 663:μ 654:→ 651:∇ 645:− 636:→ 598:→ 556:The mass 517:→ 483:→ 301:electrons 259:Film flow 184:annealing 121:in 1937. 56:viscosity 30:) is the 24:helium II 6245:dynamics 6108:Spinodal 6056:Concepts 5936:Freezing 5598:Archived 5257:25309672 5249:12857119 4794:53464405 4395:27363671 4298:20038102 4290:17501209 4237:41657202 4229:16711998 4123:45453420 4115:17155406 4055:Archived 4030:14724632 3972:16738652 3920:10032216 3502:See also 3468:Gaussian 2706:implies 1333:, so at 396:/Ļ and Ļ 356:/Ļ and Ļ 268:Rotation 71:helium-3 36:helium-4 34:form of 6335:sensing 6315:network 6300:machine 6270:imaging 6218:circuit 6213:channel 6185:Quantum 6068:Binodal 5956:Melting 5891:Boiling 5808:Crystal 5803:Colloid 5568:Bibcode 5490:Bibcode 5343:Bibcode 5290:Bibcode 5229:Bibcode 5172:Bibcode 5127:Bibcode 5092:Bibcode 5057:Bibcode 5015:Bibcode 4944:Bibcode 4936:Physica 4909:Bibcode 4886:4116542 4864:Bibcode 4837:4143290 4817:Bibcode 4766:Bibcode 4720:9937394 4700:Bibcode 4661:Bibcode 4589:Bibcode 4453:Bibcode 4445:Physica 4418:Bibcode 4386:4929499 4365:Bibcode 4270:Bibcode 4209:Bibcode 4156:Bibcode 4095:Bibcode 4038:3112651 4010:Bibcode 3980:4429923 3950:Bibcode 3900:Bibcode 3840:Bibcode 3802:Bibcode 3759:Bibcode 3714:Bibcode 3687:4135906 3667:Bibcode 3644:3997900 3622:Bibcode 3428:rings. 3000:(since 311:. (See 309:phonons 211:state. 93:History 83:fermion 60:inertia 40:isotope 6325:optics 6177:Fields 5696:Plasma 5677:Liquid 5586:  5470:  5457:online 5451:  5418:  5361:  5308:  5255:  5247:  5190:  4977:  4884:  4856:Nature 4835:  4809:Nature 4792:  4784:  4718:  4634:  4565:  4527:  4494:  4393:  4383:  4336:  4296:  4288:  4235:  4227:  4174:  4121:  4113:  4036:  4028:  4002:Nature 3994:E. Kim 3978:  3970:  3942:Nature 3918:  3850:  3777:  3734:  3685:  3659:Nature 3642:  3614:Nature 3472:phonon 2964:, and 2700:so Eq. 2348:gives 1867:where 458:empty. 248:, and 117:, and 105:, the 44:helium 6354:Other 6285:logic 5686:Vapor 5672:Solid 5665:State 5584:S2CID 5558:arXiv 5359:S2CID 5333:arXiv 5306:S2CID 5280:arXiv 5253:S2CID 5219:arXiv 5188:S2CID 5162:arXiv 5045:(PDF) 5003:(PDF) 4882:S2CID 4833:S2CID 4790:S2CID 4756:arXiv 4334:S2CID 4322:(PDF) 4294:S2CID 4260:arXiv 4233:S2CID 4199:arXiv 4172:S2CID 4146:arXiv 4119:S2CID 4085:arXiv 4065:2004. 4034:S2CID 3976:S2CID 3938:(PDF) 3869:(PDF) 3832:(PDF) 3775:S2CID 3683:S2CID 3640:S2CID 3480:roton 3476:maxon 3402:roton 3280:Here 2498:with 2220:, Eq. 1135:Here 123:Onnes 75:boson 52:fluid 38:, an 28:He-II 6431:List 5657:list 5468:ISBN 5449:ISBN 5416:ISBN 5245:PMID 4975:ISBN 4782:ISSN 4716:PMID 4632:ISBN 4563:ISBN 4525:ISBN 4492:ISBN 4391:PMID 4286:PMID 4225:PMID 4111:PMID 4026:PMID 3996:and 3968:PMID 3916:PMID 3877:2017 3732:ISSN 3595:2017 3486:and 3478:and 3374:CERN 3162:and 2871:and 2214:and 1923:and 992:and 305:spin 227:IRAS 113:and 101:and 79:spin 6203:bus 5682:Gas 5576:doi 5498:doi 5351:doi 5298:doi 5237:doi 5180:doi 5135:doi 5123:135 5100:doi 5088:106 5065:doi 5053:102 5023:doi 4952:doi 4917:doi 4872:doi 4860:141 4825:doi 4813:141 4774:doi 4708:doi 4669:doi 4624:doi 4597:doi 4484:doi 4461:doi 4426:doi 4381:PMC 4373:doi 4326:doi 4278:doi 4217:doi 4164:doi 4103:doi 4061:." 