Knowledge

Stromatoporoidea

Source 📝

1355: 1031: 1312: 1371: 1020: 469:
create a ‘ragged’ appearance for some fossils, akin to an inverted stack of bowls or plates with sharp lower edges and smoothly curved upper edges. This is one example of how stromatoporoid growth forms can vary somewhat through the animal's lifespan. A single species can acquire a taller, narrower form to survive high sedimentation rates, while acquiring a flatter and more stable form to survive in energetic shallow waters. Some stromatoporoids appear to grow intermittently in a ‘ragged’ style even without sediment burial, as indicated by an abundance of encrusters under the overhanging 'shelves'.
1040: 1343: 1328: 976:
forms. Under this interpretation, the Devonian extinctions merely prompted stromatoporoids to abandon mineralization until the Jurassic, explaining their lack of fossils between the two time intervals. Most paleontologists disagree with this idea, since Paleozoic and Mesozoic ‘stromatoporoids’ differ in several key aspects. In contrast to true Paleozoic stromatoporoids, Mesozoic species have recognizable spicules and a more complex microstructure within the laminae and pillars which make up the skeleton. Mesozoic ‘stromatoporoids’ are a
397: 135: 1206: 161: 1011: 454: 895:(Late Devonian mass extinction). Diversity loss prior to the Kellwasser event was likely a factor of both falling origination rates and slightly elevated extinction rates. Other groups presented unexpected patterns: the formerly rare amphiporids reached their highest diversity in the Frasnian, while labechiids staged a remarkable comeback in the 329:. Two or three of these orders appeared in the Ordovician while the rest evolved in the Silurian. They rediversified subsequent to mass extinctions at the end of the Ordovician and Silurian, but a more profound decline began in the Late Devonian. With a few putative exceptions, they apparently died out during the 1169:, meaning that they inhabited shaded spaces and cavities. These hidden areas could be found in gaps between the base of the stromatoporoid and its substrate, or on the underside of shelf-like projections. Displaced or toppled sponges had the potential to host cryptic encrusters on any part of the skeleton. 479:
Domical – Dome- or mound-shaped, with a curved surface developing both outwards and upwards from a broad base. Domes occupy a spectrum from low (height less than half of the base's diameter) to high (height up to double the diameter). Some high domical species taper significantly, acquiring a conical
380:. Internally, the astrorhizae diverge as independent tapering tubes that intersect smaller open spaces within the skeletal frame. Astrorhizae are generally equated with the exhalant canals of other sponges, while the mamelons help to channel waste water away from the surface. This mechanism works via 662:
Like many fossil invertebrates, stromatoporoids have long been regarded as an enigmatic group with an uncertain relationship to modern taxa. For much of their history of study, stromatoporoid fossils could only be observed externally or through natural cross-sections. Several hypotheses developed in
1266:
A persistent question for stromatoporoid ecology is how they were able to compete with corals in shallow, brightly lit areas. One hypothesis is that heavy laminar growth forms were more resistant to damage from waves and storms, yet laminar stromatoporoids were equally common in deep or undisturbed
1099:
at intermediate depths, away from muddier basins or saltier shallows. The predominant species were usually laminar or low domical in form. High domical species and other complex forms only developed in calmer settings, where there is little risk of toppling. In a stable environment, stromatoporoids
874:
and throughout the Silurian, while clathrodictyids and actinostromatids diversified substantially. The other four stromatoporoid orders (Amphiporida, Stromatoporellida, Stromatoporida, and Syringostromatida) also originated in the Silurian, though they remained fairly subdued compared to the three
259:
Externally, some species have raised bumps (mamelons) and star-shaped crevices (astrorhizae), which together help vent exhalant water away from the living surface. Internally, stromatoporoids have a mesh-like skeletal system combining extensive horizontal layers (laminae), vertical rods (pillars),
886:
stage. Clathrodictyids, stromatoporellids, stromatoporids, and syringostromatids benefited the most from this renewal of biodiversity. The arrival of the Late Devonian disrupted this apex of stromatoporoid evolution. Syringostromatids were the first to be affected, virtually disappearing from the
468:
Stromatoporoids can show a variety of growth forms, with low domes or plates as the most common varieties. Whenever an influx of sediment buries the edge of the skeleton, the buried portion ceases growing while the exposed central portion expands outwards to cover the sediment once more. This can
1299:
overlap with corals to an extent. If one assumes that latilaminae (growth interruptions parallel to laminae) are annual (like tree rings), stromatoporoid growth rates can reach 2 to 10 mm per year, equivalent to corals and much higher than modern calcareous sponges. On the other hand, most
975:
Over 60 valid genera of small hypermineralized Mesozoic sponges have been described as stromatoporoids based on their anatomical similarity to stromatoporids, actinostromatids, clathrodictyids, or syringostromatids. One hypothesis suggests a direct line of descent between Paleozoic and Mesozoic
813:
stage (about mid-way through the Middle Ordovician). They were low-profile hypercalcified sponges which were similar to stromatoporoids in many respects, with one key difference: pulchrilaminids had spine-like projections (probably homologous with spicules) between the laminae of the skeleton.
408:
was likely only present at the outer surface of the stromatoporoid skeleton. By volume, the majority of the organism was a dead mesh of internal cavities and support structures. Since most stromatoporoid fossils are only visible in vertical or horizontal cross-section, the internal form of the
1086:
which congregated into closely packed patches. They were adaptable and could thrive at a variety of depths, light levels, and fluctuating sea level regimes. In these regards, they were more similar to corals than to modern calcareous sponges, which generally occupy a narrow selection of rocky
413:, layers arranged transversely (parallel to the living surface of the sponge). Laminae have an intermediate width and spacing (on average around four per millimeter) relative to other layers with the same orientation. Significantly thinner layers, when present, are termed 365:. Most were ambitopic (occupying soft substrate such as mud or sand for most of their life), though some were encrusting (concreted onto hard substrates such as rocks or other organisms). The base was stabilized by a crust-like layer covered with concentric wrinkles. The 842:
Labechiids were by far the most diverse stromatoporoids of the Ordovician, and some paleontologists have even ventured to reconstruct lines of descent in this preliminary stage of stromatoporoid evolution. The next order to appear were the Clathrodictyida, in the early
1354: 709:, immediately reinvigorated the hypothesis that stromatoporoids were sponges. Moreover, closer investigations of stromatoporoid fossils were able to determine that an individual mound represents a single animal, rather than a colonial congregation of 1287:
algae which live within their cells. Zooxanthellae additionally assist the corals’ biochemical processes, allowing for expeditious growth rates. No equivalent organisms are known in modern sponges, though some demosponges do host a high volume of
720:
Proponents of the sponge hypothesis admitted that sclerosponges and stromatoporoids were not identical in structure; for example, sclerosponges have spicules while true Paleozoic stromatoporoids do not. Several other enigmatic calcareous fossils
260:
and boxy spaces (galleries), along with other features. The most common growth forms range from laminar (flattened) to domical (dome-shaped). Spheroidal, finger-like, or tree-like species also occur, though they are rare in most environments.
1090:
Unlike corals, stromatoporoids usually settled on soft substrates, so their ‘reefs’ occupied only a single level rather than a multi-tiered vertical framework of built-up skeletons. Flat, horizontally-extensive ‘reefs’ are formally known as
1189:’ all occupied the cryptic niche. The rim of the hidden areas hosted the greatest diversity of encrusters, most of which were filter feeders reliant on a current to feed. More exposed areas were also encrusted by corals (both tabulate and 821:
stage (the latter part of the Early Ordovician), but abrupt diversification was delayed until the mid-to-late Darriwilian stage, simultaneous with the disappearance of pulchrilaminids. The oldest stromatoporoid ‘reefs’ are known from the
1370: 853:. Though less diverse than their labechiid relatives, Ordovician clathrodictyids were widespread and locally abundant in some areas. The third stromatoporoid order, Actinostromatida, may have originated in the Late Ordovician or the 517:
Irregular – A composite form without an easily characterized shape. Both vertical and horizontal growth habits may be apparent in a single skeleton, with domes, platforms, and columns interspersed throughout the development of the
486:
Columnar – Cylindrical, tall (height more than double the diameter) and trunk-like, without branches. In many cases the outer wall of the column is reinforced with laminar outgrowths. One example of a columnar stromatoporoid is
425:, cylindrical rods oriented longitudinally (i.e., perpendicular to the laminae). Laminae and pillars are often straight and internally solid, but they can exhibit distinctive textures and distortions in some subgroups. 697:
in particular has a thinly encrusting layered skeleton, augmented by internal rods, external knobs, and radiating nutrient canals. These features were equated with pillars, mamelons, and astrorhizae, respectively.
