Knowledge

Rheometry

Source đź“ť

725:, and industrial process modelling, among others. For some, the techniques, particularly the qualitative rheological trends, can yield the classification of materials based on the main interactions between different possible elementary components and how they qualitatively affect the rheological behavior of the materials. Novel applications of these concepts include measuring cell mechanics in thin layers, especially in drug screening contexts. 1286: 1189:
Khan, M.; Steinman, D.; Valen-Sendstad, K. (September 2016). "Non-Newtonian versus numerical rheology: Practical impact of shear-thinning on the prediction of stable and unstable flows in intracranial aneurysms".
668:
and their derivatives. The techniques used are experimental. Rheometry investigates materials in relatively simple flows like steady shear flow, small amplitude oscillatory shear, and extensional flow.
794: 1192: 80: 1238:
Chen, Kaihui; Wang, Yu; Xuan, Shouhu; Gong, Xinglong (March 2017). "A hybrid molecular dynamics study on the non-Newtonian rheological behaviors of shear thickening fluid".
1162:
Antonsik, A.; Gluszek, M.; Zurowski, R.; Szafran, M. (June 2017). "Influence of carrier fluid on the electrokinetic and rheological properties of shear thickening fluids".
875: 843: 907: 1307: 945:
of a shear thickening fluid are simulated, and shear is applied. These particles create hydroclusters which exert a drag force resisting flow.
672:
The choice of the adequate experimental technique depends on the rheological property which has to be determined. This can be the steady shear
629: 1240: 1103:
Bashir, Khawaja Muhammad Imran; Lee, Suhyang; Jung, Dong Hee; Basu, Santanu Kumar; Cho, Man-Gi; Wierschem, Andreas (2022-06-23).
941:
A method for testing the behavior of shear thickening fluids is stochastic rotation dynamics-molecular dynamics (SRD-MD). The
741: 687:
For all real materials, the measured property will be a function of the flow conditions during which it is being measured (
933:. Using High-Resolution solution strategies, the results when using non-Newtonian rheology were found to be negligible. 1087: 1054: 1026: 622: 36: 595: 296: 133: 1336: 926: 615: 336: 222: 291: 200: 83: 207: 1341: 1296: 979: 964: 711: 707: 502: 497: 286: 279: 112: 1074:
Rheometry of Pastes, Suspensions, and Granular Materials: Applications in Industry and Environment
695:, etc.) even if for some materials this dependence is vanishingly low under given conditions (see 959: 565: 560: 229: 117: 1079: 540: 158: 1071: 854: 822: 1249: 665: 378: 195: 175: 163: 107: 8: 954: 914: 886: 580: 428: 321: 27: 1253: 660:
properties of materials, that is the qualitative and quantitative relationships between
656: 'stream') generically refers to the experimental techniques used to determine the 1217: 1139: 1104: 600: 234: 190: 185: 1346: 1265: 1209: 1144: 1126: 1083: 1072: 1050: 1022: 217: 168: 714:, as it is the primary method to quantify the useful properties of these materials. 1303: 1257: 1221: 1201: 1175: 1171: 1134: 1116: 696: 661: 555: 530: 443: 418: 413: 368: 974: 722: 718: 681: 545: 469: 433: 383: 314: 303: 248: 150: 1261: 846: 646: 550: 408: 373: 274: 180: 1330: 1130: 590: 423: 1269: 1213: 1148: 1017:
Malkin, Aleksandr I︠A︡kovlevich; Malkin, Alexander; Isayev, Avraam (2006).
677: 575: 570: 535: 267: 1121: 994: 703: 657: 585: 488: 969: 688: 507: 403: 1205: 1193:
International Journal for Numerical Methods in Biomedical Engineering
989: 692: 673: 479: 308: 1105:"Narrow-Gap Rheometry: A Novel Method for Measuring Cell Mechanics" 984: 930: 878: 458: 363: 343: 329: 733:
The viscosity of a non-Newtonian fluid is defined by a power law:
942: 212: 1285: 353: 1161: 257: 16:
Experimental techniques used to study fluid flow (rheology)
1188: 393: 1310:
to it so that it can be listed with similar articles.
