Knowledge

Supercapacitor

Source 📝

1539: 3525: 1549: 5161: 2619:
for a homogeneous distribution of metal oxide or electrically conducting polymers (ECPs), producing good pseudocapacitance and good double-layer capacitance. These electrodes achieve higher capacitances than either pure carbon or pure metal oxide or polymer-based electrodes. This is attributed to the accessibility of the nanotubes' tangled mat structure, which allows a uniform coating of pseudocapacitive materials and three-dimensional charge distribution. The process to anchor pseudocapactive materials usually uses a hydrothermal process. However, a recent researcher, Li et al., from the University of Delaware found a facile and scalable approach to precipitate MnO2 on a SWNT film to make an organic-electrolyte based supercapacitor.
440: 5127: 4911:
dips momentarily, and to store energy in the reverse conditions. They are useful in this scenario, because micro grids are increasingly producing power in DC, and capacitors can be utilized in both DC and AC applications. Supercapacitors work best in conjunction with chemical batteries. They provide an immediate voltage buffer to compensate for quick changing power loads due to their high charge and discharge rate through an active control system. Once the voltage is buffered, it is put through an inverter to supply AC power to the grid. Supercapacitors cannot provide frequency correction in this form directly in the AC grid.
1900:(CAC) is the most used electrode material for supercapacitors and may be cheaper than other carbon derivatives. It is produced from activated carbon powder pressed into the desired shape, forming a block with a wide distribution of pore sizes. An electrode with a surface area of about 1000 m/g results in a typical double-layer capacitance of about 10 μF/cm and a specific capacitance of 100 F/g. As of 2010 virtually all commercial supercapacitors use powdered activated carbon made from coconut shells. Coconut shells produce activated carbon with more micropores than does charcoal made from wood. 31: 5358: 4814:, air conditioning systems, and advanced power conversion systems cause current fluctuations and harmonics. These current differences create unwanted voltage fluctuations and therefore power oscillations on the grid. Power oscillations not only reduce the efficiency of the grid, but can cause voltage drops in the common coupling bus, and considerable frequency fluctuations throughout the entire system. To overcome this problem, supercapacitors can be implemented as an interface between the load and the grid to act as a buffer between the grid and the high pulse power drawn from the charging station. 1078: 5562: 4640:
manufacturer. Roughly, they divide supercapacitors into two groups. The first group offers greater ESR values of about 20 milliohms and relatively small capacitance of 0.1 to 470 F. These are "double-layer capacitors" for memory back-up or similar applications. The second group offers 100 to 10,000 F with a significantly lower ESR value under 1 milliohm. These components are suitable for power applications. A correlation of some supercapacitor series of different manufacturers to the various construction features is provided in Pandolfo and Hollenkamp.
5082: 5466: 3884: 1094: 1748: 3909: 3589: 280: 3517: 2996: 2980: 39: 943:) of the redox electrode reagent. They enter the negative electrode and flow through the external circuit to the positive electrode where a second double-layer with an equal number of anions has formed. The electrons reaching the positive electrode are not transferred to the anions forming the double-layer, instead they remain in the strongly ionized and "electron hungry" transition-metal ions of the electrode's surface. As such, the storage capacity of faradaic pseudocapacitance is limited by the finite quantity of 1571:. This construction is subsequently rolled or folded into a cylindrical or rectangular shape and can be stacked in an aluminum can or an adaptable rectangular housing. The cell is then impregnated with a liquid or viscous electrolyte of organic or aqueous type. The electrolyte, an ionic conductor, enters the pores of the electrodes and serves as the conductive connection between the electrodes across the separator. Finally, the housing is hermetically sealed to ensure stable behavior over the specified lifetime. 4424:," "life expectancy," or "load life," can reach 10 to 15 years or more, at room temperature. Such long periods cannot be tested by manufacturers. Hence, they specify the expected capacitor lifetime at the maximum temperature and voltage conditions. The results are specified in datasheets using the notation "tested time (hours)/max. temperature (°C)," such as "5000 h/65 °C". With this value, and expressions derived from historical data, lifetimes can be estimated for lower temperature conditions. 4604: 1527: 2988: 3126: 867: 5609: 1086: 689: 455:), and an electrolyte ionically connecting both electrodes. When the electrodes are polarized by an applied voltage, ions in the electrolyte form electric double layers of opposite polarity to the electrode's polarity. For example, positively polarized electrodes will have a layer of negative ions at the electrode/electrolyte interface along with a charge-balancing layer of positive ions adsorbing onto the negative layer. The opposite is true for the negatively polarized electrode. 2136:. They have a hollow structure with walls formed by one-atom-thick sheets of graphite. These sheets are rolled at specific and discrete ("chiral") angles, and the combination of chiral angle and radius controls properties such as electrical conductivity, electrolyte wettability and ion access. Nanotubes are categorized as single-walled nanotubes (SWNTs) or multi-walled nanotubes (MWNTs). The latter have one or more outer tubes successively enveloping a SWNT, much like the Russian 4644:
electrochemical charge transfer kinetics of batteries, they can charge and discharge at a much higher rate, with lifetimes of more than 1 million cycles. The EDLC energy density is determined by operating voltage and the specific capacitance (farad/gram or farad/cm) of the electrode/electrolyte system. The specific capacitance is related to the Specific Surface Area (SSA) accessible by the electrolyte, its interfacial double-layer capacitance, and the electrode material density.
761: 311:. In 1957 H. Becker developed a "Low voltage electrolytic capacitor with porous carbon electrodes". He believed that the energy was stored as a charge in the carbon pores as in the pores of the etched foils of electrolytic capacitors. Because the double layer mechanism was not known by him at the time, he wrote in the patent: "It is not known exactly what is taking place in the component if it is used for energy storage, but it leads to an extremely high capacity." 5398: 4398: 3146:. These result in delayed current flow, reducing the total electrode surface area that can be covered with ions if polarity changes – capacitance decreases with increasing AC frequency. Thus, the total capacitance is achieved only after longer measuring times. Out of the reason of the very strong frequency dependence of the capacitance, this electrical parameter has to be measured with a special constant current charge and discharge measurement, defined in 5255: 852:
charge in conventional capacitors is transferred via electrons, capacitance in double-layer capacitors is related to the limited moving speed of ions in the electrolyte and the resistive porous structure of the electrodes. Since no chemical changes take place within the electrode or electrolyte, charging and discharging electric double-layers in principle is unlimited. Real supercapacitors lifetimes are only limited by electrolyte evaporation effects.
4823: 4587: 12787: 1580: 5379:, Germany. It was MAN's so-called "Ultracapbus", and was tested in real operation in 2001/2002. The test vehicle was equipped with a diesel-electric drive in combination with supercapacitors. The system was supplied with 8 Ultracap modules of 80 V, each containing 36 components. The system worked with 640 V and could be charged/discharged at 400 A. Its energy content was 0.4 kWh with a weight of 400 kg. 4578:. Leakage depends on capacitance, voltage, temperature, and the chemical stability of the electrode/electrolyte combination. At room temperature, leakage is so low that it is specified as time to self-discharge in hours, days, or weeks. As an example, a 5.5 V/F Panasonic "Goldcapacitor" specifies a voltage drop at 20 °C from 5.5 V to 3 V in 600 hours (25 days or 3.6 weeks) for a double cell capacitor. 1159:), the potential of the capacitor decreases symmetrically over both double-layers, whereby a voltage drop across the equivalent series resistance (ESR) of the electrolyte is achieved. For asymmetrical supercapacitors like hybrid capacitors the voltage drop between the electrodes could be asymmetrical. The maximum potential across the capacitor (the maximal voltage) is limited by the electrolyte decomposition voltage. 928: 954:, and its magnitude may exceed the value of double-layer capacitance for the same surface area by factor of 100, depending on the nature and the structure of the electrode, because all the pseudocapacitance reactions take place only with de-solvated ions, which are much smaller than solvated ion with their solvating shell. The amount of pseudocapacitance has a linear function within narrow limits determined by the 5204: 5478: 1519: 4657: 4627:
changes depending on whether a component is considered as a generator or as a consumer of current. In electrochemistry, cathode and anode are related to reduction and oxidation reactions, respectively. However, in supercapacitors based on electric double-layer capacitance, there is no oxidation nor reduction reactions on any of the two electrodes. Therefore, the concepts of cathode and anode do not apply.
1922: 2926:) are more expensive than aqueous electrolytes, but they have a higher dissociation voltage of typically 1.35 V per electrode (2.7 V capacitor voltage), and a higher temperature range. The lower electrical conductivity of organic solvents (10 to 60 mS/cm) leads to a lower specific power, but since the specific energy increases with the square of the voltage, a higher specific energy. 2626:. In this case the relatively small lithium atoms intercalate between the layers of carbon. The anode is made of lithium-doped carbon, which enables lower negative potential with a cathode made of activated carbon. This results in a larger voltage of 3.8-4 V that prevents electrolyte oxidation. As of 2007 they had achieved capacitance of 550 F/g. and reach a specific energy up to 14 Wh/kg ( 2097: 5108:. The capacitors capture the braking energy of a full stop and deliver the peak current for starting the diesel engine and acceleration of the train and ensures the stabilization of line voltage. Depending on the driving mode up to 30% energy saving is possible by recovery of braking energy. Low maintenance and environmentally friendly materials encouraged the choice of supercapacitors. 2046: 2109: 1986: 5573:(HEV) are well investigated. A 20 to 60% fuel reduction has been claimed by recovering brake energy in EVs or HEVs. The ability of supercapacitors to charge much faster than batteries, their stable electrical properties, broader temperature range and longer lifetime are suitable, but weight, volume and especially cost mitigate those advantages. 350:
transfer between electrodes and ions. His "supercapacitor" stored electrical charge partially in the Helmholtz double-layer and partially as result of faradaic reactions with "pseudocapacitance" charge transfer of electrons and protons between electrode and electrolyte. The working mechanisms of pseudocapacitors are redox reactions,
3900:). Device properties can also be seen to be dependent on device temperature. As the temperature of the device changes either through operation of varying ambient temperature, the internal properties such as capacitance and resistance will vary as well. Device capacitance is seen to increase as the operating temperature increases. 1151:(supercapacitors) consists of two electrodes separated by an ion-permeable membrane (separator) and electrically connected via an electrolyte. Energy storage occurs within the double-layers of both electrodes as a mixture of a double-layer capacitance and pseudocapacitance. When both electrodes have approximately the same 4406:
Current load and cycle frequency generate internal heat, so that the evaporation-determining temperature is the sum of ambient and internal heat. This temperature is measurable as core temperature in the center of a capacitor body. The higher the core temperature, the faster the evaporation, and the shorter the lifetime.
2154:
behavior of flexible SWCNTs-supercapacitors in different 1 molar aqueous electrolytes with different anions and cations. The experimental results also showed for flexible supercapacitor that it is suggested to put enough pressure between the two electrodes to improve the aqueous electrolyte CNT supercapacitor.
423:'s FDK in 2007. They combine an electrostatic carbon electrode with a pre-doped lithium-ion electrochemical electrode. This combination increases the capacitance value. Additionally, the pre-doping process lowers the anode potential and results in a high cell output voltage, further increasing specific energy. 5002:
reducing cycling and extending battery life. Further military applications that require high specific power are phased array radar antennae, laser power supplies, military radio communications, avionics displays and instrumentation, backup power for airbag deployment and GPS-guided missiles and projectiles.
7813: 3875:
applications for supercapacitors of more than 1000 F can provide a maximum peak current of about 1000 A. Such high currents generate high thermal stress and high electromagnetic forces that can damage the electrode-collector connection requiring robust design and construction of the capacitors.
700:. The electrolyte is a mixture of positive and negative ions dissolved in a solvent such as water. At each of the two electrode surfaces originates an area in which the liquid electrolyte contacts the conductive metallic surface of the electrode. This interface forms a common boundary among two different 4648:
The specific capacitance is related to the specific surface area (SSA) accessible by the electrolyte, its interfacial double-layer capacitance, and the electrode material density. Graphene-based platelets with mesoporous spacer material is a promising structure for increasing the SSA of the electrolyte.
5639:
mountain. The gondolas sometimes run 24 hours per day, using electricity for lights, door opening and communication. The only available time for recharging batteries at the stations is during the brief intervals of guest loading and unloading, which is too short to recharge batteries. Supercapacitors
5242:
tram with an experimental energy recovery system called "STEEM". The system is fitted with 48 roof-mounted supercapacitors to store braking energy, which provides tramways with a high level of energy autonomy by enabling them to run without overhead power lines on parts of its route, recharging while
5001:
Supercapacitors' low internal resistance supports applications that require short-term high currents. Among the earliest uses were motor startup (cold engine starts, particularly with diesels) for large engines in tanks and submarines. Supercapacitors buffer the battery, handling short current peaks,
4417:, 20% loss of capacitance or double the internal resistance. The narrower definition is important for such applications, since heat increases linearly with increasing internal resistance, and the maximum temperature should not be exceeded. Temperatures higher than specified can destroy the capacitor. 4405:
Since supercapacitors do not rely on chemical changes in the electrodes (except for those with polymer electrodes), lifetimes depend mostly on the rate of evaporation of the liquid electrolyte. This evaporation is generally a function of temperature, current load, current cycle frequency and voltage.
2654:
Asymmetric supercapacitors (ASC) have shown a great potential candidate for high-performance supercapacitor due to their wide operating potential which can remarkably enhance the capacitive behavior. An advantage of this type of supercapacitors is their higher voltage and correspondingly their higher
2420:
electrodes. These transition metal electrodes offer excellent reversibility, with several hundred-thousand cycles. However, ruthenium is expensive and the 2.4 V voltage window for this capacitor limits their applications to military and space applications. Das et al. reported highest capacitance
2157:
CNTs can store about the same charge as activated carbon per unit surface area, but nanotubes' surface is arranged in a regular pattern, providing greater wettability. SWNTs have a high theoretical specific surface area of 1315 m/g, while that for MWNTs is lower and is determined by the diameter
2067:
Graphene has a theoretical specific surface area of 2630 m/g which can theoretically lead to a capacitance of 550 F/g. In addition, an advantage of graphene over activated carbon is its higher electrical conductivity. As of 2012, a new development used graphene sheets directly as electrodes
1040:
Supercapacitors can also be made with different materials and principles at the electrodes. If both of those materials use a fast, supercapacitor-type reaction (capacitance or pseudocapacitance), the result is called an asymmetric capacitor. The two electrodes have different electric potentials; when
5226:
without overhead wires, thus preserving the city's architectural heritage. The SC equipment cost an additional €270,000 per vehicle, which was expected to be recovered over the first 15 years of operation. The supercapacitors are charged at stop-over stations when the vehicle is at a scheduled stop.
5194:
to store mechanical braking energy with a roof-mounted supercapacitor unit. It contains several units each made of 192 capacitors with 2700 F / 2.7 V interconnected in three parallel lines. This circuit results in a 518 V system with an energy content of 1.5 kWh. For acceleration
4639:
The following table shows differences among capacitors of various manufacturers in capacitance range, cell voltage, internal resistance (ESR, DC or AC value) and volumetric and gravimetric specific energy. In the table, ESR refers to the component with the largest capacitance value of the respective
4381:
Just like specific energy, specific power is measured either gravimetrically in kilowatts per kilogram (kW/kg, specific power) or volumetrically in kilowatts per litre (kW/L, power density). Supercapacitor specific power is typically 10 to 100 times greater than for batteries and can reach values up
3771:
This time constant determines the charge/discharge time. A 100 F capacitor with an internal resistance of 30 mΩ for example, has a time constant of 0.03 • 100 = 3 s. After 3 seconds charging with a current limited only by internal resistance, the capacitor has 63.2% of full charge (or
2944:
Separators have to physically separate the two electrodes to prevent a short circuit by direct contact. It can be very thin (a few hundredths of a millimeter) and must be very porous to the conducting ions to minimize ESR. Furthermore, separators must be chemically inert to protect the electrolyte's
2662:
nanosheets and use it as positive electrodes with activated carbon (AC) as negative electrodes to fabricate asymmetric supercapacitor (ASC). It exhibits high energy density of 89.6 Wh/kg at 796 W/kg and stability of 93% after 10,000 cycles, which can be a great potential to be an excellent
2618:
Composite electrodes for hybrid-type supercapacitors are constructed from carbon-based material with incorporated or deposited pseudocapacitive active materials like metal oxides and conducting polymers. As of 2013 most research for supercapacitors explores composite electrodes. CNTs give a backbone
2165:
MWNTs have mesopores that allow for easy access of ions at the electrode–electrolyte interface. As the pore size approaches the size of the ion solvation shell, the solvent molecules are partially stripped, resulting in larger ionic packing density and increased faradaic storage capability. However,
2153:
A SWNT-based supercapacitor with aqueous electrolyte was systematically studied at University of Delaware in Prof. Bingqing Wei's group. Li et al., for the first time, discovered that the ion-size effect and the electrode-electrolyte wettability are the dominant factors affecting the electrochemical
1562:
Supercapacitors are constructed with two metal foils (current collectors), each coated with an electrode material such as activated carbon, which serve as the power connection between the electrode material and the external terminals of the capacitor. Specifically to the electrode material is a very
5532:
energy storage. The supercapacitor and flywheel components, whose rapid charge-discharge capabilities help in both braking and acceleration, made the Audi and Toyota hybrids the fastest cars in the race. In the 2012 Le Mans race the two competing TS030s, one of which was in the lead for part of the
5312:
In 2015, Alstom announced SRS, an energy storage system that charges supercapacitors on board a tram by means of ground-level conductor rails located at tram stops. This allows trams to operate without overhead lines for short distances. The system has been touted as an alternative to the company's
4910:
Micro grids are usually powered by clean and renewable energy. Most of this energy generation, however, is not constant throughout the day and does not usually match demand. Supercapacitors can be used for micro grid storage to instantaneously inject power when the demand is high and the production
4728:
Supercapacitors have advantages in applications where a large amount of power is needed for a relatively short time, where a very high number of charge/discharge cycles or a longer lifetime is required. Typical applications range from milliamp currents or milliwatts of power for up to a few minutes
4647:
Commercial EDLCs are based on two symmetric electrodes impregnated with electrolytes comprising tetraethylammonium tetrafluoroborate salts in organic solvents. Current EDLCs containing organic electrolytes operate at 2.7 V and reach energy densities around 5-8 Wh/kg and 7 to 10 Wh/L.
4409:
Evaporation generally results in decreasing capacitance and increasing internal resistance. According to IEC/EN 62391-2, capacitance reductions of over 30%, or internal resistance exceeding four times its data sheet specifications, are considered "wear-out failures," implying that the component has
3874:
The specified charge and discharge currents can be significantly exceeded by lowering the frequency or by single pulses. Heat generated by a single pulse may be spread over the time until the next pulse occurs to ensure a relatively small average heat increase. Such a "peak power current" for power
3870:
Supercapacitors (except those with polymer electrodes) can potentially support more than one million charge/discharge cycles without substantial capacity drops or internal resistance increases. Beneath the higher current load is this the second great advantage of supercapacitors over batteries. The
3866:
The specified cycle parameters under maximal conditions include charge and discharge current, pulse duration and frequency. They are specified for a defined temperature range and over the full voltage range for a defined lifetime. They can differ enormously depending on the combination of electrode
3137:
voltage (0.5 V) and a frequency of 100 Hz or 1 kHz depending on the capacitor type. The AC capacitance measurement offers fast results, important for industrial production lines. The capacitance value of a supercapacitor depends strongly on the measurement frequency, which is related
1637:
Because double-layer capacitance and pseudocapacitance both contribute inseparably to the total capacitance value of an electrochemical capacitor, a correct description of these capacitors only can be given under the generic term. The concepts of supercapattery and supercabattery have been recently
5434:. In 2006, two commercial bus routes began to use the capabuses; one of them is route 11 in Shanghai. It was estimated that the supercapacitor bus was cheaper than a lithium-ion battery bus, and one of its buses had one-tenth the energy cost of a diesel bus with lifetime fuel savings of $ 200,000. 4594:
It has been noticed that after the EDLC experiences a charge or discharge, the voltage will drift over time, relaxing toward its previous voltage level. The observed relaxation can occur over several hours and is likely due to long diffusion time constants of the porous electrodes within the EDLC.
2961:
Current collectors connect the electrodes to the capacitor's terminals. The collector is either sprayed onto the electrode or is a metal foil. They must be able to distribute peak currents of up to 100 A. If the housing is made out of a metal (typically aluminum) the collectors should be made
411:
from an electrochemical capacitor, yielding a hybrid electrochemical capacitor. Evans' capacitors, coined Capattery, had an energy content about a factor of 5 higher than a comparable tantalum electrolytic capacitor of the same size. Their high costs limited them to specific military applications.
349:
electrochemical capacitors. In 1991 he described the difference between "supercapacitor" and "battery" behaviour in electrochemical energy storage. In 1999 he defined the term "supercapacitor" to make reference to the increase in observed capacitance by surface redox reactions with faradaic charge
4643:
In commercial double-layer capacitors, or, more specifically, EDLCs in which energy storage is predominantly achieved by double-layer capacitance, energy is stored by forming an electrical double layer of electrolyte ions on the surface of conductive electrodes. Since EDLCs are not limited by the
4561:
Lifetimes are also dependent on the operating voltage, because the development of gas in the liquid electrolyte depends on the voltage. The lower the voltage, the smaller the gas development, and the longer the lifetime. No general formula relates voltage to lifetime. The voltage dependent curves
3891:
Device parameters such as capacitance initial resistance and steady state resistance are not constant, but are variable and dependent on the device's operating voltage. Device capacitance will have a measurable increase as the operating voltage increases. For example: a 100F device can be seen to
2737:
The electrolyte must be chemically inert and not chemically attack the other materials in the capacitor to ensure long time stable behavior of the capacitor's electrical parameters. The electrolyte's viscosity must be low enough to wet the porous, sponge-like structure of the electrodes. An ideal
1509:
With regards to rechargeable batteries, supercapacitors feature higher peak currents, low cost per cycle, no danger of overcharging, good reversibility, non-corrosive electrolyte and low material toxicity. Batteries offer lower purchase cost and stable voltage under discharge, but require complex
4626:
In some literature, the terms "anode" and "cathode" are used in place of negative electrode and positive electrode. Using anode and cathode to describe the electrodes in supercapacitors (and also rechargeable batteries, including lithium-ion batteries) can lead to confusion, because the polarity
3297:
The standardized measuring method is too time consuming for manufacturers to use during production for each individual component. For industrial-produced capacitors, the capacitance value is instead measured with a faster, low-frequency AC voltage, and a correlation factor is used to compute the
3141:
This extraordinarily strong frequency dependence can be explained by the different distances the ions have to move in the electrode's pores. The area at the beginning of the pores can be easily accessed by the ions; this short distance is accompanied by low electrical resistance. The greater the
2087:
The two-dimensional structure of graphene improves charging and discharging. Charge carriers in vertically oriented sheets can quickly migrate into or out of the deeper structures of the electrode, thus increasing currents. Such capacitors may be suitable for 100/120 Hz filter applications,
1858:(2-50 nm), but only micropores (<2 nm) contribute to pseudocapacitance. As pore size approaches the solvation shell size, solvent molecules are excluded and only unsolvated ions fill the pores (even for large ions), increasing ionic packing density and storage capability by faradaic 748:
on the surface of the electrode and separate the oppositely polarized ions from each other, and can be idealised as a molecular dielectric. In the process, there is no transfer of charge between electrode and electrolyte, so the forces that cause the adhesion are not chemical bonds, but physical
719:
Applying a voltage to an electrochemical capacitor causes both electrodes in the capacitor to generate electrical double-layers. These double-layers consist of two layers of charges: one electronic layer is in the surface lattice structure of the electrode, and the other, with opposite polarity,
643:
Electrochemical capacitors use the double-layer effect to store electric energy; however, this double-layer has no conventional solid dielectric to separate the charges. There are two storage principles in the electric double-layer of the electrodes that contribute to the total capacitance of an
2695:
nanocomposite used as electrode can provide a specific energy and specific power of 32.2 Wh/kg and 747 W/kg. The device exhibited the capacitance retention of 85.05 % over 5000 cycles of operation. As far as known no commercial offered supercapacitors with such kind of asymmetric
1729:
Electric double-layer capacitors (EDLC) are electrochemical capacitors in which energy storage predominantly is achieved by double-layer capacitance. In the past, all electrochemical capacitors were called "double-layer capacitors". Contemporary usage sees double-layer capacitors, together with
1162:
Both electrostatic and electrochemical energy storage in supercapacitors are linear with respect to the stored charge, just as in conventional capacitors. The voltage between the capacitor terminals is linear with respect to the amount of stored energy. Such linear voltage gradient differs from
961:
The ability of electrodes to accomplish pseudocapacitance effects by redox reactions, intercalation or electrosorption strongly depends on the chemical affinity of electrode materials to the ions adsorbed on the electrode surface as well as on the structure and dimension of the electrode pores.
851:
The amount of charge stored per unit voltage in an electrochemical capacitor is primarily a function of the electrode size. The electrostatic storage of energy in the double-layers is linear with respect to the stored charge, and correspond to the concentration of the adsorbed ions. Also, while
2036:
adsorption treatment. CDC electrodes with tailored pore design offer as much as 75% greater specific energy than conventional activated carbons. As of 2015, a CDC supercapacitor offered a specific energy of 10.1 Wh/kg, 3,500 F capacitance and over one million charge-discharge cycles.
847:
The main drawback of carbon electrodes of double-layer SCs is small values of quantum capacitance which act in series with capacitance of ionic space charge. Therefore, further increase of density of capacitance in SCs can be connected with increasing of quantum capacitance of carbon electrode
756:
The amount of charge in the electrode is matched by the magnitude of counter-charges in outer Helmholtz plane (OHP). This double-layer phenomena stores electrical charges as in a conventional capacitor. The double-layer charge forms a static electric field in the molecular layer of the solvent
3784:
Because supercapacitors operate without forming chemical bonds, current loads, including charge, discharge and peak currents are not limited by reaction constraints. Current load and cycle stability can be much higher than for rechargeable batteries. Current loads are limited only by internal
399:, David A. Evans developed an "Electrolytic-Hybrid Electrochemical Capacitor". These capacitors combine features of electrolytic and electrochemical capacitors. They combine the high dielectric strength of an anode from an electrolytic capacitor with the high capacitance of a pseudocapacitive 5576:
Supercapacitors' lower specific energy makes them unsuitable for use as a stand-alone energy source for long distance driving. The fuel economy improvement between a capacitor and a battery solution is about 20% and is available only for shorter trips. For long distance driving the advantage
5066:
started using supercapacitors (circa 2014) as part of its stop-start fuel-saving system, which permits faster initial acceleration. Mazda's i-ELOOP system stores energy in a supercapacitor during deceleration and uses it to power on-board electrical systems while the engine is stopped by the
3153:
Measurement starts with charging the capacitor. The voltage has to be applied and after the constant current/constant voltage power supply has achieved the rated voltage, the capacitor must be charged for 30 minutes. Next, the capacitor has to be discharged with a constant discharge current
1725:
Double-layer capacitance and pseudocapacitance both contribute inseparably to the total capacitance value of a supercapacitor. However, the ratio of the two can vary greatly, depending on the design of the electrodes and the composition of the electrolyte. Pseudocapacitance can increase the
380:(ESR) increasing charge/discharge currents. The first supercapacitor with low internal resistance was developed in 1982 for military applications through the Pinnacle Research Institute (PRI), and were marketed under the brand name "PRI Ultracapacitor". In 1992, Maxwell Laboratories (later 5285:
of China presented a prototype two-car light metro train equipped with a roof-mounted supercapacitor unit. The train can travel up 2 km without wires, recharging in 30 seconds at stations via a ground mounted pickup. The supplier claimed the trains could be used in 100 small and
4012:
This formula describes the amount of energy stored and is often used to describe new research successes. However, only part of the stored energy is available to applications, because the voltage drop and the time constant over the internal resistance mean that some of the stored charge is
3600:
With the electrical model of cascaded, series-connected RC (resistor/capacitor) elements in the electrode pores, the internal resistance increases with the increasing penetration depth of the charge carriers into the pores. The internal DC resistance is time dependent and increases during
1124:
that permeates the dielectric between the electrodes. The total energy increases with the amount of stored charge, which in turn correlates linearly with the potential (voltage) between the plates. The maximum potential difference between the plates (the maximal voltage) is limited by the
6311:
Research into electrode materials requires measurement of individual components, such as an electrode or half-cell. By using a counterelectrode that does not affect the measurements, the characteristics of only the electrode of interest can be revealed. Specific energy and power for real
5290:, China. The supercapacitors are recharged in 30 seconds by a device positioned between the rails. That powers the tram for up to 4 kilometres (2.5 mi). As of 2017, Zhuzhou's supercapacitor vehicles are also used on the new Nanjing streetcar system, and are undergoing trials in 2733:
The electrolyte determines the capacitor's characteristics: its operating voltage, temperature range, ESR and capacitance. With the same activated carbon electrode an aqueous electrolyte achieves capacitance values of 160 F/g, while an organic electrolyte achieves only 100 F/g.
2464:
electrode delivered specific capacitance of 502.78 F/g and areal capacitance of 1.11 F/cm) leading to a specific energy of 39.28 Wh/kg and specific power of 128.01 kW/kg over 8,000 cycles with constant performance. The device was a three-dimensional (3D) sub-5 nm hydrous
843:
Assuming that the minimum distance between the electrode and the charge accumulating region cannot be less than the typical distance between negative and positive charges in atoms of ~0.05 nm a general capacitance upper limit of ~18 μF/cm has been predicted for non-faradaic capacitors.
5147:
uses fuel cells and batteries as primary energy storage and supercapacitors to buffer power peaks by storing braking energy. They provide the fork lift with peak power over 30 kW. The triple-hybrid system offers over 50% energy savings compared with Diesel or fuel-cell systems.
4573:
Storing electrical energy in the double-layer separates the charge carriers within the pores by distances in the range of molecules. Irregularities can occur over this short distance, leading to a small exchange of charge carriers and gradual discharge. This self-discharge is called
4615:
and catastrophic failure does not normally occur. However reverse-charging a supercapacitor lowers its capacity, so it is recommended practice to maintain the polarity resulting from the formation of the electrodes during production. Asymmetric supercapacitors are inherently polar.
3775:
Standard capacitors with constant internal resistance fully charge during about 5 τ. Since internal resistance increases with charge/discharge, actual times cannot be calculated with this formula. Thus, charge/discharge time depends on specific individual construction details.
2730:. In supercapacitors electrolytes are the electrically conductive connection between the two electrodes. Additionally, in supercapacitors the electrolyte provides the molecules for the separating monolayer in the Helmholtz double-layer and delivers the ions for pseudocapacitance. 4434:
The lifetime specification from datasheets can be used to estimate the expected lifetime for a given design. The "10-degrees-rule" used for electrolytic capacitors with non-solid electrolyte is used in those estimations, and can be used for supercapacitors. This rule employs the
1913:. Advantages of ACF electrodes include low electrical resistance along the fibre axis and good contact to the collector. As for activated carbon, ACF electrodes exhibit predominantly double-layer capacitance with a small amount of pseudocapacitance due to their micropores. 5676:). Research focuses on improving specific energy, reducing internal resistance, expanding temperature range, increasing lifetimes and reducing costs. Projects include tailored-pore-size electrodes, pseudocapacitive coating or doping materials and improved electrolytes. 3596:
Charging/discharging a supercapacitor is connected to the movement of charge carriers (ions) in the electrolyte across the separator to the electrodes and into their porous structure. Losses occur during this movement that can be measured as the internal DC resistance.
673:
Both capacitances are only separable by measurement techniques. The amount of charge stored per unit voltage in an electrochemical capacitor is primarily a function of the electrode size, although the amount of capacitance of each storage principle can vary extremely.
