Knowledge

Squeeze flow

Source đź“ť

913: 732: 404: 2240: 22: 1724:, and fast squeeze flow demonstrated that polymers may exhibit better lubrication than current constitutive models will predict. The current empirical model for power law fluids is relatively accurate for modeling inelastic flows, but certain kinematic flow assumptions and incomplete understanding of polymeric lubrication properties tend to provide inaccurate modeling of power law fluids. 1909: 2271:
final products to determine weld strength. Fiber strand length and size show significant effects on material strength, and squeeze flow causes fibers to orient along the load direction while being perpendicular to the joining direction to achieve the same final properties as thermosetting composites.
2270:
may become an analog to permit increased manufacturing of these stronger materials through their melting abilities and relatively inexpensive raw materials. Characterization and testing of thermoplastic composites experiencing squeeze flow allow for study of fiber orientations within the melt and
2252:
During conventional hot plate welding, a successful joining phase depends on proper maintenance of squeeze flow to ensure that pressure and temperature create an ideal weld. Excessive pressure causes squeeze out of valuable material and weakens the bond due to fiber realignment in the melt layer,
1735:
exhibit uncommon characteristics during squeeze flow. While undergoing compression, Bingham fluids should fail to move and act as a solid until achieving a yield stress; however, as the parallel plates move closer together, the fluid shows some radial movement. One study proposes a “biviscosity”
1379: 1741: 881: 558: 1051: 400:, or surface protrusion, allows for measurement of a very specific cross-section of a droplet. To measure macroscopic squeeze flow effects, models exist for two the most common surfaces: circular and rectangular plate squeeze flows. 2261:
Prevalent in the aerospace and automotive industries, composites serve as expensive, yet mechanically strong, materials in the construction of several types of aircraft and vehicles. While aircraft parts are typically composed of
1112: 2207:
Squeeze flow application is prevalent in several science and engineering fields. Modeling and experimentation assist with understanding the complexities of squeeze flow during processes such as rheological testing,
226: 78:(also called squeezing flow, squeezing film flow, or squeeze flow theory) is a type of flow in which a material is pressed out or deformed between two parallel plates or objects. First explored in 1874 by 1534: 2243:
Hot plate welding; (a) Heating Phase, (b) Change-over Phase, (c) Joining Phase. Polymer materials (gray), heating element (red), melt layers (orange), squeeze out regions (orange, hash mark borders).
2141: 2061: 2476:
Picher-Martel, G., Levy, A., & Hubert, P. (2015). Compression molding of Carbon/Polyether ether ketone composites: Squeeze flow behavior of unidirectional and randomly oriented strands.
2232:
provide useful results for squeeze flow measurements, testing conditions such as applied rotation rates, material composition, and fluid flow behaviors under shear may require the use of
82:, squeeze flow describes the outward movement of a droplet of material, its area of contact with the plate surfaces, and the effects of internal and external factors such as temperature, 728:
Based on conservation of mass calculations, the droplet width is inversely proportional to droplet height; as the width increases, the height decreases in response to squeezing forces.
2197: 1904:{\displaystyle \tau ={\begin{cases}\eta _{2}*{du \over dy}+\tau _{1},&{\text{if }}\tau \geq \tau _{1}\\\eta _{1}*{du \over dy},&{\text{if }}\tau <\tau _{1}\end{cases}}} 1736:
model where the Bingham fluid retains some unyielded regions that maintain solid-like properties, while other regions yield and allow for some compression and outward movement.
1680:
During experimentation to determine the accuracy of the power law fluid model, observations showed that modeling slow squeeze flow generated inaccurate power law constants (
749: 421: 377: 371: 2171: 2090: 2000: 1969: 1938: 925: 723: 590: 1618: 1585: 673: 291: 613: 334: 271: 1718: 1698: 1670: 1644: 1556: 1445: 1421: 1401: 902: 693: 653: 633: 311: 248: 1374:{\displaystyle {\frac {h_{0}}{h}}=\left(1+t*({\frac {2n+3}{4n+2}})({\frac {(4*h_{0}*L_{0})^{n+1}*F*(n+2)}{(2*L_{0})^{2n+3}*W*m}})^{1/n}\right)^{n/2n+3}} 735:
Circular plate squeeze flow diagram at initial and follow-on conditions; circular plates (gray), droplet (hash marked ellipse between both plates).