889: 857: 825: 789:{\displaystyle \eta =\eta _{0}{\dot {\gamma }}^{n-1}} 744: 39: 1049:. London: EOLSS Publications/UNESCO. pp. 7–8. 1016: 901: 869: 837: 788: 74: 1102: 1328: 1237: 717:Rheometry is considered useful in the fields of 925:Due to the shear thinning properties of blood, 623: 1078:. Hoboken, NJ: Wiley-Interscience. pp.  1021:. Toronto: ChemTec Publishing. p. 241. 1019:Rheology: Concepts, Methods and Applications 680:properties (complex viscosity respectively 75:{\displaystyle J=-D{\frac {d\varphi }{dx}}} 936: 917:in order to investigate their properties. 913:In rheometry, shear forces are applied to 728: 630: 616: 1138: 1120: 805:is the viscosity after shear is applied, 1241:Journal of Colloid and Interface Science 1233: 1231: 1044: 920: 1069: 1329: 1182: 1228: 1155: 684:), the elongational properties, etc. 1279: 1040: 1038: 1012: 1010: 929:(CFD) is used to assess the risk of 702:Rheometry is a specific concern for 13: 1295:needs additional or more specific 14: 1358: 1035: 1007: 1284: 1176:10.1016/j.ceramint.2017.06.092 1096: 1063: 1: 1000: 927:computational fluid dynamics 7: 1045:Gallegos, Crispulo (2010). 948: 10: 1363: 1262:10.1016/j.jcis.2017.03.038 1070:Coussot, Philippe (2005). 816:is the shear rate, and if 812:is the initial viscosity, 909:, the fluid is Newtonian. 712:magnetorheological fluids 708:electrorheological fluids 980:Magnetorheological fluid 965:Electrorheological fluid 134:Clausius–Duhem (entropy) 84:Fick's laws of diffusion 960:Dynamic shear rheometer 937:Shear thickening fluids 729:Of non-Newtonian fluids 292:Navier–Stokes equations 230:Material failure theory 1164:Ceramics International 903: 871: 870:{\displaystyle n>1} 839: 838:{\displaystyle n<1} 790: 76: 1122:10.3390/cells11132010 921:Shear thinning fluids 904: 872: 840: 791: 287:Bernoulli's principle 280:Archimedes' principle 77: 915:non-Newtonian fluids 887: 855: 823: 742: 379:Cohesion (chemistry) 201:Infinitesimal strain 37: 1337:Continuum mechanics 1254:2017JCIS..497..378C 1170:(15): 12293–12301. 1047:Rheology - Volume I 955:Continuum mechanics 943:colloidal particles 902:{\displaystyle n=1} 297:Poiseuille equation 28:Continuum mechanics 22:Part of a series on 899: 867: 835: 786: 503:Magnetorheological 498:Electrorheological 235:Fracture mechanics 72: 1325: 1324: 1308:adding categories 771: 640: 639: 515: 514: 449: 448: 218:Contact mechanics 141: 140: 70: 1354: 1320: 1317: 1311: 1288: 1280: 1274: 1273: 1235: 1226: 1225: 1206:10.1002/cnm.2836 1186: 1180: 1179: 1159: 1153: 1152: 1142: 1124: 1100: 1094: 1093: 1077: 1067: 1061: 1060: 1042: 1033: 1032: 1014: 908: 906: 905: 900: 879:shear thickening 876: 874: 873: 868: 844: 842: 841: 836: 795: 793: 792: 787: 785: 784: 773: 772: 764: 760: 759: 697:Newtonian fluids 632: 625: 618: 464: 463: 429:Gay-Lussac's law 419:Combined gas law 369:Capillary action 254: 253: 97: 96: 81: 79: 78: 73: 71: 69: 61: 53: 19: 18: 1362: 1361: 1357: 1356: 1355: 1353: 1352: 1351: 1342:Fluid mechanics 1327: 1326: 1321: 1315: 1312: 1301: 1289: 1278: 1277: 1236: 1229: 1187: 1183: 1160: 1156: 1101: 1097: 1090: 1068: 1064: 1057: 1043: 1036: 1029: 1015: 1008: 1003: 975:Fluid mechanics 951: 939: 923: 888: 885: 884: 877:, the