440:
are longitudinal walls which demarcate maze-like corridors, as visible in a transverse cross-section through the skeleton. Stacked dome-shaped pockets, known as cysts, are defined by large convex plates, known as
1300:
stromatoporoid growth forms emphasized stability and horizontal breadth rather than a vertical ‘race for sunlight’, as exhibited by sessile organisms which rely on photosynthesis, such as land plants and corals.
1311: 1411:
Da Silva, A. C.; Kershaw, S.; Boulvain, F. (2011). "Stromatoporoid palaeoecology in the Frasnian (Upper Devonian) Belgian platform, and its applications in interpretation of carbonate platform environments".
476:
Laminar – Sheet- or plate-shaped, with a broad base and a thin, flat skeleton expanding outwards along the substrate. Sheet-like forms with a slightly thicker profile are sometimes labelled 'tabular'.
432:. In life the galleries would have been filled with seawater, while in fossils the spaces are filled by recrystallized calcite. The galleries may be supplemented by very fine curved plates, termed 713:. Among the strongest evidence for sponge affinities was the degree of similarity between astrorhizae and exhalant canals, which were easier to homologize than the more integrated canal system of 817:
The first stromatoporoids to evolve belonged to the order Labechiida, which rapidly acquired worldwide diversity in the Middle Ordovician. The oldest reported labechiid species is from the
384:, which states that flow pressure increases as speed decreases, such as when the flow is redirected by a vertical barrier. The surface may also be covered with even smaller bumps known as 1095:. Stromatoporoid reefs had fairly low diversity, with only a few species making up the majority of an assemblage by volume. The most diverse stromatoporoid assemblages were biostromes on 733:’) have been reclassified as sponges thanks to this new information. The sponge hypothesis quickly met widespread acceptance, with a few detractors. Up until the 1990s, some Soviet and 891:
stage. Actinostromatids, stromatoporellids, and stromatoporids were next in line, with their diversity and reef extent collapsing at the end of the Frasnian in accordance with the
1245:, a type of tube-building tabulate coral. Stromatoporoid fossils with syringoporid burrows are so common that some historical sources have misclassified them as a distinct genus, 847:
stage of the Late Ordovician. It has been suggested that clathrodictyids are descended from labechiids, as part of an evolutionary lineage starting at the Siberian species
514:
Digitolaminar – A composite form combining both digitate and laminar characteristics. Finger-like projections are superimposed onto one or more flat plate-like platforms.
962: 1327: 1342: 899:
stage, acquiring levels of diversity not seen since the Ordovician. This would not last, as stromatoporoids appear to have been completely extinguished during the
2629:"Rise of clathrodictyid stromatoporoids during the Great Ordovician Biodiversification Event: insights from the Upper Ordovician Xiazhen Formation of South China" 1100:
could grow to very large sizes exceeding several meters in width or height. The largest singular stromatoporoid fossil ever reported is a 30-meter (98 feet) wide
1722:
Smith 1932 in the Early Carboniferous of England; affinity, palaeogeographic position and implications for the geological history of stromatoporoid-type sponges"
337:
sponges have been classified as stromatoporoids, but they are likely unrelated to the Paleozoic radiation, thus making 'stromatoporoids' (in the broad sense) a
1211: 827: 767: 640: 633: 579: 567: 388:. In contrast to mamelons, papillae are simply external extensions of internal pillars, rather than stacked deflections of the skeleton's outer surface. 1773: 911:
Putative post-Devonian stromatoporoid fossils have been reported, though their referral to the group is rather ambiguous. A supposed labechiid species (
1216: 543: 802: 726: 555: 409:
skeleton is usually the most important region for the purpose of species differentiation. In all species, the most conspicuous internal features are
2584:
Khromych, V. G. (2010-06-01). "Evolution of Stromatoporoidea in the Ordovician–Silurian epicontinental basin of the Siberian Platform and Taimyr".
1134: 626: 619: 573: 3017: 1249:. Syringoporids were able to grow at the same rate as their host in order to prevent being overgrown. Other tabulate corals, rugosan corals, and 648: 612: 605: 494: 1102: 931: 859: 849: 791: 598: 591: 1772:
Ezaki, Yoichi; Masui, Mitsuru; Nagai, Koichi; Webb, Gregory E.; Shimizu, Koki; Sugama, Shota; Adachi, Natsuko; Sugiyama, Tetsuo (2024-08-13).
1295:
Several lines of evidence suggest a mixotrophic lifestyle for stromatoporoids, though none are unambiguous. Their ratios of oxygen and carbon
1166: 780: 775: 786: 3088: 941: 663:
the 19th and 20th centuries based on this limited set of data. A few authors suggested that stromatoporoids were sponges or relatives of
913: 489: 1997: 665: 1153:. Raised bioherms would have been strengthened by microbial carbonate and other reef-building organisms living between the sponges. 797:
A more probable set of stromatoporoid ancestors evolved in the Ordovician. These forerunners or close relatives are grouped in the
2150:"Chapter 12 (part): Stromatoporida, Syringostromatida, Amphiporida, and genera with uncertain affinities: Systematic Descriptions" 758:
The first unambiguous stromatoporoids appeared in the Ordovician, but superficially similar organisms have been reported from the
1999:
Late Ordovician and Early Silurian stromatoporoid sponges from Anticosti Island, eastern CanadaCrossing the O/S mass extinction
274:. Some stromatoporoid species are useful as environmental proxies, since their form and distribution can help approximate the 2936: 2928: 2875: 2867: 2837: 2829: 2752: 2744: 2710: 2702: 2526: 2518: 2410: 2273: 2265: 2167: 2159: 2121: 2113: 2081: 2073: 2015: 1933: 1925: 1889: 1881: 1841: 1833: 1697: 1689: 925:. Some sources consider this species to be based on misinterpreted coral fragments, while others certify its legitimacy as a 534: 400:
Side view of a stromatoporoid showing laminae, pillars, and galleries. From the Columbus Limestone (Middle Devonian) of Ohio.
794:’) acquired mesh-like encrusting skeletons with a set of internal rods and domes similar to those of early stromatoporoids. 2628: 2546: 1774:"Post-Devonian re-emergence and demise of stromatoporoids as major reef-builders on a Carboniferous Panthalassan seamount" 3083: 369:
has historically been termed an epitheca or peritheca, names used for a similar attachment layer in sessile cnidarians.
244:. Stromatoporoids were among the most abundant and important reef-builders of their time, living close together in flat 3093: 1117:
Despite their preference for soft flat sediment, stromatoporoids occasionally contributed to built-up skeletal mounds (
1125:-margin stromatoporoid bioherms are particularly well-developed in the Devonian. Notable examples can be found in the 3063: 1951:"Biomechanical analysis of passive flow of stromatoporoids — morphologic, paleoecologic, and systematic implications" 882:
Stromatoporoids recovered strongly in the Early and Middle Devonian, reaching their overall maximum diversity in the
2891:
Mistiaen, B. (1994). "Skeletal density: Implications for development and extinction of Palaeozoic stromatoporoids".