94:
undergoing squeeze flow under various geometries and conditions. Numerous applications across scientific and engineering disciplines including
2228:
provide analysis for high viscosity materials such as rubber and glass, cure times for epoxy resins, and fiber-filled suspension flows. While
2225: 407:
Single asperity squeeze flow diagram at initial and follow-on conditions; plates (assumed to be semi-infinite, in gray), droplet (green).
125:
provide the foundations for calculating and modeling squeeze flow. Boundary conditions for such calculations include assumptions of an
141: 1456: 2460:
Fiebig, I., & Schoeppner, V. (2018). Factors influencing the fiber orientation in welding of fiber-reinforced thermoplastics.
2099: 2253:
while failure to allow cooling to room temperature creates weak, brittle welds that crack or break completely during use.
916:
Rectangular plate squeeze flow diagram at initial and follow-on conditions; rectangular plates (gray), droplet (green).
373:
is the change in droplet height over time. To simplify most calculations, the applied force is assumed to be constant.
2287:
Ullah, Hakeem; Khan, Muhammad Arif; Fiza, Mehreen; Ullah, Kashif; Ayaz, Muhammad; Al-Mekhlafi, Seham M. (2022-03-31).
2011: 2327:
Engmann, J., Servais, C., & Burbidge, A. S. (2005). Squeeze flow theory and applications to rheometry: A review.
62: 2289:"Analytical and Numerical Analysis of the Squeezed Unsteady MHD Nanofluid Flow in the Presence of Thermal Radiation" 2224:
allows for evaluation of polymers under wide ranges of temperatures, shear rates, and flow indexes. Parallel plate
2176: 397: 1055:
These calculations assume a melt layer that has a length much larger than the sample width and thickness.
1674: 118: 2513: 2508: 876:{\displaystyle {\frac {h_{0}}{h}}=\left(1+{\frac {16*F*t*h_{0}^{2}}{3*\pi *\eta *R^{4}}}\right)^{1/2}} 553:{\displaystyle {\frac {h_{0}}{h}}=\left(1+{\frac {5*F*t*h_{0}^{2}}{4*\eta *W*L_{0}^{3}}}\right)^{1/5}} 1076: 1756: 339: 40: 2150: 1084: 2068: 1978: 1947: 1916: 1046:{\displaystyle {\frac {h_{0}}{h}}=\left(1+{\frac {F*t*h_{0}^{2}}{2*\mu *W*L^{3}}}\right)^{1/2}} 2263: 698: 565: 2409: 1596: 1563: 658: 276: 110: 8: 1068: 126: 114: 91: 32: 2413: 595: 316: 253: 1703: 1683: 1655: 1629: 1541: 1430: 1406: 1386: 1067:
allows for basic analysis of squeeze flow, but many polymers can exhibit properties of
887: 678: 638: 618: 296: 233: 2503: 2425: 2310: 2209: 1622: 99: 44: 2498: 2417: 2300: 1088: 86:, and heterogeneity of the material. Several squeeze flow models exist to describe 1732: 1104: 1092: 1072: 1064: 912: 390: 122: 87: 83: 1095:
model provides calculations based on variations in yield stress calculations.
731: 2492: 2429: 2314: 2267: 1080: 403: 37:. In particular, not written clearly for those unfamiliar with the subject.. 2305: 2288: 1648: 79: 2421: 1079:. The power law fluid model is sufficient to describe behaviors above the 380:
Visualization of surface-to-surface contact; asperity highlighted in red.
2239: 2229: 1721: 130: 2233: 2221: 95: 2400:
Grimm, Roger J. (1978). "Squeezing flows of polymeric liquids".
221:{\displaystyle F=-{\frac {4*L^{3}*\eta *W}{h^{3}}}{dh \over dt}} 1529:{\displaystyle m=m_{0}*exp\left({\frac {-E_{a}}{R*T}}\right)} 1897: 376: 2378:
Wilson, S. (1993). Squeezing flow of a Bingham material.