4227:
specifies the power of a theoretical rectangular single maximum current peak of a given voltage. In real circuits the current peak is not rectangular and the voltage is smaller, caused by the voltage drop, so IEC 62391–2 established a more realistic effective power
4635:
The range of electrodes and electrolytes available yields a variety of components suitable for diverse applications. The development of low-ohmic electrolyte systems, in combination with electrodes with high pseudocapacitance, enable many more technical solutions.
1563:
large surface area. In this example the activated carbon is electrochemically etched, so that the surface area of the material is about 100,000 times greater than the smooth surface. The electrodes are kept apart by an ion-permeable membrane (separator) used as an
1055:
A number of newer supercapacitors are "hybrid": only one electrode uses a fast reaction (capacitance or pseudocapacitance), the other using a more "battery-like" (slower but higher-capacity) material. For example, an EDLC anode can be combined with an activated
1908:
Activated carbon fibres (ACF) are produced from activated carbon and have a typical diameter of 10 μm. They can have micropores with a very narrow pore-size distribution that can be readily controlled. The surface area of ACF woven into a textile is about
3301:
This frequency dependence affects capacitor operation. Rapid charge and discharge cycles mean that neither the rated capacitance value nor specific energy are available. In this case the rated capacitance value is recalculated for each application condition.
6980: 11796:
Wang, Chengxiang; Osada, Minoru; Ebina, Yasuo; Li, Bao-Wen; Akatsuka, Kosho; Fukuda, Katsutoshi; Sugimoto, Wataru; Ma, Renzhi; Sasaki, Takayoshi (19 February 2014). "All-Nanosheet Ultrathin Capacitors Assembled Layer-by-Layer via Solution-Based Processes".
4875:(UPS) may be powered by supercapacitors, which can replace much larger banks of electrolytic capacitors. This combination reduces the cost per cycle, saves on replacement and maintenance costs, enables the battery to be downsized and extends battery life. 6777: 3575:
Higher application voltages require connecting cells in series. Since each component has a slight difference in capacitance value and ESR, it is necessary to actively or passively balance them to stabilize the applied voltage. Passive balancing employs
1738:
The properties of supercapacitors come from the interaction of their internal materials. Especially, the combination of electrode material and type of electrolyte determine the functionality and thermal and electrical characteristics of the capacitors.
2642:. Together with a carbon EDLC electrode in an asymmetric construction offers this configuration higher specific energy than typical supercapacitors with higher specific power, longer cycle life and faster charging and recharging times than batteries. 4388:
relate energy to power and are a valuable tool for characterizing and visualizing energy storage components. With such a diagram, the position of specific power and specific energy of different storage technologies is easily to compare, see diagram.
2650:
Recently some asymmetric hybrid supercapacitors were developed in which the positive electrode were based on a real pseudocapacitive metal oxide electrode (not a composite electrode), and the negative electrode on an EDLC activated carbon electrode.
2667:) were used as positive electrodes and AC as negative electrodes. It has high specific energy of 49.4 Wh/kg and good cycling stability (81.06% after cycling 8000 times). Besides, many kinds of nanocomposite are being studied as electrodes, like NiCo 832:. As a result, double-layer capacitors have much higher capacitance values than conventional capacitors, arising from the extremely large surface area of activated carbon electrodes and the extremely thin double-layer distance on the order of a few 326:
Early electrochemical capacitors used two aluminum foils covered with activated carbon (the electrodes) that were soaked in an electrolyte and separated by a thin porous insulator. This design gave a capacitor with a capacitance on the order of one
6738: 3571:
Operating supercapacitors below the rated voltage improves the long-time behavior of the electrical parameters. Capacitance values and internal resistance during cycling are more stable and lifetime and charge/discharge cycles may be extended.
1558:
Supercapacitors are made in different styles, such as flat with a single pair of electrodes, wound in a cylindrical case, or stacked in a rectangular case. Because they cover a broad range of capacitance values, the size of the cases can vary.
1068:
profiles of a hybrid capacitor have a shape between that of a battery and an SC, more similar to that of an SC. Hybrid capacitors have much higher energy density, but have inferior cycle life and current capacity owing to the slower electrode.
769:
The double-layer serves approximately as the dielectric layer in a conventional capacitor, albeit with the thickness of a single molecule. Thus, the standard formula for conventional plate capacitors can be used to calculate their capacitance:
2166:
the considerable volume change during repeated intercalation and depletion decreases their mechanical stability. To this end, research to increase surface area, mechanical strength, electrical conductivity and chemical stability is ongoing.
6658: 4117: 4007: 764:
Structure and function of an ideal double-layer capacitor. Applying a voltage to the capacitor at both electrodes a Helmholtz double-layer will be formed separating the ions in the electrolyte in a mirror charge distribution of opposite
322:
designs. The nature of electrochemical energy storage was not described in this patent. Even in 1970, the electrochemical capacitor patented by Donald L. Boos was registered as an electrolytic capacitor with activated carbon electrodes.
3272: 2071:
In one embodiment, a graphene-based supercapacitor uses curved graphene sheets that do not stack face-to-face, forming mesopores that are accessible to and wettable by ionic electrolytes at voltages up to 4 V. A specific energy of
5026:) helps with both. This requires components that can quickly store and release energy over long times with a high cycle rate. Supercapacitors fulfill these requirements and are therefore used in various applications in transportation. 4619:
Pseudocapacitor and hybrid supercapacitors which have electrochemical charge properties may not be operated with reverse polarity, precluding their use in AC operation. However, this limitation does not apply to EDLC supercapacitors
5199:
supply, thus better integrating the LRV into the urban environment. Compared to conventional LRVs or Metro vehicles that return energy into the grid, onboard energy storage saves up to 30% and reduces peak grid demand by up to 50%.
3495: 1849:
Carbon-based electrodes exhibit predominantly static double-layer capacitance, even though a small amount of pseudocapacitance may also be present depending on the pore size distribution. Pore sizes in carbons typically range from
11952:
Choudhary, Nitin; Li, Chao; Chung, Hee-Suk; Moore, Julian; Thomas, Jayan; Jung, Yeonwoong (27 December 2016). "High-Performance One-Body Core/Shell Nanowire Supercapacitor Enabled by Conformal Growth of Capacitive 2D WS2 Layers".
5308:
powered with supercapacitors that are recharged in 30 seconds by a device positioned between the rails, storing power to run the tram for up to 4 km — more than enough to reach the next stop, where the cycle can be repeated.
4963:
and a supercapacitor. Its cell construction contains a standard lead-acid battery positive electrode, standard sulphuric acid electrolyte and a specially prepared negative carbon-based electrode that store electrical energy with
458:
Additionally, depending on electrode material and surface shape, some ions may permeate the double layer becoming specifically adsorbed ions and contribute with pseudocapacitance to the total capacitance of the supercapacitor.
3536:
is the maximum DC voltage or peak pulse voltage that may be applied continuously and remain within the specified temperature range. Capacitors should never be subjected to voltages continuously in excess of the rated voltage.
1782:
The amount of double-layer as well as pseudocapacitance stored per unit voltage in a supercapacitor is predominantly a function of the electrode surface area. Therefore, supercapacitor electrodes are typically made of porous,
7303:
Yu, G.L.; Jalil, R.; Belle, B.; Mayorov, A.S.; Blake, P.; Schedin, F.; Morozov, S.V.; Ponomarenko, L.A.; Chiappini, F.; Wiedmann, S.; Zeitler, U.; Katsnelson, M.I.; Geim, A.K.; Novoselov, K.S.; Elias, D.C. (February 2013).
10325:
Lehtimäki, Suvi; Li, Miao; Salomaa, Jarno; Pörhönen, Juho; Kalanti, Antti; Tuukkanen, Sampo; Heljo, Petri; Halonen, Kari; Lupo, Donald (2014). "Performance of printable supercapacitors in an RF energy harvesting circuit".
271:. In electrochemical supercapacitors, the charge storage mechanisms either combine the double-layer and battery mechanisms, or are based on mechanisms, which are intermediate between true double layer and true battery. 3867:
porosity, pore size and electrolyte. Generally a lower current load increases capacitor life and increases the number of cycles. This can be achieved either by a lower voltage range or slower charging and discharging.
3112: 4369: 4300: 3673: 4968:. The presence of the supercapacitor electrode alters the chemistry of the battery and affords it significant protection from sulfation in high rate partial state of charge use, which is the typical failure mode of 4410:
reached end-of-life. The capacitors are operable, but with reduced capabilities. Whether the aberration of the parameters have any influence on the proper functionality depends on the application of the capacitors.
3381: 578:
Supercapacitors may have either symmetric or asymmetric electrodes. Symmetry implies that both electrodes have the same capacitance value, yielding a total capacitance of half the value of each single electrode (if
573: 2610:. An advantage of the hybrid-type supercapacitors compared with symmetrical EDLC's is their higher specific capacitance value as well as their higher rated voltage and correspondingly their higher specific energy. 1957:(μm) and with uniform pore size. Aerogel electrodes also provide mechanical and vibration stability for supercapacitors used in high-vibration environments. Researchers have created a carbon aerogel electrode with 9763:
Bonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A., . . . Pellegrini, V. (2015). Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science,
5142:
move and stack containers within a terminal. Lifting the boxes requires large amounts of energy. Some of the energy could be recaptured while lowering the load, resulting in improved efficiency. A triple hybrid
110:
Supercapacitors are used in applications requiring many rapid charge/discharge cycles, rather than long-term compact energy storage: in automobiles, buses, trains, cranes and elevators, where they are used for
1889:— a common approximation is that 1 gram (0.035 oz) (a pencil-eraser-sized amount) has a surface area of roughly 1,000 to 3,000 square metres (11,000 to 32,000 sq ft) — about the size of 4 to 12 10676: 10646: 4664:
Supercapacitors vary sufficiently that they are rarely interchangeable, especially those with higher specific energy. Applications range from low to high peak currents, requiring standardized test protocols.
5429:
that runs without powerlines (catenary free operation) using large onboard supercapacitors that partially recharge whenever the bus is at a stop (under so-called electric umbrellas), and fully charge in the
10029: 3862:
at maximum ambient temperature (which has only minor influence on expected lifetime). For that reason the specified charge and discharge currents for frequent cycling are determined by internal resistance.
3138:
to the porous electrode structure and the limited electrolyte's ion mobility. Even at a low frequency of 10 Hz, the measured capacitance value drops from 100 to 20 percent of the DC capacitance value.
5301:(Lyon public transportation administration) started experiments of a "way side regeneration" system built by Adetel Group which has developed its own energy saver named "NeoGreen" for LRV, LRT and metros. 3567:
with doped electrodes may reach a rated voltage of 3.8 to 4 V, but have a low voltage limit of about 2.2 V. Supercapacitors with ionic electrolytes can exceed an operating voltage of 3.5 V.
5413:
an electric bus fleet called TOHYCO-Rider was tested. The supercapacitors could be recharged via an inductive contactless high-speed power charger after every transportation cycle, within 3 to 4 minutes.
443:
Typical construction of a supercapacitor: (1) power source, (2) collector, (3) polarized electrode, (4) Helmholtz double layer, (5) electrolyte having positive and negative ions,
10560: 4520: 4204:. Supercapacitors can therefore store 10 to 100 times more energy than electrolytic capacitors, but only one tenth as much as batteries. For reference, petrol fuel has a specific energy of 44.4 MJ/kg or 11032: 4972:
used this way. The resulting cell performs with characteristics beyond either a lead-acid cell or a supercapacitor, with charge and discharge rates, cycle life, efficiency and performance all enhanced.
3693:(ESR) normally specified for capacitors. It is measured at 1 kHz. ESR is much smaller than DC resistance. ESR is not relevant for calculating supercapacitor inrush currents or other peak currents. 3592:
The internal DC resistance can be calculated out of the voltage drop obtained from the intersection of the auxiliary line extended from the straight part and the time base at the time of discharge start
168:), much smaller than in a conventional capacitor. The electric charge in EDLCs is stored in a two-dimensional interphase (surface) of an electronic conductor (e.g. carbon particle) and ionic conductor ( 4413:
Such large changes of electrical parameters specified in IEC/EN 62391-2 are usually unacceptable for high current load applications. Components that support high current loads use much smaller limits,
10831: 7197: 5382:
The supercapacitors recaptured braking energy and delivered starting energy. Fuel consumption was reduced by 10 to 15% compared to conventional diesel vehicles. Other advantages included reduction of
5592:
and an electric generator for driving the traction motors. A supercapacitor with relatively low capacitance recovers brake energy to power the electric motor when accelerating from a stop. Toyota's
4793:
with supercapacitors for energy storage has about half the run time of a comparable battery model, but can be fully charged in 90 seconds. It retains 85% of its charge after three months left idle.
3850: 1000:
Although conventional battery-type electrode materials also use chemical reactions to store charge, they show very different electrical profiles, as the rate of discharge is limited by the speed of
5580:
As of 2013 all automotive manufacturers of EV or HEVs have developed prototypes that uses supercapacitors instead of batteries to store braking energy in order to improve driveline efficiency. The
3613:. It is obtained from the intersection of the auxiliary line extended from the straight part and the time base at the time of discharge start (see picture right). Resistance can be calculated by: 5175:
in historical city areas, so preserving the city's architectural heritage. This approach may allow many new light rail city lines to replace overhead wires that are too expensive to fully route.
4611:
Since the positive and negative electrodes (or simply positrode and negatrode, respectively) of symmetric supercapacitors consist of the same material, theoretically supercapacitors have no true
2024:) processes. Carbide-derived carbons can exhibit high surface area and tunable pore diameters (from micropores to mesopores) to maximize ion confinement, increasing pseudocapacitance by faradaic 426:
Research departments active in many companies and universities are working to improve characteristics such as specific energy, specific power, and cycle stability and to reduce production costs.
11138: 6331:, (76.4% or US$ 36.3 billion of which was rechargeable batteries) to US$ 95 billion. The market for supercapacitors is still a small niche market that is not keeping pace with its larger rival. 5800:
Single-layers of curved graphene sheets that do not restack face-to-face, forming mesopores that are accessible to and wettable by environmentally friendly ionic electrolytes at a voltage up to
11157: 7965:
Chien, Hsing-Chi; Cheng, Wei-Yun; Wang, Yong-Hui; Lu, Shih-Yuan (5 December 2012). "Ultrahigh Specific Capacitances for Supercapacitors Achieved by Nickel Cobaltite/Carbon Aerogel Composites".
5584:
is the only production car that uses supercapacitors to recover braking energy. Branded as i-eloop, the regenerative braking is claimed to reduce fuel consumption by about 10%. Russian Yo-cars
4565:
Life expectancy for power applications may be also limited by current load or number of cycles. This limitation has to be specified by the relevant manufacturer and is strongly type dependent.
3007:". This is the value for which the capacitor has been designed. The value for an actual component must be within the limits given by the specified tolerance. Typical values are in the range of 10572: 10176:
Ghazanfari, A.; Hamzeh, M.; Mokhtari, H.; Karimi, H. (December 2012). "Active Power Management of Multihybrid Fuel Cell/Supercapacitor Power Conversion System in a Medium Voltage Microgrid".
2416:
Charge/discharge takes place over a window of about 1.2 V per electrode. This pseudocapacitance of about 720 F/g is roughly 100 times higher than for double-layer capacitance using
1767:-like shape of the particles hinting at their enormous surface area. Each particle in this image, despite being only around 0.1 mm across, has a surface area of several square centimeters. 807: 10702: 10616: 4431:
test called an "endurance test," with maximum temperature and voltage over a specified time. For a "zero defect" product policy, no wear out or total failure may occur during this test.
1141:) accounts for a small decrease of potential for "wet" electrolytic capacitors, while electrolytic capacitors with solid conductive polymer electrolyte this voltage drop is negligible. 3766: 10362: 11594:
Chien, Hsing-Chi; Cheng, Wei-Yun; Wang, Yong-Hui; Lu, Shih-Yuan (2012). "Ultrahigh Specific Capacitances for Supercapacitors Achieved by Nickel Cobaltite/Carbon Aerogel Composites".
9182:
Asaithambi, S.; Sakthivel, P.; Karuppaiah, M.; Yuvakkumar, R.; Balamurugan, K.; Ahamad, Tansir; Khan, M. A. Majeed; Ramalingam, G.; Mohammed, Mustafa K. A.; Ravi, G. (1 April 2021).
2158:
of the tubes and degree of nesting, compared with a surface area of about 3000 m/g of activated carbons. Nevertheless, CNTs have higher capacitance than activated carbon electrodes,
5504:
regulations be issued that includes a hybrid drive of up to 200 kW input and output power using "superbatteries" made with batteries and supercapacitors connected in parallel (
1595:; and the distribution of the two types of capacitance depends on the material and structure of the electrodes. There are three types of supercapacitors based on storage principle: 870:
Simplified view of a double-layer with specifically adsorbed ions which have submitted their charge to the electrode to explain the faradaic charge-transfer of the pseudocapacitance
9856: 9234:"Asymmetric supercapacitor of functionalised electrospun carbon fibers/poly(3,4-ethylenedioxythiophene)/manganese oxide//activated carbon with superior electrochemical performance" 7476:
Chodankar, Nilesh R.; Pham, Hong Duc; Nanjundan, Ashok Kumar; Fernando, Joseph F. S.; Jayaramulu, Kolleboyina; Golberg, Dmitri; Han, Young-Kyu; Dubal, Deepak P. (September 2020).
1882: 10534: 10732: 3563:
Standard supercapacitors with aqueous electrolyte normally are specified with a rated voltage of 2.1 to 2.3 V and capacitors with organic solvents with 2.5 to 2.7 V.
1163:
rechargeable electrochemical batteries, in which the voltage between the terminals remains independent of the amount of stored energy, providing a relatively constant voltage.
6337:
Supercapacitor costs in 2006 were US$ 0.01 per farad or US$ 2.85 per kilojoule, moving in 2008 below US$ 0.01 per farad, and were expected to drop further in the medium term.
3142:
distance the ions have to cover, the higher the resistance. This phenomenon can be described with a series circuit of cascaded RC (resistor/capacitor) elements with serial RC
11471:
Kou, Yan; Xu, Yanhong; Guo, Zhaoqi; Jiang, Donglin (2011). "Supercapacitive Energy Storage and Electric Power Supply Using an Aza-Fused π-Conjugated Microporous Framework".
4696:
Instantaneous power, for applications that requires relatively high current units or peak currents ranging up to several hundreds of amperes even with a short operating time
874:
Applying a voltage at the electrochemical capacitor terminals moves electrolyte ions to the opposite polarized electrode and forms a double-layer in which a single layer of
692:
Simplified view of a double-layer of negative ions in the electrode and solvated positive ions in the liquid electrolyte, separated by a layer of polarized solvent molecules
10548: 878:
molecules acts as separator. Pseudocapacitance can originate when specifically adsorbed ions out of the electrolyte pervade the double-layer. This pseudocapacitance stores
376:
At the end of the 1980s, improved electrode materials increased capacitance values. At the same time, the development of electrolytes with better conductivity lowered the
7811:, Nesbitt, C.C. & Sun, X., "Consolidated amorphous carbon materials, their manufacture and use", issued 2004-09-07, assigned to Reticle, Inc. 753:, electrostatic forces. The adsorbed molecules are polarized, but, due to the lack of transfer of charge between electrolyte and electrode, suffered no chemical changes. 7935: 3560:. The solvent molecules then cannot separate the electrical charges from each other. Higher voltages than rated voltage cause hydrogen gas formation or a short circuit. 1544:
1. terminals, 2. safety vent, 3. sealing disc, 4. aluminum can, 5. positive pole, 6. separator, 7. carbon electrode, 8. collector, 9. carbon electrode, 10. negative pole
10856: 7657:
Malmberg, Siret; Arulepp, Mati; Savest, Natalja; Tarasova, Elvira; Vassiljeva, Viktoria; Krasnou, Illia; Käärik, Maike; Mikli, Valdek; Krumme, Andres (1 January 2020).
2191:
for pseudocapacitors, since they have the electrochemical signature of a capacitive electrode (linear dependence on current versus voltage curve) as well as exhibiting
2602:
with an electrode with a high amount of double-layer capacitance. In such systems the faradaic pseudocapacitance electrode with their higher capacitance provides high
10680: 2299:
Brian Evans Conway's research described electrodes of transition metal oxides that exhibited high amounts of pseudocapacitance. Oxides of transition metals including
10654: 9569: 4031: 3941: 3725: 2936:, enabling capacitor voltages above 3.5 V. Ionic electrolytes typically have an ionic conductivity of a few mS/cm, lower than aqueous or organic electrolytes. 11515: 11004: 10089: 10026: 3180: 1953:
aerogels and are more conductive than most activated carbons. They enable thin and mechanically stable electrodes with a thickness in the range of several hundred
9589: 8136:
Yoo, J. J.; Balakrishnan, K.; Huang, J.; Meunier, V.; Sumpter, B. G.; Srivastava, A.; Conway, M.; Reddy, A. L. M.; Yu, J.; Vajtai, R.; Ajayan, P.M. (March 2011).
7636:"Electrochemical Evaluation of Directly Electrospun Carbide-Derived Carbon-Based Electrodes in Different Nonaqueous Electrolytes for Energy Storage Applications" 3033: 11029: 10769: 10391: 3411: 331:, significantly higher than electrolytic capacitors of the same dimensions. This basic mechanical design remains the basis of most electrochemical capacitors. 10264:
Inthamoussou, F. A.; Pegueroles-Queralt, J.; Bianchi, F. D. (September 2013). "Control of a Supercapacitor Energy Storage System for Microgrid Applications".
9529: 7578: 3892:
vary 26% from its maximum capacitance over its entire operational voltage range. Similar dependence on operating voltage is seen in steady state resistance (R
11891:
Peng, Zhiwei; Lin, Jian; Ye, Ruquan; Samuel, Errol L. G.; Tour, James M. (28 January 2015). "Flexible and Stackable Laser-Induced Graphene Supercapacitors".
11414:
Kim, T.Y.; Jung, G.; Yoo, S.; Suh, K.S.; Ruoff, R.S. (July 2013). "Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores".
11098: 10952: 9898:
Mangaraj, Mrutyunjaya; Panda, Anup Kumar; Penthia, Trilochan (2016). "Supercapacitor supported DSTATCOM for harmonic reduction and power factor correction".
8778:"Novel Electrode Materials for Thin-Film Ultracapacitors: Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide" 7201: 12531: 6941: 4706:
Fixed electric double-layer capacitors for use in electronic equipment - Blank detail specification - Electric double-layer capacitors for power application
12146: 10072: 7441: 5600:
fit supercapacitors to some of its cars as part of its stop-start fuel-saving system, as this permits faster start-ups when the traffic lights turn green.
1506:
in the lower frequency range. Supercapacitors can store 10 to 100 times more energy than electrolytic capacitors, but they do not support AC applications.
384:) took over this development. Maxwell adopted the term Ultracapacitor from PRI and called them "Boost Caps" to underline their use for power applications. 10411:
Jaafar, Amine; Sareni, Bruno; Roboam, Xavier; Thiounn-Guermeur, Marina (2010). "Sizing of a hybrid locomotive based on accumulators and ultracapacitors".
4439:: a simple formula for the temperature dependence of reaction rates. For every 10 °C reduction in operating temperature, the estimated life doubles. 3858:
Heat generally defines capacitor lifetime due to electrolyte diffusion. The heat generation coming from current loads should be smaller than 5 to 10 
361:
marketed its Goldcaps brand. This product became a successful energy source for memory backup applications. Competition started only years later. In 1987
1810:. Applications with high peak currents require larger pores and low internal losses, while applications requiring high specific energy need small pores. 11135: 6717: 2388:) alone or in combination generate strong faradaic electron–transferring reactions combined with low resistance. Ruthenium dioxide in combination with 1583:
Family tree of supercapacitor types. Double-layer capacitors and pseudocapacitors as well as hybrid capacitors are defined over their electrode designs
12101: 11263:
Yang, X.; Cheng, C.; Wang, Y.; Li, D. (August 2013). "Liquid-mediated dense integration of graphene materials for compact capacitive energy storage".
11154: 10799: 8579:
Signorelli, R.; D.C. Ku; J.G. Kassakian; J.E. Schindall (2009). "Electrochemical Double-Layer Capacitors Using Carbon Nanotube Electrode Structures".
1089:
Basic illustration of the functionality of a supercapacitor, the voltage distribution inside of the capacitor and its simplified equivalent DC circuit
912:
ion whereby only one electron per charge unit is participating. This faradaic charge transfer originates by a very fast sequence of reversible redox,
5278:
Hong Kong's South Island metro line is to be equipped with two 2 MW energy storage units that are expected to reduce energy consumption by 10%.
1498:
Electrolytic capacitors feature nearly unlimited charge/discharge cycles, high dielectric strength (up to 550 V) and good frequency response as
10580: 10118: 8749:
Toupin, Mathieu; Brousse, Thierry; Bélanger, Daniel (2004). "Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor".
9725: 268: 145:
or derivatives with much higher electrostatic double-layer capacitance than electrochemical pseudocapacitance, achieving separation of charge in a
9064: 5864:
Three-dimensional pore structures in graphene-derived carbons in which mesopores are integrated into macroporous scaffolds with a surface area of
3855:
This heat must be released and distributed to the ambient environment to maintain operating temperatures below the specified maximum temperature.
2945:
stability and conductivity. Inexpensive components use open capacitor papers. More sophisticated designs use nonwoven porous polymeric films like
1779:), high corrosion resistance and high surface areas per unit volume and mass. Other requirements include environmental friendliness and low cost. 12558: 9746: 6885: 9885: 8402:
Chenguang, L.; Zhenning, Y.; Neff, D.; Zhamu, A.; Jang, B.Z. (November 2010). "Graphene-based supercapacitor with an ultrahigh energy density".
5368:, an American supercapacitor maker, claimed that more than 20,000 hybrid buses use the devices to increase acceleration, particularly in China. 3053: 202:
electrodes with a high amount of electrochemical pseudocapacitance additional to the double-layer capacitance. Pseudocapacitance is achieved by
11177: 10710: 10624: 5672:
As of 2013 commercially available lithium-ion supercapacitors offered the highest gravimetric specific energy to date, reaching 15 Wh/kg (
4307: 4238: 3619: 696:
Every electrochemical capacitor has two electrodes, mechanically separated by a separator, which are ionically connected to each other via the
12122:
Tatrari, G.; Ahmed, M.; Shah, F. U. (2024). "Synthesis, thermoelectric and energy storage performance of transition metal oxides composites".
9795: 6244:
Three-dimensional laser-scribed graphene (LSG) structure for conductivity, porosity and surface area. Electrodes are around 15 microns thick.
4558:
Calculated with this formula, capacitors specified with 5000 h at 65 °C, have an estimated lifetime of 20,000 h at 45 °C.
3319: 494: 10911: 8044: 7898: 1893:. The bulk form used in electrodes is low-density with many pores, giving high double-layer capacitance. Solid activated carbon, also termed 1004:. Grinding those materials down to nanoscale frees them of the diffusion limit and give them a more pseudocapacitative behavior, making them 10366: 4943:
circuit) can be stored to a printed supercapacitor. The harvested energy was then used to power an application-specific integrated circuit (
3580:
in parallel with the supercapacitors. Active balancing may include electronic voltage management above a threshold that varies the current.
387:
Since capacitors' energy content increases with the square of the voltage, researchers were looking for a way to increase the electrolyte's
10363:"super capacitor supplier list | YEC | This high-energy capacitor from a defibrillator can deliver a lethal 500 joules of energy" 9778: 8519:
Arepalli, S.; H. Fireman; C. Huffman; P. Moloney; P. Nikolaev; L. Yowell; C.D. Higgins; K. Kim; P.A. Kohl; S.P. Turano; W.J. Ready (2005).
7862:
Fischer, U.; Saliger, R.; Bock, V.; Petricevic, R.; Fricke, J. (October 1997). "Carbon aerogels as electrode material in supercapacitors".
5534: 1730:
pseudocapacitors, as part of a larger family of electrochemical capacitors called supercapacitors. They are also known as ultracapacitors.
127:
The electrochemical charge storage mechanisms in solid media can be roughly (there is an overlap in some systems) classified into 3 types:
12065: 8226:
Pushparaj, V.L.; Shaijumon, M.M.; Kumar, A.; Murugesan, S.; Ci, L.; Vajtai, R.; Linhardt, R.J.; Nalamasu, O.; Ajayan, P.M. (August 2007).
1175:. The following table compares the major parameters of the three main supercapacitor families with electrolytic capacitors and batteries. 11196: 11184:, National Renewable Energy Laboratory, Golden, Colorado, 6th Advanced Automotive Battery Conference, Baltimore, Maryland, 17–19 May 2006 10524: 10147: 9860: 354:
and electrosorption (adsorption onto a surface). With his research, Conway greatly expanded the knowledge of electrochemical capacitors.
12077: 11996:
Raut, A.; Parker, C.; Glass, J. (2010). "A method to obtain a Ragone plot for evaluation of carbon nanotube supercapacitor electrodes".
11239: 6901: 3532:
Supercapacitors are low voltage components. Safe operation requires that the voltage remain within specified limits. The rated voltage U
2215:. Moreover, the charge storage mechanisms of transition-metal oxides are based predominantly on pseudocapacitance. Two mechanisms of MnO 11631:"Fast ionic diffusion-enabled nanoflake electrode by spontaneous electrochemical pre-intercalation for high-performance supercapacitor" 9144:
Naoi, Katsuhiko; Naoi, Wako; Aoyagi, Shintaro; Miyamoto, Jun-Ichi; Kamino, Takeo (2013). "New Generation "Nanohybrid Supercapacitor"".
8893:
Das, Rajib K.; Liu, Bo; Reynolds, John R.; Rinzler, Andrew G. (2009). "Engineered Macroporosity in Single-Wall Carbon Nanotube Films".
7698: 7384: 5328: 4215:
Although the specific energy of supercapacitors is defavorably compared with batteries, capacitors have the important advantage of the
4157:
of that capacitor is called its energy density (also called volumetric specific energy in some literature). Energy density is measured
2845:/cm. Aqueous electrolytes have a dissociation voltage of 1.15 V per electrode (2.3 V capacitor voltage) and a relatively low 1638:
proposed to better represent those hybrid devices that behave more like the supercapacitor and the rechargeable battery, respectively.
11770: 10933: 9974:
Farhadi, Mustafa; Mohammed, Osama (2015). "Performance enhancement of actively controlled hybrid DC microgrid and pulsed power load".
8624:
Li, X.; J. Rong; B. Wei (2010). "Electrochemical Behavior of Single-Walled Carbon Nanotube Supercapacitors under Compressive Stress".
8104: 7827:
Laine, J.; Yunes, S. (1992). "Effect of the preparation method on the pore size distribution of activated carbon from coconut shell".
10740: 8371: 4669: 3147: 12039: 11049: 10219:
Crispo, Rick; Brekken, Ted K. A. (2013). "A motor-generator and supercapacitor based system for microgrid frequency stabilization".
9300:
Huang, Yuanyuan; Shi, Tielin; Jiang, Shulan; Cheng, Siyi; Tao, Xiangxu; Zhong, Yan; Liao, Guanglan; Tang, Zirong (7 December 2016).
8993: 6427:
Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena
5243:
traveling on powered stop-over stations. During the tests, which took place between the Porte d'Italie and Porte de Choisy stops on
4857:, mitigating the effects of short power interruptions and high current peaks. Batteries kick in only during extended interruptions, 931:
A cyclic voltammogram (CV) shows the fundamental differences between static capacitance (rectangular) and pseudocapacitance (curved)
11866: 11458:"Microporous polymer material for supercapacitors with large capacitance, high energy and power densities and excellent cycle life" 9939:
Farhadi, Mustafa; Mohammed, Osama (2015). "Adaptive Energy Management in Redundant Hybrid DC Microgrid for Pulse Load Mitigation".