871: 457:
A vertical cross-section through a domical stromatoporoid, showing stacked 'ragged' growth. From the Silurian of
2256:"Chapter 8 (part): Morphological Affinities of the Paleozoic Stromatoporoidea to Other Fossil and Recent Groups" 1263:
are also common endosymbionts, though they apparently only took root in the skeleton after the sponge had died.
3073: 953:) of Russia, has tentatively been identified as a clathrodictyid. Labechiid-like fossils are abundant in early 774:
sponges with low growth habits and porous internal domes comparable to cyst plates. In addition, some colonial
17: 2931:. Boulder, Colorado; Lawrence, Kansas: Geological Society of America; University of Kansas. pp. 631–651. 2870:. Boulder, Colorado; Lawrence, Kansas: Geological Society of America; University of Kansas. pp. 193–208. 2832:. Boulder, Colorado; Lawrence, Kansas: Geological Society of America; University of Kansas. pp. 307–310. 2793: 2747:. Boulder, Colorado; Lawrence, Kansas: Geological Society of America; University of Kansas. pp. 599–612. 2705:. Boulder, Colorado; Lawrence, Kansas: Geological Society of America; University of Kansas. pp. 593–597. 2521:. Boulder, Colorado; Lawrence, Kansas: Geological Society of America; University of Kansas. pp. 575–592. 2268:. Boulder, Colorado; Lawrence, Kansas: Geological Society of America; University of Kansas. pp. 543–549. 2162:. Boulder, Colorado; Lawrence, Kansas: Geological Society of America; University of Kansas. pp. 781–836. 2116:. Boulder, Colorado; Lawrence, Kansas: Geological Society of America; University of Kansas. pp. 769–779. 2076:. Boulder, Colorado; Lawrence, Kansas: Geological Society of America; University of Kansas. pp. 709–754. 1928:. Boulder, Colorado; Lawrence, Kansas: Geological Society of America; University of Kansas. pp. 551–573. 1884:. Boulder, Colorado; Lawrence, Kansas: Geological Society of America; University of Kansas. pp. 487–520. 1836:. Boulder, Colorado; Lawrence, Kansas: Geological Society of America; University of Kansas. pp. 421–486. 1692:. Boulder, Colorado; Lawrence, Kansas: Geological Society of America; University of Kansas. pp. 755–768. 2959: 160: 1618:"The global Hangenberg Crisis (Devonian–Carboniferous transition): review of a first-order mass extinction" 1165:, organisms which attach or encrust onto the outer surface of the skeleton. Most encrusting organisms were 673:). However, for much of their history the mainstream interpretation was that stromotoporoids were colonial 1376:
A magnified cross-section of a stromatoporoid, showing internal laminae, pillars, and galleries. From the
2769: 737:
specialists continued to regard stromatoporoids as cnidarians or cyanobacterial accumulations akin to
701:
In 1970, several living sponges were found to possess a calcareous skeletal framework very similar to
3078: 3068: 3058: 939:, but this is another case of poor preservation and uncertain identity. Finally, the calcitic sponge 875:
older groups. Silurian stromatoporoids would face a second round of extinction in the late Silurian (
2820:"Chapter 5 (part): A List of Upper Paleozoic–Mesozoic Stromatoporoid-like Genera; and Excluded Taxa" 3008: 2918: 2857: 2819: 2734: 2692: 2508: 2255: 2149: 2103: 2063: 1915: 1871: 1823: 1679: 381: 275: 1030: 317:). They are now classified as sponges in the phylum Porifera, based on their similarity to modern 1019: 954: 950: 3035: 2970: 2364: 2032: 361:. Like other sponges, they grow outwards and upwards from a single base attached firmly to the 2858:"Chapter 3 (part): Introduction to Post-Devonian Hypercalcified Sponges (Stromatoporoid Type)" 2290: 1950: 508:
Digitate – Hand-shaped, with finger-like columns clustered together above a broad shared base.
345:
sponges have been identified as stromatoporoids with a somewhat greater degree of confidence.
3030: 2954: 2627:
Jeon, Juwan; Liang, Kun; Kershaw, Stephen; Park, Jino; Lee, Mirinae; Zhang, Yuandong (2022).
1460:"Endobiotic Rugosan Symbionts in Stromatoporoids from the Sheinwoodian (Silurian) of Baltica" 1253:
fossils have been found wedged between growth zones within the stromatoporoid skeleton. Worm
436:. Some species have more complex skeletons with broader pockets beyond the narrow galleries. 2432: 2188:"A new species of the primitive stromatoporoid Cystostroma from the Ordovician of East Asia" 372:
In many species, the upper surface of the skeleton is ornamented with small mounds known as
282:
both within and outside their skeletons. Some studies have argued that stromatoporoids were
3022: 2922: 2861: 2823: 2781: 2738: 2696: 2640: 2593: 2512: 2444: 2302: 2259: 2199: 2153: 2107: 2067: 1962: 1919: 1875: 1827: 1733: 1683: 1629: 1581: 1533: 1471: 1421: 1296: 1107: 763: 511:
Dendroid – Bush-shaped, with a thicket of narrow columns branching away from a narrow base.
1570:"Earliest known rugosan-stromatoporoid symbiosis from the Llandovery of Estonia (Baltica)" 8: 1377: 1268: 867:’ between the ancestral labechiids and their presumed descendants, the actinostromatids. 864: 362: 287: 2785: 2644: 2597: 2448: 2390: 2306: 2203: 1966: 1737: 1633: 1585: 1537: 1475: 1425: 988:). Sponges in this category are understudied and many proposed genera have proven to be 2664: 2476: 2345: 2314: 2223: 1974: 1653: 1494: 1459: 1437: 1096: 1039: 831: 253: 155: 143: 483:
Bulbous – Bulb-shaped, with a narrow base widening upwards into a semi-spherical mass.
376:. A few species may supplement the mamelons with radiating cracks or grooves known as 298:
corals. Though this hypothesis is plausible, circumstantial evidence is inconclusive.
2932: 2871: 2833: 2797: 2748: 2706: 2668: 2656: 2609: 2566: 2522: 2468: 2460: 2406: 2318: 2269: 2227: 2215: 2187: 2163: 2117: 2077: 2011: 1978: 1929: 1885: 1837: 1789: 1751: 1693: 1657: 1645: 1617: 1569: 1521: 1499: 1441: 1433: 1122: 1051: 985: 229: 2547:"100 Million Years of Reef Prosperity and Collapse: Ordovician to Devonian Interval" 2480: 2789: 2648: 2601: 2558: 2452: 2398: 2310: 2207: 2186:
Jeon, Juwan; Li, Qijian; Oh, Jae-Ryong; Choh, Suk-Joo; Lee, Dong-Jin (2019-08-01).
2003: 1970: 1781: 1741: 1637: 1589: 1541: 1489: 1479: 1429: 1318: 900: 892: 854: 498: 405: 330: 41: 2456: 1348:
A stromatoporoid as seen from below, showing the basal layer. From Gotland, Sweden
2402: 1593: 1545: 1484: 1230: 1071: 710: 326: 147: 1048:
Dense stromatoporoid biostromes and other assemblages, from top left clockwise:
396: 2993: 1746: 1717: 1361: 1284: 1242: 759: 584: 358: 301:
Prior to the 1970s, stromatoporoids were most frequently equated with colonial
291: 241: 134: 126:. Mesozoic identifications are likely unrelated to the main Paleozoic radiation 2605: 2562: 2211: 1205: 3052: 2801: 2660: 2613: 2570: 2464: 2322: 2219: 1982: 1793: 1755: 1649: 1289: 1280: 1162: 1126: 1083: 926: 876: 771: 722: 342: 233: 123: 85: 49: 2955:
University of California, Berkeley 2019 museum blog post on Stromatoporoidea
2336:
Stearn, Colin W. (1980). "Classification of the Paleozoic Stromatoporoids".
1237:
Like many modern or prehistoric reef-builders, stromatoporoids were host to
2472: 2365:"Stromatoporoid stromatolites; new insight into evolution of cyanobacteria" 1916:"Chapter 8 (part): Functional Morphology of the Paleozoic Stromatoporoidea" 1616:
Kaiser, Sandra Isabella; Aretz, Markus; Becker, Ralph Thomas (2016-01-01).