2136:{\displaystyle \epsilon ={\frac {\eta _{2}}{\eta _{1}}}} 2179: 2153: 2102: 2071: 2014: 1981: 1950: 1919: 1744: 1706: 1686: 1658: 1632: 1599: 1566: 1544: 1459: 1433: 1409: 1389: 1115: 928: 890: 752: 701: 681: 661: 641: 621: 598: 568: 424: 342: 319: 299: 279: 256: 236: 144: 2444:
Rheology: Principles, measurements, and applications
695:is the width of the assumed rectangular plate, and 102:provide examples of squeeze flow in practical use. 2286: 2191: 2165: 2135: 2084: 2055: 1994: 1963: 1932: 1903: 1712: 1692: 1664: 1638: 1612: 1579: 1550: 1528: 1439: 1415: 1395: 1373: 1045: 896: 875: 717: 687: 667: 647: 627: 607: 584: 552: 393:droplet sizes under different initial conditions. 365: 328: 305: 285: 265: 242: 220: 2358:Grewell, D., Benatar, A., & Park, J. (2013). 2490: 2056:{\displaystyle \tau _{0}=\tau _{1}(1-\epsilon )} 2236:or other novel setups to obtain accurate data. 313:is the width of the assumed rectangular plate, 136:Relating applied force to material thickness: 2256: 2467:(5), 997-1012. doi:10.1007/s40194-018-0628-0 2442:Macosko, C. W., & Larson, R. G. (1994). 2334:(1-3), 1-27. doi:10.1016/j.jnnfm.2005.08.007 2173:, the fluid exhibits Newtonian behavior; as 43:. There might be a discussion about this on 2385:, 211-219. doi:10.1016/0377-0257(93)80051-c 129:, a two-dimensional system, neglecting of 2380:Journal of Non-Newtonian Fluid Mechanics, 2329:Journal of Non-Newtonian Fluid Mechanics, 2304: 63:Learn how and when to remove this message 2360:Plastics and composites welding handbook 2238: 911: 730: 402: 375: 336:is the final height of the droplet, and 1058: 2491: 2215: 2192:{\displaystyle \epsilon \rightarrow 0} 1091:for amorphous thermoplastics, and the 725:is the initial length of the droplet. 592:is the initial height of the droplet, 273:is the initial length of the droplet, 121:for conservation of momentum, and the 2399: 904:is the radius of the circular plate. 133:, and neglecting of inertial forces. 2483:(9), 1828-1837. doi:10.1002/pc.23753 2456: 2454: 2452: 2395: 2393: 2391: 2374: 2372: 2370: 2368: 2354: 2352: 2350: 2348: 2346: 2344: 2342: 2340: 2247: 920:For rectangular plate squeeze flow: 907: 615:is the final height of the droplet, 105: 15: 389:Several equations accurately model 384: 13: 2212:, and composite material joining. 1098: 416:For single asperity squeeze flow: 411: 14: 2525: 2449: 2388: 2365: 2337: 744:For circular plate squeeze flow: 739: 2006:. To determine this new stress: 1727: 635:is the applied squeezing force, 250:is the applied squeezing force, 20: 2202: 2470: 2436: 2321: 2280: 2183: 2050: 2038: 1590:initial flow consistency index 1326: 1292: 1272: 1267: 1255: 1231: 1198: 1192: 1189: 1154: 1085:semicrystalline thermoplastics 1: 2274: 2199:, the Bingham model applies. 