4018:doi 4006:427 3958:doi 3946:441 3908:doi 3858:doi 3810:doi 3798:136 3767:doi 3755:238 3722:doi 3675:doi 3663:142 3630:doi 3618:141 3372:at 3192:(7) 2703:(7) 2571:(5) 2562:(7) 2559:Eq. 2345:(1) 2342:in 2339:(6) 2223:(3) 2217:(5) 2211:(4) 1952:(3) 1488:(2) 1391:to 1301:to 1192:(2) 1041:(1) 938:(1) 902:(1) 422:+ Ļ 222:). 26:or 6449:: 5684:/ 5582:. 5574:. 5566:. 5554:90 5552:. 5496:. 5486:71 5484:. 5439:, 5393:, 5357:. 5349:. 5341:. 5329:44 5327:. 5304:. 5296:. 5288:. 5276:85 5274:. 5251:. 5243:. 5235:. 5227:. 5215:90 5213:. 5209:. 5186:. 5178:. 5170:. 5156:. 5133:. 5121:. 5098:. 5086:. 5063:. 5051:. 5047:. 5021:. 5011:94 5009:. 5005:. 4950:. 4938:. 4915:. 4905:72 4903:. 4880:. 4870:. 4858:. 4854:. 4831:. 4823:. 4811:. 4788:. 4780:. 4772:. 4764:. 4752:91 4750:. 4714:. 4706:. 4696:32 4694:. 4690:. 4667:. 4657:53 4655:. 4630:. 4618:. 4595:. 4585:20 4583:. 4544:, 4490:. 4459:. 4447:. 4424:. 4414:79 4412:. 4389:. 4379:. 4371:. 4359:. 4355:. 4332:. 4315:. 4292:. 4284:. 4276:. 4268:. 4256:98 4254:. 4231:. 4223:. 4215:. 4207:. 4195:96 4193:. 4170:. 4162:. 4154:. 4142:98 4140:. 4117:. 4109:. 4101:. 4093:. 4081:97 4079:. 4032:. 4024:. 4016:. 4004:. 3974:. 3966:. 3956:. 3944:. 3940:. 3914:. 3906:. 3896:55 3894:. 3856:. 3846:. 3834:. 3808:. 3796:. 3773:. 3765:. 3753:. 3730:. 3720:. 3710:63 3708:. 3704:. 3681:. 3673:. 3661:. 3638:. 3628:. 3616:. 3612:. 3571:. 3498:. 3474:, 3376:. 3116:. 2924:, 404:(Ļ 319:. 172:. 149:. 89:. 62:. 6162:e 6155:t 6148:v 5659:) 5655:( 5645:e 5638:t 5631:v 5590:. 5578:: 5570:: 5560:: 5504:. 5500:: 5492:: 5459:) 5365:. 5353:: 5345:: 5335:: 5312:. 5300:: 5292:: 5282:: 5259:. 5239:: 5231:: 5221:: 5194:. 5182:: 5174:: 5164:: 5158:9 5141:. 5137:: 5129:: 5106:. 5102:: 5094:: 5071:. 5067:: 5059:: 5029:. 5025:: 5017:: 4983:. 4958:. 4954:: 4946:: 4940:8 4923:. 4919:: 4911:: 4888:. 4874:: 4866:: 4839:. 4827:: 4819:: 4796:. 4776:: 4768:: 4758:: 4722:. 4710:: 4702:: 4675:. 4671:: 4663:: 4640:. 4626:: 4603:. 4599:: 4591:: 4569:. 4531:. 4500:. 4486:: 4467:. 4463:: 4455:: 4449:2 4432:. 4428:: 4420:: 4397:. 4375:: 4367:: 4361:6 4340:. 4328:: 4300:. 4280:: 4272:: 4262:: 4239:. 4219:: 4211:: 4201:: 4178:. 4166:: 4158:: 4148:: 4125:. 4105:: 4097:: 4087:: 4040:. 4020:: 4012:: 3982:. 3960:: 3952:: 3922:. 3910:: 3902:: 3879:. 3860:: 3842:: 3816:. 3812:: 3804:: 3781:. 3769:: 3761:: 3738:. 3724:: 3716:: 3689:. 3677:: 3669:: 3646:. 3632:: 3624:: 3597:. 3349:n 3339:V 3315:Z 3293:n 3273:) 3271:9 3269:( 3252:. 3247:n 3237:V 3230:Z 3225:n 3214:= 3211:p 3175:L 3171:T 3148:H 3144:T 3102:r 3098:T 3075:. 