1503: 1272: 1238: 1221: 1010: 989: 946: 738: 734: 706: 670: 428:
The cubical open spaces among the laminae and pillar meshwork are known as
338: 318: 295: 2770:"Effect of the Frasnian-Famennian extinction event on the stromatoporoids" 2031:
Stearn, Colin W.; Webby, Barry D.; Nestor, Heldur; Stock, Carl W. (1999).
2007: 453: 3002: 2735:"Chapter 9 (part): Extinction Patterns of the Paleozoic Stromatoporoidea" 1872:"Chapter 8 (part): Internal Morphology of the Paleozoic Stromatoporoidea" 1194: 966: 823: 810: 806: 742: 683: 549: 310: 225: 60: 2652: 1267:
waters. Another hypothesis argues that stromatoporoids benefited from a
879:), which reduced the number of genera back to Middle Ordovician levels. 263:
Stromatoporoids competed and coexisted with other reef-builders such as
2349: 1567: 1271:(mutually beneficial) relationship with endosymbiotic microbes. Modern 1259: 1254: 1182: 981: 958: 561: 105: 70: 2693:"Chapter 9 (part): Diversity Trends of the Paleozoic Stromatoporoidea" 2033:"Revised classification and terminology of Palaeozoic stromatoporoids" 1161:
As hard sessile objects, stromatoporoids were used as a substrate for
2509:"Chapter 9 (part): Early Evolution of the Paleozoic Stromatoporoidea" 1785: 1276: 1241:, organisms living fully within the skeleton. The most abundant were 1186: 1130: 1092: 977: 896: 730: 689: 314: 283: 279: 245: 172: 110: 53: 2964: 2397:, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 230–241, 1641: 1336:, as seen externally. From the Silurian of Saaremaa Island, Estonia. 918: 2987: 2919:"Chapter 10 (part): Paleoecology of the Paleozoic Stromatoporoidea" 1226: 1174: 969: 936: 888: 883: 678: 674: 334: 306: 302: 264: 100: 95: 80: 75: 65: 1824:"Chapter 7: External Morphology of the Paleozoic Stromatoporoidea" 1121:) with successive waves of burial and recolonization or regrowth. 1178: 1170: 1150: 1146: 1138: 1118: 1065: 922: 458: 354: 278:
of sedimentary strata. They hosted a diverse fauna of encrusting
249: 237: 115: 90: 1519: 1190: 844: 818: 502: 462: 404:
By comparison to modern sponges with a similar anatomy, living
268: 192: 182: 142:
Top view of a stromatoporoid with prominent mamelons. From the
45: 2291:"The relationship of the stromatoporoids to the sclerosponges" 2104:"Chapter 11 (part): Actinostromatida: Systematic Descriptions" 857:(early Silurian). The precise timing depends on the status of 1680:"Chapter 11 (part): Clathrodictyida: Systematic Descriptions" 1250: 1142: 980:
group, with different species referable to the Demospongiae (
809:
stage (near the end of the Early Ordovician) up to the early
705:
and stromatoporoids. The modern sponges, collectively termed
271: 221: 2433:"Modern Cyanobacterial Analogs of Paleozoic Stromatoporoids" 903:(end-Devonian mass extinction) at the end of the Famennian. 1317:
Stromatoporoids exposed from below on an outcrop. From the
1111: 1055: 1522:"Symbiotic endobiont biofacies in the Silurian of Baltica" 2794:
10.1130/0091-7613(1987)15<677:EOTFEE>2.0.CO;2
1563: 1561: 1087:
habitats with high nutrient supply and low light levels.
2064:"Chapter 11 (part): Labechiida: Systematic Descriptions" 1410: 863:, a Late Ordovician Estonian genus often considered a ‘ 333:
at the end of the Devonian. A number of hypercalcified
2960:
Digital Atlas of Ancient Life page on Stromatoporoidea
2030: 1568:
Vinn, O; Wilson, M.A.; Toom, U.; Mõtus, M.-A. (2015).
1558: 1515: 1513: 236:. They can be characterized by their densely layered 2626: 2391:"Evidences for Cyanophyte Origin of Stromatoporoids" 1082:
Like modern corals, stromatoporoids were gregarious
929:
stromatoporoid. Fossils of the Ordovician labechiid
1771: 1457: 1360:A stromatoporoid with prominent mamelons. From the 766:rather than true forerunners. One example were the 421:. Another universal type of internal structure are 1996:Nestor, Heldur; Copper, Paul; Stock, Carl (2010). 1510: 935:have been reported from sediments as young as the 2431:Kaźmierczak, Józef; Kempe, Stephan (1990-11-30). 1995: 1948: 1615: 1574:Palaeogeography, Palaeoclimatology, Palaeoecology 1526:Palaeogeography, Palaeoclimatology, Palaeoecology 1453: 1451: 3050: 2430: 1949:Boyajian, George E.; Labarbera, Michael (1987). 1622:Geological Society, London, Special Publications 1279:, deriving energy from both tiny prey items and 906: 353:Stromatoporoids are robust sponges with a dense 1397:Stock, C.W. 2001, Stromatoporoidea, 1926–2000: 1391: 1156: 1715: 1448: 417:, while thickened irregular plates are termed 2924:Part E, Porifera (Revised). Volumes 4 & 5 2863:Part E, Porifera (Revised). Volumes 4 & 5 2825:Part E, Porifera (Revised). Volumes 4 & 5 2740:Part E, Porifera (Revised). Volumes 4 & 5 2698:Part E, Porifera (Revised). Volumes 4 & 5 2514:Part E, Porifera (Revised). Volumes 4 & 5 2389:Kaźmierczak, J. (1981), Monty, Claude (ed.), 2261:Part E, Porifera (Revised). Volumes 4 & 5 2155:Part E, Porifera (Revised). Volumes 4 & 5 2109:Part E, Porifera (Revised). Volumes 4 & 5 2069:Part E, Porifera (Revised). Volumes 4 & 5 1921:Part E, Porifera (Revised). Volumes 4 & 5 1877:Part E, Porifera (Revised). Volumes 4 & 5 1829:Part E, Porifera (Revised). Volumes 4 & 5 1685:Part E, Porifera (Revised). Volumes 4 & 5 1520:Vinn, O.; Wilson, M.A.; Mõtus, M.-A. (2014). 2185: 1821: 1716:Kershaw, Stephen; Sendino, Consuelo (2020). 2817: 2388: 2362: 1404: 1321:(Pridoli – Lower Devonian) of Pennsylvania 870:Labechiid diversity contracted during the 133: 2818:Stearn, Colin W.; Stock, Carl W. (2015). 