1975:of the solid-like state, and 1063:Simplifying calculations for 366:{\displaystyle {dh \over dt}} 1089:glass transition temperature 7: 2166:{\displaystyle \epsilon =1} 98:, welding engineering, and 10: 2530: 2257:Composite material joining 396:Consideration of a single 2085:{\displaystyle \tau _{0}} 2004:biviscosity region stress 1995:{\displaystyle \tau _{1}} 1964:{\displaystyle \eta _{1}} 1933:{\displaystyle \eta _{2}} 2293:Journal of Nanomaterials 1560:flow consistency index, 675:is the fluid viscosity, 293:is the fluid viscosity, 1973:"paradoxical" viscosity 1075:characteristics, under 655:is the squeezing time, 119:Navier-Stokes equations 2264:thermosetting polymers 2244: 2193: 2167: 2137: 2086: 2057: 1996: 1965: 1944:of the Bingham fluid, 1934: 1905: 1714: 1694: 1666: 1640: 1614: 1581: 1552: 1530: 1441: 1425:flow consistency index 1417: 1397: 1375: 1103:For squeeze flow in a 1047: 917: 898: 877: 736: 719: 718:{\displaystyle 2L_{0}} 689: 669: 649: 629: 609: 586: 585:{\displaystyle 2h_{0}} 554: 408: 381: 367: 330: 307: 287: 267: 244: 222: 2462:Welding in the World, 2422:10.1002/aic.690240307 2242: 2194: 2168: 2143:is the dimensionless 2138: 2087: 2058: 1997: 1966: 1935: 1906: 1715: 1695: 1667: 1641: 1615: 1613:{\displaystyle E_{a}} 1582: 1580:{\displaystyle m_{0}} 1553: 1531: 1447:is the dimensionless 1442: 1418: 1398: 1376: 1048: 915: 899: 878: 734: 720: 690: 670: 668:{\displaystyle \eta } 650: 630: 610: 587: 555: 406: 379: 368: 331: 308: 288: 286:{\displaystyle \eta } 268: 245: 223: 2306:10.1155/2022/1668206 2177: 2151: 2100: 2069: 2012: 1979: 1948: 1917: 1742: 1704: 1684: 1675:absolute temperature 1656: 1630: 1597: 1564: 1542: 1457: 1431: 1407: 1387: 1113: 1069:non-Newtonian fluids 1059:Non-Newtonian fluids 926: 888: 750: 699: 679: 659: 639: 619: 596: 566: 422: 340: 317: 297: 277: 254: 234: 142: 127:incompressible fluid 111:Conservation of mass 92:non-Newtonian fluids 33:confusing or unclear 2478:Polymer Composites, 2414:1978AIChE..24..427G 2362:. New York: Hanser. 2216:Rheological testing 1720:) using a standard 1449:flow behavior index 1081:melting temperature 990: 820: 527: 492: 115:continuity equation 41:clarify the article 2245: 2189: 2163: 2133: 2082: 2053: 1992: 1961: 1930: 1901: 1896: 1710: 1690: 1662: 1636: 1610: 1577: 1548: 1526: 1437: 1413: 1393: 1371: 1043: 976: 918: 894: 873: 806: 737: 715: 685: 665: 645: 625: 608:{\displaystyle 2h} 605: 582: 550: 513: 478: 409: 382: 363: 329:{\displaystyle 2h} 326: 303: 283: 266:{\displaystyle 2L} 263: 240: 218: 2514:Molding processes 2509:Materials science 2248:Hot plate welding 2210:hot plate welding 2131: 1876: 1866: 1813: 1790: 1713:{\displaystyle n} 1693:{\displaystyle m} 1665:{\displaystyle T} 1647:is the universal 1639:{\displaystyle R} 1623:activation energy 1551:{\displaystyle m} 1520: 1440:{\displaystyle n} 1416:{\displaystyle K} 1396:{\displaystyle m} 1323: 1187: 1131: 1022: 944: 908:Rectangular plate 897:{\displaystyle R} 852: 768: 688:{\displaystyle W} 648:{\displaystyle t} 628:{\displaystyle F} 529: 440: 361: 306:{\displaystyle W} 243:{\displaystyle F} 216: 196: 106:Basic Assumptions 100:materials science 73: 72: 65: 2521: 2484: 2474: 2468: 2458: 2447: 2446:. New York: VCH. 2440: 2434: 