8048: 3700:
determines several supercapacitor properties. It limits the charge and discharge peak currents as well as charge/discharge times. R
1941:
derived from an organic gel in which the liquid component of the gel has been replaced with a gas. Aerogel electrodes are made via
1881:
was the first material chosen for EDLC electrodes. Even though its electrical conductivity is approximately 0.003% that of metals (
1630:: with asymmetric electrodes, one of which exhibits mostly electrostatic and the other mostly electrochemical capacitance, such as 5152:
transport containers to warehouses. They provide an economical, quiet and pollution-free alternative to Diesel terminal tractors.
4445: 10881: 8497: 6569:
Tehrani, Z.; Thomas, D.J.; Korochkina, T.; Phillips, C.O.; Lupo, D.; Lehtimäki, S.; O'Mahony, J.; Gethin, D.T. (2 January 2017).
5286:
medium-sized Chinese cities. Seven trams (street cars) powered by supercapacitors were scheduled to go into operation in 2014 in
2548: 304: 10832:"UITP 2015: Alstom launches SRS, a new ground-based static charging system, and extends its APS solution to road transportation" 8520: 5244: 2195:
behavior. Additionally, the charge storage originates from electron-transfer mechanisms rather than accumulation of ions in the
4673: 2663:
next-generation electrode candidate. Also, carbon nanofibers/poly(3,4-ethylenedioxythiophene)/manganese oxide (f-CNFs/PEDOT/MnO
11113: 10494: 7943: 3524: 2638:
Rechargeable battery electrodes influenced the development of electrodes for new hybrid-type supercapacitor electrodes as for
12361: 12311: 12254: 10468: 10430: 10240: 9915: 8008:
Presser, V.; Heon, M.; Gogotsi, Y. (March 2011). "Carbide-derived carbons – From porous networks to nanotubes and graphene".
7773: 7236: 6637: 3802: 1152: 5195:
when starting this "on-board-system" can provide the LRV with 600 kW and can drive the vehicle up to 1 km without
283:
The number of non-patent publications about supercapacitors by year has been increasing 10-fold every 7 years since ca. 1990
11682:"Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors" 2150:
Carbon nanotubes can greatly improve capacitor performance, due to the highly wettable surface area and high conductivity.
1795:. Additionally, the ability of the electrode material to perform faradaic charge transfers enhances the total capacitance. 1538: 607:). For asymmetric capacitors, the total capacitance can be taken as that of the electrode with the smaller capacitance (if 318:(SOHIO) developed another version of the component as "electrical energy storage apparatus", while working on experimental 9564: 2147:
Nanotubes can grow vertically on the collector substrate, such as a silicon wafer. Typical lengths are 20 to 100 μm.
1548: 12551: 10602: 3601:
charge/discharge. In applications often only the switch-on and switch-off range is interesting. The internal resistance R
3520:
A 5.5 volt supercapacitor is constructed out of two single cells, each rated to at least 2.75 volts, in series connection
11214: 11008: 10786: 10093: 9232:
Mohd Abdah, Muhammad Amirul Aizat; Azman, Nur Hawa Nabilah; Kulandaivalu, Shalini; Sulaiman, Yusran (14 November 2019).
5524:
race a TS030 qualified with a fastest lap only 1.055 seconds slower (3:24.842 versus 3:23.787) than the fastest car, an
1610:
electrodes or derivatives with much higher electrostatic double-layer capacitance than electrochemical pseudocapacitance
12288: 9586: 8445:
Miller, J.R.; Outlaw, R.A.; Holloway, B.C. (September 2010). "Graphene double-layer capacitor with ac line-filtering".
7023: 6820: 5227:
In April 2011 German regional transport operator Rhein-Neckar, responsible for Heidelberg, ordered a further 11 units.
5160: 11315: 11227:
A. E. KRAMER, Billionaire Backs a Gas–Electric Hybrid Car to Be Built in Russia, The New York Times, 13 December 2010
5966:/CNT/NF electrode as the anode assembled with an activated carbon (AC) cathode achieving a cell voltage of 1.8 V 974:
inserted by doping in the conductive electrode material such as active carbon, as well as conducting polymers such as
12713: 11926: 9302:"Enhanced cycling stability of NiCo2S4@NiO core-shell nanowire arrays for all-solid-state asymmetric supercapacitors" 6998: 6334:
In 2016, IDTechEx forecast sales to grow from $ 240 million to $ 2 billion by 2026, an annual increase of about 24%.
5282: 11514:
Izadi-Najafabadi, A.; Yamada, T.; Futaba, D. N.; Yudasaka, M.; Takagi, H.; Hatori, H.; Iijima, S.; Hata, K. (2011).
9513: 1041:
combined with proper balancing, the result is improved energy density with no loss of lifespan or current capacity.
9526: 8663:; Wojtowicz, J. (1997). "The role and the utilization of pseudocapacitance for energy storage by supercapacitors". 7609: 6570: 5105: 2081: 1771:
Supercapacitor electrodes are generally thin coatings applied and electrically connected to a conductive, metallic
10956: 8137: 7044: 1973:. Standard aerogel electrodes exhibit predominantly double-layer capacitance. Aerogel electrodes that incorporate 962:
Materials exhibiting redox behavior for use as electrodes in pseudocapacitors are transition-metal oxides like RuO
776: 8286: 6950: 6394: 4718:
Railway applications. Rolling stock equipment. Capacitors for power electronics. Electric double-layer capacitors
4712:
Electric double-layer capacitors for use in hybrid electric vehicles. Test methods for electrical characteristics
4232:
for supercapacitors for power applications, which is half the maximum and given by the following formulas :
17: 10941:
Jahresbericht 2003 - Programm "Verkehr & Akkumulatoren", HTA Luzern, Fachhochschule Zentralschweiz (Germany)
10069: 8938:"Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors" 7449: 5208: 3294:
The measurement methods employed by individual manufacturers are mainly comparable to the standardized methods.
1961:
densities of about 400–1200 m/g and volumetric capacitance of 104 F/cm, yielding a specific energy of
82:
than electrolytic capacitors, can accept and deliver charge much faster than batteries, and tolerates many more
12698: 12544: 12177: 10164: 9184:"Preparation of Fe-SnO2@CeO2 nanocomposite electrode for asymmetric supercapacitor device performance analysis" 9120:"FDK To Begin Mass Production of High-Capacity Li-Ion Capacitors; Automotive and Renewable Energy Applications" 7528:"An Ultra-High-Energy Density Supercapacitor; Fabrication Based on Thiol-functionalized Graphene Oxide Scrolls" 6361: 5876: 5216: 5076: 4872: 3732: 890: 713: 241: 149: 97: 9105: 4660:
Classification of supercapacitors into classes regarding to IEC 62391-1, IEC 62576 and BS EN 61881-3 standards
338:, who finally marketed the results as "supercapacitors" in 1978, to provide backup power for computer memory. 12791: 12678: 11071: 8313: 7224: 6382: 5641: 4902:
exhibit fluctuating supply evoked by gusting or clouds that supercapacitors can buffer within milliseconds.
2284:
Not every material that exhibits faradaic behavior can be used as an electrode for pseudocapacitors, such as
2101: 1775:
collector. Electrodes must have good conductivity, high temperature stability, long-term chemical stability (
11555:"A High Energy Density Asymmetric Supercapacitor from Nano-architectured Ni(OH)2/Carbon Nanotube Electrodes" 11114:"Post TOYOTA Racing Impresses In Le Mans Qualifying • TOYOTA Racing - FIA World Endurance Championship Team" 8994:"Improved supercapacitors for better batteries, electric vehicles « the Kurzweil Library + collections" 6714: 5336: 5269:
began tests of an LRV equipped with a prototype roof-mounted supercapacitor unit to recover braking energy.
3277:
The value of the discharge current is determined by the application. The IEC standard defines four classes:
1885:), it is sufficient for supercapacitors. Activated carbon is an extremely porous form of carbon with a high 291:
engineers began experimenting with porous carbon electrodes in the design of capacitors, from the design of
12098: 10806: 9077:
Li, Xin; Wei, Bingqing (2012). "Facile synthesis and super capacitive behavior of SWNT/MnO2 hybrid films".
7124:; Béguin, Francois (May 2001). "Carbon materials for the electrochemical storage of energy in capacitors". 5533:
race, both retired for reasons unrelated to the supercapacitors. The TS030 won three of the 8 races in the
3690: 2196: 2112: 1803: 377: 253: 11228: 7478:"True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors" 6373: – Battery used to power the electric motors of a battery electric vehicle or hybrid electric vehicle 5248: 3682:
for the measurement of internal resistance can be taken from the classification according to IEC 62391-1.
2983:
Schematic illustration of the capacitance behavior resulting out of the porous structure of the electrodes
1818:
The most commonly used electrode material for supercapacitors is carbon in various manifestations such as
10122: 8936:
Wang, W.; Guo, S.; Lee, I.; Ahmed, K.; Zhong, J.; Favors, Z.; Zaera, F.; Ozkan, M.; Ozkan, C. S. (2014).
4839: 2727: 2726:, making the electrolyte electrically conductive. The more ions the electrolyte contains, the better its 2409:
electrolyte provides specific capacitance of 720 F/g and a high specific energy of 26.7 Wh/kg (
370: 116: 10857:"Alstom's integrated tramway system starts commercial operation in Rio a few months before the Olympics" 10392:"First one up the drive: A new sort of storage device gives lithium-ion batteries a run for their money" 9720: 8858:
Zheng, J. P. (1995). "Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors".
8521:"Carbon-Nanotube-Based Electrochemical Double-Layer Capacitor Technologies for Spaceflight Applications" 7409:; Jurewicz, K.; Delpeux, K.; Béguin, Francois (July 2001). "Nanotubular Materials For Supercapacitors". 6978:, David A. Evans, "Containers with anodes and cathodes with electrolytes", issued 1994-11-29 3548:. The breakdown voltage decomposes the separating solvent molecules in the Helmholtz double-layer, e.g. 2473:(CNT) hybrid foam (RGM) architecture. The graphene foam was conformally covered with hybrid networks of 1510:
electronic control and switching equipment, with consequent energy loss and spark hazard given a short.
12820: 4745: 2655:
specific energy (up to 10-20 Wh/kg (36-72 kJ/kg)).And they also have good cycling stability.
83: 10789:(Wuhan's first supercapacitor 100%-low-floor streetcar starts its first trial run), 中国新闻网, 31 May 2016 9743: 9183: 7808: 6975: 6882: 6772: 6733: 6653: 6627: 5187: 5126: 4923:
systems. In energy harvesting systems, the energy is collected from the ambient or renewable sources,
4122:
This formula also represents the energy asymmetric voltage components such as lithium ion capacitors.
115:, short-term energy storage, or burst-mode power delivery. Smaller units are used as power backup for 12600: 12392:
Palaniselvam, Thangavelu; Baek, Jong-Beom (2015). "Graphene based 2D-materials for supercapacitors".
12351: 12196:
Bockris, J. O'M.; Devanathan, M. A. V.; Muller, K. (1963). "On the Structure of Charged Interfaces".
10454: 9612:
Enhanced physics-based reduced-order model of non-Faradaic electrical double-layer capacitor dynamics
9431: 9008: 8183:
Palaniselvam, Thangavelu; Baek, Jong-Beom (2015). "Graphene based 2D-materials for supercapacitors".
7727:
Pandolfo, A.G.; Hollenkamp, A.F. (June 2006). "Carbon properties and their role in supercapacitors".
7087: 6673: 6222:
Room-temperature solution-based manufacturing processes. Total thickness less than 30 nm. 
5556: 5318: 5314: 5259: 5191: 5139: 5090: 1707: 913: 351: 217: 42:
A diagram that shows a hierarchical classification of supercapacitors and capacitors of related types
11174: 10012: 7659:"Directly electrospun electrodes for electrical double-layer capacitors from carbide-derived carbon" 6775:, D. L. Boos, "Electrolytic capacitor having carbon paste electrodes", issued 1970-10-27 3878: 2598:
All commercial hybrid supercapacitors are asymmetric. They combine an electrode with high amount of
12749: 12744: 12615: 12234: 11363:
Y. Zhu; et al. (May 2011). "Carbon-based supercapacitors produced by activation of graphene".
11251: 9792: 9782:
EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, Stavanger/Norway 2009
7406: 7121: 6370: 6156:
Wrinkled single layer graphene sheets a few nanometers in size, with at least some covalent bonds.
5521: 5482: 4965: 4401:
The lifetime of supercapacitors depends mainly on the capacitor temperature and the voltage applied
2050: 1649: 1588: 951: 924:
with the atoms of the electrode (no chemical bonds arise) since only a charge-transfer take place.
721: 683: 648: 439: 10908: 7909: 5664:. The cabins are equipped with a modern infotainment system, which is powered by supercapacitors. 5394:
emissions, quiet and emissions-free engine starts, lower vibration and reduced maintenance costs.
12764: 12754: 12718: 12693: 12683: 12655: 11841: 9834: 9377: 8049:"High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon" 6376: 5570: 5550: 5525: 5442: 5266: 4847: 4811: 2712: 1756: 1718: 1097:
The voltage behavior of supercapacitors and batteries during charging/discharging differs clearly
917: 897: 452: 369:
that limited the discharge current. They were used for low current applications such as powering
362: 209: 10119:"Maxwell Technologies Ultracapacitors (ups power supply) Uninterruptible Power Supply Solutions" 6123:
interlayers. The nanoflake electrodes exhibit faster ionic diffusion with enhanced redox peaks.
5577:
decreases to 6%. Vehicles combining capacitors and batteries run only in experimental vehicles.
5357: 5275:
is delivering supercapacitor-enhanced light-rail transport systems that include mobile storage.
1081:
Charge storage principles of different capacitor types and their internal potential distribution
12723: 11341: 9636:(in vehicle propulsion, the efficiency of energy conversions should be considered resulting in 9119: 6761: 4928: 4147: 4112:{\displaystyle W_{\text{eff}}={\frac {1}{2}}\ C\cdot \ (V_{\text{max}}^{2}-V_{\text{min}}^{2})} 3924: 3920: 3545: 2933: 1993: 1823: 1564: 1130: 1077: 451:
capacitors (supercapacitors) consist of two electrodes separated by an ion-permeable membrane (
71: 12480:
Li, Qui (2015). "Flexible high-temperature dielectric materials from polymer nanocomposites".
12299: 11193: 10521: 10144: 5063: 4002:{\displaystyle W_{\text{max}}={\frac {1}{2}}\cdot C_{\text{total}}\cdot V_{\text{loaded}}^{2}} 2291:
since it is a battery type electrode (non-linear dependence on current versus voltage curve).
655:
storage of the electrical energy achieved by separation of charge in a Helmholtz double layer.
12650: 12595: 12567: 9999: 6905: 6388: 4753: 4749: 4216: 4189: 3564: 3267:{\displaystyle C_{\text{total}}=I_{\text{discharge}}\cdot {\frac {t_{2}-t_{1}}{V_{1}-V_{2}}}} 2846: 2738:
electrolyte does not exist, forcing a compromise between performance and other requirements.
2639: 2623: 2607: 2551:, resulting in a low ESR and a relatively high capacitance. Such conducting polymers include 2013: 1996:(CDC), also known as tunable nanoporous carbon, is a family of carbon materials derived from 1886: 1807: 1788: 1669: 1665: 1631: 1531: 1381: 1045: 416: 308: 153: 146: 30: 12321:
Leitner, K. W.; Winter, M.; Besenhard, J. O. (2003). "Composite Supercapacitor Electrodes".
11516:"High-Power Supercapacitor Electrodes from Single-Walled Carbon Nanohorn/Nanotube Composite" 11457: 10047: 7392: 6806: 6736:, Rightmire, Robert A., "Electrical energy storage apparatus", issued 1966-11-29 3015:
larger than those of electrolytic capacitors. The capacitance value results from the energy
2144:
walls, separated by spacing (0.34 nm) that is close to graphene's interlayer distance.
1171:
Supercapacitors compete with electrolytic capacitors and rechargeable batteries, especially
12489: 12442: 12401: 12205: 12161: 12005: 11739:"Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage" 11693: 11642: 11480: 11372: 11272: 10930: 10335: 10273: 9812: 9694: 9659: 9650:
Christen, T.; Ohler, C. (2002). "Optimizing energy storage components using Ragone plots".
9544: 9313: 9245: 9023: 8949: 8902: 8867: 8789: 8714:
Dillon, A.C. (2010). "Carbon Nanotubes for Photoconversion and Electrical Energy Storage".
8672: 8535: 8454: 8411: 8325: 8314:"Laser scribing of high-performance and flexible graphene-based electrochemical capacitors" 8239: 8192: 8149: 8111: 7836: 7736: 7593: 7414: 7327: 7169: 7133: 6854: 6585: 6527: 6434: 6275: 5365: 4854: 4835: 4790: 4168:
As of 2013 commercial energy density varies widely, but in general range from around 5 to
3710: 3129:
Illustration of the measurement conditions for measuring the capacitance of supercapacitors
1851: 1503: 1126: 381: 315: 296: 75: 9886:
Real-time operation and harmonic analysis of isolated and non-isolated hybrid DC microgrid
9514:
Properties and applications of supercapacitors, From the state-of-the-art to future trends
6843:"Transition from 'Supercapacitor' to 'Battery' Behavior in Electrochemical Energy Storage" 5926:
A tailored meso-macro pore structure held more electrolyte, ensuring facile ion transport
5561: 4834:
Supercapacitors provide backup or emergency shutdown power to low-power equipment such as
4668:
Test specifications and parameter requirements are specified in the generic specification
4623:
A bar in the insulating sleeve identifies the negative terminal in a polarized component.
2849:
range. They are used in supercapacitors with low specific energy and high specific power.
2219:
charge storage behavior were introduced. The first mechanism implies the intercalation of
2211:
since transition-metal oxides have a lower cost compared to noble metal oxides such as RuO
221: 8: 12815: 12703: 12688: 12640: 12610: 12043: 11629:
Mai, L; Li, H; Zhao, Y; Xu, L; Xu, X; Luo, Y; Zhang, Z; Ke, W; Niu, C; Zhang, Q. (2013).
6571:"Large-area printed supercapacitor technology for low-cost domestic green energy storage" 6324: 5657: 5589: 5538: 5509: 5465: 5372: 5081: 4899: 4895: 4768: 4761: 4612: 4197: 3883: 3490:{\displaystyle t={\frac {1}{2P}}\cdot C\cdot (U_{\text{charge}}^{2}-U_{\text{min}}^{2}).} 3134: 3012: 2873: 2861: 2810: 2782: 2745: 2586:
Conducting polymer electrodes generally suffer from limited cycling stability. However,
2433:
of 1715 F/g has been reported which closely approaches the predicted theoretical maximum
2203:
reactions that occur within the active electrode materials. More research was focused on
2064:, with atoms arranged in a regular hexagonal pattern, also called "nanocomposite paper". 1938: 1855: 1726:
capacitance value by as much as a factor of ten over that of the double-layer by itself.
1499: 1172: 366: 12493: 12446: 12405: 12241:. Advanced Materials and Technologies. Vol. 20091238. CRC Press. pp. 329–375. 12209: 12165: 12009: 11771:"Ultra-thin capacitors could acclerate development of next-gen electronics | KurzweilAI" 11697: 11646: 11484: 11376: 11276: 10339: 10277: 10079:, Doctoral school of energy- and geo-technology, 15–20 January 2007. Kuressaare, Estonia 9698: 9663: 9378:"Novel Skutterudite CoP3–Based Asymmetric Supercapacitor with Super High Energy Density" 9376:
Jiang, Jing; Li, Zhipeng; He, Xinrui; Hu, Yalin; Li, Fu; Huang, Pei; Wang, Chao (2020).
9317: 9249: 9027: 8953: 8906: 8871: 8793: 8676: 8539: 8458: 8415: 8329: 8243: 8196: 8153: 8079: 7840: 7740: 7597: 7418: 7331: 7280: 7253: 7137: 6858: 6589: 6531: 6518:
Bueno, Paulo R. (28 February 2019). "Nanoscale origins of super-capacitance phenomena".
6438: 2622:
Another way to enhance CNT electrodes is by doping with a pseudocapacitive dopant as in
12513: 12468: 12417: 12413: 12338: 12269:
Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications
12264: 12221: 12021: 11822: 11714: 11681: 11665: 11630: 11611: 11576: 11439: 11396: 11296: 10978: 10436: 10307: 10246: 10201: 9987: 9956: 9921: 9900:
2016 IEEE Students' Conference on Electrical, Electronics and Computer Science (SCEECS)
9495: 9413: 9355: 9342: 9301: 9274: 9233: 9211: 9047: 8970: 8937: 8696: 8606: 8551: 8478: 8349: 8262: 8227: 8208: 8204: 8025: 7990: 7879: 7554: 7527: 7508: 7380: 7350: 7317: 7305: 7254:"General Capacitance Upper Limit and Its Manifestation for Aqueous Graphene Interfaces" 6838: 6808:
Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications
6802: 6696: 6609: 6551: 6493: 5843:
Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores
5838:
Potassium hydroxide restructured the carbon to make a three dimensional porous network
5729:
Subnanometer scale electrolyte integration created a continuous ion transport network.
5023: 4607:
A negative bar on the insulating sleeve indicates the cathode terminal of the capacitor
4436: 3018: 2794: 2715: 2576: 2544: 2540: 1974: 1693: 1621: 1118: 1093: 955: 396: 342: 199: 185: 112: 10885: 9779:
The Cell versus the System: Standardization challenges for electricity storage devices
9671: 9109:
ESSCAP'08 −3rd European Symposium on Supercapacitors and Applications, Rome/Italy 2008
8684: 8287:"Researchers develop graphene supercapacitor holding promise for portable electronics" 7426: 7145: 6403: – Compound that results in formations which in microscopic view resemble flowers 6075:
Nickel cobaltite, a low cost and an environmentally friendly supercapacitive material
5644:, also known as the Thames cable car, is a 1-kilometre (0.62 mi) gondola line in 4683:
The standard defines four application classes, according to discharge current levels:
3871:
stability results from the dual electrostatic and electrochemical storage principles.
2567:. Such electrodes also employ electrochemical doping or dedoping of the polymers with 1747: 12505: 12460: 12421: 12357: 12307: 12284: 12250: 12025: 11978: 11970: 11908: 11867:"Flexible 3D graphene supercapacitors may power portables and wearables | KurzweilAI" 11814: 11719: 11535: 11496: 11431: 11388: 11300: 11288: 10426: 10404: 10299: 10236: 10193: 9911: 9487: 9479: 9417: 9405: 9397: 9347: 9329: 9279: 9261: 9215: 9203: 9161: 9051: 9039: 8975: 8918: 8840: 8731: 8641: 8555: 8470: 8427: 8341: 8267: 8212: 8165: 8071: 7982: 7848: 7769: 7680: 7559: 7512: 7500: 7355: 7285: 7232: 6816: 6633: 6601: 6555: 6543: 6471: 6452: 6080: 5517: 4960: 4920: 4862: 4729:
to several amps current or several hundred kilowatts power for much shorter periods.
4428: 3908: 3792:" and charge/discharge currents or peak currents "I" generate internal heat losses "P 3588: 3541: 2946: 2881: 2869: 2853: 2599: 2516: 2181: 2174: 1592: 1106: 921: 861: 658: 388: 279: 206: 12342: 12225: 11615: 11580: 11400: 10455:
Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications
10440: 10250: 10165:
Capacitors for Power Grid Storage, (Multi-Hour Bulk Energy Storage using Capacitors)
9991: 9960: 9925: 9499: 9443: 9359: 8700: 8610: 8482: 8353: 8029: 7994: 7883: 6700: 6613: 6497: 3516: 2979: 744:
by water molecules, called inner Helmholtz plane (IHP). Solvent molecules adhere by
252:), and the effective thickness is determined on each of the two electrodes by their 12708: 12645: 12635: 12630: 12517: 12497: 12472: 12450: 12409: 12380: 12330: 12276: 12242: 12213: 12169: 12131: 12013: 11962: 11900: 11826: 11806: 11750: 11709: 11701: 11660: 11650: 11603: 11566: 11527: 11488: 11443: 11423: 11380: 11280: 10498: 10418: 10343: 10311: 10289: 10281: 10228: 10205: 10185: 9979: 9948: 9903: 9702: 9685:
Dunn-Rankin, D.; Leal, E. Martins; Walther, D.C. (2005). "Personal power systems".
9667: 9619: 9471: 9389: 9337: 9321: 9269: 9253: 9195: 9153: 9086: 9031: 8965: 8957: 8910: 8875: 8830: 8797: 8758: 8723: 8688: 8680: 8633: 8596: 8588: 8543: 8462: 8419: 8333: 8257: 8247: 8200: 8157: 8063: 8017: 7974: 7871: 7844: 7748: 7744: 7670: 7605: 7601: 7549: 7539: 7492: 7477: 7422: 7345: 7335: 7275: 7265: 7141: 6862: 6688: 6656:, Becker, H.I., "Low voltage electrolytic capacitor", issued 1957-07-23 6593: 6539: 6535: 6483: 6442: 5931: 5039: 4807: 2786: 2580: 2425:
based supercapacitor with electrodeposited ruthenium oxide onto porous single wall
2417: 2373: 2285: 2204: 2005: 1896: 1878: 1819: 1792: 1776: 1772: 1760: 1715: 1617: 1607: 1145: 936: 883: 662: 448: 300: 288: 257: 203: 176: 101: 10472: 6760:
J. G. Schindall, The Change of the Ultra-Capacitors, IEEE Spectrum, November 2007
5640:
offer a fast charge, higher number of cycles and longer life time than batteries.
5636: 5508:). About 20% tank-to-wheel efficiency could be reached using the KERS system. The 4886:
pitch systems, so that blade pitch can be adjusted even if the main supply fails.
3003:
Capacitance values for commercial capacitors are specified as "rated capacitance C
2995: 1587:
Electrical energy is stored in supercapacitors via two storage principles, static
12272: 12105: 11200: 11181: 11161: 11142: 11036: 10937: 10915: 10528: 10347: 10232: 10151: 10076: 10033: 9799: 9750: 9729: 9593: 9573: 9566:
Product Guide – Maxwell Technologies BOOSTCAP Ultracapacitors– Doc. No. 1014627.1
9533: 9462:
Salanne, Mathieu (30 May 2017). "Ionic Liquids for Supercapacitor Applications".
9090: 7763: 7675: 7658: 7048: 7027: 7002: 6889: 6812: 6721: 6597: 6355: 6029:(LTO) deposited on carbon nanofibres (CNF) anode and an activated carbon cathode 5597: 5596:
Hybrid-R concept car uses a supercapacitor to provide quick bursts of power. PSA
5588:
series was a concept and crossover hybrid vehicle working with a gasoline driven
5438: 5117: 5035: 5010:
A primary challenge of all transport is reducing energy consumption and reducing
4936: 4575: 4220: 4135: 3879:
Device capacitance and resistance dependence on operating voltage and temperature
2865: 2603: 2470: 2426: 2422: 2137: 2119: 2001: 1843: 1799: 1699: 1673: 1661: 1339: 1231: 986: 879: 346: 104: 79: 9907: 7225:"2. Electrode/Electrolyte Interfaces: Structure and Kinetics of Charge Transfer" 7061: 2230:(C) in the bulk of the material upon reduction followed by deintercalation upon 728:
ions in the electrolyte. The two layers are separated by a monolayer of solvent
38: 12670: 12625: 9706: 9257: 8592: 8505:(M.Sc. thesis). Nashville, Tennessee: Graduate School of Vanderbilt University. 5593: 5322: 5239: 5222:
In 2009 supercapacitors enabled LRVs to operate in the historical city area of
5172: 5144: 5121: 4932: 4772: 4603: 4173: 3040: 2842: 2841:), water offers relatively high conductivity values of about 100 to 1000 m 1684:. The separation of charge distance in a double-layer is on the order of a few 1653: 1526: 1219: 1121: 1110: 940: 701: 94: 12384: 12334: 12280: 12135: 10882:"The Ultracapbus - VAG Nürnberg - Öffentlicher Personennahverkehr in Nürnberg" 10422: 9475: 9199: 8559: 8547: 7875: 7088:"New Materials and New Configurations for Advanced Electrochemical Capacitors" 4690:
Energy storage, mainly used for driving motors require a short time operation,
4223:(or, in charging the device, absorbed from the generator). The maximum power P 4184:. For comparison, an aluminum electrolytic capacitor stores typically 0.01 to 3915:
showing specific power vs. specific energy of various capacitors and batteries
2987: 1012:
2020, figure 2 shows the representative voltage-capacity curves for bulk LiCoO
889:
on the surface of suitable electrodes in an electrochemical capacitor with an
757:
molecules in the IHP that corresponds to the strength of the applied voltage.
314:
General Electric did not immediately pursue this work. In 1966 researchers at
89:
Unlike ordinary capacitors, supercapacitors do not use the conventional solid
12809: 12660: 12246: 11974: 11203:. AFS Trinity Power Corporation. 13 January 2008. Retrieved on 31 March 2013. 11099:"Die Hybridtechnik im Toyota TS030: Mit Superkondensatoren zum LeMans-Erfolg" 10396: 10303: 10285: 10197: 10189: 9983: 9952: 9527:
Development of New Generation Supercapacitors for Transportation Applications
9483: 9401: 9333: 9265: 9207: 8844: 8578: 8376: 7986: 7699:"Could hemp nanosheets topple graphene for better supercapacitor electrodes?" 7684: 6692: 6605: 6547: 6456: 6312:
supercapacitors only have more or less roughly 1/3 of the electrode density.
6169: 6136: 6091: 6048: 5979: 5942: 5886: 5851: 5817: 5780: 5746: 5716: 5450: 5212: 5196: 5135: 5097: 4982: 4757: 4219:. Specific power describes the speed at which energy can be delivered to the 3705: 3143: 3125: 2963: 2877: 2753: 2564: 2556: 2461: 2133: 1934: 1798:
Generally the smaller the electrode's pores, the greater the capacitance and
1685: 1568: 979: 866: 833: 745: 652: 265: 161: 11966: 11384: 11284: 8466: 8337: 8252: 8043:
Korenblit, Y.; Rose, M.; Kockrick, E.; Borchardt, L.; Kvit, A.; Kaskel, S.;
7899:"Less is more with aerogels: A laboratory curiosity develops practical uses" 7635: 7340: 7020: 6881:
Panasonic, Electric Double Layer Capacitor, Technical guide,1. Introduction,
5608: 3174:) of the rated voltage is measured. The capacitance value is calculated as: 1085: 935:
The electrons involved in the faradaic processes are transferred to or from
688: 12620: 12509: 12464: 12217: 11982: 11912: 11818: 11723: 11607: 11571: 11554: 11539: 11500: 11492: 11435: 11392: 11319: 11292: 9754:
In: Technical Guide of Electric Double Layer Capacitors, Edition 7.4, 2011)
9618:(Thesis). University of Colorado Colorado Springs. Kraemer Family Library. 9491: 9409: 9393: 9351: 9283: 9165: 9043: 8979: 8922: 8735: 8645: 8474: 8431: 8345: 8271: 8169: 8075: 8021: 7978: 7563: 7504: 7496: 7359: 7289: 6346: 5867: 5431: 5422: 5348: 5171:
Supercapacitors make it possible not only to reduce energy, but to replace
5059: 4990: 4969: 4956: 4883: 4827: 4421: 4385: 3912: 2929: 2857: 2485: 2224: 2140:. SWNTs have diameters ranging between 1 and 3 nm. MWNTs have thicker 2021: 1950: 1890: 837: 818: 760: 365:"Dynacap"s entered the market. First generation EDLC's had relatively high 12017: 11136:
Batteries and Ultracapacitors for Electric, Hybrid, and Fuel Cell Vehicles
7270: 6995: 6488: 5401:
Electric bus at EXPO 2010 in Shanghai (Capabus) recharging at the bus stop
5096:
Supercapacitors can be used to supplement batteries in starter systems in
3107:{\displaystyle W={\frac {1}{2}}\cdot C_{\text{DC}}\cdot V_{\text{DC}}^{2}} 12371:
Vol'fkovich, Y. M.; Serdyuk, T. M. (2002). "Electrochemical Capacitors".