1745: 1493: 1483: 837: 2890: 2583: 1215:, a domical stromatoporoid in the order 1204: 805:. Pulchrilaminids existed from the late 452: 395: 2916: 1225:) is visible at the top left. From the 1000: 14: 3051: 2893:Courier Forschungsinstitut Senckenberg 2851: 2849: 2813: 2811: 2767: 2732: 2728: 2726: 2724: 2722: 2690: 2686: 2684: 2682: 2680: 2678: 2544: 2540: 2538: 2335: 2288: 2253: 2249: 2247: 2245: 2243: 2241: 2239: 2237: 2181: 2179: 2147: 1913: 1869: 1677: 677:, most closely related to mineralized 391: 2969: 2968: 2929:Treatise on Invertebrate Paleontology 2912: 2910: 2908: 2906: 2868:Treatise on Invertebrate Paleontology 2830:Treatise on Invertebrate Paleontology 2745:Treatise on Invertebrate Paleontology 2703:Treatise on Invertebrate Paleontology 2519:Treatise on Invertebrate Paleontology 2506: 2502: 2500: 2498: 2496: 2494: 2492: 2490: 2266:Treatise on Invertebrate Paleontology 2160:Treatise on Invertebrate Paleontology 2143: 2141: 2139: 2137: 2135: 2133: 2114:Treatise on Invertebrate Paleontology 2101: 2097: 2095: 2093: 2074:Treatise on Invertebrate Paleontology 2061: 2057: 2055: 2053: 1926:Treatise on Invertebrate Paleontology 1909: 1907: 1905: 1903: 1901: 1882:Treatise on Invertebrate Paleontology 1865: 1863: 1861: 1859: 1857: 1855: 1853: 1834:Treatise on Invertebrate Paleontology 1817: 1815: 1813: 1811: 1809: 1807: 1805: 1803: 1767: 1765: 1711: 1709: 1690:Treatise on Invertebrate Paleontology 535:Treatise on Invertebrate Paleontology 472:Stromatoporoid growth forms include: 228:common in the fossil record from the 2855: 1673: 1671: 1669: 1667: 1611: 1609: 2846: 2808: 2719: 2675: 2535: 2234: 2176: 24: 3089:Early Ordovician first appearances 2903: 2551:The Paleontological Society Papers 2487: 2315:10.1111/j.1502-3931.1972.tb00868.x 2130: 2090: 2050: 1975:10.1111/j.1502-3931.1987.tb02041.x 1898: 1850: 1800: 1762: 1706: 887:fossil record at the start of the 532:From Stearn et al. (1999) and The 321:. True Paleozoic stromatoporoids ( 25: 3105: 2948: 1822:Webby, B.D.; Kershaw, S. (2015). 1664: 1606: 1061:'Lahnmarmor' (Devonian, Germany); 826:of eastern North America and the 762:. These are most likely cases of 522: 341:group if they are included. Some 1434:10.1111/j.1475-4983.2011.01037.x 1369: 1353: 1341: 1326: 1310: 1200: 1038: 1029: 1018: 1009: 159: 58: 2884: 2761: 2620: 2577: 2424: 2382: 2356: 2329: 2282: 2024: 2002:. Canadian Science Publishing. 1989: 1942: 995: 872:Late Ordovician mass extinction 448: 2586:Russian Geology and Geophysics 1458:Vinn, O; Mõtus, M.-A. (2014). 753: 122:Possible persistence into the 13: 1: 2457:10.1126/science.250.4985.1244 2372:Acta Palaeontologica Polonica 2040:Acta Palaeontologica Polonica 1385: 1364:(Middle Devonian) of Michigan 907:Post-Devonian identifications 657: 348: 309:(which also includes corals, 2921:. In Selden, Paul A. (ed.). 2860:. In Selden, Paul A. (ed.). 2822:. In Selden, Paul A. (ed.). 2737:. In Selden, Paul A. (ed.). 2695:. In Selden, Paul A. (ed.). 2511:. In Selden, Paul A. (ed.). 2403:10.1007/978-3-642-67913-1_17 2258:. In Selden, Paul A. (ed.). 2152:. In Selden, Paul A. (ed.). 2106:. In Selder, Paul A. (ed.). 2066:. In Selden, Paul A. (ed.). 1918:. In Selden, Paul A. (ed.). 1874:. In Selden, Paul A. (ed.). 1826:. In Selden, Paul A. (ed.). 1682:. In Selden, Paul A. (ed.). 1594:10.1016/j.palaeo.2015.04.023 1546:10.1016/j.palaeo.2014.03.041 1485:10.1371/journal.pone.0090197 1209:A vertical cross-section of 1193:), crinoids, bryozoans, and 1157:Ectosymbionts and encrusters 748: 497:from the Late Ordovician of 7: 2363:Kaźmierczak, Jozef (1980). 1219:. An endosymbiotic boring ( 527: 210:Nicholson & Murie, 1878 10: 3110: 3084:Prehistoric animal classes 1747:10.1186/s42501-020-00077-7 1726:Journal of Palaeogeography 1303: 1185:, and clusters of coiled ‘ 1064:unspecified (unspecified, 294:algae), similar to modern 3094:Late Devonian extinctions 2977: 2917:Kershaw, Stephen (2015). 2768:Stearn, Colin W. (1987). 2733:Stearn, Colin W. (2015). 2691:Stearn, Colin W. (2015). 2606:10.1016/j.rgg.2010.05.009 2563:10.1017/S1089332600002424 2395:Phanerozoic Stromatolites 2289:Stearn, Colin W. (1972). 2254:Stearn, Colin W. (2015). 2212:10.1007/s12303-018-0063-7 2148:Stearn, Colin W. (2015). 1914:Stearn, Colin W. (2015). 1870:Stearn, Colin W. (2015). 965:in Japan, representing a 156:Scientific classification 154: 141: 132: 34: 3064:Ordovician invertebrates 1292:within their skeletons. 1074:(Late Devonian, Alberta) 963:Akiyoshi Limestone Group 276:depositional environment 27:Extinct clade of sponges 2633:Journal of Paleontology 2338:Journal of Paleontology 2102:Stock, Carl W. (2015). 1678:Nestor, Heldur (2015). 1399:Journal of Paleontology 961:) reef deposits of the 1401:, v. 75, p. 1079–1089. 1234: 1106:from the Frasnian-age 838:Diversity through time 465: 401: 3074:Late Devonian animals 3031:Paleobiology Database 2856:Wood, Rachel (2015). 2545:Copper, Paul (2011). 2008:10.1139/9780660199306 1380:(Devonian) of Montana 1208: 1103:Actinostroma expansum 456: 399: 382:Bernoulli's principle 2507:Webby, B.D. (2015). 2062:Webby, B.D. (2015). 1108:Shell Rock Formation 1001:Stromatoporoid reefs 917:) is known from the 764:convergent evolution 2786:1987Geo....15..677S 2653:10.1017/jpa.2022.36 2645:2022JPal...96.1285J 2598:2010RuGG...51..684K 2449:1990Sci...250.1244K 2443:(4985): 1244–1248. 2307:1972Letha...5..369S 2204:2019GescJ..23..547J 2192:Geosciences Journal 1967:1987Letha..20..223B 1738:2020JPalG...9...29K 1720:Labechia carbonaria 1634:2016GSLSP.423..387K 1586:2015PPP...431....1V 1538:2014PPP...404...24V 1476:2014PLoSO...990197V 1470:(2): 9(2): e90197. 