2433: 2397: 2386: 2376: 2363: 2356: 2335: 2325: 2319: 2318: 2308: 2284: 2198: 2196: 2195: 2190: 2172: 2170: 2169: 2164: 2142: 2140: 2139: 2134: 2132: 2130: 2129: 2120: 2119: 2110: 2091: 2089: 2088: 2083: 2081: 2080: 2062: 2060: 2059: 2054: 2037: 2036: 2024: 2023: 2001: 1999: 1998: 1993: 1991: 1990: 1970: 1968: 1967: 1962: 1960: 1959: 1939: 1937: 1936: 1931: 1929: 1928: 1910: 1908: 1907: 1902: 1900: 1899: 1893: 1892: 1877: 1874: 1867: 1865: 1857: 1849: 1844: 1843: 1830: 1829: 1814: 1811: 1804: 1803: 1791: 1789: 1781: 1773: 1768: 1767: 1719: 1717: 1716: 1711: 1699: 1697: 1696: 1691: 1671: 1669: 1668: 1663: 1645: 1643: 1642: 1637: 1619: 1617: 1616: 1611: 1609: 1608: 1586: 1584: 1583: 1578: 1576: 1575: 1557: 1555: 1554: 1549: 1535: 1533: 1532: 1527: 1525: 1521: 1519: 1508: 1507: 1506: 1493: 1475: 1474: 1446: 1444: 1443: 1438: 1422: 1420: 1419: 1414: 1402: 1400: 1399: 1394: 1380: 1378: 1377: 1372: 1370: 1369: 1356: 1347: 1343: 1342: 1341: 1337: 1324: 1322: 1309: 1308: 1290: 1289: 1270: 1245: 1244: 1229: 1228: 1216: 1215: 1196: 1188: 1186: 1172: 1158: 1132: 1127: 1126: 1117: 1065:Newtonian fluids 1052: 1050: 1049: 1044: 1042: 1041: 1037: 1028: 1024: 1023: 1021: 1020: 1019: 991: 989: 984: 962: 945: 940: 939: 930: 903: 901: 900: 895: 882: 880: 879: 874: 872: 871: 867: 858: 854: 853: 851: 850: 849: 821: 819: 814: 786: 769: 764: 763: 754: 724: 722: 721: 716: 714: 713: 694: 692: 691: 686: 674: 672: 671: 666: 654: 652: 651: 646: 634: 632: 631: 626: 614: 612: 611: 606: 591: 589: 588: 583: 581: 580: 559: 557: 556: 551: 549: 548: 544: 535: 531: 530: 528: 526: 521: 493: 491: 486: 458: 441: 436: 435: 426: 385:Newtonian fluids 372: 370: 369: 364: 362: 360: 352: 344: 335: 333: 332: 327: 312: 310: 309: 304: 292: 290: 289: 284: 272: 270: 269: 264: 249: 247: 246: 241: 227: 225: 224: 219: 217: 215: 207: 199: 197: 195: 194: 185: 172: 171: 155: 113:(expressed as a 68: 61: 57: 54: 48: 24: 23: 16: 2529: 2528: 2524: 2523: 2522: 2520: 2519: 2518: 2489: 2488: 2487: 2475: 2471: 2459: 2450: 2441: 2437: 2398: 2389: 2377: 2366: 2357: 2338: 2326: 2322: 2299:(1): e1668206. 2285: 2281: 2277: 2259: 2250: 2218: 2205: 2178: 2175: 2174: 2152: 2149: 2148: 2145:viscosity ratio 2125: 2121: 2115: 2111: 2109: 2101: 2098: 2097: 2076: 2072: 2070: 2067: 2066: 2032: 2028: 2019: 2015: 2013: 2010: 2009: 1986: 1982: 1980: 1977: 1976: 1955: 1951: 1949: 1946: 1945: 1942:known viscosity 1924: 1920: 1918: 1915: 1914: 1895: 1894: 1888: 1884: 1873: 1871: 1858: 1850: 1848: 1839: 1835: 1832: 1831: 1825: 1821: 1810: 1808: 1799: 1795: 1782: 1774: 1772: 1763: 1759: 1752: 1751: 1743: 1740: 1739: 1730: 1705: 1702: 1701: 1685: 1682: 1681: 1657: 1654: 1653: 1631: 1628: 1627: 1604: 1600: 1598: 1595: 1594: 1571: 1567: 1565: 1562: 1561: 1543: 1540: 1539: 1509: 1502: 1498: 1494: 1492: 1488: 1470: 1466: 1458: 1455: 1454: 1432: 1429: 1428: 1408: 1405: 1404: 1388: 1385: 1384: 1352: 1348: 1333: 1329: 1325: 1295: 1291: 1285: 1281: 1271: 1234: 1230: 1224: 1220: 1211: 1207: 1197: 1195: 1173: 1159: 1157: 1141: 