11755: 11738: 8835: 8818: 8660: 6423:"Review Article: Flow battery systems with solid electroactive materials" 5661: 5632: 5624: 5613: 5501: 5410: 5397: 5149: 5101: 4364:{\displaystyle P_{\text{max}}={\frac {1}{4}}\cdot {\frac {V^{2}}{R_{i}}}} 4295:{\displaystyle P_{\text{eff}}={\frac {1}{8}}\cdot {\frac {V^{2}}{R_{i}}}} 3668:{\displaystyle R_{\text{i}}={\frac {\Delta V_{2}}{I_{\text{discharge}}}}} 2790: 2704: 2560: 2552: 2512: 2430: 2251: 2130: 1681: 1642: 1309: 975: 901: 697: 400: 334:
SOHIO did not commercialize their invention, licensing the technology to
261: 260:
the charge is stored in the bulk volume of solid phases, which have both
195: 169: 157: 107:, both of which contribute to the total energy storage of the capacitor. 63: 12536: 12501: 12108:, Ch. Ahern, Supercapacitors, 10 December 2009, Project Number NET0007IO 11927:"Battery breakthrough charges in seconds, lasts for a week | KurzweilAI" 9623: 8601: 7544: 6320:
As of 2016 worldwide sales of supercapacitors is about US$ 400 million.
5708:
Graphene sheets compressed by capillary compression of a volatile liquid
5585: 4935:
device. For example, it was demonstrated that energy collected from RF (
4427:
Datasheet lifetime specification is tested by the manufactures using an
4397: 3376:{\displaystyle t={\frac {C\cdot (U_{\text{charge}}-U_{\text{min}})}{I}}} 2088:
which are unreachable for supercapacitors using other carbon materials.
568:{\displaystyle C_{\text{total}}={\frac {C_{1}\cdot C_{2}}{C_{1}+C_{2}}}} 12759: 10294: 9181: 8817:
Brousse, Thierry; Bélanger, Daniel; Long, Jeffrey W. (1 January 2015).
7794: 7526:
Rani, J. R.; Thangavel, R.; Oh, S. I.; Lee, Y. S.; Jang, J. H. (2019).
7039: 6400: 5513: 5454: 5317:(APS) system, or can be used in conjunction with it, as in the case of 5254: 5235: 5223: 5183: 5062:
Hybrid-R concept car uses a supercapacitor to provide bursts of power.
5047: 4139: 2247: 1958: 1954: 1946: 1752: 1344: 1148: 1114: 909: 712:
electrolyte. In this interface occurs a very special phenomenon of the
237: 229: 90: 12173: 12040:"The Global Supercapacitor Market is Facing Unique Challenges in 2016" 11904: 11810: 11705: 11655: 11531: 11427: 9325: 9157: 8961: 8914: 8879: 8802: 8777: 8762: 8727: 8692: 8637: 8518: 8423: 8161: 8067: 7385:"Electrochemical Capacitors — Their Nature, Function and Applications" 7008:
Proceedings of the 14th Capacitor & Resistor Technology Symposium.
6867: 6842: 6447: 6422: 6161:
Graphene-based planar micro-supercapacitors for on-chip energy storage
5541:
used a supercapacitor to add 480 horsepower from two electric motors.
5038:
GmbH chose supercapacitors to power emergency actuators for doors and
4822: 4732:
Supercapacitors do not support alternating current (AC) applications.
4678:
Fixed electric double layer capacitors for use in electronic equipment
4562:
shown from the picture are an empirical result from one manufacturer.
3609:
at the time of discharge, starting with a constant discharge current I
2115:
image of carbon nanotube bundles with a surface of about 1500 m/g
1702: – Electrochemical storage of the electrical energy, achieved by 989:
stored in a pseudocapacitance is linearly proportional to the applied
467:
The two electrodes form a series circuit of two individual capacitors
11842:"New device combines the advantages of batteries and supercapacitors" 10263: 9888:, IEEE Trans. Ind. Appl., vol.50, no.4, pp.2900–2909, Jul./Aug. 2014. 9857:"Coleman FlashCell Cordless Screwdriver Recharges In Just 90 Seconds" 9035: 6037: 5496: 5376: 5352: 5298: 5287: 4940: 4866: 4850:(AMR) equipment or for event notification in industrial electronics. 4846:. They are the sole power source for low energy applications such as 4590:
A graph plotting voltage over time, after the application of a charge
4586: 3540:
The rated voltage includes a safety margin against the electrolyte's
2357: 2300: 2231: 2220: 2188: 1942: 1689: 1677: 1518: 1102: 1001: 905: 725: 404: 358: 319: 292: 233: 165: 142: 59: 12455: 12430: 11513: 7306:"Interaction phenomena in graphene seen through quantum capacitance" 4630: 2999:
Dependence of capacitance on frequency of a 50 F supercapacitor
2590:
electrodes provide up to 10,000 cycles, much better than batteries.
12237:(2009). "Electrical Double-Layer Capacitors and Pseudocapacitors". 10412: 9722:
Application Note - Energy Storage Modules Life Duration Estimation.
9231: 5529: 5470: 5418: 5179: 5165: 5043: 4879: 3577: 3553: 2826: 2500: 2466: 2126: 2061: 2057: 1839: 1835: 1831: 1645:
value of a supercapacitor is determined by two storage principles:
1579: 894: 729: 10919:
14. Aachener Kolloquium Fahrzeug- und Motorentechnik 2005 (German)
10410: 7322: 5569:
Supercapacitor/battery combinations in electric vehicles (EV) and
4919:
Supercapacitors are suitable temporary energy storage devices for
2080:) is obtained at room temperature equaling that of a conventional 1552:
Schematic construction of a supercapacitor with stacked electrodes
665:
storage of the electrical energy. The original type uses faradaic
12605: 12239:
Carbons for Electrochemical Energy Storage and Conversion Systems
11240:
Teuerste Seilbahn der Welt mit fraglicher verkehrlicher Bedeutung
10522:
Energy Storage System with UltraCaps on Board of Railway Vehicles
10221:
2013 1st IEEE Conference on Technologies for Sustainability (Sus
10143:
International Energy Agency, Photovoltaic Power Systems Program,
9447: 7252:
Butko, Alexey V.; Butko, Vladimir Y.; Kumzerov, Yurii A. (2023).
6996:
High Energy Density Electrolytic-Electrochemical Hybrid Capacitor
6328: 5628: 5617: 5581: 5426: 5332: 5272: 4843: 4779:
flashlights that can be charged in much shorter periods of time,
3785:
resistance, which may be substantially lower than for batteries.
3290:
Instantaneous power, discharge current in mA = 40 • C (F) • V (V)
2708: 2316: 2141: 1997: 1930: 1827: 1764: 1138: 990: 944: 927: 875: 741: 420: 408: 245: 67: 12232: 10070:
Development of supercapacitor based uninterruptible power supply
9813:"Ultracapacitor LED Flashlight Charges In 90 Seconds - Slashdot" 9640:
considering a typical 30% internal combustion engine efficiency)
8312:
El-Kady, M.F.; Strong, V.; Dubin, S.; Kaner, R.B. (March 2012).
8225: 5251:, the tramset used an average of approximately 16% less energy. 5203: 2658:
For example, researchers use a kind of novel skutterudite Ni–CoP
1181:
compared with electrolytic capacitors and lithium-ion batteries
1137:'s thin oxide layer. The somewhat resistive liquid electrolyte ( 950:
A faradaic pseudocapacitance only occurs together with a static
307:
that is an extremely porous "spongy" form of carbon with a high
11155:
Supercapacitors for Automotive & Other Vehicle Applications
7908:. American Institute of Physics. pp. 26–30. Archived from 7405: 6568: 6034: 5653: 5645: 5477: 5406: 5231: 4741: 4656: 4420:
The real application lifetime of supercapacitors, also called "
4158: 3859: 3557: 2950: 2778: 2719: 2572: 2508: 2504: 2254: 2227: 2123: 1921: 1784: 1657: 709: 249: 139: 12304:
Electrochemical Technologies for Energy Storage and Conversion
10953:"Next Stop: Ultracapacitor Buses | MIT Technology Review" 10175: 8228:"Flexible energy storage devices based on nanocomposite paper" 8042: 7936:"Replacing energy storage with carbon aerogel supercapacitors" 7475: 3887:
Measured device capacitance across an EDLC's operating voltage
3689:
should not be confused with the internal AC resistance called
10163:
J. R. Miller, JME, Inc. and Case Western Reserve University,
8776:
Pang, Suh-Cem; Anderson, Marc A.; Chapman, Thomas W. (2000).
7656: 6149: 6104: 6068: 5955: 5831: 5793: 5520:
rules, uses a hybrid drivetrain with supercapacitors. In the
5446: 5305: 5291: 5086: 4986: 4162: 3932: 3919:
Supercapacitors occupy the gap between high power/low energy
3549: 3284:
Energy storage, discharge current in mA = 0,4 • C (F) • V (V)
3036: 3008: 2741: 2723: 2587: 2568: 2492: 2200: 2192: 2096: 1985: 1703: 1314: 1166: 1134: 994: 886: 737: 705: 666: 392: 328: 213: 182: 66:
value much higher than solid-state capacitors but with lower
7861: 5493:, a governing body for motor racing events, proposed in the 4515:{\displaystyle L_{x}=L_{0}\cdot 2^{\frac {T_{0}-T_{x}}{10}}} 4165:(Wh/L). Units of liters and dm can be used interchangeably. 3935:) that can be stored in a capacitor is given by the formula 1065: 12298:
Zhang, J.; Zhang, L.; Liu, H.; Sun, A.; Liu, R.-S. (2011).
8135: 6057: 5988: 5915: 5755: 5505: 4944: 4143: 3133:
Conventional capacitors are normally measured with a small
2749: 2496: 2332: 1391: 1386: 1258: 10324: 10154:, IEA PVPS Task 11, Report IEA-PVPS T11-02:2011, July 2011 8401: 6274:) nano-wires and two-dimensional enveloped by shells of a 2543:
as pseudocapacitive material. Although mechanically weak,
2045: 1554:
1. positive electrode, 2. negative electrode, 3. separator
817:
is greatest in capacitors made from materials with a high
11737:
Wu, Zhong-Shuai; Feng, Xinliang; Cheng, Hui-Ming (2013).
9432:
Nanostructured Carbons: Double-Layer Capacitance and More
6111:
Wet electrochemical process intercalated Na(+) ions into
5490: 4776: 2108: 1711: 1710:
on the surface of the electrode by specifically adsorbed
1522:
Flat style of a supercapacitor used for mobile components
335: 10931:
Kleinbus "TOHYCO-Rider" mit SAM-Superkapazitätenspeicher
9559: 9557: 9555: 8499:
Optimization of Carbon Nanotube Supercapacitor Electrode
6470:
Häggström, Fredrik; Delsing, Jerker (27 November 2018).
4180:. Commercial specific energies range from around 0.5 to 2531:). However, none of these oxides are in commercial use. 1989:
Pore size distributions for different carbide precursors
1624:
electrodes with a high electrochemical pseudocapacitance
1060:
cathode, the latter being a slow faradaic material. The
357:
The market expanded slowly. That changed around 1978 as
345:
conducted extensive fundamental and development work on
12195: 12066:
Supercapacitors the Myth, the Potential and the Reality
10647:"Genève tram trial assesses supercapacitor performance" 10573:"Rhein-Neckar Verkehr orders more supercapacitor trams" 9442:
Tetraethylammonium tetrafluoroborate - Compound Summary
8311: 6351:
Pages displaying short descriptions of redirect targets
5649: 5022:
emissions. Recovery of braking energy (recuperation or
4894:
Supercapacitors can stabilize voltage fluctuations for
4786:
Some portable speakers are powered by supercapacitors.
4700:
Three further standards describe special applications:
4130:
The amount of energy that can be stored in a capacitor
4013:
inaccessible. The effective realized amount of energy W
3845:{\displaystyle P_{\text{loss}}=R_{\text{i}}\cdot I^{2}} 2932:
consists of liquid salts that can be stable in a wider
12370: 12353:
Carbon: Electrochemical and Physicochemical Properties
12320: 10909:
Effizienter Hybridantrieb mit Ultracaps für Stadtbusse
10145:
The role of energy storage for mini-grid stabilization
9835:"Helium Bluetooth speakers powered by supercapacitors" 9684: 9143: 4817: 2645: 2008:, that are transformed into pure carbon via physical, 677: 194:(ECSCs) fall in between EDLs and batteries. ECSCs use 11951: 10703:"Supercapacitor energy storage for South Island Line" 9552: 8892: 8748: 7168:
Halper, Marin S.; Ellenbogen, James C. (March 2006).
6943:
A survey of electrochemical supercapacitor technology
4693:
Power, higher power demand for a long time operation,
4448: 4310: 4241: 4125: 4034: 3944: 3805: 3735: 3713: 3622: 3414: 3322: 3183: 3056: 3021: 2953:, woven glass fibers or porous woven ceramic fibres. 2162:, 102 F/g for MWNTs and 180 F/g for SWNTs. 779: 497: 156:
between the surface of a conductive electrode and an
11215:"2014 Mazda6 i-Eloop to net 40 mpg hwy, 28 mpg city" 11194:
AFS TRINITY UNVEILS 150 MPG EXTREME HYBRID (XH™) SUV
10535:
Proceedings - 8th World Congress on Railway Research
9897: 9106:
Lithium Ion capacitor characterization and modelling
8658: 8444: 7807: 7701:. Kurzweil Accelerating Intelligence. 14 August 2014 7442:"How ultracapacitors work (and why they fall short)" 6875: 6833: 6831: 6732: 6366:
Pages displaying wikidata descriptions as a fallback
6358: – Manufacturing styles of an electronic device 4796: 4554:= actual operating temperature of the capacitor cell 2962:
from the same material to avoid forming a corrosive
855: 160:. The separation of charge is of the order of a few 12144: 12078:"Supercapacitor Technologies and Markets 2016-2026" 11050:"Die große Analyse: KERS für Dummys - Formel 1 bei" 8816: 8775: 7302: 4017:
is reduced by the used voltage difference between V
3779: 3500:
wherein also the capacitor voltage decreases from U
2880:or alkyl ammonium salts such as tetraethylammonium 2606:while the non-faradaic EDLC electrode enables high 2593: 958:degree of surface coverage of the adsorbed anions. 12145:Abruña, H. D.; Kiya, Y.; Henderson, J. C. (2008). 11030:Formula One 2011: Power-Train Regulation Framework 10617:"Supercapacitors to be tested on Paris STEEM tram" 10045: 9605: 9603: 9601: 9299: 8105:"SkelCap High Energy Ultracapacitors - Data Sheet" 8007: 7726: 7525: 7251: 4764:, supercapacitors can stabilize the power supply. 4514: 4363: 4294: 4153:The amount of energy can be stored in a capacitor 4111: 4001: 3844: 3760: 3719: 3667: 3489: 3375: 3287:Power, discharge current in mA = 4 • C (F) • V (V) 3281:Memory backup, discharge current in mA = 1 • C (F) 3266: 3106: 3027: 2169: 2084:, but with 100–1000 times greater specific power. 1133:in which most of the potential decreases over the 1117:material. When charged, the energy is stored in a 1105:(also known as electrostatic capacitors), such as 801: 567: 244:capacitors, the mobile charges are solvated ions ( 10414:2010 IEEE Vehicle Power and Propulsion Conference 6828: 6674:"Historical Introduction to Capacitor Technology" 5449:, for use as student transport. It is powered by 4631:Comparison of selected commercial supercapacitors 4581: 2199:. Pseudocapacitors were created through faradaic 1534:for PCB mounting used for industrial applications 236:, and the gap between electrodes is a layer of a 12807: 12391: 12297: 12121: 11795: 11593: 11552: 11005:"Launch of Europe's First Tribrid Green Minibus" 10027:Technologies and applications of Supercapacitors 9713: 8438: 8182: 7964: 7579:"Redox electrode materials for supercapatteries" 7167: 7120: 6939: 6469: 6385: – New technologies actively in development 5034:In 2005, aerospace systems and controls company 4939:) fields (using an RF antenna as an appropriate 4740:In applications with fluctuating loads, such as 3309:a supercapacitor can deliver a constant current 3117:This value is also called the "DC capacitance". 1542:Schematic construction of a wound supercapacitor 11995: 11890: 11262: 10603:"STEEM - promoting energy savings for tramways" 9973: 9938: 9772: 9770: 9598: 8935: 8623: 8372:"Graphene supercapacitor breaks storage record" 7062:"FDK, Corporate Information, FDK History 2000s" 6713:A brief history of supercapacitors AUTUMN 2007 6249:Laser-induced graphene/solid-state electrolyte 5375:with supercapacitors in Europe came in 2001 in 4378:, the internal DC resistance of the capacitor. 181:store charge in bulk solid phases by virtue of 10113: 10111: 7471: 7469: 7467: 7116: 7114: 7112: 7110: 7108: 6974: 6629:Linden's Handbook of Batteries, Fourth Edition 5734:Vertically aligned carbon nanotubes electrodes 2068:without collectors for portable applications. 12552: 12431:"Composite for energy storage takes the heat" 11553:Tang, Zhe; Chun-hua, Tang; Gong, Hao (2012). 11470: 11413: 10906:Stefan Kerschl, Eberhard Hipp, Gerald Lexen: 10466: 10218: 9859:. OhGizmo!. 11 September 2007. Archived from 9649: 9139: 9137: 9000: 8574: 8572: 7761: 7755: 7296: 7229:Fuel Cells: From Fundamentals to Applications 7081: 7079: 7051:Technical Paper, Evans Capacitor Company 2007 5900:Aza-fused π-conjugated microporous framework 5500:version 1.3 of 23 May 2007 that a new set of 2246:The second mechanism is based on the surface 12064:Dennis Zogbi, Paumanok Group, 4 March 2013, 11342:"New carbon material boosts supercapacitors" 11111: 9767: 8652: 7041:The Littlest Big Capacitor - an Evans Hybrid 6894: 6756: 6754: 6752: 6750: 6748: 6652: 6421:Qi, Zhaoxiang; Koenig, Gary M. (July 2017). 5535:2012 FIA World Endurance Championship season 5130:Container yard with rubber tyre gantry crane 2991:Equivalent circuit with cascaded RC elements 2515:, but none has been investigated as much as 1977:can add a high amount of pseudocapacitance. 1024:), and a intercalation pseudocapacitor (T-Nb 802:{\displaystyle C=\varepsilon {\frac {A}{d}}} 419:. These hybrid capacitors were pioneered by 11736: 11628: 10733:"Supercapacitor light metro train unveiled" 10108: 9424: 9375: 8514: 8512: 8365: 8363: 8138:"Ultrathin planar graphene supercapacitors" 7789: 7787: 7785: 7722: 7720: 7718: 7716: 7464: 7258:International Journal of Molecular Sciences 7105: 6935: 6933: 6931: 6929: 6927: 6925: 6923: 6672:Ho, J.; Jow, R.; Boggs, S. (January 2010). 5544: 5283:CSR Zhuzhou Electric Locomotive corporation 4931:, and converted to electrical energy in an 1129:. The same static storage also applies for 1113:, consist of two electrodes separated by a 893:. Pseudocapacitance is accompanied with an 462: 78:. It typically stores 10 to 100 times more 12786: 12559: 12545: 12147:"Batteries and Electrochemical Capacitors" 12042:. MarketEYE. 10 March 2016. Archived from 11587: 11039:. 24 May 2007. Retrieved on 23 April 2013. 10928:V. Härri, S. Eigen, B. Zemp, D. Carriero: 9134: 9009:"Materials for electrochemical capacitors" 8569: 7826: 7439: 7433: 7375: 7373: 7371: 7369: 7222: 7076: 6797: 6795: 6793: 6791: 6789: 6787: 6771: 6671: 6632:. McGraw-Hill Education. 21 January 2024. 5962:Asymmetric supercapacitor using the Ni(OH) 5469:Former world champion Sebastian Vettel in 3605:can be calculated from the voltage drop ΔV 3397:If the application needs a constant power 2633: 1903: 1167:Comparison with other storage technologies 1061: 34:Schematic illustration of a supercapacitor 12566: 12454: 12349: 12306:. Weinheim: Wiley-VCH. pp. 317–382. 11754: 11713: 11664: 11654: 11570: 10677:"Energy Storage - Siemens Global Website" 10487: 10328:International Journal of Electrical Power 10293: 9341: 9273: 8969: 8834: 8801: 8600: 8261: 8251: 7674: 7553: 7543: 7349: 7339: 7321: 7279: 7269: 7163: 7161: 7159: 7157: 7155: 7085: 6866: 6745: 6715:Batteries & Energy Storage Technology 6487: 6446: 4878:Supercapacitors provide backup power for 4853:Supercapacitors buffer power to and from 3761:{\displaystyle \tau =R_{\text{i}}\cdot C} 3386:as the capacitor voltage decreases from U 2956: 2905:) or triethyl (metyl) tetrafluoroborate ( 1980: 1179:Performance parameters of supercapacitors 1072: 12233:Béguin, Francois; Raymundo-Piñeiro, E.; 11839: 11464: 11250:ISR, Internationale Seilbahn Rundschau, 11175:Recent Analysis of UCAPs in Mild Hybrids 10950: 10469:"Fuel Cell Works Supplemental News Page" 9741:Panasonic Electronic Devices CO., LTD.: 9546:Nesscap Ultracapacitor - Technical Guide 9371: 9369: 9295: 9293: 9227: 9225: 8509: 8360: 7782: 7713: 7633: 7032: 6920: 6420: 5607: 5560: 5476: 5464: 5396: 5356: 5253: 5202: 5159: 5125: 5080: 4889: 4821: 4655: 4602: 4585: 4396: 3907: 3882: 3772:is discharged to 36.8% of full charge). 3587: 3523: 3515: 3124: 2994: 2986: 2978: 2969: 2575:. Electrodes made from, or coated with, 2107: 2095: 2044: 1984: 1920: 1746: 1578: 1547: 1537: 1525: 1517: 1156: 1092: 1084: 1076: 1035: 926: 865: 759: 687: 438: 278: 37: 29: 11096: 10764: 10762: 10760: 10758: 10036:, University of Mondragon, 22 June 2012 10019: 9461: 9177: 9175: 8495: 8397: 8395: 8278: 8110:. Skeleton Technologies. Archived from 7933: 7366: 6784: 6323:The market for batteries (estimated by 4801: 4735: 4547:= upper specified capacitor temperature 4161:(per unit of volume) in watt-hours per 3923:and low power/high energy rechargeable 2613: 1813: 27:High-capacity electrochemical capacitor 14: 12808: 12428: 12263: 11893:ACS Applied Materials & Interfaces 11362: 10955:. Technologyreview.com. Archived from 10495:"SINAUTEC, Automobile Technology, LLC" 10386: 10384: 10360: 10266:IEEE Transactions on Energy Conversion 9880: 9878: 8860:Journal of the Electrochemical Society 8823:Journal of the Electrochemical Society 8819:"To Be or Not To Be Pseudocapacitive?" 8782:Journal of the Electrochemical Society 8713: 8284: 7896: 7576: 7152: 6837: 6801: 6349: – Type of transportation vehicle 6305: 6040:deposited on mesoporous carbon aerogel 5258:A supercapacitor-equipped tram on the 5207:Supercapacitors are used to power the 3583: 2534: 2104:image of single-walled carbon nanotube 1787:material with an extraordinarily high 824:, large electrode plate surface areas 12540: 9815:. Tech.slashdot.org. 10 December 2008 9609: 9457: 9455: 9366: 9290: 9222: 9076: 9006: 8857: 7634:Malmberg, Siret (23 September 2020). 6517: 5934:nanoflake on CNT composite electrode 5495:Power-Train Regulation Framework for 5361:MAN Ultracapbus in Nuremberg, Germany 5331:also offers supercapacitors on their 4869:fails, which lengthens battery life. 3704:and the capacitance C results in the 3166:, for the voltage to drop from 80% (V 3039:) of a loaded capacitor loaded via a 1295:100 k – 1 000 k 1292:100 k – 1 000 k 638: 132:Electrostatic double-layer capacitors 12300:"8. Electrochemical Supercapacitors" 11679: 11450: 10755: 10519:M. Fröhlich, M. Klohr, St. Pagiela: 9744:Gold capacitors Characteristics data 9172: 9122:. Green Car Congress. 4 January 2009 9067:, Taiyo Yuden, Shoe Electronics Ltd. 8392: 8369: 6665: 4914: 4172:. In comparison, petrol fuel has an 3511: 2122:(CNTs), also called buckytubes, are 1050: 11313: 11072:"Toyota TS030 LMP1 hybrid revealed" 11052:. Motorsport-total.com. 25 May 2013 10951:Hamilton, Tyler (19 October 2009). 10381: 10048:"SuperCapacitors as Energy Storage" 9875: 9112: 7890: 7190: 7170:"Supercapacitors: A Brief Overview" 7086:Naoi, K.; Simon, P. (Spring 2008). 6681:IEEE Electrical Insulation Magazine 4818:Low-power equipment power buffering 4806:Numerous non-linear loads, such as 2646:Asymmetric electrodes (pseudo/EDLC) 2091: 1873: 993:. The unit of pseudocapacitance is 920:processes. The adsorbed ion has no 836:(0.3–0.8 nm), of order of the 678:Electrical double-layer capacitance 70:limits. It bridges the gap between 24: 12479: 12115: 11252:Beste Unterhaltung über den Wolken 10979:"Green 'tribrid' minibus unveiled" 10457:, ECS, Vol. 17, No. 1, Spring 2008 9452: 9007:Simon, Y.Gogotsi (November 2008). 7440:Garthwaite, Josie (12 July 2011). 7379: 6949:(Technical report). Archived from 6902:"Electric double-layer capacitors" 6306: 5111: 4767:Supercapacitors deliver power for 4126:Specific energy and specific power 3903: 3639: 1802:. However, smaller pores increase 1567:to protect the electrodes against 828:and small distance between plates 708:electrode surface and an adjacent 179:with solid electroactive materials 25: 12832: 12714:Research in lithium-ion batteries 12532:Supercapacitors: A Brief Overview 12525: 12350:Kinoshita, K. (18 January 1988). 