fluid is 856: 853: 852: 845:, the fluid is 824: 821: 820: 810: 774: 763: 762: 761: 755: 751: 743: 740: 739: 731: 723:process control 719:quality control 682:elastic modulus 636: 607: 606: 605: 525: 517: 516: 470:Viscoelasticity 461: 451: 450: 438: 388: 384:Surface tension 348: 251: 249:Fluid mechanics 241: 240: 239: 153: 151:Solid mechanics 143: 142: 94: 86: 62: 54: 52: 38: 35: 34: 17: 12: 11: 5: 1360: 1350: 1349: 1344: 1339: 1323: 1322: 1316:September 2024 1292: 1290: 1283: 1276: 1275: 1227: 1181: 1154: 1095: 1088: 1062: 1055: 1034: 1027: 1005: 1004: 1002: 999: 998: 997: 992: 987: 982: 977: 972: 967: 962: 957: 950: 947: 938: 935: 922: 919: 911: 910: 898: 895: 892: 882: 866: 863: 860: 850: 847:shear thinning 834: 831: 828: 808: 799: 798: 797: 796: 783: 780: 777: 770: 767: 758: 754: 750: 747: 730: 727: 638: 637: 635: 634: 627: 620: 612: 609: 608: 604: 603: 598: 593: 588: 583: 578: 573: 568: 563: 558: 553: 548: 543: 538: 533: 527: 526: 523: 522: 519: 518: 513: 512: 511: 510: 505: 500: 492: 491: 485: 484: 483: 482: 477: 472: 462: 457: 456: 453: 452: 447: 446: 440: 439: 437: 436: 431: 426: 421: 416: 411: 406: 400: 397: 396: 390: 389: 387: 386: 381: 376: 374:Chromatography 371: 366: 360: 357: 356: 350: 349: 347: 346: 327: 326: 325: 306: 294: 289: 277: 264: 261: 260: 252: 247: 246: 243: 242: 238: 237: 232: 227: 226: 225: 215: 210: 205: 204: 203: 198: 188: 183: 178: 173: 172: 171: 161: 155: 154: 149: 148: 145: 144: 139: 138: 137: 136: 128: 127: 123: 122: 121: 120: 115: 110: 102: 101: 95: 92: 91: 88: 87: 82: 68: 65: 60: 57: 51: 48: 45: 42: 31: 30: 24: 23: 15: 9: 6: 4: 3: 2: 1359: 1348: 1345: 1343: 1340: 1338: 1335: 1334: 1332: 1319: 1309: 1305: 1299: 1298: 1293:This article 1291: 1287: 1282: 1281: 1271: 1267: 1263: 1259: 1255: 1251: 1247: 1243: 1242: 1234: 1232: 1223: 1219: 1215: 1211: 1207: 1203: 1199: 1195: 1194: 1185: 1177: 1173: 1169: 1165: 1158: 1150: 1146: 1141: 1136: 1132: 1128: 1123: 1118: 1114: 1110: 1106: 1099: 1091: 1089:9780471653691 1085: 1081: 1076: 1075: 1066: 1058: 1056:9781848267695 1052: 1048: 1041: 1039: 1030: 1028:9781895198331 1024: 1020: 1013: 1011: 1006: 996: 993: 991: 988: 986: 983: 981: 978: 976: 973: 971: 968: 966: 963: 961: 958: 956: 953: 952: 946: 944: 934: 932: 928: 918: 916: 896: 893: 890: 883: 880: 864: 861: 858: 851: 848: 832: 829: 826: 819: 818: 817: 815: 811: 804: 781: 778: 775: 768: 765: 756: 752: 748: 745: 738: 737: 736: 735: 734: 726: 724: 720: 715: 713: 709: 705: 700: 698: 694: 690: 685: 683: 679: 676:, the linear 675: 670: 667: 663: 659: 655: 651: 648: 644: 633: 628: 626: 621: 619: 614: 613: 611: 610: 602: 599: 597: 594: 592: 589: 587: 584: 582: 579: 577: 574: 572: 569: 567: 564: 562: 559: 557: 554: 552: 549: 547: 544: 542: 539: 537: 534: 532: 529: 528: 521: 520: 509: 506: 504: 501: 499: 496: 495: 494: 493: 490: 487: 486: 481: 478: 476: 473: 471: 468: 467: 466: 465: 460: 455: 454: 445: 442: 441: 435: 432: 430: 427: 425: 422: 420: 417: 415: 414:Charles's law 412: 410: 407: 405: 402: 401: 399: 398: 395: 392: 391: 385: 382: 380: 377: 375: 372: 370: 367: 365: 362: 361: 359: 358: 355: 352: 351: 345: 342: 338: 335: 331: 328: 323: 322:non-Newtonian 320: 316: 312: 311: 310: 307: 305: 302: 298: 295: 