1137: 1136: 1122: 1118: 1116: 1114: 1111: 1110: 1105:power law fluid 1101: 1099:Power law fluid 1061: 1033: 1029: 1015: 1011: 992: 985: 980: 963: 961: 954: 950: 949: 935: 931: 929: 927: 924: 923: 910: 889: 886: 885: 863: 859: 845: 841: 822: 815: 810: 787: 785: 778: 774: 773: 759: 755: 753: 751: 748: 747: 742: 709: 705: 700: 697: 696: 680: 677: 676: 660: 657: 656: 640: 637: 636: 620: 617: 616: 597: 594: 593: 576: 572: 567: 564: 563: 540: 536: 522: 517: 494: 487: 482: 459: 457: 450: 446: 445: 431: 427: 425: 423: 420: 419: 414: 412:Single asperity 387: 353: 345: 343: 341: 338: 337: 318: 315: 314: 298: 295: 294: 278: 275: 274: 255: 252: 251: 235: 232: 231: 208: 200: 198: 190: 186: 167: 163: 156: 154: 143: 140: 139: 123:Reynolds number 108: 84:viscoelasticity 69: 58: 52: 49: 38: 25: 21: 12: 11: 5: 2527: 2517: 2516: 2511: 2506: 2501: 2486: 2485: 2469: 2448: 2435: 2408:(3): 427–439. 2387: 2364: 2336: 2320: 2278: 2276: 2273: 2268:thermoplastics 2258: 2255: 2249: 2246: 2217: 2214: 2204: 2201: 2188: 2185: 2182: 2162: 2159: 2156: 2128: 2124: 2118: 2114: 2108: 2105: 2079: 2075: 2052: 2049: 2046: 2043: 2040: 2035: 2031: 2027: 2022: 2018: 1989: 1985: 1958: 1954: 1927: 1923: 1898: 1891: 1887: 1883: 1880: 1872: 1870: 1864: 1861: 1856: 1853: 1847: 1842: 1838: 1834: 1833: 1828: 1824: 1820: 1817: 1809: 1807: 1802: 1798: 1794: 1788: 1785: 1780: 1777: 1771: 1766: 1762: 1758: 1757: 1755: 1750: 1747: 1733:Bingham fluids 1729: 1726: 1709: 1689: 1661: 1635: 1607: 1603: 1574: 1570: 1547: 1524: 1518: 1515: 1512: 1505: 1501: 1497: 1491: 1487: 1484: 1481: 1478: 1473: 1469: 1465: 1462: 1436: 1412: 1392: 1368: 1365: 1362: 1359: 1355: 1351: 1346: 1340: 1336: 1332: 1328: 1321: 1318: 1315: 1312: 1307: 1304: 1301: 1298: 1294: 1288: 1284: 1280: 1277: 1274: 1269: 1266: 1263: 1260: 1257: 1254: 1251: 1248: 1243: 1240: 1237: 1233: 1227: 1223: 1219: 1214: 1210: 1206: 1203: 1200: 1194: 1191: 1185: 1182: 1179: 1176: 1171: 1168: 1165: 1162: 1156: 1153: 1150: 1147: 1144: 1140: 1135: 1130: 1125: 1121: 1100: 1097: 1060: 1057: 1040: 1036: 1032: 1027: 1018: 1014: 1010: 1007: 1004: 1001: 998: 995: 988: 983: 979: 975: 972: 969: 966: 960: 957: 953: 948: 943: 938: 934: 909: 906: 893: 870: 866: 862: 857: 848: 844: 840: 837: 834: 831: 828: 825: 818: 813: 809: 805: 802: 799: 796: 793: 790: 784: 781: 777: 772: 767: 762: 758: 741: 740:Circular plate 738: 712: 708: 704: 684: 664: 644: 624: 604: 601: 579: 575: 571: 547: 543: 539: 534: 525: 520: 516: 512: 509: 506: 503: 500: 497: 490: 485: 481: 477: 474: 471: 468: 465: 462: 456: 453: 449: 444: 439: 434: 430: 413: 410: 386: 383: 359: 356: 351: 348: 325: 322: 302: 282: 262: 259: 239: 214: 211: 206: 203: 193: 189: 184: 181: 178: 175: 170: 166: 162: 159: 153: 150: 147: 107: 104: 71: 70: 28: 26: 19: 9: 6: 4: 3: 2: 2526: 2515: 2512: 2510: 2507: 2505: 2502: 2500: 2497: 2496: 2494: 2482: 2479: 2473: 2466: 2463: 2457: 2455: 2453: 2445: 2439: 2431: 2427: 2423: 2419: 2415: 2411: 2407: 2403: 2402:AIChE Journal 2396: 2394: 2392: 2384: 2381: 2375: 2373: 