11840:Borghino, Dario (19 April 2015). 11318:. FastCap Systems. Archived from 7765:Electrochemical Oxygen Technology 6472:"IoT Energy Storage - A Forecast" 5457:, batteries and ultracapacitors. 4797:Power generation and distribution 4568: 2744:is a relatively good solvent for 1925:A block of silica aerogel in hand 1916: 982:covering the electrode material. 856:Electrochemical pseudocapacitance 12785: 12092: 12070: 12058: 12032: 11989: 11945: 11919: 11884: 11859: 11833: 11789: 11763: 11730: 11673: 11622: 11546: 11507: 11407: 11356: 11334: 11307: 11256: 11244: 11232: 11221: 11212: 11206: 11187: 11167: 11147: 11128: 11105: 11097:Schurig, Marcus (9 April 2012). 11090: 11064: 11042: 11023: 10997: 10971: 10944: 10922: 10900: 10874: 10849: 10824: 10792: 10780: 10739:. 23 August 2012. Archived from 10725: 10695: 10669: 10639: 10609: 10595: 10565: 10559:Bombardier, MITRAC Energy Saver 10553: 10547:Bombardier, MITRAC Energy Saver 10541: 10513: 10497:. Sinautecus.com. Archived from 10460: 10447: 10354: 10318: 10257: 10212: 10169: 10157: 10137: 10092:. Marathon Power. Archived from 10082: 10062: 10039: 9967: 9932: 9891: 9849: 9802:. New Electronics. 26 March 2006 7448:. GigaOM Network. Archived from 6993:David A. Evans (Evans Company): 6397: – Human-powered flashlight 6391: – Hybrid type of capacitor 6379: – Method of storing energy 6299:2D shells surrounding nanowires 5325:, Brazil, which opened in 2016. 4927:, mechanical movement, light or 4134:of that capacitor is called its 3780:Current load and cycle stability 2594:Electrodes for hybrid capacitors 2429:film electrode. A high specific 1822:(AC), carbon fibre-cloth (AFC), 704:of matter, such as an insoluble 10709:. 3 August 2012. Archived from 10653:. 7 August 2012. Archived from 10178:IEEE Transactions on Smart Grid 9941:IEEE Transactions on Smart Grid 9827: 9805: 9785: 9757: 9735: 9732:Maxwell Technologies, Inc. 2007 9678: 9643: 9630: 9616:Digital collections of Colorado 9579: 9576:Maxwell Technologies, Inc. 2009 9538: 9519: 9506: 9436: 9097: 9070: 9058: 8986: 8929: 8886: 8851: 8810: 8769: 8742: 8707: 8617: 8489: 8305: 8219: 8176: 8129: 8097: 8036: 8001: 7958: 7934:LaClair, M. (1 February 2003). 7927: 7855: 7820: 7801: 7691: 7650: 7627: 7577:Yu, L. P.; Chen, G. Z. (2016). 7570: 7519: 7399: 7245: 7216: 7054: 7013: 6987: 6968: 6765: 6395:Mechanically powered flashlight 6364: – type of porous material 6276:transition-metal dichalcogenide 5809:KOH restructured graphite oxide 5667: 5460: 5297:In 2012, in Lyon (France), the 4970:valve regulated lead-acid cells 4898:by acting as dampers. Wind and 4723: 2699: 2294: 2170:Electrodes for pseudocapacitors 1714:, that results in a reversible 1532:lithium-ion type supercapacitor 1348:per kilogram (Wh/kg) 1326:100 – 12 000 F 1237:−40 – +125 °C 997:, same as that of capacitance. 669:reactions with charge-transfer. 434: 397:tantalum electrolytic capacitor 192:Electrochemical supercapacitors 12699:Lithium iron phosphate battery 12124:Coordination Chemistry Reviews 11680:Zang, L.; et al. (2014). 10579:. 5 April 2011. Archived from 9837:. Gizmag.com. 27 November 2013 7749:10.1016/j.jpowsour.2006.02.065 7606:10.1016/j.jpowsour.2016.04.095 6811:(in German), Berlin, Germany: 6726: 6707: 6646: 6620: 6562: 6540:10.1016/j.jpowsour.2019.01.010 6511: 6463: 6414: 6362:Conjugated microporous polymer 5877:Conjugated microporous polymer 5077:Railway electrification system 4905: 4873:Uninterruptible power supplies 4582:Post charge voltage relaxation 4374:with V = voltage applied and R 4138:. Specific energy is measured 4106: 4070: 3481: 3445: 3364: 3338: 3120: 2974: 2876:and solutions with quaternary 2718:that dissociate into positive 2696:electrodes are on the market. 2687:and so on. For example, Fe-SnO 2187:are typical materials used as 2051:atomic-scale honeycomb lattice 1329:300 – 3 300 F 1251:−20 – +60 °C 1246:−20 – +70 °C 1243:−20 – +70 °C 1240:−40 – +70 °C 1020:, a redox pseudocapacitor (RuO 80:energy per unit volume or mass 13: 1: 12679:Compressed-air energy storage 11998:Journal of Materials Research 11596:Advanced Functional Materials 11112:Fred Jaillet (15 June 2012). 11007:. 30 May 2008. Archived from 10679:. Siemens.com. Archived from 10623:. 8 July 2009. Archived from 10121:. Maxwell.com. Archived from 9672:10.1016/S0378-7753(02)00228-8 9146:Accounts of Chemical Research 8685:10.1016/S0378-7753(96)02474-3 8370:Dumé, B. (26 November 2010). 7967:Advanced Functional Materials 7897:Lerner, E.J. (October 2004). 7427:10.1016/S0378-7753(01)00736-4 7389:Electrochemistry Encyclopedia 7198:"The electrical double layer" 7146:10.1016/S0008-6223(00)00183-4 7019:Evans Capacitor Company 2007 6476:Energy Harvesting and Systems 6407: 6383:List of emerging technologies 5642:Emirates Air Line (cable car) 5437:A hybrid electric bus called 5217:recover energy during braking 5155: 4989:to shock the heart back into 3685:This internal DC resistance R 3528:A 2.4v Skelcap ultracapacitor 2939: 2460:supercapacitor anchored on a 2102:scanning tunneling microscopy 2060:is a one-atom thick sheet of 1742: 1680:and an electrolytic solution 1304:0.5 k – 10 k 1298:20 k – 100 k 395:of a 200 V high-voltage 122: 86:than rechargeable batteries. 12414:10.1088/2053-1583/2/3/032002 11238:Londoner Emirates Air Line: 10348:10.1016/j.ijepes.2014.01.004 10233:10.1109/SusTech.2013.6617314 9884:M. Farhadi and O. Mohammed, 9091:10.1016/j.nanoen.2012.02.011 8285:Marcus, J. (15 March 2012). 8205:10.1088/2053-1583/2/3/032002 7849:10.1016/0008-6223(92)90178-Y 7676:10.1016/j.elstat.2019.103396 6598:10.1016/j.energy.2016.11.019 6128:3D porous graphene electrode 5971:Battery-electrode nanohybrid 5441:was unveiled in 2008 by the 5106:diesel–electric transmission 5005: 4981:Supercapacitors are used in 4950: 4651: 3691:equivalent series resistance 2541:electron-conducting polymers 2511:have been tested in aqueous 2197:electrochemical double layer 2082:nickel–metal hydride battery 1804:equivalent series resistance 1733: 904:and electrode coming from a 415:Recent developments include 378:equivalent series resistance 254:electrochemical double layer 7: 12080:. IDTechEx. 1 November 2016 10453:J. R. Miller, A. F. Burke, 9908:10.1109/SCEECS.2016.7509275 9776:P. Van den Bossche et al.: 9464:Topics in Current Chemistry 7762:Kim Kinoshita (June 1992). 6340: 6265:Survives repeated flexing. 5603: 5335:trams in the form of their 5029: 4996: 4985:where they can deliver 500 4598: 4392: 4025:and can be represented as: 3896:) and initial resistance (R 3405:this can be calculated as: 2040: 2000:precursors, such as binary 644:electrochemical capacitor: 117:static random-access memory 84:charge and discharge cycles 10: 12837: 9707:10.1016/j.pecs.2005.04.001 9610:Marts, John (9 May 2018). 9258:10.1038/s41598-019-53421-w 8593:10.1109/JPROC.2009.2030240 8232:Proc. Natl. Acad. Sci. USA 7640:Journal of Carbon Research 5554: 5548: 5346: 5304:In 2014 China began using 5140:rubber tyred gantry cranes 5115: 5074: 5036:Diehl Luftfahrt Elektronik 4976: 3150:standards 62391-1 and -2. 2825:) or lithium hexafluoride 1755:of activated carbon under 1660:achieved by separation of 1656:storage of the electrical 1043: 1006:extrinsic pseudocapacitors 947:in the available surface. 859: 681: 373:chips or for data backup. 274: 12781: 12737: 12669: 12601:Artificial photosynthesis 12588: 12581: 12574: 12356:. John Wiley & Sons. 12335:10.1007/s10008-003-0412-x 12281:10.1007/978-1-4757-3058-6 12136:10.1016/j.ccr.2023.215470 10423:10.1109/VPPC.2010.5729131 10050:. Discoversolarenergy.com 9719:Maxwell Application Note 9687:Prog. Energy Combust. Sci 9512:A. Schneuwly, R. Gallay, 9476:10.1007/s41061-017-0150-7 9200:10.1016/j.est.2021.102402 9188:Journal of Energy Storage 8548:10.1007/s11837-005-0179-x 7663:Journal of Electrostatics 6315: 5557:Hybrid vehicle drivetrain 5315:ground-level power supply 5260:Rio de Janeiro Light Rail 5192:Bombardier Transportation 5190:Energy Saver system from 5091:Bombardier Transportation 4959:is a hybrid rechargeable 3544:at which the electrolyte 2579:have costs comparable to 2445:capacitance of 2000 F/g. 1854:(less than 2 nm) to 1513: 1412:0.3 – 1.5 W/g 1198: 1195: 1188: 1185: 813:Accordingly, capacitance 429: 232:, the mobile charges are 12750:Battery electric vehicle 12745:Alternative fuel vehicle 12616:Concentrated solar power 12247:10.1201/9781420055405-c8 11199:29 February 2012 at the 11116:. Toyotahybridracing.com 11035:17 February 2012 at the 10884:. Vag.de. Archived from 10770:"First one up the drive" 10286:10.1109/TEC.2013.2260752 10190:10.1109/TSG.2012.2194169 10068:A. Stepanov, I. Galkin, 9984:10.1109/tia.2015.2420630 9953:10.1109/TSG.2014.2347253 8665:Journal of Power Sources 7942:. Penton. Archived from 7906:The Industrial Physicist 6693:10.1109/mei.2010.5383924 6520:Journal of Power Sources 6371:Electric vehicle battery 6278:, tungsten disulfide (WS 5905:SWNT composite electrode 5571:hybrid electric vehicles 5545:Hybrid electric vehicles 5522:2012 24 Hours of Le Mans 5483:2012 24 Hours of Le Mans 5342: 5249:tramway network in Paris 5186:vehicle (LRV) using the 4966:double-layer capacitance 4842:, micro-controllers and 2748:chemicals. Treated with 1969:) and specific power of 1650:Double-layer capacitance 1589:double-layer capacitance 1574: 1320:≤ 2.7 F 1127:breakdown field strength 952:double-layer capacitance 684:Double-layer capacitance 649:Double-layer capacitance 488:is given by the formula 481:. The total capacitance 463:Capacitance distribution 98:double-layer capacitance 12755:Hybrid electric vehicle 12684:Flywheel energy storage 12656:Space-based solar power 12385:10.1023/A:1020220425954 11967:10.1021/acsnano.6b06111 11743:National Science Review 11385:10.1126/science.1200770 11285:10.1126/science.1239089 11173:A. Pesaran, J. Gonder, 10936:11 January 2014 at the 10914:11 January 2014 at the 10787:武汉首列超级电容100%低地板有轨电车首发试乘 10527:11 January 2014 at the 10075:11 January 2014 at the 10046:David A. Johnson, P.E. 10032:30 January 2014 at the 9798:13 January 2015 at the 9749:11 January 2014 at the 9532:10 January 2014 at the 9065:Coin type PAS capacitor 8467:10.1126/science.1194372 8338:10.1126/science.1216744 8253:10.1073/pnas.0706508104 7876:10.1023/A:1009629423578 7797:. Carbon-Ukraine. 2015. 7341:10.1073/pnas.1300599110 7223:Srinivasan, S. (2006). 7177:MITRE Nanosystems Group 6377:Flywheel energy storage 6182:On chip line filtering 6083:intercalated nanoflakes 5635:connects the city with 5551:Hybrid electric vehicle 5526:Audi R18 e-tron quattro 5481:Toyota TS030 Hybrid at 5443:University of Glamorgan 5267:Geneva Public Transport 5148:Supercapacitor-powered 5070: 5053: 4848:automated meter reading 4192:stores typically 30 to 4188:, while a conventional 4148:watt-hours per kilogram 3921:electrolytic capacitors 3678:The discharge current I 2634:Battery-type electrodes 1904:Activated carbon fibres 1883:1,250 to 2,000 S/m 1600:Double-layer capacitors 1397:> 100 W/g 1323:0.1 – 470 F 1279:2.5 – 4.2 V 1273:2.2 – 3.8 V 1270:2.2 – 3.3 V 1267:1.2 – 3.3 V 1131:electrolytic capacitors 882:by means of reversible 93:, but rather, they use 72:electrolytic capacitors 12724:Thermal energy storage 12429:Ploehn, Harry (2015). 12218:10.1098/rspa.1963.0114 11608:10.1002/adfm.201201176 11572:10.1002/adfm.201102796 11493:10.1002/ange.201103493 11344:. Rsc.org. 13 May 2011 11180:7 October 2012 at the 11141:7 January 2014 at the 10025:R. Gallay, Garmanage, 10007:Cite journal requires 9549:NESSCAP Co., Ltd. 2008 9394:10.1002/smll.202000180 8022:10.1002/adfm.201002094 7979:10.1002/adfm.201201176 7497:10.1002/smll.202002806 7200:. 2011. Archived from 6940:Adam Marcus Namisnyk. 6904:. ELNA. Archived from 6888:9 January 2014 at the 6720:6 January 2014 at the 6227:LSG/manganese dioxide 5772:Curved graphene sheets 5620: 5566: 5486: 5474: 5402: 5362: 5265:In 2012 tram operator 5262: 5219: 5168: 5164:Light rail vehicle in 5131: 5093: 4929:electromagnetic fields 4855:rechargeable batteries 4831: 4754:portable media players 4661: 4608: 4591: 4516: 4402: 4365: 4296: 4113: 4003: 3916: 3888: 3846: 3788:Internal resistance "R 3762: 3721: 3669: 3593: 3565:Lithium-ion capacitors 3529: 3521: 3491: 3377: 3313:can be calculated as: 3268: 3130: 3108: 3029: 3000: 2992: 2984: 2957:Collectors and housing 2934:electrochemical window 2640:lithium-ion capacitors 2624:lithium-ion capacitors 2539:Another approach uses 2372:) or sulfides such as 2242:+ H (C) + e ⇌ MnOOH(C) 2116: 2105: 2054: 1994:Carbide-derived carbon 1990: 1981:Carbide-derived carbon 1926: 1824:carbide-derived carbon 1768: 1632:lithium-ion capacitors 1584: 1555: 1545: 1535: 1523: 1475:temp., years (y) 1406:3 – 14 W/g 1403:3 – 10 W/g 1400:2 – 10 W/g 1098: 1090: 1082: 1073:Potential distribution 932: 871: 803: 766: 693: 569: 445: 417:lithium-ion capacitors 341:Between 1975 and 1980 297:rechargeable batteries 284: 76:rechargeable batteries 43: 35: 12651:Photovoltaic pavement 12596:Airborne wind turbine 12568:Emerging technologies 12323:J. Solid State Electr 12099:T2+2™ Market Overview 12018:10.1557/JMR.2010.0192 11460:. Green Car Congress. 10538:Mai 2008, Soul, Korea 10365:. YEC. Archived from 7271:10.3390/ijms241310861 6489:10.1515/ehs-2018-0010 6389:Lithium-ion capacitor 6327:) grew from US$ 47.5 6270:Tungsten trioxide (WO 6187:Nanosheet capacitors 5611: 5564: 5480: 5468: 5421:tested a new form of 5400: 5360: 5347:Further information: 5257: 5206: 5163: 5129: 5085:Green Cargo operates 5084: 4947:) for over 10 hours. 4890:Voltage stabilization 4825: 4659: 4606: 4589: 4517: 4400: 4366: 4297: 4198:lithium-ion batteries 4114: 4004: 3911: 3886: 3847: 3763: 3722: 3720:{\displaystyle \tau } 3670: 3591: 3527: 3519: 3492: 3378: 3269: 3128: 3109: 3030: 2998: 2990: 2982: 2970:Electrical parameters 2847:operating temperature 2421:value (1715 F/g) for 2111: 2099: 2048: 2014:thermal decomposition 1988: 1924: 1887:specific surface area 1789:specific surface area 1750: 1706:, electrosorption or 1582: 1551: 1541: 1529: 1521: 1264:4 – 630 V 1173:lithium-ion batteries 1096: 1088: 1080: 1046:Lithium-ion capacitor 1036:Asymmetric capacitors 930: 891:electric double-layer 869: 804: 763: 691: 570: 442: 309:specific surface area 282: 240:. In electrochemical 58:, is a high-capacity 41: 33: 12373:Russ. J. Electrochem 12235:Frackowiak, Elzbieta 11160:19 June 2013 at the 10627:on 17 September 2011 10227:. pp. 162–166. 10090:"Supercapacitor UPS" 9728:13 June 2018 at the 9592:17 July 2013 at the 9430:P. Simon, A. Burke, 8836:10.1149/2.0201505jes 8496:Akbulut, S. (2011). 7407:Frackowiak, Elzbieta 7122:Frackowiak, Elzbieta 7047:3 March 2016 at the 7026:15 June 2017 at the 7001:4 March 2016 at the 6325:Frost & Sullivan 5366:Maxwell Technologies 5211:on sections without 5182:adopted a prototype 5024:regenerative braking 4900:photovoltaic systems 4802:Grid power buffering 4791:electric screwdriver 4769:photographic flashes 4762:photovoltaic systems 4736:Consumer electronics 4540:= specified lifetime 4533:= estimated lifetime 4446: 4308: 4239: 4032: 3942: 3803: 3733: 3711: 3620: 3412: 3320: 3181: 3054: 3019: 2614:Composite electrodes 2053:made of carbon atoms 1933:is a highly porous, 1814:Electrodes for EDLCs 1668:double layer at the 1591:and electrochemical 1487:5 – 10 y 1484:5 – 10 y 1481:5 – 10 y 1478:> 20 y 1473:Working life at room 777: 600: = ½  495: 391:. In 1994 using the 382:Maxwell Technologies 316:Standard Oil of Ohio 305:electrical conductor 287:In the early 1950s, 113:regenerative braking 12719:Silicon–air battery 12704:Molten-salt battery 12694:Lithium–air battery 12689:Grid energy storage 12641:Molten salt reactor 12611:Carbon-neutral fuel 12502:10.1038/nature14647 12494:2015Natur.523..576L 12447:2015Natur.523..536P 12406:2015TDM.....2c2002P 12265:Conway, Brian Evans 12210:1963RSPSA.274...55B 12166:2008PhT....61l..43A 12104:16 May 2011 at the 12010:2010JMatR..25.1500R 11961:(12): 10726–10735. 11698:2013NatSR...3E1408Z 11647:2013NatSR...3E1718M 11485:2011AngCh.123.8912K 11377:2011Sci...332.1537Z 11371:(3067): 1537–1541. 11277:2013Sci...341..534Y 11076:Racecar Engineering 10800:"4-Neo Green Power" 10743:on 10 December 2012 10713:on 10 December 2012 10657:on 10 December 2012 10467:fuelcellworks.com. 10340:2014IJEPE..58...42L 10278:2013ITEnC..28..690I 10150:14 May 2013 at the 9699:2005PECS...31..422D 9664:2002JPS...110..107C 9572:12 May 2013 at the 9525:A. Laforgue et al. 9318:2016NatSR...638620H 9250:2019NatSR...916782M 9103:H. Gualous et al.: 9028:2008NatMa...7..845S 8954:2014NatSR...4E4452W 8907:2009NanoL...9..677D 8872:1995JElS..142.2699Z 8794:2000JElS..147..444P 8677:1997JPS....66....1C 8540:2005JOM....57l..26A 8459:2010Sci...329.1637M 8453:(5999): 1637–1639. 8416:2010NanoL..10.4863L 8330:2012Sci...335.1326E 8324:(6074): 1326–1330. 8293:. Science X network 8244:2007PNAS..10413574P 8238:(34): 13574–13577. 8197:2015TDM.....2c2002P 8154:2011NanoL..11.1423Y 7841:1992Carbo..30..601L 7741:2006JPS...157...11P 7598:2016JPS...326..604Y 7545:10.3390/nano9020148 7452:on 22 November 2012 7419:2001JPS....97..822F 7381:Conway, Brian Evans 7332:2013PNAS..110.3282Y 7231:. Springer eBooks. 7138:2001Carbo..39..937F 6956:on 22 December 2014 6859:1991JElS..138.1539C 6847:J. Electrochem. Soc 6839:Conway, Brian Evans 6803:Conway, Brian Evans 6590:2017Ene...118.1313T 6532:2019JPS...414..420B 6439:2017JVSTB..35d0801Q 5681: 5658:Greenwich Peninsula 5652:, that crosses the 5539:Toyota TS040 Hybrid 5510:Toyota TS030 Hybrid 5373:hybrid electric bus 5281:In August 2012 the 5067:stop-start system. 5064:PSA Peugeot Citroën 4105: 4087: 3998: 3584:Internal resistance 3480: 3462: 3401:for a certain time 3298:rated capacitance. 3103: 3013:orders of magnitude 2862:propylene carbonate 2811:lithium perchlorate 2789:such as quaternary 2783:potassium hydroxide 2577:conductive polymers 2545:conductive polymers 2535:Conductive polymers 2488:and anchored CNTs. 2465:ruthenium-anchored 1939:ultralight material 1806:(ESR) and decrease 1500:alternating current 1492:3 – 5 y 1419:time at room temp. 1286:thousands (k) 1182: 1157:internal resistance 1056:carbon–Ni(OH) 956:potential-dependent 746:physical adsorption 714:double layer effect 367:internal resistance 12046:on 3 November 2016 11933:. 25 November 2016 11931:www.kurzweilai.net 11871:www.kurzweilai.net 11777:. 28 February 2016 11775:www.kurzweilai.net 11756:10.1093/nsr/nwt003 11011:on 11 January 2014 10888:on 11 January 2014 10812:on 10 January 2014 10369:on 11 January 2014 9793:If the cap fits .. 9306:Scientific Reports 9238:Scientific Reports 8942:Scientific Reports 8829:(5): A5185–A5189. 8085:on 10 January 2014 7946:on 21 October 2021 7795:"EnterosorbU, FAQ" 7413:. 97–98: 822–825. 6883:Panasonic Goldcaps 5767:First realization 5679: 5621: 5567: 5487: 5475: 5403: 5363: 5263: 5220: 5209:Paris T3 tram line 5169: 5132: 5094: 4832: 4662: 4609: 4592: 4512: 4437:Arrhenius equation 4403: 4382:to 15 kW/kg. 4361: 4292: 4109: 4091: 4073: 3999: 3984: 3917: 3889: 3842: 3758: 3717: 3665: 3594: 3530: 3522: 3487: 3466: 3448: 3373: 3264: 3131: 3104: 3089: 3025: 3011:(F), three to six 3001: 2993: 2985: 2930:Ionic electrolytes 2852:Electrolytes with 2795:sodium perchlorate 2207:oxides such as MnO 2117: 2106: 2055: 1991: 1975:composite material 1927: 1769: 1759:illumination on a 1622:conducting polymer 1585: 1556: 1546: 1536: 1530:Radial style of a 1524: 1229:Temperature range, 1178: 1107:ceramic capacitors 1099: 1091: 1083: 978:or derivatives of 933: 872: 799: 767: 694: 639:Storage principles 565: 446: 444:(6) separator 343:Brian Evans Conway 301:Activated charcoal 285: 200:conducting polymer 186:chemical reactions 54:), also called an 44: 36: 12821:Energy conversion 12801: 12800: 12777: 12776: 12773: 12772: 12488:(7562): 576–579. 12441:(7562): 536–537. 12363:978-0-471-84802-8 12313:978-3-527-32869-7 12256:978-1-4200-5540-5 12174:10.1063/1.3047681 11905:10.1021/am509065d 11811:10.1021/nn406367p 11706:10.1038/srep01408 11656:10.1038/srep01718 11602:(23): 5038–5043. 11559:Adv. Funct. Mater 11532:10.1021/nn1017457 11479:(37): 8753–8757. 11473:Angewandte Chemie 11428:10.1021/nn402077v 11271:(6145): 534–537. 11213:Ross, Jeffrey N. 11078:. 24 January 2012 10501:on 8 October 2013 10432:978-1-4244-8220-7 10242:978-1-4673-4630-6 9917:978-1-4673-7918-2 9563:Maxwell BOOSTCAP 9326:10.1038/srep38620 9158:10.1021/ar200308h 8962:10.1038/srep04452 8915:10.1021/nl803168s 8880:10.1149/1.2050077 8803:10.1149/1.1393216 8763:10.1021/cm049649j 8757:(16): 3184–3190. 8728:10.1021/cr9003314 8722:(11): 6856–6872. 8638:10.1021/nn101595y 8632:(10): 6039–6049. 8587:(11): 1837–1847. 8424:10.1021/nl102661q 8410:(12): 4863–4868. 8162:10.1021/nl200225j 8068:10.1021/nn901825y 8047:(February 2010). 8010:Adv. Funct. Mater 7973:(23): 5038–5043. 7940:Power Electronics 7775:978-0-471-57043-1 7395:on 13 August 2012 7238:978-0-387-35402-6 6868:10.1149/1.2085829 6639:978-0-07-162421-3 6448:10.1116/1.4983210 6303: 6302: 6081:Manganese dioxide 5518:Le Mans Prototype 5150:terminal tractors 5089:locomotives from 5040:evacuation slides 4961:lead-acid battery 4921:energy harvesting 4915:Energy harvesting 4758:hand-held devices 4509: 4429:accelerated aging 4359: 4332: 4318: 4290: 4263: 4249: 4190:lead–acid battery 4098: 4080: 4069: 4060: 4056: 4042: 3991: 3978: 3966: 3952: 3826: 3813: 3749: 3663: 3660: 3630: 3542:breakdown voltage 3512:Operating voltage 3473: 3455: 3434: 3371: 3361: 3348: 3262: 3204: 3191: 3158:. Then the time t 3096: 3083: 3071: 3028:{\displaystyle W} 2947:polyacrylonitrile 2882:tetrafluoroborate 2870:diethyl carbonate 2856:solvents such as 2600:pseudocapacitance 2581:carbon electrodes 2517:manganese dioxide 1721:on the electrode. 1700:Pseudocapacitance 1628:Hybrid capacitors 1593:pseudocapacitance 1496: 1495: 1213:Pseudocapacitors 1051:Hybrid capacitors 922:chemical reaction 880:electrical energy 862:Pseudocapacitance 797: 659:Pseudocapacitance 563: 505: 389:breakdown voltage 105:pseudocapacitance 16:(Redirected from 12828: 12789: 12788: 12709:Nanowire battery 12636:Methanol economy 12631:Hydrogen economy 12586: 12585: 12579: 12578: 12561: 12554: 12547: 12538: 12537: 12521: 12476: 12458: 12425: 12388: 12367: 12346: 12317: 12294: 12260: 12229: 12192: 12190: 12188: 12182: 12176:. Archived from 12151: 12139: 12109: 12096: 12090: 12089: 12087: 12085: 12074: 12068: 12062: 12056: 12055: 12053: 12051: 12036: 12030: 12029: 12004:(8): 1500–1506. 11993: 11987: 11986: 11949: 11943: 11942: 11940: 11938: 11923: 11917: 11916: 11899:(5): 3414–3419. 11888: 11882: 11881: 11879: 11877: 11863: 11857: 11856: 11854: 11852: 11837: 11831: 11830: 11805:(3): 2658–2666. 11793: 11787: 11786: 11784: 11782: 11767: 11761: 11760: 11758: 11734: 11728: 11727: 11717: 11677: 11671: 11670: 11668: 11658: 11626: 11620: 11619: 11591: 11585: 11584: 11574: 11565:(6): 1272–1278. 11550: 11544: 11543: 11511: 11505: 11504: 11468: 11462: 11461: 11454: 11448: 11447: 11422:(8): 6899–6905. 