1426:2011Palgy..54..883D 1378:Jefferson Formation 1334:Densastroma pexisum 1212:Densastroma pexisum 1097:carbonate platforms 914:Labechia carbonaria 850:Priscastroma gemini 828:Machiakou Formation 768:Kazachstanicyathida 392:Internal structures 254:carbonate platforms 1235: 986:calcareous sponges 641:Pseudostromatopora 466: 402: 325:) encompass seven 290:relationship with 240:skeletons lacking 144:Columbus Limestone 3046: 3045: 2971:Taxon identifiers 2938:978-0-9903621-2-8 2877:978-0-9903621-2-8 2839:978-0-9903621-2-8 2754:978-0-9903621-2-8 2712:978-0-9903621-2-8 2528:978-0-9903621-2-8 2412:978-3-642-67915-5 2275:978-0-9903621-2-8 2169:978-0-9903621-2-8 2123:978-0-9903621-2-8 2083:978-0-9903621-2-8 2017:978-0-660-19930-6 1935:978-0-9903621-2-8 1891:978-0-9903621-2-8 1843:978-0-9903621-2-8 1699:978-0-9903621-2-8 1052:Arnheim Formation 634:Pseudactinostroma 580:Syringostromatida 568:Stromatoporellida 357:skeleton lacking 252:on soft tropical 230:Middle Ordovician 215: 214: 211: 127: 16:(Redirected from 3101: 3079:Silurian animals 3069:Devonian animals 3059:Stromatoporoidea 3039: 3038: 3026: 3025: 3013: 3012: 3011: 2998: 2997: 2996: 2979:Stromatoporoidea 2966: 2965: 2943: 2942: 2914: 2901: 2900: 2888: 2882: 2881: 2853: 2844: 2843: 2815: 2806: 2805: 2765: 2759: 2758: 2730: 2717: 2716: 2688: 2673: 2672: 2639:(6): 1285–1317. 2624: 2618: 2617: 2581: 2575: 2574: 2542: 2533: 2532: 2504: 2485: 2484: 2428: 2422: 2421: 2420: 2419: 2386: 2380: 2379: 2369: 2360: 2354: 2353: 2333: 2327: 2326: 2286: 2280: 2279: 2251: 2232: 2231: 2183: 2174: 2173: 2145: 2128: 2127: 2099: 2088: 2087: 2059: 2048: 2047: 2037: 2028: 2022: 2021: 1993: 1987: 1986: 1946: 1940: 1939: 1911: 1896: 1895: 1867: 1848: 1847: 1819: 1798: 1797: 1786:10.1130/G52420.1 1769: 1760: 1759: 1749: 1713: 1704: 1703: 1675: 1662: 1661: 1613: 1604: 1603: 1601: 1600: 1565: 1556: 1555: 1553: 1552: 1517: 1508: 1507: 1497: 1487: 1455: 1446: 1445: 1408: 1402: 1395: 1373: 1357: 1345: 1330: 1319:Keyser Formation 1314: 1217:Actinostromatida 1042: 1033: 1022: 1013: 984:) and Calcarea ( 901:Hangenberg event 893:Kellwasser event 855:Llandovery Epoch 544:Actinostromatida 499:Anticosti Island 331:Hangenberg event 218:Stromatoporoidea 209: 206:Stromatoporoidea 204: 164: 163: 137: 121: 120: 57: 42:Early Ordovician 38:Temporal range: 35:Stromatoporoidea 32: 31: 21: 3109: 3108: 3104: 3103: 3102: 3100: 3099: 3098: 3049: 3048: 3047: 3042: 3034: 3029: 3021: 3016: 3007: 3006: 3001: 2992: 2991: 2986: 2973: 2951: 2946: 2939: 2915: 2904: 2889: 2885: 2878: 2854: 2847: 2840: 2816: 2809: 2766: 2762: 2755: 2731: 2720: 2713: 2689: 2676: 2625: 2621: 2582: 2578: 2543: 2536: 2529: 2505: 2488: 2429: 2425: 2417: 2415: 2413: 2387: 2383: 2367: 2361: 2357: 2334: 2330: 2287: 2283: 2276: 2252: 2235: 2184: 2177: 2170: 2146: 2131: 2124: 2100: 2091: 2084: 2060: 2051: 2035: 2029: 2025: 2018: 1994: 1990: 1947: 1943: 1936: 1912: 1899: 1892: 1868: 1851: 1844: 1820: 1801: 1770: 1763: 1714: 1707: 1700: 1676: 1665: 1642:10.1144/SP423.9 1614: 1607: 1598: 1596: 1566: 1559: 1550: 1548: 1518: 1511: 1456: 1449: 1409: 1405: 1396: 1392: 1388: 1381: 1374: 1365: 1358: 1349: 1346: 1337: 1331: 1322: 1315: 1306: 1231:Saaremaa Island 1203: 1175:tabulate corals 1159: 1149:, and southern 1080: 1079: 1078: 1077: 1072:Cairn Formation 1045: 1044: 1043: 1035: 1034: 1025: 1024: 1023: 1015: 1014: 1003: 998: 909: 840: 803:Pulchrilaminida 756: 751: 723:archaeocyathids 669:(an encrusting 660: 556:Clathrodictyida 530: 525: 493:, a very large 451: 394: 351: 208: 202: 158: 148:Middle Devonian 128: 119: 118: 113: 108: 103: 98: 93: 88: 83: 78: 73: 68: 63: 40: 39: 36: 28: 23: 22: 15: 12: 11: 5: 3107: 3097: 3096: 3091: 3086: 3081: 3076: 3071: 3066: 3061: 3044: 3043: 3041: 3040: 3027: 3014: 3009:Stromatoporida 2999: 2983: 2981: 2975: 2974: 2963: 2962: 2957: 2950: 2949:External links 2947: 2945: 2944: 2937: 2902: 2883: 2876: 2845: 2838: 2807: 2760: 2753: 2718: 2711: 2674: 2619: 2592:(6): 684–693. 2576: 2534: 2527: 2486: 2423: 2411: 2381: 2355: 2344:(5): 881–902. 2328: 2301:(4): 369–388. 2281: 2274: 2233: 2198:(4): 547–556. 2175: 2168: 2129: 2122: 2089: 2082: 2049: 2023: 2016: 1988: 1961:(3): 223–229. 1941: 1934: 1897: 1890: 1849: 1842: 1799: 1761: 1705: 1698: 1663: 1628:(1): 387–437. 1605: 1557: 1509: 1447: 1403: 1389: 1387: 1384: 1383: 1382: 1375: 1368: 1366: 1362:Traverse Group 1359: 1352: 1350: 1347: 1340: 1338: 1332: 1325: 1323: 1316: 1309: 1305: 1302: 1285:photosynthetic 1202: 1199: 1158: 1155: 1135:Miette Complex 1084:filter feeders 1076: 1075: 1069: 1062: 1059: 1047: 1046: 1037: 1036: 1028: 1027: 1026: 1017: 1016: 1008: 1007: 1006: 1005: 1004: 1002: 999: 997: 994: 908: 905: 839: 836: 799:incertae sedis 770:, an order of 760:Early Cambrian 755: 752: 750: 747: 727:disjectoporids 659: 656: 655: 654: 653: 652: 645: 637: 630: 627:Praeidiostroma 623: 620:Perplexostroma 616: 609: 602: 595: 585:incertae sedis 582: 576: 574:Stromatoporida 570: 564: 558: 552: 546: 529: 526: 524: 523:Classification 521: 520: 519: 515: 512: 509: 506: 484: 481: 477: 450: 447: 393: 390: 350: 347: 305:in the phylum 292:photosynthetic 286:(engaged in a 220:is an extinct 213: 212: 200: 196: 195: 190: 186: 185: 180: 176: 175: 170: 166: 165: 152: 151: 139: 138: 130: 129: 114: 109: 104: 99: 94: 89: 84: 79: 74: 69: 64: 59: 37: 26: 18:Stromatoporoid 9: 6: 4: 3: 2: 3106: 3095: 3092: 3090: 3087: 3085: 3082: 3080: 3077: 3075: 3072: 3070: 3067: 3065: 3062: 3060: 3057: 3056: 3054: 3037: 3032: 3028: 3024: 3019: 3015: 3010: 3004: 3000: 2995: 2989: 2985: 2984: 2982: 2980: 2976: 2972: 2967: 2961: 2958: 2956: 2953: 2952: 2940: 2934: 2930: 2926: 2925: 2920: 2913: 2911: 2909: 2907: 2898: 2894: 2887: 2879: 2873: 2869: 2865: 2864: 2859: 2852: 2850: 2841: 2835: 2831: 2827: 2826: 2821: 2814: 2812: 2803: 2799: 2795: 2791: 2787: 2783: 2779: 2775: 2771: 2764: 2756: 2750: 2746: 2742: 2741: 2736: 2729: 2727: 2725: 2723: 2714: 2708: 2704: 2700: 2699: 2694: 2687: 2685: 2683: 2681: 2679: 2670: 2666: 2662: 2658: 2654: 2650: 2646: 2642: 2638: 2634: 2630: 2623: 2615: 2611: 2607: 2603: 2599: 2595: 2591: 2587: 2580: 2572: 2568: 2564: 2560: 2556: 2552: 2548: 2541: 2539: 2530: 2524: 2520: 2516: 2515: 2510: 2503: 2501: 2499: 2497: 2495: 2493: 2491: 2482: 2478: 2474: 2470: 2466: 2462: 2458: 2454: 2450: 2446: 2442: 2438: 2434: 2427: 2414: 2408: 2404: 2400: 2396: 2392: 2385: 2378:(2): 243–253. 