2371: 2369: 2361: 2355: 2353: 2351: 2349: 2347: 2345: 2343: 2341: 2333: 2330: 2324: 2316: 2312: 2307: 2302: 2298: 2294: 2290: 2283: 2279: 2272: 2269: 2265: 2254: 2241: 2237: 2235: 2231: 2227: 2223: 2220:Squeeze flow 2213: 2211: 2200: 2186: 2180: 2160: 2157: 2154: 2146: 2126: 2122: 2116: 2112: 2106: 2103: 2095: 2077: 2073: 2063: 2047: 2044: 2041: 2033: 2029: 2025: 2020: 2016: 2007: 2005: 1987: 1983: 1974: 1956: 1952: 1943: 1925: 1921: 1911: 1889: 1885: 1881: 1878: 1868: 1862: 1859: 1854: 1851: 1845: 1840: 1836: 1826: 1822: 1818: 1815: 1805: 1800: 1796: 1792: 1786: 1783: 1778: 1775: 1769: 1764: 1760: 1753: 1748: 1745: 1737: 1734: 1728:Bingham fluid 1725: 1723: 1707: 1687: 1678: 1676: 1672: 1659: 1650: 1646: 1633: 1624: 1620: 1605: 1601: 1591: 1587: 1572: 1568: 1545: 1536: 1522: 1516: 1513: 1510: 1503: 1499: 1495: 1489: 1485: 1482: 1479: 1476: 1471: 1467: 1463: 1460: 1452: 1450: 1434: 1426: 1410: 1390: 1381: 1366: 1363: 1360: 1357: 1353: 1349: 1344: 1338: 1334: 1330: 1319: 1316: 1313: 1310: 1305: 1302: 1299: 1296: 1286: 1282: 1278: 1275: 1264: 1261: 1258: 1252: 1249: 1246: 1241: 1238: 1235: 1225: 1221: 1217: 1212: 1208: 1204: 1201: 1183: 1180: 1177: 1174: 1169: 1166: 1163: 1160: 1151: 1148: 1145: 1142: 1138: 1133: 1128: 1123: 1119: 1108: 1106: 1096: 1094: 1093:Bingham fluid 1090: 1086: 1082: 1078: 1074: 1070: 1066: 1056: 1053: 1038: 1034: 1030: 1025: 1016: 1012: 1008: 1005: 1002: 999: 996: 993: 986: 981: 977: 973: 970: 967: 964: 958: 955: 951: 946: 941: 936: 932: 921: 914: 905: 891: 883: 868: 864: 860: 855: 846: 842: 838: 835: 832: 829: 826: 823: 816: 811: 807: 803: 800: 797: 794: 791: 788: 782: 779: 775: 770: 765: 760: 756: 745: 733: 729: 726: 710: 706: 702: 682: 662: 642: 622: 602: 599: 577: 573: 569: 560: 545: 541: 537: 532: 523: 518: 514: 510: 507: 504: 501: 498: 495: 488: 483: 479: 475: 472: 469: 466: 463: 460: 454: 451: 447: 442: 437: 432: 428: 417: 405: 401: 399: 394: 392: 378: 374: 357: 354: 349: 346: 323: 320: 300: 280: 260: 257: 237: 228: 212: 209: 204: 201: 191: 187: 182: 179: 176: 173: 168: 164: 160: 157: 151: 148: 145: 137: 134: 132: 128: 124: 120: 116: 112: 103: 101: 97: 93: 89: 85: 81: 77: 67: 64: 56: 46: 45:the talk page 42: 36: 34: 29:This article 27: 18: 17: 2480: 2477: 2472: 2464: 2461: 2443: 2438: 2405: 2401: 2382: 2379: 2359: 2331: 2328: 2323: 2296: 2292: 2282: 2260: 2251: 2226:plastometers 2219: 2206: 2203:Applications 2144: 2094:yield stress 2093: 2064: 2008: 2003: 1972: 1941: 1912: 1738: 1731: 1679: 1652: 1649:gas constant 1626: 1593: 1589: 1559: 1537: 1453: 1448: 1424: 1382: 1109: 1102: 1073:viscoelastic 1062: 1054: 922: 919: 884: 746: 743: 727: 561: 418: 415: 395: 388: 229: 138: 135: 109: 80:Josef Stefan 76:Squeeze flow 75: 74: 59: 50: 39:Please help 30: 2230:viscometers 1077:deformation 131:body forces 2493:Categories 2275:References 2234:rheometers 1722:viscometer 1071:, such as 53:April 2019 35:to readers 2430:1547-5905 2315:1687-4110 2222:rheometry 2184:→ 2181:ϵ 2155:ϵ 2123:η 2113:η 2104:ϵ 2074:τ 2048:ϵ 