11411: 11405: 11404: 11360: 11354: 11353: 11351: 11349: 11338: 11332: 11331: 11329: 11327: 11316:"Paradigm shift" 11311: 11305: 11304: 11260: 11254: 11248: 11242: 11236: 11230: 11225: 11219: 11218: 11210: 11204: 11191: 11185: 11171: 11165: 11151: 11145: 11132: 11126: 11125: 11123: 11121: 11109: 11103: 11102: 11094: 11088: 11087: 11085: 11083: 11068: 11062: 11061: 11059: 11057: 11046: 11040: 11027: 11021: 11020: 11018: 11016: 11001: 10995: 10994: 10992: 10990: 10975: 10969: 10968: 10966: 10964: 10959:on 26 March 2013 10948: 10942: 10926: 10920: 10904: 10898: 10897: 10895: 10893: 10878: 10872: 10871: 10869: 10867: 10853: 10847: 10846: 10844: 10842: 10828: 10822: 10821: 10819: 10817: 10811: 10805:. Archived from 10804: 10796: 10790: 10784: 10778: 10777: 10766: 10753: 10752: 10750: 10748: 10729: 10723: 10722: 10720: 10718: 10699: 10693: 10692: 10690: 10688: 10673: 10667: 10666: 10664: 10662: 10643: 10637: 10636: 10634: 10632: 10613: 10607: 10606: 10605:. Alstom, STEEM. 10599: 10593: 10592: 10590: 10588: 10569: 10563: 10561:Presentation PDF 10557: 10551: 10545: 10539: 10517: 10511: 10510: 10508: 10506: 10491: 10485: 10484: 10482: 10480: 10471:. Archived from 10464: 10458: 10451: 10445: 10444: 10417:. pp. 1–6. 10408: 10402: 10401: 10388: 10379: 10378: 10376: 10374: 10358: 10352: 10351: 10322: 10316: 10315: 10297: 10261: 10255: 10254: 10216: 10210: 10209: 10184:(4): 1903–1910. 10173: 10167: 10161: 10155: 10141: 10135: 10134: 10132: 10130: 10115: 10106: 10105: 10103: 10101: 10096:on 20 April 2013 10086: 10080: 10066: 10060: 10059: 10057: 10055: 10043: 10037: 10023: 10017: 10016: 10010: 10005: 10003: 9995: 9978:(5): 3570–3578. 9971: 9965: 9964: 9936: 9930: 9929: 9902:. pp. 1–6. 9895: 9889: 9882: 9873: 9872: 9870: 9868: 9853: 9847: 9846: 9844: 9842: 9831: 9825: 9824: 9822: 9820: 9809: 9803: 9789: 9783: 9774: 9765: 9764:1246501-1246501. 9761: 9755: 9739: 9733: 9717: 9711: 9710: 9693:(5–6): 422–465. 9682: 9676: 9675: 9652:J. Power Sources 9647: 9641: 9639: 9634: 9628: 9627: 9607: 9596: 9583: 9577: 9561: 9550: 9542: 9536: 9523: 9517: 9510: 9504: 9503: 9459: 9450: 9440: 9434: 9428: 9422: 9421: 9373: 9364: 9363: 9345: 9297: 9288: 9287: 9277: 9229: 9220: 9219: 9179: 9170: 9169: 9152:(5): 1075–1083. 9141: 9132: 9131: 9129: 9127: 9116: 9110: 9101: 9095: 9094: 9074: 9068: 9062: 9056: 9055: 9036:10.1038/nmat2297 9016:Nature Materials 9013: 9004: 8998: 8997: 8990: 8984: 8983: 8973: 8933: 8927: 8926: 8890: 8884: 8883: 8866:(8): 2699–2703. 8855: 8849: 8848: 8838: 8814: 8808: 8807: 8805: 8773: 8767: 8766: 8746: 8740: 8739: 8711: 8705: 8704: 8656: 8650: 8649: 8621: 8615: 8614: 8604: 8576: 8567: 8566: 8565:on 25 June 2009. 8564: 8558:. Archived from 8525: 8516: 8507: 8506: 8504: 8493: 8487: 8486: 8442: 8436: 8435: 8399: 8390: 8389: 8387: 8385: 8367: 8358: 8357: 8309: 8303: 8302: 8300: 8298: 8282: 8276: 8275: 8265: 8255: 8223: 8217: 8216: 8180: 8174: 8173: 8148:(4): 1423–1427. 8133: 8127: 8126: 8124: 8122: 8116: 8109: 8101: 8095: 8094: 8092: 8090: 8084: 8078:. Archived from 8062:(3): 1337–1344. 8053: 8040: 8034: 8033: 8005: 7999: 7998: 7962: 7956: 7955: 7953: 7951: 7931: 7925: 7924: 7922: 7920: 7914: 7903: 7894: 7888: 7887: 7859: 7853: 7852: 7824: 7818: 7817: 7816: 7812: 7805: 7799: 7798: 7791: 7780: 7779: 7759: 7753: 7752: 7729:J. Power Sources 7724: 7711: 7710: 7708: 7706: 7695: 7689: 7688: 7678: 7654: 7648: 7647: 7631: 7625: 7624: 7622: 7620: 7614: 7608:. Archived from 7586:J. Power Sources 7583: 7574: 7568: 7567: 7557: 7547: 7523: 7517: 7516: 7491:(37): e2002806. 7482: 7473: 7462: 7461: 7459: 7457: 7437: 7431: 7430: 7411:J. Power Sources 7403: 7397: 7396: 7391:, archived from 7377: 7364: 7363: 7353: 7343: 7325: 7316:(9): 3282–3286. 7300: 7294: 7293: 7283: 7273: 7249: 7243: 7242: 7220: 7214: 7213: 7211: 7209: 7194: 7188: 7187: 7185: 7183: 7174: 7165: 7150: 7149: 7118: 7103: 7102: 7092: 7083: 7074: 7073: 7071: 7069: 7058: 7052: 7038:David A. Evans: 7036: 7030: 7021:Capattery series 7017: 7011: 6991: 6985: 6984: 6983: 6979: 6972: 6966: 6965: 6963: 6961: 6955: 6948: 6937: 6918: 6917: 6915: 6913: 6908:on 13 March 2015 6898: 6892: 6879: 6873: 6872: 6870: 6853:(6): 1539–1548. 6835: 6826: 6825: 6815:, pp. 1–8, 6799: 6782: 6781: 6780: 6776: 6769: 6763: 6758: 6743: 6742: 6741: 6737: 6730: 6724: 6711: 6705: 6704: 6678: 6669: 6663: 6662: 6661: 6657: 6650: 6644: 6643: 6624: 6618: 6617: 6575: 6566: 6560: 6559: 6515: 6509: 6508: 6506: 6504: 6491: 6467: 6461: 6460: 6450: 6418: 6367: 6352: 6310: 6173: 6153: 6140: 6122: 6121: 6120: 6108: 6095: 6072: 6061: 6052: 6028: 6027: 6026: 6018: 6017: 6009: 6008: 5992: 5983: 5959: 5946: 5932:Nickel hydroxide 5919: 5890: 5871: 5855: 5835: 5821: 5803: 5797: 5784: 5759: 5750: 5720: 5682: 5678: 5675: 5590:rotary vane type 5516:developed under 5393: 5392: 5391: 5046:, including the 5021: 5020: 5019: 4521: 4519: 4518: 4513: 4511: 4510: 4505: 4504: 4503: 4491: 4490: 4480: 4471: 4470: 4458: 4457: 4370: 4368: 4367: 4362: 4360: 4358: 4357: 4348: 4347: 4338: 4333: 4325: 4320: 4319: 4316: 4301: 4299: 4298: 4293: 4291: 4289: 4288: 4279: 4278: 4269: 4264: 4256: 4251: 4250: 4247: 4211: 4209: 4203: 4195: 4187: 4183: 4179: 4176:of 32.4 MJ/L or 4171: 4118: 4116: 4115: 4110: 4104: 4099: 4096: 4086: 4081: 4078: 4067: 4058: 4057: 4049: 4044: 4043: 4040: 4008: 4006: 4005: 4000: 3997: 3992: 3989: 3980: 3979: 3976: 3967: 3959: 3954: 3953: 3950: 3851: 3849: 3848: 3843: 3841: 3840: 3828: 3827: 3824: 3815: 3814: 3811: 3796:" according to: 3767: 3765: 3764: 3759: 3751: 3750: 3747: 3726: 3724: 3723: 3718: 3674: 3672: 3671: 3666: 3664: 3662: 3661: 3658: 3652: 3651: 3650: 3637: 3632: 3631: 3628: 3496: 3494: 3493: 3488: 3479: 3474: 3471: 3461: 3456: 3453: 3435: 3433: 3422: 3382: 3380: 3379: 3374: 3372: 3367: 3363: 3362: 3359: 3350: 3349: 3346: 3330: 3273: 3271: 3270: 3265: 3263: 3261: 3260: 3259: 3247: 3246: 3236: 3235: 3234: 3222: 3221: 3211: 3206: 3205: 3202: 3193: 3192: 3189: 3113: 3111: 3110: 3105: 3102: 3097: 3094: 3085: 3084: 3081: 3072: 3064: 3034: 3032: 3031: 3026: 2925: 2924: 2923: 2915: 2914: 2904: 2903: 2902: 2894: 2893: 2840: 2839: 2838: 2824: 2823: 2822: 2808: 2807: 2806: 2776: 2775: 2774: 2766: 2765: 2629: 2530: 2529: 2528: 2484: 2483: 2482: 2459: 2458: 2457: 2444: 2443: 2442: 2418:activated carbon 2412: 2411:96.12 kJ/kg 2408: 2407: 2406: 2398: 2397: 2387: 2386: 2385: 2374:titanium sulfide 2371: 2370: 2369: 2355: 2354: 2353: 2345: 2344: 2330: 2329: 2328: 2314: 2313: 2312: 2205:transition-metal 2138:matryoshka dolls 2120:Carbon nanotubes 2092:Carbon nanotubes 2079: 2075: 2035: 2034: 2033: 2006:titanium carbide 1972: 1968: 1964: 1912: 1897:amorphous carbon 1879:Activated carbon 1874:Activated carbon 1869: 1868: 1867: 1844:carbon nanotubes 1820:activated carbon 1793:activated carbon 1761:light microscope 1618:transition metal 1614:Pseudocapacitors 1608:activated carbon 1351:0.01 – 0.3 1284:Recharge cycles, 1221: 1216:Hybrid (Li-ion) 1210:(memory backup) 1196:Supercapacitors 1183: 1177: 1067: 1063: 937:valence electron 848:nanostructures. 808: 806: 805: 800: 798: 790: 574: 572: 571: 566: 564: 562: 561: 560: 548: 547: 537: 536: 535: 523: 522: 512: 507: 506: 503: 289:General Electric 21: 12836: 12835: 12831: 12830: 12829: 12827: 12826: 12825: 12806: 12805: 12802: 12797: 12769: 12733: 12665: 12570: 12565: 12528: 12456:10.1038/523536a 12364: 12314: 12291: 12257: 12204:(1356): 55–79. 12198:Proc. R. Soc. A 12186: 12184: 12183:on 4 March 2016 12180: 12149: 12118: 12116:Further reading 12113: 12112: 12106:Wayback Machine 12097: 12093: 12083: 12081: 12076: 12075: 12071: 12063: 12059: 12049: 12047: 12038: 12037: 12033: 11994: 11990: 11950: 11946: 11936: 11934: 11925: 11924: 11920: 11889: 11885: 11875: 11873: 11865: 11864: 11860: 11850: 11848: 11838: 11834: 11794: 11790: 11780: 11778: 11769: 11768: 11764: 11735: 11731: 11678: 11674: 11627: 11623: 11592: 11588: 11551: 11547: 11512: 11508: 11469: 11465: 11456: 11455: 11451: 11412: 11408: 11361: 11357: 11347: 11345: 11340: 11339: 11335: 11325: 11323: 11322:on 21 June 2013 11312: 11308: 11261: 11257: 11249: 11245: 11237: 11233: 11226: 11222: 11211: 11207: 11201:Wayback Machine 11192: 11188: 11182:Wayback Machine 11172: 11168: 11162:Wayback Machine 11152: 11148: 11143:Wayback Machine 11133: 11129: 11119: 11117: 11110: 11106: 11095: 11091: 11081: 11079: 11070: 11069: 11065: 11055: 11053: 11048: 11047: 11043: 11037:Wayback Machine 11028: 11024: 11014: 11012: 11003: 11002: 10998: 10988: 10986: 10977: 10976: 10972: 10962: 10960: 10949: 10945: 10938:Wayback Machine 10927: 10923: 10916:Wayback Machine 10905: 10901: 10891: 10889: 10880: 10879: 10875: 10865: 10863: 10855: 10854: 10850: 10840: 10838: 10830: 10829: 10825: 10815: 10813: 10809: 10802: 10798: 10797: 10793: 10785: 10781: 10776:. 10 July 2014. 10768: 10767: 10756: 10746: 10744: 10737:Railway Gazette 10731: 10730: 10726: 10716: 10714: 10707:Railway Gazette 10701: 10700: 10696: 10686: 10684: 10675: 10674: 10670: 10660: 10658: 10651:Railway Gazette 10645: 10644: 10640: 10630: 10628: 10621:Railway Gazette 10615: 10614: 10610: 10601: 10600: 10596: 10586: 10584: 10577:Railway Gazette 10571: 10570: 10566: 10558: 10554: 10546: 10542: 10529:Wayback Machine 10518: 10514: 10504: 10502: 10493: 10492: 10488: 10478: 10476: 10465: 10461: 10452: 10448: 10433: 10409: 10405: 10400:. 12 July 2014. 10390: 10389: 10382: 10372: 10370: 10359: 10355: 10323: 10319: 10262: 10258: 10243: 10217: 10213: 10174: 10170: 10162: 10158: 10152:Wayback Machine 10142: 10138: 10128: 10126: 10117: 10116: 10109: 10099: 10097: 10088: 10087: 10083: 10077:Wayback Machine 10067: 10063: 10053: 10051: 10044: 10040: 10034:Wayback Machine 10024: 10020: 10008: 10006: 9997: 9996: 9972: 9968: 9937: 9933: 9918: 9896: 9892: 9883: 9876: 9866: 9864: 9863:on 7 March 2012 9855: 9854: 9850: 9840: 9838: 9833: 9832: 9828: 9818: 9816: 9811: 9810: 9806: 9800:Wayback Machine 9791:Graham Pitcher 9790: 9786: 9775: 9768: 9762: 9758: 9751:Wayback Machine 9740: 9736: 9730:Wayback Machine 9718: 9714: 9683: 9679: 9648: 9644: 9638:3700 Wh/kg 9637: 9635: 9631: 9608: 9599: 9594:Wayback Machine 9584: 9580: 9574:Wayback Machine 9562: 9553: 9543: 9539: 9534:Wayback Machine 9524: 9520: 9511: 9507: 9460: 9453: 9441: 9437: 9429: 9425: 9388:(31): 2000180. 9374: 9367: 9298: 9291: 9230: 9223: 9180: 9173: 9142: 9135: 9125: 9123: 9118: 9117: 9113: 9102: 9098: 9075: 9071: 9063: 9059: 9022:(11): 845–854. 9011: 9005: 9001: 8992: 8991: 8987: 8934: 8930: 8891: 8887: 8856: 8852: 8815: 8811: 8774: 8770: 8747: 8743: 8712: 8708: 8659:Conway, B. E.; 8657: 8653: 8622: 8618: 8577: 8570: 8562: 8523: 8517: 8510: 8502: 8494: 8490: 8443: 8439: 8400: 8393: 8383: 8381: 8368: 8361: 8310: 8306: 8296: 8294: 8283: 8279: 8224: 8220: 8181: 8177: 8134: 8130: 8120: 8118: 8117:on 2 April 2016 8114: 8107: 8103: 8102: 8098: 8088: 8086: 8082: 8051: 8041: 8037: 8006: 8002: 7963: 7959: 7949: 7947: 7932: 7928: 7918: 7916: 7915:on 2 April 2015 7912: 7901: 7895: 7891: 7860: 7856: 7825: 7821: 7814: 7806: 7802: 7793: 7792: 7783: 7776: 7760: 7756: 7725: 7714: 7704: 7702: 7697: 7696: 7692: 7655: 7651: 7632: 7628: 7618: 7616: 7615:on 19 July 2018 7612: 7581: 7575: 7571: 7524: 7520: 7480: 7474: 7465: 7455: 7453: 7438: 7434: 7404: 7400: 7378: 7367: 7301: 7297: 7250: 7246: 7239: 7221: 7217: 7207: 7205: 7196: 7195: 7191: 7181: 7179: 7172: 7166: 7153: 7119: 7106: 7090: 7084: 7077: 7067: 7065: 7060: 7059: 7055: 7049:Wayback Machine 7037: 7033: 7028:Wayback Machine 7018: 7014: 7003:Wayback Machine 6992: 6988: 6981: 6973: 6969: 6959: 6957: 6953: 6946: 6938: 6921: 6911: 6909: 6900: 6899: 6895: 6890:Wayback Machine 6880: 6876: 6836: 6829: 6823: 6800: 6785: 6778: 6770: 6766: 6759: 6746: 6739: 6731: 6727: 6722:Wayback Machine 6712: 6708: 6676: 6670: 6666: 6659: 6651: 6647: 6640: 6626: 6625: 6621: 6573: 6567: 6563: 6516: 6512: 6502: 6500: 6468: 6464: 6419: 6415: 6410: 6365: 6356:Capacitor types 6350: 6343: 6318: 6281: 6273: 6221: 6217: 6213: 6209: 6205: 6167: 6147: 6134: 6119: 6116: 6115: 6114: 6112: 6102: 6089: 6066: 6055: 6046: 6025: 6022: 6021: 6020: 6016: 6013: 6012: 6011: 6007: 6004: 6003: 6002: 6000: 5986: 5977: 5965: 5953: 5940: 5913: 5884: 5865: 5849: 5829: 5815: 5801: 5791: 5778: 5753: 5744: 5740: 5738: 5714: 5691:Specific energy 5673: 5670: 5612:Aerial lift in 5606: 5598:Peugeot Citroën 5559: 5553: 5547: 5463: 5390: 5387: 5386: 5385: 5383: 5355: 5345: 5319:the VLT network 5158: 5124: 5118:Crane (machine) 5116:Main articles: 5114: 5112:Plant machinery 5079: 5073: 5056: 5032: 5018: 5015: 5014: 5013: 5011: 5008: 4999: 4979: 4953: 4937:radio frequency 4917: 4908: 4892: 4820: 4804: 4799: 4773:digital cameras 4738: 4726: 4716:BS/EN 61881-3, 4654: 4633: 4601: 4584: 4576:leakage current 4571: 4553: 4546: 4539: 4532: 4499: 4495: 4486: 4482: 4481: 4479: 4475: 4466: 4462: 4453: 4449: 4447: 4444: 4443: 4395: 4377: 4353: 4349: 4343: 4339: 4337: 4324: 4315: 4311: 4309: 4306: 4305: 4284: 4280: 4274: 4270: 4268: 4255: 4246: 4242: 4240: 4237: 4236: 4231: 4226: 4207: 4205: 4201: 4193: 4185: 4181: 4177: 4169: 4140:gravimetrically 4136:specific energy 4128: 4100: 4095: 4082: 4077: 4048: 4039: 4035: 4033: 4030: 4029: 4024: 4020: 4016: 3993: 3988: 3975: 3971: 3958: 3949: 3945: 3943: 3940: 3939: 3930: 3906: 3904:Energy capacity 3899: 3895: 3881: 3836: 3832: 3823: 3819: 3810: 3806: 3804: 3801: 3800: 3795: 3791: 3782: 3746: 3742: 3734: 3731: 3730: 3712: 3709: 3708: 3703: 3699: 3688: 3681: 3657: 3653: 3646: 3642: 3638: 3636: 3627: 3623: 3621: 3618: 3617: 3612: 3608: 3604: 3586: 3535: 3514: 3507: 3503: 3475: 3470: 3457: 3452: 3426: 3421: 3413: 3410: 3409: 3393: 3389: 3358: 3354: 3345: 3341: 3331: 3329: 3321: 3318: 3317: 3255: 3251: 3242: 3238: 3237: 3230: 3226: 3217: 3213: 3212: 3210: 3201: 3197: 3188: 3184: 3182: 3179: 3178: 3173: 3169: 3165: 3161: 3157: 3123: 3098: 3093: 3080: 3076: 3063: 3055: 3052: 3051: 3046: 3020: 3017: 3016: 3006: 2977: 2972: 2959: 2942: 2922: 2919: 2918: 2917: 2913: 2910: 2909: 2908: 2906: 2901: 2898: 2897: 2896: 2892: 2889: 2888: 2887: 2885: 2874:γ-butyrolactone 2866:tetrahydrofuran 2837: 2834: 2833: 2832: 2830: 2821: 2818: 2817: 2816: 2814: 2805: 2802: 2801: 2800: 2798: 2773: 2770: 2769: 2768: 2764: 2761: 2760: 2759: 2757: 2702: 2694: 2690: 2686: 2682: 2678: 2674: 2670: 2666: 2661: 2648: 2636: 2628:50.4 kJ/kg 2627: 2616: 2604:specific energy 2596: 2537: 2527: 2524: 2523: 2522: 2520: 2491:Less expensive 2481: 2478: 2477: 2476: 2474: 2471:carbon nanotube 2456: 2453: 2452: 2451: 2449: 2441: 2438: 2437: 2436: 2434: 2427:carbon nanotube 2423:ruthenium oxide 2410: 2405: 2402: 2401: 2400: 2396: 2393: 2392: 2391: 2389: 2384: 2381: 2380: 2379: 2377: 2368: 2365: 2364: 2363: 2361: 2352: 2349: 2348: 2347: 2343: 2340: 2339: 2338: 2336: 2327: 2324: 2323: 2322: 2320: 2311: 2308: 2307: 2306: 2304: 2297: 2289: 2280: 2276: 2272: 2268: 2260: 2241: 2218: 2214: 2210: 2185: 2178: 2172: 2094: 2077: 2074:85.6 Wh/kg 2073: 2049:Graphene is an 2043: 2032: 2029: 2028: 2027: 2025: 2002:silicon carbide 1983: 1970: 1966: 1962: 1919: 1910: 1906: 1876: 1870:intercalation. 1866: 1863: 1862: 1861: 1859: 1816: 1800:specific energy 1745: 1736: 1719:charge-transfer 1704:redox reactions 1676:of a conductor 1577: 1553: 1543: 1516: 1474: 1445: 1438: 1433: 1428: 1423: 1418: 1390: 1385: 1375: 1374:100 – 265 1367: 1362: 1357: 1356:1.5 – 3.9 1352: 1347: 1343: 1340:Specific energy 1313: 1301:> 20 k 1289:< unlimited 1285: 1257: 1256:Maximum charge, 1232:degrees Celsius 1230: 1224:(experimental) 1223: 1209: 1207: 1200: 1192: 1190: 1180: 1169: 1146:electrochemical 1111:film capacitors 1075: 1059: 1053: 1048: 1038: 1031: 1027: 1023: 1019: 1015: 987:electric charge 973: 969: 965: 918:electrosorption 898:charge-transfer 887:redox reactions 864: 858: 789: 778: 775: 774: 686: 680: 663:electrochemical 641: 634: 627: 620: 613: 606: 599: 592: 585: 556: 552: 543: 539: 538: 531: 527: 518: 514: 513: 511: 502: 498: 496: 493: 492: 487: 480: 473: 465: 449:Electrochemical 437: 432: 347:ruthenium oxide 277: 228:In solid-state 222:electrosorption 214:redox reactions 210:charge-transfer 125: 102:electrochemical 28: 23: 22: 18:Supercapacitors 15: 12: 11: 5: 12834: 12824: 12823: 12818: 12799: 12798: 12796: 12795: 12782: 12779: 12778: 12775: 12774: 12771: 12770: 12768: 12767: 12765:Wireless power 12762: 12757: 12752: 12747: 12741: 12739: 12735: 12734: 12732: 12731: 12729:Ultracapacitor 12726: 12721: 12716: 12711: 12706: 12701: 12696: 12691: 12686: 12681: 12675: 12673: 12667: 12666: 12664: 12663: 12658: 12653: 12648: 12643: 12638: 12633: 12628: 12626:Home fuel cell 12623: 12618: 12613: 12608: 12603: 12598: 12592: 12590: 12583: 12576: 12572: 12571: 12564: 12563: 12556: 12549: 12541: 12535: 12534: 12527: 12526:External links 12524: 12523: 12522: 12477: 12426: 12389: 12379:(9): 935–959. 12368: 12362: 12347: 12318: 12312: 12295: 12290:978-0306457364 12289: 12261: 12255: 12230: 12193: 12141: 12140: 12117: 12114: 12111: 12110: 12091: 12069: 12057: 12031: 11988: 11944: 11918: 11883: 11858: 11846:www.gizmag.com 11832: 11788: 11762: 11749:(2): 277–292. 11729: 11672: 11621: 11586: 11545: 11526:(2): 811–819. 11506: 11463: 11449: 11406: 11355: 11333: 11306: 11255: 11243: 11231: 11220: 11205: 11186: 11166: 11146: 11127: 11104: 11089: 11063: 11041: 11022: 10996: 10970: 10943: 10921: 10899: 10873: 10861:www.alstom.com 10848: 10836:www.alstom.com 10823: 10791: 10779: 10754: 10724: 10694: 10683:on 12 May 2013 10668: 10638: 10608: 10594: 10583:on 8 June 2011 10564: 10552: 10540: 10512: 10486: 10475:on 21 May 2008 10459: 10446: 10431: 10403: 10380: 10353: 10317: 10272:(3): 690–697. 10256: 10241: 10211: 10168: 10156: 10136: 10125:on 22 May 2013 10107: 10081: 10061: 10038: 10018: 10009:|journal= 9966: 9931: 9916: 9890: 9874: 9848: 9826: 9804: 9784: 9766: 9756: 9734: 9712: 9677: 9658:(1): 107–116. 9642: 9629: 9597: 9578: 9551: 9537: 9518: 9505: 9451: 9435: 9423: 9365: 9289: 9221: 9171: 9133: 9111: 9096: 9085:(3): 479–487. 9069: 9057: 8999: 8985: 8928: 8901:(2): 677–683. 8885: 8850: 8809: 8788:(2): 444–450. 8768: 8741: 8706: 8651: 8616: 8568: 8508: 8488: 8437: 8391: 8359: 8304: 8277: 8218: 8175: 8128: 8096: 8035: 8016:(5): 810–833. 8000: 7957: 7926: 7889: 7870:(4): 281–285. 7854: 7835:(4): 601–604. 7819: 7800: 7781: 7774: 7754: 7712: 7690: 7649: 7626: 7569: 7518: 7463: 7432: 7398: 7365: 7295: 7244: 7237: 7215: 7204:on 31 May 2011 7189: 7151: 7132:(6): 937–950. 7104: 7075: 7053: 7031: 7012: 6986: 6967: 6919: 6893: 6874: 6827: 6822:978-0306457364 6821: 6783: 6764: 6744: 6725: 6706: 6664: 6645: 6638: 6619: 6561: 6510: 6482:(3–4): 43–51. 6462: 6412: 6411: 6409: 6406: 6405: 6404: 6398: 6392: 6386: 6380: 6374: 6368: 6359: 6353: 6342: 6339: 6317: 6314: 6301: 6300: 6297: 6295: 6292: 6289: 6286: 6283: 6279: 6271: 6267: 6266: 6263: 6260: 6258: 6255: 6253: 6250: 6246: 6245: 6242: 6240: 6237: 6234: 6231: 6228: 6224: 6223: 6219: 6215: 6211: 6210:Dielectric: Ca 6207: 6203: 6202:Electrodes: Ru 6200: 6197: 6195: 6193: 6191: 6188: 6184: 6183: 6180: 6178: 6176: 6174: 6165: 6162: 6158: 6157: 6154: 6145: 6143: 6141: 6132: 6129: 6125: 6124: 6117: 6109: 6100: 6098: 6096: 6087: 6084: 6077: 6076: 6073: 6064: 6062: 6053: 6044: 6041: 6031: 6030: 6023: 6014: 6005: 5998: 5996: 5993: 5984: 5975: 5972: 5968: 5967: 5963: 5960: 5951: 5949: 5947: 5938: 5935: 5928: 5927: 5924: 5922: 5920: 5911: 5909: 5906: 5902: 5901: 5898: 5896: 5893: 5891: 5882: 5879: 5873: 5872: 5862: 5860: 5858: 5856: 5847: 5844: 5840: 5839: 5836: 5827: 5824: 5822: 5813: 5810: 5806: 5805: 5798: 5789: 5787: 5785: 5776: 5773: 5769: 5768: 5765: 5763: 5760: 5751: 5742: 5735: 5731: 5730: 5727: 5725: 5723: 5721: 5712: 5709: 5705: 5704: 5701: 5698: 5695: 5694:Specific power 5692: 5689: 5686: 5680:Announcements 5669: 5666: 5605: 5602: 5549:Main article: 5546: 5543: 5537:. In 2014 the 5462: 5459: 5417:In early 2005 5405:As of 2002 in 5388: 5344: 5341: 5323:Rio de Janeiro 5213:overhead wires 5173:overhead lines 5157: 5154: 5145:forklift truck 5134:Mobile hybrid 5122:Forklift truck 5113: 5110: 5075:Main article: 5072: 5069: 5055: 5052: 5031: 5028: 5016: 5007: 5004: 4998: 4995: 4983:defibrillators 4978: 4975: 4952: 4949: 4933:energy storage 4916: 4913: 4907: 4904: 4891: 4888: 4819: 4816: 4803: 4800: 4798: 4795: 4783:, 90 seconds. 4737: 4734: 4725: 4722: 4721: 4720: 4714: 4708: 4698: 4697: 4694: 4691: 4688: 4653: 4650: 4632: 4629: 4600: 4597: 4583: 4580: 4570: 4569:Self-discharge 4567: 4556: 4555: 4551: 4548: 4544: 4541: 4537: 4534: 4530: 4523: 4522: 4508: 4502: 4498: 4494: 4489: 4485: 4478: 4474: 4469: 4465: 4461: 4456: 4452: 4394: 4391: 4375: 4372: 4371: 4356: 4352: 4346: 4342: 4336: 4331: 4328: 4323: 4314: 4303: 4287: 4283: 4277: 4273: 4267: 4262: 4259: 4254: 4245: 4229: 4224: 4217:specific power 4202:265 Wh/kg 4186:0.3 Wh/kg 4178:9000 Wh/L 4174:energy density 4159:volumetrically 4127: 4124: 4120: 4119: 4108: 4103: 4094: 4090: 4085: 4076: 4072: 4066: 4063: 4055: 4052: 4047: 4038: 4022: 4018: 4014: 4010: 4009: 3996: 3987: 3983: 3974: 3970: 3965: 3962: 3957: 3948: 3931:(expressed in 3928: 3927:. The energy W 3905: 3902: 3897: 3893: 3880: 3877: 3853: 3852: 3839: 3835: 3831: 3822: 3818: 3809: 3793: 3789: 3781: 3778: 3769: 3768: 3757: 3754: 3745: 3741: 3738: 3716: 3701: 3697: 3686: 3679: 3676: 3675: 3656: 3649: 3645: 3641: 3635: 3626: 3610: 3606: 3602: 3585: 3582: 3533: 3513: 3510: 3505: 3501: 3498: 3497: 3486: 3483: 3478: 3469: 3465: 3460: 3451: 3447: 3444: 3441: 3438: 3432: 3429: 3425: 3420: 3417: 3391: 3387: 3384: 3383: 3370: 3366: 3357: 3353: 3344: 3340: 3337: 3334: 3328: 3325: 3292: 3291: 3288: 3285: 3282: 3275: 3274: 3258: 3254: 3250: 3245: 3241: 3233: 3229: 3225: 3220: 3216: 3209: 3200: 3196: 3187: 3171: 3167: 3163: 3159: 3155: 3144:time constants 3122: 3119: 3115: 3114: 3101: 3092: 3088: 3079: 3075: 3070: 3067: 3062: 3059: 3044: 3035:(expressed in 3024: 3004: 2976: 2973: 2971: 2968: 2958: 2955: 2941: 2938: 2920: 2911: 2899: 2890: 2878:ammonium salts 2835: 2819: 2803: 2771: 2762: 2701: 2698: 2692: 2688: 2684: 2680: 2676: 2672: 2668: 2664: 2659: 2647: 2644: 2635: 2632: 2615: 2612: 2608:specific power 2595: 2592: 2536: 2533: 2525: 2479: 2454: 2439: 2403: 2394: 2382: 2366: 2350: 2341: 2325: 2309: 2296: 2293: 2287: 2282: 2281: 2278: 2274: 2273:+ C + e ⇌ (MnO 2270: 2266: 2258: 2244: 2243: 2239: 2216: 2212: 2208: 2183: 2176: 2171: 2168: 2093: 2090: 2078:308 kJ/kg 2042: 2039: 2030: 1982: 1979: 1963:325 kJ/kg 1918: 1917:Carbon aerogel 1915: 1905: 1902: 1875: 1872: 1864: 1826:(CDC), carbon 1815: 1812: 1808:specific power 1744: 1741: 1735: 1732: 1723: 1722: 1697: 1688:(0.3–0.8  1635: 1634: 1625: 1611: 1576: 1573: 1569:short circuits 1515: 1512: 1494: 1493: 1490: 1488: 1485: 1482: 1479: 1476: 1470: 1469: 1466: 1464: 1461: 1458: 1455: 1452: 1451:Efficiency (%) 1448: 1447: 1442: 1440: 1435: 1430: 1425: 1420: 1417:Self-discharge 1414: 1413: 1410: 1407: 1404: 1401: 1398: 1395: 1382:Specific power 1378: 1377: 1372: 1369: 1364: 1359: 1354: 1349: 1336: 1335: 1332: 1330: 1327: 1324: 1321: 1318: 1306: 1305: 1302: 1299: 1296: 1293: 1290: 1287: 1281: 1280: 1277: 1274: 1271: 1268: 1265: 1262: 1253: 1252: 1249: 1247: 1244: 1241: 1238: 1235: 1226: 1225: 1217: 1214: 1211: 1203: 1202: 1197: 1194: 1187: 1168: 1165: 1122:electric field 1074: 1071: 1057: 1052: 1049: 1037: 1034: 1029: 1025: 1021: 1017: 1013: 985:The amount of 971: 967: 963: 860:Main article: 857: 854: 811: 810: 796: 793: 788: 785: 782: 682:Main article: 679: 676: 671: 670: 656: 640: 637: 632: 625: 618: 611: 604: 597: 590: 583: 576: 575: 559: 555: 551: 546: 542: 534: 530: 526: 521: 517: 510: 501: 485: 478: 471: 464: 461: 436: 433: 431: 428: 276: 273: 269:conductivities 256:structure. In 226: 225: 189: 173: 164:(0.3–0.8  124: 121: 56:ultracapacitor 48:supercapacitor 26: 9: 6: 4: 3: 2: 12833: 12822: 12819: 12817: 12814: 12813: 12811: 12804: 12794: 12793: 12784: 12783: 12780: 12766: 12763: 12761: 12758: 12756: 12753: 12751: 12748: 12746: 12743: 12742: 12740: 12736: 12730: 12727: 12725: 12722: 12720: 12717: 12715: 12712: 12710: 12707: 12705: 12702: 12700: 12697: 12695: 12692: 12690: 12687: 12685: 12682: 12680: 12677: 12676: 12674: 12672: 12668: 12662: 12661:Vortex engine 12659: 12657: 12654: 12652: 12649: 12647: 12644: 12642: 12639: 12637: 12634: 12632: 12629: 12627: 12624: 12622: 12619: 12617: 12614: 12612: 12609: 12607: 12604: 12602: 12599: 12597: 12594: 12593: 12591: 12587: 12584: 12580: 12577: 12573: 12569: 12562: 12557: 12555: 12550: 12548: 12543: 12542: 12539: 12533: 12530: 12529: 12519: 12515: 12511: 12507: 12503: 12499: 12495: 12491: 12487: 12483: 12478: 12474: 12470: 12466: 12462: 12457: 12452: 12448: 12444: 12440: 12436: 12432: 12427: 12423: 12419: 12415: 12411: 12407: 12403: 12400:(3): 032002. 