293: 290: 288: 285: 281: 278: 276: 273: 269: 266: 265: 263: 262: 259: 256: 255: 250: 245: 244: 236: 233: 231: 228: 224: 221: 220: 219: 216: 214: 211: 209: 208:Compatibility 206: 202: 199: 197: 196:Finite strain 194: 193: 192: 189: 187: 184: 182: 179: 177: 174: 170: 167: 166: 165: 162: 160: 157: 156: 152: 147: 146: 135: 132: 131: 130: 129: 125: 124: 119: 116: 114: 111: 109: 106: 105: 104: 103: 100:Conservations 99: 98: 90: 89: 85: 66: 63: 58: 55: 49: 46: 43: 40: 33: 32: 29: 26: 25: 21: 20: 1313: 1294: 1245: 1239: 1200:(7): e2836. 1197: 1191: 1184: 1167: 1163: 1157: 1115:(13): 2010. 1112: 1108: 1098: 1073: 1065: 1046: 1018: 940: 924: 912: 813: 806: 802: 800: 732: 716: 704:smart fluids 701: 686: 678:viscoelastic 671: 653: 650: 642: 641: 489:Smart fluids 474: 434:Graham's law 340: 333: 318: 304:Pascal's law 300: 283: 271: 126:Inequalities 1248:: 378–384. 995:Smart fluid 658:rheological 508:Ferrofluids 409:Boyle's law 181:Hooke's law 159:Deformation 1331:Categories 1297:categories 1001:References 970:Ferrofluid 689:shear rate 645:(from 561:Gay-Lussac 524:Scientists 424:Fick's law 404:Atmosphere 223:frictional 176:Plasticity 164:Elasticity 1131:2073-4409 990:Rheometer 931:aneurysms 779:− 769:˙ 766:γ 753:η 746:η 693:frequency 674:viscosity 643:Rheometry 601:Truesdell 531:Bernoulli 480:Rheometer 475:Rheometry 315:Newtonian 309:Viscosity 59:φ 47:− 1347:Rheology 1304:help out 1270:28314143 1214:27696717 1149:35805094 985:Rheology 949:See also 706:such as 662:stresses 459:Rheology 364:Adhesion 344:Pressure 330:Buoyancy 275:Dynamics 113:Momentum 1302:Please 1250:Bibcode 1222:4554875 1140:9265971 666:strains 654:(rheos) 546:Charles 354:Liquids 268:Statics 213:Bending 1268:  1220:  1212:  1147:  1137:  1129:  1086:  1053:  1025:  801:where 596:Stokes 591:Pascal 581:Navier 576:Newton 566:Graham 541:Cauchy 444:Plasma 339:  337:Mixing 332:  317:  299:  282:  270:  258:Fluids 191:Strain 186:Stress 169:linear 118:Energy 1218:S2CID 1109:Cells 649: 647:Greek 571:Hooke 551:Euler 536:Boyle 394:Gases 1266:PMID 1210:PMID 1145:PMID 1127:ISSN 1084:ISBN 1051:ISBN 1023:ISBN 862:> 830:< 710:and 664:and 652:ῥέος 586:Noll 556:Fick 108:Mass 93:Laws 1306:by 1258:doi 1246:497 1202:doi 1172:doi 1135:PMC 1117:doi 699:). 1333:: 1264:. 1256:. 1244:. 1230:^ 1216:. 1208:. 1198:33 1196:. 1168:43 1166:. 1143:. 1133:. 1125:. 1113:11 1111:. 1107:. 1082:. 1037:^ 1009:^ 721:, 691:, 1318:) 1314:( 1300:. 1272:. 1260:: 1252:: 1224:. 1204:: 1178:. 1174:: 1151:. 1119:: 1092:. 1080:2 1059:. 1031:. 897:1 894:= 891:n 881:, 865:1 859:n 849:, 833:1 827:n 814:Îł 809:0 807:η 803:η 782:1 776:n 757:0 749:= 631:e 624:t 617:v 341:· 334:· 324:) 319:· 313:( 301:· 284:· 272:· 67:x 64:d 56:d 50:D 44:= 41:J

Index

Continuum mechanics
Fick's laws of diffusion
Mass
Momentum
Energy
Clausius–Duhem (entropy)
Solid mechanics
Deformation
Elasticity
linear
Plasticity
Hooke's law
Stress
Strain
Finite strain
Infinitesimal strain
Compatibility
Bending
Contact mechanics
frictional
Material failure theory
Fracture mechanics
Fluid mechanics
Fluids
Statics
Dynamics
Archimedes' principle
Bernoulli's principle
Navier–Stokes equations
Poiseuille equation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