2377: 2373: 2366: 2359: 2351: 2347: 2343: 2339: 2332: 2324: 2320: 2316: 2312: 2308: 2304: 2300: 2296: 2292: 2285: 2277: 2271: 2267: 2263: 2262: 2257: 2250: 2248: 2246: 2244: 2242: 2240: 2238: 2229: 2225: 2221: 2217: 2213: 2209: 2205: 2201: 2197: 2193: 2189: 2182: 2180: 2171: 2165: 2161: 2157: 2156: 2151: 2144: 2142: 2140: 2138: 2136: 2134: 2125: 2119: 2115: 2111: 2110: 2105: 2098: 2096: 2094: 2085: 2079: 2075: 2071: 2070: 2065: 2058: 2056: 2054: 2045: 2041: 2034: 2027: 2019: 2013: 2009: 2005: 2001: 2000: 1992: 1984: 1980: 1976: 1972: 1968: 1964: 1960: 1956: 1952: 1945: 1937: 1931: 1927: 1923: 1922: 1917: 1910: 1908: 1906: 1904: 1902: 1893: 1887: 1883: 1879: 1878: 1873: 1866: 1864: 1862: 1860: 1858: 1856: 1854: 1845: 1839: 1835: 1831: 1830: 1825: 1818: 1816: 1814: 1812: 1810: 1808: 1806: 1804: 1795: 1791: 1787: 1783: 1779: 1775: 1768: 1766: 1757: 1753: 1748: 1743: 1739: 1735: 1731: 1727: 1723: 1721: 1712: 1710: 1701: 1695: 1691: 1687: 1686: 1681: 1674: 1672: 1670: 1668: 1659: 1655: 1651: 1647: 1643: 1639: 1635: 1631: 1627: 1623: 1619: 1612: 1610: 1595: 1591: 1587: 1583: 1579: 1575: 1571: 1564: 1562: 1547: 1543: 1539: 1535: 1531: 1527: 1523: 1516: 1514: 1505: 1501: 1496: 1491: 1486: 1481: 1477: 1473: 1469: 1465: 1461: 1454: 1452: 1443: 1439: 1435: 1431: 1427: 1423: 1419: 1415: 1414:Palaeontology 1407: 1400: 1394: 1390: 1379: 1372: 1367: 1363: 1356: 1351: 1344: 1339: 1335: 1329: 1324: 1320: 1313: 1308: 1307: 1301: 1298: 1293: 1291: 1290:cyanobacteria 1286: 1282: 1281:zooxanthellae 1278: 1274: 1273:scleractinian 1270: 1264: 1262: 1261: 1256: 1252: 1248: 1244: 1243:syringoporids 1240: 1239:endosymbionts 1232: 1228: 1224: 1223: 1218: 1214: 1213: 1207: 1201:Endosymbionts 1198: 1196: 1195:tentaculitids 1192: 1188: 1184: 1180: 1176: 1172: 1168: 1164: 1163:ectosymbionts 1154: 1152: 1148: 1144: 1140: 1136: 1132: 1128: 1127:Canning Basin 1124: 1120: 1115: 1113: 1109: 1105: 1104: 1098: 1094: 1088: 1085: 1073: 1070: 1067: 1063: 1060: 1057: 1054:(Ordovician, 1053: 1050: 1049: 1041: 1032: 1021: 1012: 993: 991: 987: 983: 979: 973: 971: 968: 964: 960: 956: 955:Pennsylvanian 952: 951:Mississippian 949:stage (upper 948: 944: 943: 938: 934: 933: 928: 927:Carboniferous 924: 920: 916: 915: 904: 902: 898: 894: 890: 885: 880: 878: 877:Pridoli Epoch 873: 868: 866: 862: 861: 856: 852: 851: 846: 835: 833: 829: 825: 820: 815: 812: 808: 804: 801:sponge order 800: 795: 793: 789: 788: 783: 782: 777: 773: 769: 765: 761: 746: 744: 740: 739:stromatolites 736: 732: 728: 724: 718: 716: 712: 708: 707:sclerosponges 704: 699: 696: 692: 691: 686: 685: 680: 676: 672: 668: 667: 651: 650: 649:Taymyrostroma 646: 644: 642: 638: 636: 635: 631: 629: 628: 624: 622: 621: 617: 615: 614: 613:Paschkoviella 610: 608: 607: 606:Lamellistroma 603: 601: 600: 596: 594: 593: 589: 588: 586: 583: 581: 577: 575: 571: 569: 565: 563: 559: 557: 553: 551: 547: 545: 541: 540: 539: 537: 536: 516: 513: 510: 507: 504: 500: 496: 492: 491: 485: 482: 478: 475: 474: 473: 470: 464: 460: 455: 446: 444: 439: 435: 431: 426: 424: 420: 416: 412: 407: 398: 389: 387: 383: 379: 375: 370: 368: 364: 360: 356: 346: 344: 343:Carboniferous 340: 336: 332: 328: 324: 323:sensu stricto 320: 319:sclerosponges 316: 312: 308: 304: 299: 297: 296:scleractinian 293: 289: 285: 281: 277: 273: 270: 266: 261: 257: 255: 251: 247: 243: 239: 235: 234:Late Devonian 231: 227: 223: 219: 207: 201: 198: 197: 194: 191: 188: 187: 184: 181: 178: 177: 174: 171: 168: 167: 162: 157: 153: 149: 145: 140: 136: 131: 125: 124:Carboniferous 117: 112: 107: 102: 97: 92: 87: 82: 77: 72: 67: 62: 55: 51: 50:Late Devonian 47: 43: 33: 30: 19: 2978: 2923: 2896: 2892: 2886: 2862: 2824: 2777: 2773: 2763: 2739: 2697: 2636: 2632: 2622: 2589: 2585: 2579: 2554: 2550: 2513: 2440: 2436: 2426: 2416:, retrieved 2394: 2384: 2375: 2371: 2358: 2341: 2337: 2331: 2298: 2294: 2284: 2260: 2195: 2191: 2154: 2108: 2068: 2043: 2039: 2026: 1998: 1991: 1958: 1954: 1944: 1920: 1876: 1828: 1777: 1729: 1725: 1719: 1684: 1625: 1621: 1597:. Retrieved 1577: 1573: 1549:. Retrieved 1529: 1525: 1467: 1463: 1417: 1413: 1406: 1398: 1393: 1333: 1294: 1265: 1258: 1246: 1236: 1222:Osprioneides 1220: 1210: 1167:cryptobionts 1160: 1116: 1101: 1089: 1081: 996:Paleoecology 978:polyphyletic 974: 967:Panthalassan 947:Serpukhovian 940: 932:Lophiostroma 930: 912: 910: 881: 869: 865:missing link 860:Plumatalinia 858: 848: 841: 816: 798: 796: 785: 779: 776:coralomorphs 772:archaeocyath 757: 743:thrombolites 735:Eastern Bloc 719: 714: 702: 700: 694: 688: 682: 671:foraminifera 664: 661: 647: 639: 632: 625: 618: 611: 604: 599:Eostachyodes 597: 592:Clavidictyon 590: 533: 531: 488: 471: 467: 449:Growth forms 442: 437: 434:dissepiments 433: 429: 427: 422: 419:pachystromes 418: 415:microlaminae 414: 410: 403: 385: 377: 373: 371: 366: 352: 339:polyphyletic 322: 311:sea anemones 300: 262: 258: 248:or elevated 217: 216: 205: 29: 3003:Wikispecies 1420:(4): 1–23. 