12399: 12395: 12390: 12386: 12382: 12378: 12374: 12369: 12365: 12359: 12355: 12354: 12348: 12344: 12340: 12336: 12332: 12328: 12324: 12319: 12315: 12309: 12305: 12301: 12296: 12292: 12286: 12282: 12278: 12274: 12270: 12266: 12262: 12258: 12252: 12248: 12244: 12240: 12236: 12231: 12227: 12223: 12219: 12215: 12211: 12207: 12203: 12199: 12194: 12179: 12175: 12171: 12167: 12163: 12160:(12): 43–47. 12159: 12155: 12148: 12143: 12142: 12137: 12133: 12129: 12125: 12120: 12119: 12107: 12103: 12100: 12095: 12079: 12073: 12067: 12061: 12045: 12041: 12035: 12027: 12023: 12019: 12015: 12011: 12007: 12003: 11999: 11992: 11984: 11980: 11976: 11972: 11968: 11964: 11960: 11956: 11948: 11932: 11928: 11922: 11914: 11910: 11906: 11902: 11898: 11894: 11887: 11872: 11868: 11862: 11847: 11843: 11836: 11828: 11824: 11820: 11816: 11812: 11808: 11804: 11800: 11792: 11776: 11772: 11766: 11757: 11752: 11748: 11744: 11740: 11733: 11725: 11721: 11716: 11711: 11707: 11703: 11699: 11695: 11691: 11687: 11683: 11676: 11667: 11662: 11657: 11652: 11648: 11644: 11640: 11636: 11632: 11625: 11617: 11613: 11609: 11605: 11601: 11597: 11590: 11582: 11578: 11573: 11568: 11564: 11560: 11556: 11549: 11541: 11537: 11533: 11529: 11525: 11521: 11517: 11510: 11502: 11498: 11494: 11490: 11486: 11482: 11478: 11474: 11467: 11459: 11453: 11445: 11441: 11437: 11433: 11429: 11425: 11421: 11417: 11410: 11402: 11398: 11394: 11390: 11386: 11382: 11378: 11374: 11370: 11366: 11359: 11343: 11337: 11321: 11317: 11310: 11302: 11298: 11294: 11290: 11286: 11282: 11278: 11274: 11270: 11266: 11259: 11253: 11247: 11241: 11235: 11229: 11224: 11216: 11209: 11202: 11198: 11195: 11190: 11183: 11179: 11176: 11170: 11163: 11159: 11156: 11150: 11144: 11140: 11137: 11131: 11115: 11108: 11100: 11093: 11077: 11073: 11067: 11051: 11045: 11038: 11034: 11031: 11026: 11010: 11006: 11000: 10985:. 5 June 2008 10984: 10980: 10974: 10958: 10954: 10947: 10940: 10939: 10935: 10932: 10925: 10918: 10917: 10913: 10910: 10903: 10887: 10883: 10877: 10862: 10858: 10852: 10837: 10833: 10827: 10808: 10801: 10795: 10788: 10783: 10775: 10774:The Economist 10771: 10765: 10763: 10761: 10759: 10742: 10738: 10734: 10728: 10712: 10708: 10704: 10698: 10682: 10678: 10672: 10656: 10652: 10648: 10642: 10626: 10622: 10618: 10612: 10604: 10598: 10582: 10578: 10574: 10568: 10562: 10556: 10550: 10544: 10537: 10536: 10531: 10530: 10526: 10523: 10516: 10500: 10496: 10490: 10474: 10470: 10463: 10456: 10450: 10442: 10438: 10434: 10428: 10424: 10420: 10416: 10415: 10407: 10399: 10398: 10397:The Economist 10393: 10387: 10385: 10368: 10364: 10357: 10349: 10345: 10341: 10337: 10333: 10329: 10321: 10313: 10309: 10305: 10301: 10296: 10291: 10287: 10283: 10279: 10275: 10271: 10267: 10260: 10252: 10248: 10244: 10238: 10234: 10230: 10226: 10222: 10215: 10207: 10203: 10199: 10195: 10191: 10187: 10183: 10179: 10172: 10166: 10160: 10153: 10149: 10146: 10140: 10124: 10120: 10114: 10112: 10095: 10091: 10085: 10078: 10074: 10071: 10065: 10049: 10042: 10035: 10031: 10028: 10022: 10014: 10001: 9993: 9989: 9985: 9981: 9977: 9970: 9962: 9958: 9954: 9950: 9946: 9942: 9935: 9927: 9923: 9919: 9913: 9909: 9905: 9901: 9894: 9887: 9881: 9879: 9862: 9858: 9852: 9836: 9830: 9814: 9808: 9801: 9797: 9794: 9788: 9781: 9780: 9773: 9771: 9760: 9753: 9752: 9748: 9745: 9738: 9731: 9727: 9724: 9723: 9716: 9708: 9704: 9700: 9696: 9692: 9688: 9681: 9673: 9669: 9665: 9661: 9657: 9653: 9646: 9633: 9625: 9621: 9617: 9613: 9606: 9604: 9602: 9595: 9591: 9588: 9582: 9575: 9571: 9568: 9567: 9560: 9558: 9556: 9548: 9547: 9541: 9535: 9531: 9528: 9522: 9515: 9509: 9501: 9497: 9493: 9489: 9485: 9481: 9477: 9473: 9469: 9465: 9458: 9456: 9449: 9445: 9439: 9433: 9427: 9419: 9415: 9411: 9407: 9403: 9399: 9395: 9391: 9387: 9383: 9379: 9372: 9370: 9361: 9357: 9353: 9349: 9344: 9339: 9335: 9331: 9327: 9323: 9319: 9315: 9311: 9307: 9303: 9296: 9294: 9285: 9281: 9276: 9271: 9267: 9263: 9259: 9255: 9251: 9247: 9243: 9239: 9235: 9228: 9226: 9217: 9213: 9209: 9205: 9201: 9197: 9193: 9189: 9185: 9178: 9176: 9167: 9163: 9159: 9155: 9151: 9147: 9140: 9138: 9121: 9115: 9108: 9107: 9100: 9092: 9088: 9084: 9080: 9073: 9066: 9061: 9053: 9049: 9045: 9041: 9037: 9033: 9029: 9025: 9021: 9017: 9010: 9003: 8995: 8989: 8981: 8977: 8972: 8967: 8963: 8959: 8955: 8951: 8947: 8943: 8939: 8932: 8924: 8920: 8916: 8912: 8908: 8904: 8900: 8896: 8889: 8881: 8877: 8873: 8869: 8865: 8861: 8854: 8846: 8842: 8837: 8832: 8828: 8824: 8820: 8813: 8804: 8799: 8795: 8791: 8787: 8783: 8779: 8772: 8764: 8760: 8756: 8752: 8745: 8737: 8733: 8729: 8725: 8721: 8717: 8710: 8702: 8698: 8694: 8690: 8686: 8682: 8678: 8674: 8671:(1–2): 1–14. 8670: 8666: 8662: 8655: 8647: 8643: 8639: 8635: 8631: 8627: 8620: 8612: 8608: 8603: 8598: 8594: 8590: 8586: 8582: 8575: 8573: 8561: 8557: 8553: 8549: 8545: 8541: 8537: 8534:(12): 24–31. 8533: 8529: 8522: 8515: 8513: 8501: 8500: 8492: 8484: 8480: 8476: 8472: 8468: 8464: 8460: 8456: 8452: 8448: 8441: 8433: 8429: 8425: 8421: 8417: 8413: 8409: 8405: 8398: 8396: 8379: 8378: 8377:Physics World 8373: 8366: 8364: 8355: 8351: 8347: 8343: 8339: 8335: 8331: 8327: 8323: 8319: 8315: 8308: 8292: 8288: 8281: 8273: 8269: 8264: 8259: 8254: 8249: 8245: 8241: 8237: 8233: 8229: 8222: 8214: 8210: 8206: 8202: 8198: 8194: 8191:(3): 032002. 8190: 8186: 8179: 8171: 8167: 8163: 8159: 8155: 8151: 8147: 8143: 8139: 8132: 8113: 8106: 8100: 8081: 8077: 8073: 8069: 8065: 8061: 8057: 8050: 8046: 8039: 8031: 8027: 8023: 8019: 8015: 8011: 8004: 7996: 7992: 7988: 7984: 7980: 7976: 7972: 7968: 7961: 7945: 7941: 7937: 7930: 7911: 7907: 7900: 7893: 7885: 7881: 7877: 7873: 7869: 7865: 7864:J. Porous Mat 7858: 7850: 7846: 7842: 7838: 7834: 7830: 7823: 7810: 7804: 7796: 7790: 7788: 7786: 7777: 7771: 7767: 7766: 7758: 7750: 7746: 7742: 7738: 7734: 7730: 7723: 7721: 7719: 7717: 7700: 7694: 7686: 7682: 7677: 7672: 7668: 7664: 7660: 7653: 7645: 7641: 7637: 7630: 7611: 7607: 7603: 7599: 7595: 7591: 7587: 7580: 7573: 7565: 7561: 7556: 7551: 7546: 7541: 7537: 7533: 7532:Nanomaterials 7529: 7522: 7514: 7510: 7506: 7502: 7498: 7494: 7490: 7486: 7479: 7472: 7470: 7468: 7451: 7447: 7443: 7436: 7428: 7424: 7420: 7416: 7412: 7408: 7402: 7394: 7390: 7386: 7382: 7376: 7374: 7372: 7370: 7361: 7357: 7352: 7347: 7342: 7337: 7333: 7329: 7324: 7319: 7315: 7311: 7307: 7299: 7291: 7287: 7282: 7277: 7272: 7267: 7264:(13): 10861. 7263: 7259: 7255: 7248: 7240: 7234: 7230: 7226: 7219: 7203: 7199: 7193: 7178: 7171: 7164: 7162: 7160: 7158: 7156: 7147: 7143: 7139: 7135: 7131: 7127: 7123: 7117: 7115: 7113: 7111: 7109: 7100: 7096: 7089: 7082: 7080: 7063: 7057: 7050: 7046: 7043: 7042: 7035: 7029: 7025: 7022: 7016: 7010:22 March 1994 7009: 7005: 7004: 7000: 6997: 6990: 6977: 6971: 6952: 6945: 6944: 6936: 6934: 6932: 6930: 6928: 6926: 6924: 6907: 6903: 6897: 6891: 6887: 6884: 6878: 6869: 6864: 6860: 6856: 6852: 6848: 6844: 6840: 6834: 6832: 6824: 6818: 6814: 6810: 6809: 6804: 6798: 6796: 6794: 6792: 6790: 6788: 6774: 6768: 6762: 6757: 6755: 6753: 6751: 6749: 6735: 6729: 6723: 6719: 6716: 6710: 6702: 6698: 6694: 6690: 6686: 6682: 6675: 6668: 6655: 6649: 6641: 6635: 6631: 6630: 6623: 6615: 6611: 6607: 6603: 6599: 6595: 6591: 6587: 6584:: 1313–1321. 6583: 6579: 6572: 6565: 6557: 6553: 6549: 6545: 6541: 6537: 6533: 6529: 6525: 6521: 6514: 6499: 6495: 6490: 6485: 6481: 6477: 6473: 6466: 6458: 6454: 6449: 6444: 6440: 6436: 6433:(4): 040801. 6432: 6428: 6424: 6417: 6413: 6402: 6399: 6396: 6393: 6390: 6387: 6384: 6381: 6378: 6375: 6372: 6369: 6363: 6360: 6357: 6354: 6348: 6345: 6344: 6338: 6335: 6332: 6330: 6326: 6321: 6313: 6309: 6308: 6298: 6296: 6293: 6290: 6287: 6284: 6277: 6269: 6268: 6264: 6261: 6259: 6256: 6254: 6251: 6248: 6247: 6243: 6241: 6238: 6236:10 kW/L 6235: 6232: 6229: 6226: 6225: 6201: 6198: 6196: 6194: 6192: 6189: 6186: 6185: 6181: 6179: 6177: 6175: 6171: 6166: 6163: 6160: 6159: 6155: 6151: 6146: 6144: 6142: 6138: 6133: 6130: 6127: 6126: 6110: 6106: 6101: 6099: 6097: 6093: 6088: 6085: 6082: 6079: 6078: 6074: 6070: 6065: 6063: 6059: 6054: 6050: 6045: 6042: 6039: 6036: 6033: 6032: 5999: 5997: 5994: 5990: 5985: 5981: 5976: 5973: 5970: 5969: 5961: 5957: 5952: 5950: 5948: 5944: 5939: 5936: 5933: 5930: 5929: 5925: 5923: 5921: 5917: 5912: 5910: 5907: 5904: 5903: 5899: 5897: 5894: 5892: 5888: 5883: 5880: 5878: 5875: 5874: 5869: 5863: 5861: 5859: 5857: 5853: 5848: 5845: 5842: 5841: 5837: 5833: 5828: 5825: 5823: 5819: 5814: 5811: 5808: 5807: 5799: 5795: 5790: 5788: 5786: 5782: 5777: 5774: 5771: 5770: 5766: 5764: 5761: 5757: 5752: 5748: 5743: 5736: 5733: 5732: 5728: 5726: 5724: 5722: 5718: 5713: 5710: 5707: 5706: 5702: 5699: 5696: 5693: 5690: 5687: 5684: 5683: 5677: 5674:54 kJ/kg 5665: 5663: 5659: 5655: 5651: 5647: 5643: 5638: 5637:Schmittenhöhe 5634: 5630: 5626: 5619: 5615: 5610: 5601: 5599: 5595: 5591: 5587: 5583: 5578: 5574: 5572: 5563: 5558: 5552: 5542: 5540: 5536: 5531: 5527: 5523: 5519: 5515: 5511: 5507: 5503: 5499: 5498: 5492: 5484: 5479: 5472: 5467: 5458: 5456: 5452: 5451:hydrogen fuel 5448: 5444: 5440: 5435: 5433: 5428: 5424: 5420: 5415: 5412: 5408: 5399: 5395: 5380: 5378: 5374: 5369: 5367: 5359: 5354: 5350: 5340: 5338: 5334: 5330: 5326: 5324: 5320: 5316: 5310: 5307: 5302: 5300: 5295: 5293: 5289: 5284: 5279: 5276: 5274: 5270: 5268: 5261: 5256: 5252: 5250: 5246: 5241: 5237: 5233: 5228: 5225: 5218: 5214: 5210: 5205: 5201: 5198: 5197:overhead line 5193: 5189: 5185: 5181: 5176: 5174: 5167: 5162: 5153: 5151: 5146: 5141: 5137: 5128: 5123: 5119: 5109: 5107: 5103: 5099: 5092: 5088: 5083: 5078: 5068: 5065: 5061: 5051: 5049: 5045: 5041: 5037: 5027: 5025: 5003: 4994: 4992: 4988: 4984: 4974: 4971: 4967: 4962: 4958: 4948: 4946: 4942: 4938: 4934: 4930: 4926: 4922: 4912: 4903: 4901: 4897: 4887: 4885: 4881: 4876: 4874: 4870: 4868: 4864: 4860: 4856: 4851: 4849: 4845: 4841: 4837: 4829: 4824: 4815: 4813: 4809: 4794: 4792: 4787: 4784: 4782: 4778: 4774: 4770: 4765: 4763: 4759: 4755: 4751: 4747: 4743: 4733: 4730: 4719: 4715: 4713: 4709: 4707: 4704:IEC 62391–2, 4703: 4702: 4701: 4695: 4692: 4689: 4687:Memory backup 4686: 4685: 4684: 4681: 4679: 4675: 4671: 4666: 4658: 4649: 4645: 4641: 4637: 4628: 4624: 4621: 4617: 4614: 4605: 4596: 4588: 4579: 4577: 4566: 4563: 4559: 4549: 4542: 4535: 4528: 4527: 4526: 4506: 4500: 4496: 4492: 4487: 4483: 4476: 4472: 4467: 4463: 4459: 4454: 4450: 4442: 4441: 4440: 4438: 4432: 4430: 4425: 4423: 4418: 4416: 4411: 4407: 4399: 4390: 4387: 4386:Ragone charts 4383: 4379: 4354: 4350: 4344: 4340: 4334: 4329: 4326: 4321: 4312: 4304: 4285: 4281: 4275: 4271: 4265: 4260: 4257: 4252: 4243: 4235: 4234: 4233: 4222: 4218: 4213: 4199: 4194:40 Wh/kg 4191: 4182:15 Wh/kg 4175: 4166: 4164: 4160: 4156: 4151: 4149: 4145: 4142:(per unit of 4141: 4137: 4133: 4123: 4101: 4092: 4088: 4083: 4074: 4064: 4061: 4053: 4050: 4045: 4036: 4028: 4027: 4026: 3994: 3985: 3981: 3972: 3968: 3963: 3960: 3955: 3946: 3938: 3937: 3936: 3934: 3926: 3922: 3914: 3910: 3901: 3885: 3876: 3872: 3868: 3864: 3861: 3856: 3837: 3833: 3829: 3820: 3816: 3807: 3799: 3798: 3797: 3786: 3777: 3773: 3755: 3752: 3743: 3739: 3736: 3729: 3728: 3727: 3714: 3707: 3706:time constant 3694: 3692: 3683: 3654: 3647: 3643: 3633: 3624: 3616: 3615: 3614: 3598: 3590: 3581: 3579: 3573: 3569: 3566: 3561: 3559: 3555: 3551: 3547: 3543: 3538: 3526: 3518: 3509: 3484: 3476: 3467: 3463: 3458: 3449: 3442: 3439: 3436: 3430: 3427: 3423: 3418: 3415: 3408: 3407: 3406: 3404: 3400: 3395: 3368: 3355: 3351: 3342: 3335: 3332: 3326: 3323: 3316: 3315: 3314: 3312: 3308: 3303: 3299: 3295: 3289: 3286: 3283: 3280: 3279: 3278: 3256: 3252: 3248: 3243: 3239: 3231: 3227: 3223: 3218: 3214: 3207: 3198: 3194: 3185: 3177: 3176: 3175: 3151: 3149: 3145: 3139: 3136: 3127: 3118: 3099: 3090: 3086: 3077: 3073: 3068: 3065: 3060: 3057: 3050: 3049: 3048: 3042: 3038: 3022: 3014: 3010: 2997: 2989: 2981: 2967: 2965: 2964:galvanic cell 2954: 2952: 2948: 2937: 2935: 2931: 2927: 2883: 2879: 2875: 2871: 2867: 2863: 2859: 2855: 2850: 2848: 2844: 2828: 2812: 2796: 2792: 2788: 2784: 2780: 2755: 2754:sulfuric acid 2751: 2747: 2743: 2739: 2735: 2731: 2729: 2725: 2722:and negative 2721: 2717: 2714: 2710: 2707:consist of a 2706: 2697: 2656: 2652: 2643: 2641: 2631: 2625: 2620: 2611: 2609: 2605: 2601: 2591: 2589: 2584: 2582: 2578: 2574: 2570: 2566: 2565:polyacetylene 2562: 2558: 2557:polythiophene 2554: 2550: 2546: 2542: 2532: 2518: 2514: 2510: 2506: 2502: 2498: 2494: 2489: 2487: 2486:nanoparticles 2472: 2468: 2463: 2462:graphene foam 2446: 2432: 2428: 2424: 2419: 2414: 2375: 2359: 2334: 2318: 2302: 2292: 2290: 2264: 2263: 2262: 2256: 2253: 2249: 2237: 2236: 2235: 2233: 2229: 2226: 2222: 2206: 2202: 2198: 2194: 2190: 2186: 2179: 2167: 2163: 2161: 2155: 2151: 2148: 2145: 2143: 2139: 2135: 2134:nanostructure 2132: 2128: 2125: 2121: 2114: 2110: 2103: 2098: 2089: 2085: 2083: 2069: 2065: 2063: 2059: 2052: 2047: 2038: 2023: 2019: 2016:or chemical, 2015: 2011: 2007: 2003: 1999: 1995: 1987: 1978: 1976: 1967:90 Wh/kg 1960: 1956: 1952: 1948: 1944: 1940: 1936: 1932: 1923: 1914: 1911:2500 m/g 1901: 1899: 1898: 1895:consolidated 1892: 1891:tennis courts 1888: 1884: 1880: 1871: 1857: 1853: 1847: 1845: 1841: 1837: 1833: 1829: 1825: 1821: 1811: 1809: 1805: 1801: 1796: 1794: 1790: 1786: 1780: 1778: 1774: 1766: 1763:. Notice the 1762: 1758: 1754: 1749: 1740: 1731: 1727: 1720: 1717: 1713: 1709: 1708:intercalation 1705: 1701: 1698: 1695: 1691: 1687: 1683: 1679: 1675: 1671: 1667: 1663: 1659: 1655: 1654:electrostatic 1651: 1648: 1647: 1646: 1644: 1639: 1633: 1629: 1626: 1623: 1619: 1615: 1612: 1609: 1605: 1601: 1598: 1597: 1596: 1594: 1590: 1581: 1572: 1570: 1566: 1560: 1550: 1540: 1533: 1528: 1520: 1511: 1507: 1505: 1501: 1491: 1489: 1486: 1483: 1480: 1477: 1472: 1471: 1467: 1465: 1462: 1459: 1456: 1453: 1450: 1449: 1443: 1441: 1436: 1431: 1426: 1421: 1416: 1415: 1411: 1408: 1405: 1402: 1399: 1396: 1393: 1388: 1383: 1380: 1379: 1373: 1370: 1366:10 – 15 1365: 1360: 1355: 1350: 1346: 1341: 1338: 1337: 1333: 1331: 1328: 1325: 1322: 1319: 1316: 1311: 1308: 1307: 1303: 1300: 1297: 1294: 1291: 1288: 1283: 1282: 1278: 1276:~ 4.0 V 1275: 1272: 1269: 1266: 1263: 1260: 1255: 1254: 1250: 1248: 1245: 1242: 1239: 1236: 1233: 1228: 1227: 1218: 1215: 1212: 1205: 1204: 1184: 1176: 1174: 1164: 1160: 1158: 1154: 1150: 1147: 1144:In contrast, 1142: 1140: 1136: 1132: 1128: 1125:dielectric's 1123: 1120: 1116: 1112: 1108: 1104: 1101:Conventional 1095: 1087: 1079: 1070: 1047: 1042: 1033: 1011: 1008:. Chodankar 1007: 1003: 998: 996: 992: 988: 983: 981: 980:polythiophene 977: 959: 957: 953: 948: 946: 942: 938: 929: 925: 923: 919: 915: 914:intercalation 911: 907: 903: 899: 896: 892: 888: 885: 881: 877: 868: 863: 853: 849: 845: 841: 839: 835: 831: 827: 823: 820: 816: 794: 791: 786: 783: 780: 773: 772: 771: 762: 758: 754: 752: 747: 743: 739: 735: 731: 727: 723: 720:emerges from 717: 715: 711: 707: 703: 699: 690: 685: 675: 668: 664: 660: 657: 654: 653:electrostatic 650: 647: 646: 645: 636: 631: 628: ≈  624: 617: 610: 603: 596: 589: 586: =  582: 557: 553: 549: 544: 540: 532: 528: 524: 519: 515: 508: 499: 491: 490: 489: 484: 477: 470: 460: 456: 454: 450: 441: 427: 424: 422: 418: 413: 410: 406: 402: 398: 394: 390: 385: 383: 379: 374: 372: 368: 364: 360: 355: 353: 352:intercalation 348: 344: 339: 337: 332: 330: 324: 321: 317: 312: 310: 306: 302: 298: 294: 290: 281: 272: 270: 267: 263: 259: 255: 251: 247: 243: 239: 235: 231: 223: 219: 218:intercalation 215: 211: 208: 205: 201: 197: 193: 190: 187: 184: 180: 178: 174: 171: 167: 163: 159: 155: 151: 148: 144: 141: 137: 133: 130: 129: 128: 120: 118: 114: 108: 106: 103: 99: 96: 95:electrostatic 92: 87: 85: 81: 77: 73: 69: 65: 61: 57: 53: 49: 40: 32: 19: 12803: 12790: 12728: 12621:Fusion power 12485: 12481: 12438: 12434: 12397: 12394:2D Materials 12393: 12376: 12372: 12352: 12329:(1): 15–16. 12326: 12322: 12303: 12268: 12238: 12201: 12197: 12185:. Retrieved 12178:the original 12157: 12153: 12127: 12123: 12094: 12082:. Retrieved 12072: 12060: 12048:. Retrieved 12044:the original 12034: 12001: 11997: 11991: 11958: 11954: 11947: 11935:. Retrieved 11930: 11921: 11896: 11892: 11886: 11874:. Retrieved 11870: 11861: 11849:. Retrieved 11845: 11835: 11802: 11798: 11791: 11779:. Retrieved 11774: 11765: 11746: 11742: 11732: 11689: 11685: 11675: 11638: 11634: 11624: 11599: 11595: 11589: 11562: 11558: 11548: 11523: 11519: 11509: 11476: 11472: 11466: 11452: 11419: 11415: 11409: 11368: 11364: 11358: 11346:. Retrieved 11336: 11324:. Retrieved 11320:the original 11309: 11268: 11264: 11258: 11246: 11234: 11223: 11208: 11189: 11169: 11164:, March 2012 11149: 11134:A.F. Burke, 11130: 11118:. Retrieved 11107: 11092: 11080:. Retrieved 11075: 11066: 11054:. Retrieved 11044: 11025: 11013:. Retrieved 11009:the original 10999: 10987:. Retrieved 10982: 10973: 10961:. Retrieved 10957:the original 10946: 10929: 10924: 10907: 10902: 10890:. Retrieved 10886:the original 10876: 10864:. Retrieved 10860: 10851: 10839:. Retrieved 10835: 10826: 10814:. Retrieved 10807:the original 10794: 10782: 10773: 10745:. Retrieved 10741:the original 10736: 10727: 10715:. Retrieved 10711:the original 10706: 10697: 10685:. Retrieved 10681:the original 10671: 10659:. Retrieved 10655:the original 10650: 10641: 10629:. Retrieved 10625:the original 10620: 10611: 10597: 10585:. Retrieved 10581:the original 10576: 10567: 10555: 10543: 10533: 10520: 10515: 10503:. Retrieved 10499:the original 10489: 10477:. Retrieved 10473:the original 10462: 10449: 10413: 10406: 10395: 10371:. Retrieved 10367:the original 10361:yec.com.tw. 10356: 10331: 10327: 10320: 10269: 10265: 10259: 10224: 10220: 10214: 10181: 10177: 10171: 10159: 10139: 10127:. Retrieved 10123:the original 10098:. Retrieved 10094:the original 10084: 10064: 10052:. Retrieved 10041: 10021: 10000:cite journal 9975: 9969: 9944: 9940: 9934: 9899: 9893: 9865:. Retrieved 9861:the original 9851: 9839:. Retrieved 9829: 9817:. Retrieved 9807: 9787: 9777: 9759: 9742: 9737: 9721: 9715: 9690: 9686: 9680: 9655: 9651: 9645: 9632: 9624:10976/166930 9615: 9611: 9581: 9565: 9545: 9540: 9521: 9508: 9467: 9463: 9438: 9426: 9385: 9381: 9312:(1): 38620. 9309: 9305: 9244:(1): 16782. 9241: 9237: 9191: 9187: 9149: 9145: 9124:. Retrieved 9114: 9104: 9099: 9082: 9078: 9072: 9060: 9019: 9015: 9002: 8988: 8945: 8941: 8931: 8898: 8895:Nano Letters 8894: 8888: 8863: 8859: 8853: 8826: 8822: 8812: 8785: 8781: 8771: 8754: 8750: 8744: 8719: 8715: 8709: 8668: 8664: 8654: 8629: 8625: 8619: 8602:1721.1/54729 8584: 8580: 8560:the original 8531: 8527: 8498: 8491: 8450: 8446: 8440: 8407: 8404:Nano Letters 8403: 8382:. Retrieved 8375: 8321: 8317: 8307: 8295:. Retrieved 8290: 8280: 8235: 8231: 8221: 8188: 8185:2D Materials 8184: 8178: 8145: 8142:Nano Letters 8141: 8131: 8119:. Retrieved 8112:the original 8099: 8087:. Retrieved 8080:the original 8059: 8055: 8038: 8013: 8009: 8003: 7970: 7966: 7960: 7948:. Retrieved 7944:the original 7939: 7929: 7917:. Retrieved 7910:the original 7905: 7892: 7867: 7863: 7857: 7832: 7828: 7822: 7803: 7764: 7757: 7735:(1): 11–27. 7732: 7728: 7703:. Retrieved 7693: 7666: 7662: 7652: 7643: 7639: 7629: 7617:. Retrieved 7610:the original 7589: 7585: 7572: 7535: 7531: 7521: 7488: 7484: 7454:. Retrieved 7450:the original 7445: 7435: 7410: 7401: 7393:the original 7388: 7313: 7309: 7298: 7261: 7257: 7247: 7228: 7218: 7206:. Retrieved 7202:the original 7192: 7180:. Retrieved 7176: 7129: 7125: 7098: 7094: 7066:. Retrieved 7056: 7040: 7034: 7015: 7007: 6994: 6989: 6970: 6958:. Retrieved 6951:the original 6942: 6910:. Retrieved 6906:the original 6896: 6877: 6850: 6846: 6841:(May 1991). 6807: 6767: 6728: 6709: 6687:(1): 20–25. 6684: 6680: 6667: 6648: 6628: 6622: 6581: 6577: 6564: 6523: 6519: 6513: 6501:. Retrieved 6479: 6475: 6465: 6430: 6426: 6416: 6347:Capa vehicle 6336: 6333: 6322: 6319: 6307: 6304: 6291:1 kW/L 5671: 5668:Developments 5622: 5579: 5575: 5568: 5512:LMP1 car, a 5494: 5488: 5461:Motor racing 5436: 5423:electric bus 5416: 5404: 5381: 5370: 5364: 5349:Capa vehicle 5327: 5311: 5303: 5296: 5280: 5277: 5271: 5264: 5229: 5221: 5177: 5170: 5133: 5095: 5060:Toyota Yaris 5057: 5033: 5009: 5000: 4991:sinus rhythm 4980: 4957:UltraBattery 4954: 4924: 4918: 4909: 4893: 4884:wind turbine 4877: 4871: 4858: 4852: 4833: 4830:pitch system 4828:wind turbine 4805: 4788: 4785: 4780: 4766: 4739: 4731: 4727: 4724:Applications 4717: 4711: 4705: 4699: 4682: 4677: 4667: 4663: 4646: 4642: 4638: 4634: 4625: 4622: 4618: 4610: 4593: 4572: 4564: 4560: 4557: 4524: 4433: 4426: 4422:service life 4419: 4414: 4412: 4408: 4404: 4384: 4380: 4373: 4214: 4167: 4154: 4152: 4131: 4129: 4121: 4011: 3918: 3913:Ragone chart 3890: 3873: 3869: 3865: 3857: 3854: 3787: 3783: 3774: 3770: 3695: 3684: 3677: 3599: 3595: 3574: 3570: 3562: 3552:splits into 3539: 3531: 3499: 3402: 3398: 3396: 3385: 3310: 3306: 3304: 3300: 3296: 3293: 3276: 3152: 3140: 3132: 3116: 3002: 2960: 2943: 2928: 2858:acetonitrile 2851: 2740: 2736: 2732: 2728:conductivity 2705:Electrolytes 2703: 2700:Electrolytes 2657: 2653: 2649: 2637: 2621: 2617: 2597: 2585: 2549:conductivity 2538: 2513:electrolytes 2490: 2447: 2415: 2298: 2295:Metal oxides 2283: 2245: 2225:alkali metal 2173: 2164: 2159: 2156: 2152: 2149: 2146: 2118: 2086: 2070: 2066: 2056: 2022:halogenation 2017: 2009: 1992: 1951:formaldehyde 1928: 1907: 1894: 1877: 1848: 1817: 1797: 1781: 1770: 1757:bright field 1737: 1728: 1724: 1672:between the 1640: 1636: 1627: 1613: 1603: 1599: 1586: 1561: 1557: 1508: 1497: 1409:32 W/g 1394: (W/g) 1206:Double-layer 1191:electrolytic 1170: 1161: 1143: 1100: 1054: 1039: 1016:, nano LiCoO 1009: 1005: 999: 984: 960: 949: 934: 873: 850: 846: 842: 838:Debye length 829: 825: 821: 819:permittivity 814: 812: 768: 755: 750: 733: 718: 695: 672: 642: 629: 622: 615: 608: 601: 594: 587: 580: 577: 482: 475: 468: 466: 457: 447: 435:Basic design 425: 414: 407:(IV) oxide) 386: 375: 356: 340: 333: 325: 313: 286: 242:double-layer 227: 191: 175: 150:double layer 135: 131: 126: 109: 88: 55: 51: 47: 45: 12187:17 February 12154:Phys. Today 11876:11 February 11851:10 February 11781:11 February 10549:Support PDF 10295:11336/23530 9841:29 November 9516:, PCIM 2000 9444:CID 2724277 9079:Nano Energy 8751:Chem. Mater 8384:28 February 8297:28 February 8121:28 February 7950:28 February 7919:28 February 7705:28 February 7592:: 604–612. 