2045:− 2030:τ 2017:τ 1984:τ 1953:η 1922:η 1886:τ 1879:τ 1846:∗ 1837:η 1823:τ 1819:≥ 1816:τ 1797:τ 1770:∗ 1761:η 1746:τ 1514:∗ 1496:− 1477:∗ 1423:) is the 1317:∗ 1311:∗ 1279:∗ 1253:∗ 1247:∗ 1218:∗ 1205:∗ 1152:∗ 1009:∗ 1003:∗ 1000:μ 997:∗ 974:∗ 968:∗ 839:∗ 836:η 833:∗ 830:π 827:∗ 804:∗ 798:∗ 792:∗ 663:η 511:∗ 505:∗ 502:η 499:∗ 476:∗ 470:∗ 464:∗ 391:Newtonian 281:η 180:∗ 177:η 174:∗ 161:∗ 152:− 96:rheometry 88:Newtonian 2504:Plastics 1875:if  1812:if  398:asperity 2499:Welding 2410:Bibcode 2092:is the 2002:is the 1971:is the 1940:is the 1673:is the 1621:is the 1588:is the 1558:is the 1087:or the 117:), the 31:may be 2428:  2313:  2065:Where 1913:Where 1651:, and 1538:Where 1383:Where 562:Where 230:Where 2147:. If 2426:ISSN 2311:ISSN 2297:2022 2096:and 1882:< 1700:and 1427:and 1403:(or 1083:for 90:and 2418:doi 2332:132 2301:doi 2495:: 2481:38 2465:62 2451:^ 2424:. 2416:. 2406:24 2404:. 2390:^ 2383:47 2367:^ 2339:^ 2309:. 2295:. 2291:. 2266:, 1677:. 1625:, 1592:, 1451:. 1107:: 789:16 2432:. 2420:: 2412:: 2317:. 2303:: 2187:0 2161:1 2158:= 2127:1 2117:2 2107:= 2078:0 2051:) 2042:1 2039:( 2034:1 2026:= 2021:0 1988:1 1957:1 1926:2 1890:1 1869:, 1863:y 1860:d 1855:u 1852:d 1841:1 1827:1 1806:, 1801:1 1793:+ 1787:y 1784:d 1779:u 1776:d 1765:2 1754:{ 1749:= 1708:n 1688:m 1660:T 1634:R 1606:a 1602:E 1573:0 1569:m 1546:m 1523:) 1517:T 1511:R 1504:a 1500:E 1490:( 1486:p 1483:x 1480:e 1472:0 1468:m 1464:= 1461:m 1435:n 1411:K 1391:m 1367:3 1364:+ 1361:n 1358:2 1354:/ 1350:n 1345:) 1339:n 1335:/ 1331:1 1327:) 1320:m 1314:W 1306:3 1303:+ 1300:n 1297:2 1293:) 1287:0 1283:L 1276:2 1273:( 1268:) 1265:2 1262:+ 1259:n 1256:( 1250:F 1242:1 1239:+ 1236:n 1232:) 1226:0 1222:L 1213:0 1209:h 1202:4 1199:( 1193:( 1190:) 1184:2 1181:+ 1178:n 1175:4 1170:3 1167:+ 1164:n 1161:2 1155:( 1149:t 1146:+ 1143:1 1139:( 1134:= 1129:h 1124:0 1120:h 1039:2 1035:/ 1031:1 1026:) 1017:3 1013:L 1006:W 994:2 987:2 982:0 978:h 971:t 965:F 959:+ 956:1 952:( 947:= 942:h 937:0 933:h 892:R 869:2 865:/ 861:1 856:) 847:4 843:R 824:3 817:2 812:0 808:h 801:t 795:F 783:+ 780:1 776:( 771:= 766:h 761:0 757:h 711:0 707:L 703:2 683:W 643:t 623:F 603:h 600:2 578:0 574:h 570:2 546:5 542:/ 538:1 533:) 524:3 519:0 515:L 508:W 496:4 489:2 484:0 480:h 473:t 467:F 461:5 455:+ 452:1 448:( 443:= 438:h 433:0 429:h 358:t 355:d 350:h 347:d 324:h 321:2 301:W 261:L 258:2 238:F 213:t 210:d 205:h 202:d 192:3 188:h 183:W 169:3 165:L 158:4 149:= 146:F 66:) 60:( 55:) 51:( 47:.

Index

confusing or unclear
clarify the article
the talk page
Learn how and when to remove this message
Josef Stefan
viscoelasticity
Newtonian
non-Newtonian fluids
rheometry
materials science
Conservation of mass
continuity equation
Navier-Stokes equations
Reynolds number
incompressible fluid
body forces

Newtonian
asperity



Newtonian fluids
non-Newtonian fluids
viscoelastic
deformation
melting temperature
semicrystalline thermoplastics
glass transition temperature
Bingham fluid

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