1275:corals are 1269:mutualistic 1183:brachiopods 982:demosponges 945:, from the 832:North China 824:Chazy Group 811:Darriwilian 807:Tremadocian 792:khasaktiids 790:, and the ‘ 781:Maldeotaina 754:Origination 715:Hydractinia 703:Hydractinia 695:Hydractinia 684:Hydractinia 550:Amphiporida 495:aulaceratid 443:cyst plates 438:Pachysteles 378:astrorhizae 367:basal layer 288:mutualistic 226:sea sponges 150:) of Ohio. 3053:Categories 2899:: 319–327. 2780:(7): 677. 2418:2023-08-10 2046:(1): 1–70. 1599:2015-06-18 1551:2014-06-11 1386:References 1277:mixotrophs 1260:Trypanites 1233:, Estonia. 1187:spirorbids 1145:Region of 1093:biostromes 959:Bashkirian 787:Yaworipora 778:or algae ( 731:chaetetids 679:hydrozoans 675:cnidarians 658:Affinities 562:Labechiida 349:Morphology 303:hydrozoans 284:mixotrophs 246:biostromes 2802:0091-7613 2669:250002512 2661:0022-3360 2614:1068-7971 2571:1089-3326 2557:: 15–32. 2465:0036-8075 2323:0024-1164 2228:133783450 2220:1598-7477 1983:0024-1164 1794:0091-7613 1756:2524-4507 1732:(1): 29. 1658:131270834 1650:0305-8719 1532:: 24–29. 1442:128455331 1247:Caunopora 1171:Bryozoans 1131:Australia 942:Kyklopora 921:stage of 897:Famennian 749:Evolution 690:Millepora 430:galleries 363:substrate 315:jellyfish 280:symbionts 179:Kingdom: 173:Eukaryota 54:Famennian 2994:Q2116140 2988:Wikidata 2481:22220321 2473:17829211 1504:24587277 1464:PLOS ONE 1297:isotopes 1257:such as 1227:Silurian 1179:crinoids 1119:bioherms 970:seamount 937:Triassic 889:Frasnian 884:Eifelian 681:such as 528:Taxonomy 490:Aulacera 386:papillae 374:mamelons 359:spicules 335:Mesozoic 307:Cnidaria 265:tabulate 250:bioherms 242:spicules 193:Porifera 189:Phylum: 183:Animalia 169:Domain: 2782:Bibcode 2774:Geology 2641:Bibcode 2594:Bibcode 2445:Bibcode 2437:Science 2350:1304354 2303:Bibcode 2295:Lethaia 2200:Bibcode 1963:Bibcode 1955:Lethaia 1778:Geology 1734:Bibcode 1630:Bibcode 1582:Bibcode 1580:: 1–5. 1534:Bibcode 1495:3934990 1472:Bibcode 1422:Bibcode 1304:Gallery 1255:borings 1151:Belgium 1147:Germany 1139:Alberta 1066:Estonia 990:dubious 923:England 666:Gypsina 518:sponge. 459:Gotland 423:pillars 411:laminae 355:calcite 238:calcite 232:to the 199:Class: 3036:105325 2935:  2874:  2836:  2800:  2751:  2709:  2667:  2659:  2612:  2569:  2525:  2479:  2471:  2463:  2409:  2348:  2321:  2272:  2226:  2218:  2166:  2120:  2080:  2014:  1981:  1932:  1888:  1840:  1792:  1754:  1696:  1656:  1648:  1502:  1492:  1440:  1191:rugose 1141:, the 1133:, the 919:Viséan 845:Katian 819:Floian 711:polyps 578:Order 572:Order 566:Order 560:Order 554:Order 548:Order 542:Order 503:Quebec 480:shape. 463:Sweden 406:tissue 327:orders 313:, and 272:corals 269:rugose 46:Floian 3018:IRMNG 2665:S2CID 2477:S2CID 2368:(PDF) 2346:JSTOR 2224:S2CID 2036:(PDF) 1654:S2CID 1438:S2CID 1251:algal 1143:Eifel 1123:Shelf 222:clade 3023:1460 2933:ISBN 2872:ISBN 2834:ISBN 2798:ISSN 2749:ISBN 2707:ISBN 2657:ISSN 2610:ISSN 2567:ISSN 2523:ISBN 2469:PMID 2461:ISSN 2407:ISBN 2319:ISSN 2270:ISBN 2216:ISSN 2164:ISBN 2118:ISBN 2078:ISBN 2012:ISBN 1979:ISSN 1930:ISBN 1886:ISBN 1838:ISBN 1790:ISSN 1752:ISSN 1694:ISBN 1646:ISSN 1500:PMID 1112:Iowa 1056:Ohio 687:and 267:and 61:PreꞒ 2897:172 2790:doi 2649:doi 2602:doi 2559:doi 2453:doi 2441:250 2399:doi 2311:doi 2208:doi 2004:doi 1971:doi 1782:doi 1742:doi 1638:doi 1626:423 1590:doi 1542:doi 1530:404 1490:PMC 1480:doi 1430:doi 1229:of 1137:of 1129:of 1110:of 830:of 741:or 729:, ‘ 224:of 3055:: 3033:: 3020:: 3005:: 2990:: 2927:. 2905:^ 2895:. 2866:. 2848:^ 2828:. 2810:^ 2796:. 2788:. 2778:15 2776:. 2772:. 2743:. 2721:^ 2701:. 2677:^ 2663:. 2655:. 2647:. 2637:96 2635:. 2631:. 2608:. 2600:. 2590:51 2588:. 2565:. 2555:17 2553:. 2549:. 2537:^ 2517:. 2489:^ 2475:. 2467:. 2459:. 2451:. 2439:. 2435:. 2405:, 2393:, 2376:25 2374:. 2370:. 2342:54 2340:. 2317:. 2309:. 2297:. 2293:. 2264:. 2236:^ 2222:. 2214:. 2206:. 2196:23 2194:. 2190:. 2178:^ 2158:. 2132:^ 2112:. 2092:^ 2072:. 2052:^ 2044:44 2042:. 2038:. 2010:. 1977:. 1969:. 1959:20 1957:. 1953:. 1924:. 1900:^ 1880:. 1852:^ 1832:. 1802:^ 1788:. 1780:. 1776:. 1764:^ 1750:. 1740:. 1728:. 1724:. 1708:^ 1688:. 1666:^ 1652:. 1644:. 1636:. 1624:. 1620:. 1608:^ 1588:. 1578:31 1576:. 1572:. 1560:^ 1540:. 1528:. 1524:. 1512:^ 1498:. 1488:. 1478:. 1466:. 1462:. 1450:^ 1436:. 1428:. 1418:54 1416:. 1283:, 1197:. 1181:, 1177:, 1173:, 1114:. 1068:); 1058:); 992:. 972:. 834:. 784:, 745:. 725:, 717:. 693:. 587:: 538:: 501:, 461:, 445:. 256:. 111:Pg 48:)– 2941:. 2880:. 2842:. 2804:. 2792:: 2784:: 2757:. 2715:. 2671:. 2651:: 2643:: 2616:. 2604:: 2596:: 2573:. 2561:: 2531:. 2483:. 2455:: 2447:: 2401:: 2352:. 2325:. 2313:: 2305:: 2299:5 2278:. 2230:. 2210:: 2202:: 2172:. 2126:. 2086:. 2020:. 2006:: 1985:. 1973:: 1965:: 1938:. 1894:. 1846:. 1796:. 1784:: 1758:. 1744:: 1736:: 1730:9 1718:" 1702:. 1660:. 1640:: 1632:: 1602:. 1592:: 1584:: 1554:. 1544:: 1536:: 1506:. 1482:: 1474:: 1468:9 1444:. 1432:: 1424:: 957:( 721:( 643:? 505:. 203:† 146:( 116:N 106:K 101:J 96:T 91:P 86:C 81:D 76:S 71:O 66:Ꞓ 56:) 52:( 44:( 20:)

Index

Stromatoporoid
Early Ordovician
Floian
Late Devonian
Famennian
PreꞒ

O
S
D
C
P
T
J
K
Pg
N
Carboniferous

Columbus Limestone
Middle Devonian
Scientific classification
Edit this classification
Eukaryota
Animalia
Porifera
Stromatoporoidea
clade
sea sponges
Middle Ordovician

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.