3070:r 3067:f 3063:p 3054:r 3050:p 3046:= 3043:0 3021:0 3018:= 3013:l 3009:T 2988:0 2985:= 2980:l 2977:f 2973:p 2950:r 2946:z 2942:= 2937:l 2933:z 2912:0 2909:= 2904:l 2900:p 2879:r 2859:l 2844:) 2842:8 2840:( 2821:r 2818:f 2814:p 2805:r 2801:z 2797:g 2792:0 2784:+ 2779:r 2775:p 2771:= 2766:l 2763:f 2759:p 2750:l 2746:z 2742:g 2737:0 2729:+ 2724:l 2720:p 2688:0 2685:= 2680:s 2676:v 2655:0 2652:= 2647:l 2643:p 2622:0 2619:= 2614:l 2610:T 2587:f 2583:p 2542:0 2539:m 2535:V 2530:/ 2524:4 2520:M 2516:= 2511:0 2491:) 2489:7 2487:( 2470:. 2467:) 2462:f 2458:p 2451:z 2448:g 2443:0 2435:+ 2432:p 2429:( 2411:= 2405:t 2401:d 2393:s 2383:v 2375:d 2366:0 2329:) 2327:6 2325:( 2308:. 2305:) 2300:f 2296:p 2289:p 2286:( 2281:0 2278:m 2274:V 2270:+ 2265:0 2257:= 2254:) 2251:T 2248:, 2245:p 2242:( 2203:g 2183:T 2179:= 2176:T 2154:f 2150:p 2134:) 2132:5 2130:( 2113:. 2108:f 2104:p 2098:0 2095:m 2091:V 2087:= 2078:T 2073:d 2069:) 2060:T 2056:, 2053:p 2050:( 2045:m 2041:S 2035:T 2030:0 1998:f 1994:p 1971:0 1968:m 1964:V 1937:0 1934:= 1931:p 1911:0 1908:= 1905:T 1883:0 1880:m 1876:V 1860:) 1858:4 1856:( 1839:p 1834:0 1831:m 1827:V 1823:= 1814:p 1809:d 1805:) 1802:0 1799:, 1790:p 1786:( 1781:m 1777:V 1771:p 1766:0 1734:m 1730:V 1709:p 1694:) 1692:3 1690:( 1673:. 1664:T 1659:d 1655:) 1646:T 1642:, 1639:p 1636:( 1631:m 1627:S 1621:T 1616:0 1599:p 1594:d 1590:) 1587:0 1584:, 1575:p 1571:( 1566:m 1562:V 1556:p 1551:0 1543:+ 1540:) 1537:0 1534:, 1531:0 1528:( 1522:= 1519:) 1516:T 1513:, 1510:p 1507:( 1473:0 1470:= 1467:p 1463:d 1442:0 1439:= 1436:T 1432:d 1411:) 1408:T 1405:, 1402:p 1399:( 1379:) 1376:0 1373:, 1370:p 1367:( 1347:0 1344:= 1341:T 1321:) 1318:0 1315:, 1312:p 1309:( 1289:) 1286:0 1283:, 1280:0 1277:( 1257:T 1249:ā€“ 1237:p 1217:) 1214:T 1211:, 1208:p 1205:( 1175:m 1171:V 1148:m 1144:S 1128:) 1126:2 1124:( 1107:. 1104:T 1100:d 1094:m 1090:S 1083:p 1079:d 1073:m 1069:V 1065:= 1058:d 1012:. 1000:T 980:p 918:s 914:v 892:) 890:1 888:( 871:. 868:) 865:z 862:g 857:4 853:M 849:+ 843:( 825:= 819:t 815:d 807:s 797:v 789:d 780:4 776:M 750:z 730:g 688:. 685:) 682:z 679:g 674:4 670:M 666:+ 660:( 642:= 633:F 605:s 595:v 569:4 565:M 542:. 536:t 532:d 524:s 514:v 506:d 497:4 493:M 489:= 480:F 436:n 432:n 424:s 420:n 413:Ī» 410:T 406:s 402:n 398:s 394:n 392:Ļ 364:. 362:T 358:s 354:n 22:(

Index

superfluid
helium-4
isotope
helium
state of matter
fluid
viscosity
inertia
Boseā€“Einstein condensate
helium-3
boson
spin
fermion
superconductivity
quantum hydrodynamics
macroscopic quantum phenomena
superfluidity
Pyotr Kapitsa
John F. Allen
Don Misener
Onnes
phase transition
phenomenological
quantized vortex
Josephson effect
solid hydrogen
Fermionic condensate
diatomic molecules
Boseā€“Einstein condensation
Cooper pairs

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