7456:23 February 7182:16 February 7101:(1): 34–37. 7068:21 February 6960:21 February 6912:21 February 6526:: 420–434. 6257:0.02 mA/cm 6199:27.5 μF cm 5754:37.12  5745:13.50  5700:Capacitance 5685:Development 5662:Royal Docks 5633:aerial lift 5625:Zell am See 5614:Zell am See 5502:power train 5455:solar cells 5411:Switzerland 5238:equipped a 5102:locomotives 4906:Micro grids 4863:mains power 4826:Rotor with 4789:A cordless 4744:computers, 4710:IEC 62576, 4210: Wh/kg 4196:and modern 4170:8 Wh/L 3170:) to 40% (V 3121:Measurement 2975:Capacitance 2791:phosphonium 2561:polypyrrole 2553:polyaniline 2448:In 2014, a 2431:capacitance 2252:electrolyte 2131:cylindrical 1971:20 W/g 1959:gravimetric 1955:micrometres 1682:electrolyte 1643:capacitance 1361:4 – 9 1310:Capacitance 1234: (°C) 1199:Lithium-ion 1193:capacitors 976:polyaniline 906:de-solvated 902:electrolyte 698:electrolyte 401:metal oxide 196:metal oxide 170:electrolyte 158:electrolyte 64:capacitance 12816:Capacitors 12810:Categories 12760:Smart grid 12589:Production 12130:: 215470. 11937:2 February 11015:12 January 10989:12 January 10866:4 November 10841:4 November 10816:23 October 9194:: 102402. 8693:1880/44956 8581:Proc. IEEE 8045:Yushin, G. 7809:US 6787235 7669:: 103396. 7619:4 December 7538:(2): 148. 7446:Earth2Tech 7208:20 January 6976:US 5369547 6773:US 3536963 6734:US 3288641 6654:US 2800616 6503:30 October 6408:References 6401:Nanoflower 6288:~100 Wh/L 6168:2.42  6103:1000  6067:1700  6056:2.25  5954:3300  5941:50.6  5866:3290  5826:>10,000 5779:85.6  5555:See also: 5514:racing car 5485:motor race 5371:The first 5224:Heidelberg 5184:light-rail 5156:Light rail 5138:–electric 5048:Airbus 380 4896:powerlines 4810:chargers, 4155:per volume 3546:decomposes 2940:Separators 2785:(KOH), or 2675:@NiO, MgCo 2547:have high 2248:adsorption 2189:electrodes 1947:resorcinol 1852:micropores 1791:, such as 1753:micrograph 1743:Electrodes 1696:in origin. 1371:206 Wh/kg 1345:watt-hours 1317: (F) 1261: (V) 1208:capacitors 1201:batteries 1186:Parameter 1153:resistance 1149:capacitors 1115:dielectric 1103:capacitors 1044:See also: 293:fuel cells 262:electronic 238:dielectric 230:capacitors 172:solution). 143:electrodes 123:Background 91:dielectric 12422:135679359 12026:110695012 11975:1936-0851 11314:Fastcap. 11301:206549319 10334:: 42–46. 10304:0885-8969 10198:1949-3053 9947:: 54–62. 9587:K2 series 9585:Maxwell, 9484:2364-8961 9470:(3): 63. 9418:220255613 9402:1613-6829 9334:2045-2322 9266:2045-2322 9216:233572817 9208:2352-152X 9052:189826716 8845:0013-4651 8716:Chem. Rev 8661:Birss, V. 8556:110891569 8213:135679359 7987:1616-3028 7768:. Wiley. 7685:0304-3886 7513:225371915 7323:1302.3967 7095:Interface 6606:0360-5442 6556:104416995 6548:0378-7753 6457:2166-2746 6148:231  6090:110  6038:cobaltite 5987:7.5  5914:990  5830:200  5792:550  5656:from the 5497:Formula 1 5377:Nuremberg 5353:Solar bus 5288:Guangzhou 5230:In 2009, 5100:railroad 5044:airliners 5006:Transport 4951:Batteries 4941:rectifier 4880:actuators 4867:fuel cell 4861:, if the 4676:62391–1, 4652:Standards 4493:− 4473:⋅ 4335:⋅ 4266:⋅ 4150:(Wh/kg). 4089:− 4065:⋅ 3982:⋅ 3969:⋅ 3925:batteries 3830:⋅ 3753:⋅ 3737:τ 3715:τ 3680:discharge 3659:discharge 3640:Δ 3611:discharge 3578:resistors 3504:down to U 3464:− 3443:⋅ 3437:⋅ 3390:down to U 3352:− 3336:⋅ 3305:The time 3249:− 3224:− 3208:⋅ 3203:discharge 3156:discharge 3087:⋅ 3074:⋅ 3043:voltage V 2746:inorganic 2716:chemicals 2713:dissolved 2588:polyacene 2358:manganese 2301:ruthenium 2232:oxidation 2127:molecules 1943:pyrolysis 1935:synthetic 1856:mesopores 1777:inertness 1734:Materials 1692:) and is 1686:ångströms 1678:electrode 1670:interface 1666:Helmholtz 1620:oxide or 1565:insulator 1504:reactance 1002:diffusion 834:ångströms 787:ε 730:molecules 722:dissolved 614:>> 525:⋅ 453:separator 405:ruthenium 359:Panasonic 320:fuel cell 258:batteries 234:electrons 177:Batteries 162:ångströms 154:interface 147:Helmholtz 62:, with a 60:capacitor 12646:Nantenna 12606:Biofuels 12510:26223625 12465:26223620 12343:95416761 12273:Springer 12267:(1999). 12226:94958336 12102:Archived 12084:10 March 12050:19 March 11983:27732778 11955:ACS Nano 11913:25584857 11819:24548057 11799:ACS Nano 11724:23474952 11692:: 1408. 11641:: 1718. 11616:97810530 11581:93356811 11540:21210712 11520:ACS Nano 11501:21842523 11436:23829569 11416:ACS Nano 11401:10398110 11393:21566159 11293:23908233 11197:Archived 11178:Archived 11158:Archived 11139:Archived 11033:Archived 10934:Archived 10912:Archived 10525:Archived 10441:26839128 10251:23894868 10148:Archived 10073:Archived 10030:Archived 9992:17217802 9961:37615694 9926:16899819 9796:Archived 9747:Archived 9726:Archived 9590:Archived 9570:Archived 9530:Archived 9500:22068271 9492:28560657 9410:32596998 9360:19483393 9352:27924927 9284:31728061 9166:22433167 9044:18956000 8980:24663242 8948:: 4452. 8923:19170555 8736:20839769 8701:94810807 8646:20828214 8626:ACS Nano 8611:29479545 8483:33772133 8475:20929845 8432:21058713 8354:18958488 8346:22422977 8272:17699622 8170:21381713 8076:20180559 8056:ACS Nano 8030:96797238 7995:97810530 7884:91596134 7564:30682829 7505:32761793 7360:23401538 7290:37446037 7281:10341730 7045:Archived 7024:Archived 6999:Archived 6886:Archived 6813:Springer 6805:(1999), 6718:Archived 6701:23077215 6614:55090490 6498:64526195 6341:See also 6262:9 mF/cm 6233:42 Wh/L 6135:98  6047:53  5978:40  5885:53  5850:74  5816:85  5802:4 V 5715:60  5604:Gondolas 5586:Ё-mobile 5565:RAV4 HEV 5530:flywheel 5471:Malaysia 5432:terminus 5419:Shanghai 5339:system. 5180:Mannheim 5178:In 2003 5166:Mannheim 5042:used in 5030:Aviation 4997:Military 4844:PC Cards 4775:and for 4613:polarity 4599:Polarity 4393:Lifetime 4132:per mass 3554:hydrogen 2827:arsenate 2781:such as 2752:such as 2501:vanadium 2467:graphene 2062:graphite 2058:Graphene 2041:Graphene 1846:(CNTs). 1840:graphane 1836:graphene 1832:graphite 1716:faradaic 1652: – 1606:): with 1446:(month) 1439:(month) 1434:(weeks) 1429:(weeks) 1334:— 1189:Aluminum 970:, or MnO 941:orbitals 939:states ( 910:adsorbed 900:between 895:electron 884:faradaic 765:polarity 749:forces, 726:solvated 207:electron 204:Faradaic 119:(SRAM). 12671:Storage 12518:4472947 12490:Bibcode 12473:4398225 12443:Bibcode 12402:Bibcode 12206:Bibcode 12162:Bibcode 12006:Bibcode 11827:7232811 11715:3593215 11694:Bibcode 11686:Sci Rep 11666:3634106 11643:Bibcode 11635:Sci Rep 11481:Bibcode 11444:5063753 11373:Bibcode 11365:Science 11348:1 March 11273:Bibcode 11265:Science 11153:Cap-XX 10336:Bibcode 10312:7454678 10274:Bibcode 10206:2107900 9695:Bibcode 9660:Bibcode 9448:PubChem 9343:5141571 9314:Bibcode 9275:6856085 9246:Bibcode 9024:Bibcode 8971:3964521 8950:Bibcode 8903:Bibcode 8868:Bibcode 8790:Bibcode 8673:Bibcode 8536:Bibcode 8455:Bibcode 8447:Science 8412:Bibcode 8326:Bibcode 8318:Science 8291:PhysOrg 8263:1959422 8240:Bibcode 8193:Bibcode 8150:Bibcode 7837:Bibcode 7737:Bibcode 7594:Bibcode 7555:6409971 7415:Bibcode 7351:3587260 7328:Bibcode 7134:Bibcode 6855:Bibcode 6586:Bibcode 6528:Bibcode 6435:Bibcode 6329:billion 6294:30,000 6239:10,000 5762:300,000 5660:to the 5629:Austria 5618:Austria 5582:Mazda 6 5439:tribrid 5427:capabus 5425:called 5333:Urbos 3 5273:Siemens 5247:of the 5245:line T3 5240:Citadis 5215:and to 4977:Medical 4200:100 to 2907:NMe(Et) 2854:organic 2793:salts, 2779:alkalis 2720:cations 2709:solvent 2573:cations 2317:iridium 2279:surface 2271:surface 2255:cations 2228:cations 2223:(H) or 2221:protons 2142:coaxial 2129:with a 1998:carbide 1931:aerogel 1929:Carbon 1828:aerogel 1773:current 1765:fractal 1674:surface 1616:: with 1424:(days) 1139:cathode 991:voltage 945:reagent 876:solvent 742:solvent 621:, then 593:, then 421:Fujitsu 409:cathode 275:History 246:cations 152:at the 68:voltage 12582:Energy 12575:Fields 12516:  12508:  12482:Nature 12471:  12463:  12435:Nature 12420:  12360:  12341:  12310:  12287:  12253:  12224:  12024:  11981:  11973:  11911:  11825:  11817:  11722:  11712:  11663:  11614:  11579:  11538:  11499:  11442:  11434:  11399:  11391:  11326:30 May 11299:  11291:  11120:30 May 11082:30 May 11056:29 May 10963:29 May 10892:29 May 10747:29 May 10717:29 May 10687:29 May 10661:29 May 10631:29 May 10587:29 May 10505:29 May 10479:29 May 10439:  10429:  10373:29 May 10310:  10302:  10249:  10239:  10204:  10196:  10129:29 May 10100:29 May 10054:29 May 9990:  9959:  9924:  9914:  9867:29 May 9819:29 May 9498:  9490:  9482:  9416:  9408:  9400:  9358:  9350:  9340:  9332:  9282:  9272:  9264:  9214:  9206:  9164:  9126:29 May 9050:  9042:  8978:  8968:  8921:  8843:  8734:  8699:  8644:  8609:  8554:  8481:  8473:  8430:  8352:  8344:  8270:  8260:  8211:  8168:  8089:16 May 8074:  8028:  7993:  7985:  7882:  7829:Carbon 7815:  7772:  7683:  7562:  7552:  7511:  7503:  7358:  7348:  7288:  7278:  7235:  7126:Carbon 6982:  6819:  6779:  6740:  6699:  6660:  6636:  6612:  6604:  6578:Energy 6554:  6546:  6496:  6455:  6316:Market 6035:Nickel 5995:10,000 5895:10,000 5703:Notes 5697:Cycles 5654:Thames 5646:London 5407:Luzern 5299:SYTRAL 5232:Alstom 5188:MITRAC 5136:Diesel 5098:diesel 4987:joules 4760:, and 4742:laptop 4525:With: 4068:  4059:  3990:loaded 3558:oxygen 3502:charge 3454:charge 3388:charge 3347:charge 3009:farads 2951:Kapton 2724:anions 2569:anions 2509:cobalt 2505:nickel 2493:oxides 2286:Ni(OH) 2257:on MnO 2124:carbon 1785:spongy 1694:static 1662:charge 1658:energy 1514:Styles 1432:medium 1427:medium 1376:Wh/kg 1368:Wh/kg 1363:Wh/kg 1358:Wh/kg 1353:Wh/kg 1315:farads 1119:static 1010:et al. 736:, for 710:liquid 702:phases 430:Design 303:is an 250:anions 140:carbon 138:) use 12738:Other 12514:S2CID 12469:S2CID 12418:S2CID 12339:S2CID 12222:S2CID 12181:(PDF) 12150:(PDF) 12022:S2CID 11823:S2CID 11612:S2CID 11577:S2CID 11440:S2CID 11397:S2CID 11297:S2CID 10810:(PDF) 10803:(PDF) 10437:S2CID 10308:S2CID 10247:S2CID 10202:S2CID 9988:S2CID 9957:S2CID 9922:S2CID 9496:S2CID 9446:from 9414:S2CID 9382:Small 9356:S2CID 9212:S2CID 9048:S2CID 9012:(PDF) 8697:S2CID 8607:S2CID 8563:(PDF) 8552:S2CID 8524:(PDF) 8503:(PDF) 8479:S2CID 8380:. IOP 8350:S2CID 8209:S2CID 8115:(PDF) 8108:(PDF) 8083:(PDF) 8052:(PDF) 8026:S2CID 7991:S2CID 7913:(PDF) 7902:(PDF) 7880:S2CID 7613:(PDF) 7582:(PDF) 7509:S2CID 7485:Small 7481:(PDF) 7318:arXiv 7173:(PDF) 7091:(PDF) 7064:. FDK 6954:(PDF) 6947:(PDF) 6697:S2CID 6677:(PDF) 6610:S2CID 6574:(PDF) 6552:S2CID 6494:S2CID 6285:2016 6252:2015 6230:2015 6190:2014 5631:, an 5594:Yaris 5528:with 5447:Wales 5343:Buses 5306:trams 5292:Wuhan 5104:with 5087:TRAXX 4865:or a 4163:litre 4146:) in 4021:and V 3977:total 3933:Joule 3550:water 3190:total 3162:and t 3037:Joule 2886:N(Et) 2831:LiAsF 2815:LiClO 2799:NaClO 2787:salts 2750:acids 2742:Water 2201:redox 1664:in a 1604:EDLCs 1575:Types 1502:(AC) 1422:short 1387:watts 1259:volts 1135:anode 995:farad 966:, IrO 738:water 706:solid 667:redox 626:total 598:total 504:total 486:total 393:anode 329:farad 266:ionic 212:with 183:redox 136:EDLCs 12792:List 12506:PMID 12461:PMID 12358:ISBN 12308:ISBN 12285:ISBN 12251:ISBN 12189:2015 12086:2017 12052:2017 11979:PMID 11971:ISSN 11939:2017 11909:PMID 11878:2016 11853:2016 11815:PMID 11783:2014 11720:PMID 11536:PMID 11497:PMID 11432:PMID 11389:PMID 11350:2015 11328:2013 11289:PMID 11122:2013 11084:2013 11058:2013 11017:2013 10991:2013 10965:2013 10894:2013 10868:2017 10843:2017 10818:2013 10749:2013 10719:2013 10689:2013 10663:2013 10633:2013 10589:2013 10532:In: 10507:2013 10481:2013 10427:ISBN 10375:2013 10300:ISSN 10237:ISBN 10223:Tech 10194:ISSN 10131:2013 10102:2013 10056:2013 10013:help 9912:ISBN 9869:2013 9843:2013 9821:2013 9488:PMID 9480:ISSN 9406:PMID 9398:ISSN 9348:PMID 9330:ISSN 9280:PMID 9262:ISSN 9204:ISSN 9162:PMID 9128:2013 9040:PMID 8976:PMID 8919:PMID 8841:ISSN 8732:PMID 8642:PMID 8471:PMID 8428:PMID 8386:2015 8342:PMID 8299:2015 8268:PMID 8166:PMID 8123:2015 8091:2013 8072:PMID 7983:ISSN 7952:2015 7921:2015 7770:ISBN 7707:2015 7681:ISSN 7621:2018 7560:PMID 7501:PMID 7458:2015 7356:PMID 7310:PNAS 7286:PMID 7233:ISBN 7210:2014 7184:2015 7070:2015 7006:In: 6962:2015 6914:2015 6817:ISBN 6634:ISBN 6602:ISSN 6544:ISSN 6505:2020 6453:ISSN 6204:0.95 6164:2013 6131:2013 6086:2013 6043:2012 5974:2012 5937:2012 5908:2011 5881:2011 5846:2013 5812:2011 5775:2010 5741:2013 5739:2009 5737:2007 5711:2013 5688:Date 5506:KERS 5489:The 5473:2010 5351:and 5236:RATP 5234:and 5120:and 5071:Rail 5058:The 5054:Cars 4955:The 4945:ASIC 4925:e.g. 4859:e.g. 4840:SRAM 4812:HEVs 4781:e.g. 4746:PDAs 4415:e.g. 4221:load 4144:mass 3812:loss 3794:loss 3556:and 2711:and 2691:@CeO 2683:@MnO 2571:and 2563:and 2507:and 2497:iron 2469:and 2333:iron 2265:(MnO 2180:and 2160:e.g. 2018:e.g. 2010:e.g. 2004:and 1842:and 1712:ions 1641:The 1468:90% 1463:90% 1444:long 1437:long 1392:gram 1222:EDLC 1220:NTGS 1109:and 1064:and 908:and 751:e.g. 734:e.g. 724:and 474:and 371:SRAM 363:ELNA 295:and 264:and 248:and 100:and 74:and 12498:doi 12486:523 12451:doi 12439:523 12410:doi 12381:doi 12331:doi 12277:doi 12243:doi 12214:doi 12202:274 12170:doi 12132:doi 12128:498 12014:doi 11963:doi 11901:doi 11807:doi 11751:doi 11710:PMC 11702:doi 11661:PMC 11651:doi 11604:doi 11567:doi 11528:doi 11489:doi 11424:doi 11381:doi 11369:332 11281:doi 11269:341 10983:BBC 10419:doi 10344:doi 10290:hdl 10282:doi 10229:doi 10186:doi 9980:doi 9949:doi 9904:doi 9703:doi 9668:doi 9656:110 9620:hdl 9472:doi 9468:375 9390:doi 9338:PMC 9322:doi 9270:PMC 9254:doi 9196:doi 9154:doi 9087:doi 9032:doi 8966:PMC 8958:doi 8911:doi 8876:doi 8864:142 8831:doi 8827:162 8798:doi 8786:147 8759:doi 8724:doi 8720:110 8689:hdl 8681:doi 8634:doi 8597:hdl 8589:doi 8544:doi 8528:JOM 8463:doi 8451:329 8420:doi 8334:doi 8322:335 8258:PMC 8248:doi 8236:104 8201:doi 8158:doi 8064:doi 8018:doi 7975:doi 7872:doi 7845:doi 7745:doi 7733:157 7671:doi 7667:103 7602:doi 7590:326 7550:PMC 7540:doi 7493:doi 7423:doi 7346:PMC 7336:doi 7314:110 7276:PMC 7266:doi 7142:doi 6863:doi 6851:138 6689:doi 6594:doi 6582:118 6536:doi 6524:414 6484:doi 6443:doi 6139:/kg 6113:MnO 6094:/kg 6060:/kg 6051:/kg 5945:/kg 5918:/kg 5889:/kg 5854:/kg 5820:/kg 5783:/kg 5749:/kg 5623:In 5491:FIA 5453:or 5337:ACR 5329:CAF 5321:in 4882:in 4836:RAM 4777:LED 4771:in 4750:GPS 4670:IEC 4317:max 4248:eff 4230:eff 4225:max 4208:300 4097:min 4079:max 4041:eff 4023:min 4019:max 4015:eff 3951:max 3929:max 3506:min 3472:min 3392:min 3360:min 3148:IEC 2949:or 2809:), 2777:), 2630:). 2521:MnO 2495:of 2475:RuO 2450:RuO 2435:RuO 2413:). 2378:TiS 2362:MnO 2356:), 2331:), 2321:IrO 2315:), 2305:RuO 2250:of 2238:MnO 2193:aic 2182:RuO 2175:MnO 2113:SEM 1945:of 1838:), 1460:95% 1457:95% 1454:99% 1389:per 1066:GCD 1032:). 916:or 740:as 635:). 336:NEC 220:or 198:or 12812:: 12512:. 12504:. 12496:. 12484:. 12467:. 12459:. 12449:. 12437:. 12433:. 12416:. 12408:. 12396:. 12377:38 12375:. 12337:. 12325:. 12302:. 12283:. 12275:. 12271:. 12249:. 12220:. 12212:. 12200:. 12168:. 12158:61 12156:. 12152:. 12126:. 12020:. 12012:. 12002:25 12000:. 11977:. 11969:. 11959:10 11957:. 11929:. 11907:. 11895:. 11869:. 11844:. 11821:. 11813:. 11801:. 11773:. 11745:. 11741:. 11718:. 11708:. 11700:. 11688:. 11684:. 11659:. 11649:. 11637:. 11633:. 11610:. 11600:22 11598:. 11575:. 11563:22 11561:. 11557:. 11534:. 11522:. 11518:. 11495:. 11487:. 11477:50 11475:. 11438:. 11430:. 11418:. 11395:. 11387:. 11379:. 11367:. 11295:. 11287:. 11279:. 11267:. 11074:. 10981:. 10859:. 10834:. 10772:. 10757:^ 10735:. 10705:. 10649:. 10619:. 10575:. 10435:. 10425:. 10394:. 10383:^ 10342:. 10332:58 10330:. 10306:. 10298:. 10288:. 10280:. 10270:28 10268:. 10245:. 10235:. 10200:. 10192:. 10180:. 10110:^ 10004:: 10002:}} 9998:{{ 9986:. 9976:51 9955:. 9943:. 9920:. 9910:. 9877:^ 9769:^ 9701:. 9691:31 9689:. 9666:. 9654:. 9614:. 9600:^ 9554:^ 9494:. 9486:. 9478:. 9466:. 9454:^ 9412:. 9404:. 9396:. 9386:16 9384:. 9380:. 9368:^ 9354:. 9346:. 9336:. 9328:. 9320:. 9308:. 9304:. 9292:^ 9278:. 9268:. 9260:. 9252:. 9240:. 9236:. 9224:^ 9210:. 9202:. 9192:36 9190:. 9186:. 9174:^ 9160:. 9150:46 9148:. 9136:^ 9081:. 9046:. 9038:. 9030:. 9018:. 9014:. 8974:. 8964:. 8956:. 8944:. 8940:. 8917:. 8909:. 8897:. 8874:. 8862:. 8839:. 8825:. 8821:. 8796:. 8784:. 8780:. 8755:16 8753:. 8730:. 8718:. 8695:. 8687:. 8679:. 8669:66 8667:. 8640:. 8628:. 8605:. 8595:. 8585:97 8583:. 8571:^ 8550:. 8542:. 8532:57 8530:. 8526:. 8511:^ 8477:. 8469:. 8461:. 8449:. 8426:. 8418:. 8408:10 8406:. 8394:^ 8374:. 8362:^ 8348:. 8340:. 8332:. 8320:. 8316:. 8289:. 8266:. 8256:. 8246:. 8234:. 8230:. 8207:. 8199:. 8187:. 8164:. 8156:. 8146:11 8144:. 8140:. 8070:. 8058:. 8054:. 8024:. 8014:21 8012:. 7989:. 7981:. 7971:22 7969:. 7938:. 7904:. 7878:. 7866:. 7843:. 7833:30 7831:. 7784:^ 7743:. 7731:. 7715:^ 7679:. 7665:. 7661:. 7642:. 7638:. 7600:. 7588:. 7584:. 7558:. 7548:. 7534:. 7530:. 7507:. 7499:. 7489:16 7487:. 7483:. 7466:^ 7444:. 7421:. 7387:, 7383:, 7368:^ 7354:. 7344:. 7334:. 7326:. 7312:. 7308:. 7284:. 7274:. 7262:24 7260:. 7256:. 7227:. 7175:. 7154:^ 7140:. 7130:39 7128:. 7107:^ 7099:17 7097:. 7093:. 7078:^ 6922:^ 6861:. 6849:. 6845:. 6830:^ 6786:^ 6747:^ 6695:. 6685:26 6683:. 6679:. 6608:. 6600:. 6592:. 6580:. 6576:. 6550:. 6542:. 6534:. 6522:. 6492:. 6478:. 6474:. 6451:. 6441:. 6431:35 6429:. 6425:. 6282:) 6220:10 6214:Nb 6172:/L 6170:Wh 6152:/g 6137:Wh 6107:/g 6092:Wh 6071:/g 6049:Wh 6024:12 6010:Ti 6001:Li 5991:/L 5982:/L 5980:Wh 5958:/g 5943:Wh 5887:Wh 5870:/g 5852:Wh 5834:/g 5818:Wh 5804:. 5796:/g 5781:Wh 5758:/g 5747:Wh 5719:/L 5717:Wh 5650:UK 5648:, 5627:, 5616:, 5445:, 5409:, 5384:CO 5294:. 5050:. 5012:CO 4993:. 4838:, 4808:EV 4756:, 4752:, 4748:, 4680:. 4674:EN 4507:10 4212:. 4206:12 3894:ss 3508:. 3394:. 3135:AC 3095:DC 3082:DC 3047:. 3045:DC 3041:DC 2966:. 2916:BF 2895:BF 2872:, 2868:, 2864:, 2860:, 2767:SO 2583:. 2559:, 2555:, 2503:, 2499:, 2399:SO 2337:Fe 2277:C) 2261:. 2234:. 2100:A 2020:, 2012:, 1937:, 1830:, 1751:A 1690:nm 1062:CV 840:. 732:, 716:. 661:, 651:, 299:. 216:, 166:nm 52:SC 46:A 12560:e 12553:t 12546:v 12520:. 12500:: 12492:: 12475:. 12453:: 12445:: 12424:. 12412:: 12404:: 12398:2 12387:. 12383:: 12366:. 12345:. 12333:: 12327:8 12316:. 12293:. 12279:: 12259:. 12245:: 12228:. 12216:: 12208:: 12191:. 12172:: 12164:: 12138:. 12134:: 12088:. 12054:. 12028:. 12016:: 12008:: 11985:. 11965:: 11941:. 11915:. 11903:: 11897:7 11880:. 11855:. 11829:. 11809:: 11803:8 11785:. 11759:. 11753:: 11747:1 11726:. 11704:: 11696:: 11690:3 11669:. 11653:: 11645:: 11639:3 11618:. 11606:: 11583:. 11569:: 11542:. 11530:: 11524:5 11503:. 11491:: 11483:: 11446:. 11426:: 11420:7 11403:. 11383:: 11375:: 11352:. 11330:. 11303:. 11283:: 11275:: 11217:. 11124:. 11101:. 11086:. 11060:. 11019:. 10993:. 10967:. 10896:. 10870:. 10845:. 10820:. 10751:. 10721:. 10691:. 10665:. 10635:. 10591:. 10509:. 10483:. 10443:. 10421:: 10377:. 10350:. 10346:: 10338:: 10314:. 10292:: 10284:: 10276:: 10253:. 10231:: 10225:) 10208:. 10188:: 10182:3 10133:. 10104:. 10058:. 10015:) 10011:( 9994:. 9982:: 9963:. 9951:: 9945:6 9928:. 9906:: 9871:. 9845:. 9823:. 9709:. 9705:: 9697:: 9674:. 9670:: 9662:: 9626:. 9622:: 9502:. 9474:: 9420:. 9392:: 9362:. 9324:: 9316:: 9310:6 9286:. 9256:: 9248:: 9242:9 9218:. 9198:: 9168:. 9156:: 9130:. 9093:. 9089:: 9083:1 9054:. 9034:: 9026:: 9020:7 8996:. 8982:. 8960:: 8952:: 8946:4 8925:. 8913:: 8905:: 8899:9 8882:. 8878:: 8870:: 8847:. 8833:: 8806:. 8800:: 8792:: 8765:. 8761:: 8738:. 8726:: 8703:. 8691:: 8683:: 8675:: 8648:. 8636:: 8630:4 8613:. 8599:: 8591:: 8546:: 8538:: 8485:. 8465:: 8457:: 8434:. 8422:: 8414:: 8388:. 8356:. 8336:: 8328:: 8301:. 8274:. 8250:: 8242:: 8215:. 8203:: 8195:: 8189:2 8172:. 8160:: 8152:: 8125:. 8093:. 8066:: 8060:4 8032:. 8020:: 7997:. 7977:: 7954:. 7923:. 7886:. 7874:: 7868:4 7851:. 7847:: 7839:: 7778:. 7751:. 7747:: 7739:: 7709:. 7687:. 7673:: 7646:. 7644:6 7623:. 7604:: 7596:: 7566:. 7542:: 7536:9 7515:. 7495:: 7460:. 7429:. 7425:: 7417:: 7362:. 7338:: 7330:: 7320:: 7292:. 7268:: 7241:. 7212:. 7186:. 7148:. 7144:: 7136:: 7072:. 6964:. 6916:. 6871:. 6865:: 6857:: 6703:. 6691:: 6642:. 6616:. 6596:: 6588:: 6558:. 6538:: 6530:: 6507:. 6486:: 6480:5 6459:. 6445:: 6437:: 6280:2 6272:3 6218:O 6216:3 6212:2 6208:2 6206:O 6150:F 6118:2 6105:F 6069:F 6058:W 6019:O 6015:5 6006:4 5989:W 5964:2 5956:F 5916:W 5868:m 5832:F 5794:F 5756:W 5389:2 5017:2 4672:/ 4552:x 4550:T 4545:0 4543:T 4538:0 4536:L 4531:x 4529:L 4501:x 4497:T 4488:0 4484:T 4477:2 4468:0 4464:L 4460:= 4455:x 4451:L 4376:i 4355:i 4351:R 4345:2 4341:V 4330:4 4327:1 4322:= 4313:P 4302:, 4286:i 4282:R 4276:2 4272:V 4261:8 4258:1 4253:= 4244:P 4228:P 4107:) 4102:2 4093:V 4084:2 4075:V 4071:( 4062:C 4054:2 4051:1 4046:= 4037:W 3995:2 3986:V 3973:C 3964:2 3961:1 3956:= 3947:W 3898:i 3860:K 3838:2 3834:I 3825:i 3821:R 3817:= 3808:P 3790:i 3756:C 3748:i 3744:R 3740:= 3702:i 3698:i 3696:R 3687:i 3655:I 3648:2 3644:V 3634:= 3629:i 3625:R 3607:2 3603:i 3534:R 3485:. 3482:) 3477:2 3468:U 3459:2 3450:U 3446:( 3440:C 3431:P 3428:2 3424:1 3419:= 3416:t 3403:t 3399:P 3369:I 3365:) 3356:U 3343:U 3339:( 3333:C 3327:= 3324:t 3311:I 3307:t 3257:2 3253:V 3244:1 3240:V 3232:1 3228:t 3219:2 3215:t 3199:I 3195:= 3186:C 3172:2 3168:1 3164:2 3160:1 3154:I 3100:2 3091:V 3078:C 3069:2 3066:1 3061:= 3058:W 3023:W 3005:R 2921:4 2912:3 2900:4 2891:4 2884:( 2843:S 2836:6 2829:( 2820:4 2813:( 2804:4 2797:( 2772:4 2763:2 2758:H 2756:( 2693:2 2689:2 2685:2 2681:4 2679:O 2677:2 2673:4 2671:S 2669:2 2665:2 2660:3 2526:2 2519:( 2480:2 2455:2 2440:2 2404:4 2395:2 2390:H 2383:2 2376:( 2367:2 2360:( 2351:4 2346:O 2342:3 2335:( 2326:2 2319:( 2310:2 2303:( 2288:2 2275:2 2269:) 2267:2 2259:2 2240:2 2217:2 2213:2 2209:2 2184:2 2177:2 2076:( 2031:2 2026:H 1965:( 1949:- 1865:2 1860:H 1834:( 1602:( 1384:, 1342:, 1312:, 1155:( 1058:2 1030:5 1028:O 1026:2 1022:2 1018:2 1014:2 972:2 968:2 964:2 830:d 826:A 822:ε 815:C 809:. 795:d 792:A 784:= 781:C 633:2 630:C 623:C 619:2 616:C 612:1 609:C 605:1 602:C 595:C 591:2 588:C 584:1 581:C 558:2 554:C 550:+ 545:1 541:C 533:2 529:C 520:1 516:C 509:= 500:C 483:C 479:2 476:C 472:1 469:C 403:( 224:. 188:. 134:( 50:( 20:)

Index

Supercapacitors
Supercapacitor

capacitor
capacitance
voltage
electrolytic capacitors
rechargeable batteries
energy per unit volume or mass
charge and discharge cycles
dielectric
electrostatic
double-layer capacitance
electrochemical
pseudocapacitance
regenerative braking
static random-access memory
carbon
electrodes
Helmholtz
double layer
interface
electrolyte
ångströms
nm
electrolyte
Batteries
redox
chemical reactions
metal oxide

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.