Knowledge

Incompressible flow

Source đź“ť

1058: 22: 377: 634:, because the density can change as observed from a fixed position as fluid flows through the control volume. This approach maintains generality, and not requiring that the partial time derivative of the density vanish illustrates that compressible fluids can still undergo incompressible flow. What interests us is the change in density of a control volume that moves along with the flow velocity, 855: 828: 1996:, the anelastic constraint extends incompressible flow validity to stratified density and/or temperature as well as pressure. This allows the thermodynamic variables to relax to an 'atmospheric' base state seen in the lower atmosphere when used in the field of meteorology, for example. This condition can also be used for various astrophysical systems. 554: 2062:
perturbations in density and/or temperature. The assumption is that the flow remains within a Mach number limit (normally less than 0.3) for any solution using such a constraint to be valid. Again, in accordance with all incompressible flows the pressure deviation must be small in comparison to the
1053:{\displaystyle {\mathrm {d} \rho \over \mathrm {d} t}={\partial \rho \over \partial t}+{\partial \rho \over \partial x}{\mathrm {d} x \over \mathrm {d} t}+{\partial \rho \over \partial y}{\mathrm {d} y \over \mathrm {d} t}+{\partial \rho \over \partial z}{\mathrm {d} z \over \mathrm {d} t}.} 1865: 690: 1307:
And so beginning with the conservation of mass and the constraint that the density within a moving volume of fluid remains constant, it has been shown that an equivalent condition required for incompressible flow is that the divergence of the flow velocity vanishes.
1549: 1178: 1878:
In fluid dynamics, a flow is considered incompressible if the divergence of the flow velocity is zero. However, related formulations can sometimes be used, depending on the flow system being modelled. Some versions are described below:
450: 2057:
constraint can be derived from the compressible Euler equations using scale analysis of non-dimensional quantities. The restraint, like the previous in this section, allows for the removal of acoustic waves, but also allows for
1380: 1256: 617: 1761: 2112: 2051: 823:{\displaystyle {\partial \rho \over \partial t}+{\nabla \cdot \left(\rho \mathbf {u} \right)}={\partial \rho \over \partial t}+{\nabla \rho \cdot \mathbf {u} }+{\rho \left(\nabla \cdot \mathbf {u} \right)}=0.} 1990: 311: 439:
The negative sign in the above expression ensures that outward flow results in a decrease in the mass with respect to time, using the convention that the surface area vector points outward. Now, using the
1265:, had changed), which we have prohibited. We must then require that the material derivative of the density vanishes, and equivalently (for non-zero density) so must the divergence of the flow velocity: 433: 1715: 1595: 679: 373: 1630: 1460: 1302: 1920: 1669: 1870:
Thus homogeneous materials always undergo flow that is incompressible, but the converse is not true. That is, compressible materials might not experience compression in the flow.
1471: 1746: 1558:
of the density is zero. Thus if one follows a material element, its mass density remains constant. Note that the material derivative consists of two terms. The first term
1101: 2132: 1922:. This can assume either constant density (strict incompressible) or varying density flow. The varying density set accepts solutions involving small perturbations in 2152: 1316:
In some fields, a measure of the incompressibility of a flow is the change in density as a result of the pressure variations. This is best expressed in terms of the
255: 215: 2162:
The stringent nature of incompressible flow equations means that specific mathematical techniques have been devised to solve them. Some of these methods include:
549:{\displaystyle {\iiint \limits _{V}{\partial \rho \over \partial t}\,\mathrm {d} V}={-\iiint \limits _{V}\left(\nabla \cdot \mathbf {J} \right)\,\mathrm {d} V},} 185:
Incompressible flow does not imply that the fluid itself is incompressible. It is shown in the derivation below that under the right conditions even the flow of
398: 1325: 1189: 838: 1860:{\displaystyle {\frac {D\rho }{Dt}}={\frac {\partial \rho }{\partial t}}+\mathbf {u} \cdot \nabla \rho =0\ \Rightarrow \ \nabla \cdot \mathbf {u} =0} 1261:
A change in the density over time would imply that the fluid had either compressed or expanded (or that the mass contained in our constant volume,
565: 1636:(convection term for scalar field). For a flow to be accounted as bearing incompressibility, the accretion sum of these terms should vanish. 626:. When we speak of the partial derivative of the density with respect to time, we refer to this rate of change within a control volume of 2070: 2009: 2267: 1939: 263: 229:(discussed below) of the density must vanish to ensure incompressible flow. Before introducing this constraint, we must apply the 86: 403: 58: 1677: 1561: 65: 39: 644: 630:. By letting the partial time derivative of the density be non-zero, we are not restricting ourselves to incompressible 2167: 2067:
These methods make differing assumptions about the flow, but all take into account the general form of the constraint
335: 105: 72: 1604: 1430: 1271: 2191: 1889: 2217: 182:
of the flow velocity is zero (see the derivation below, which illustrates why these conditions are equivalent).
54: 43: 2244: 1646: 1632:
describes the changes in the density as the material element moves from one point to another. This is the
1544:{\displaystyle {\frac {D\rho }{Dt}}={\frac {\partial \rho }{\partial t}}+\mathbf {u} \cdot \nabla \rho =0} 2196: 1927: 834: 1173:{\displaystyle {D\rho \over Dt}={\partial \rho \over \partial t}+{\nabla \rho \cdot \mathbf {u} }.} 1722: 1597:
describes how the density of the material element changes with time. This term is also known as the
622:
The partial derivative of the density with respect to time need not vanish to ensure incompressible
2338: 2186: 124: 79: 32: 444:
we can derive the relationship between the flux and the partial time derivative of the density:
1555: 1413: 128: 2308: 2117: 132: 2137: 2292: 2232: 1993: 240: 230: 200: 8: 1092: 324:, across its boundaries. Mathematically, we can represent this constraint in terms of a 226: 143: 2296: 2236: 2282: 1409: 1402: 441: 383: 186: 2248: 1063:
So if we choose a control volume that is moving at the same rate as the fluid (i.e. (
151: 1375:{\displaystyle \beta ={\frac {1}{\rho }}{\frac {\mathrm {d} \rho }{\mathrm {d} p}}.} 2300: 2240: 1385:
If the compressibility is acceptably small, the flow is considered incompressible.
842: 325: 1408:
Otherwise, if an incompressible flow also has a curl of zero, so that it is also
1317: 1251:{\displaystyle {D\rho \over Dt}={-\rho \left(\nabla \cdot \mathbf {u} \right)}.} 234: 139: 316:
The conservation of mass requires that the time derivative of the mass inside a
317: 2332: 2252: 612:{\displaystyle {\partial \rho \over \partial t}=-\nabla \cdot \mathbf {J} .} 171: 167: 1424:
As defined earlier, an incompressible (isochoric) flow is the one in which
638:. The flux is related to the flow velocity through the following function: 131:. For strings which cannot be reduced by a given compression algorithm, see 163: 2287: 2054: 197:
The fundamental requirement for incompressible flow is that the density,
123:"Incompressible" redirects here. For the property of vector fields, see 1398: 1394: 846: 179: 155: 2107:{\displaystyle \nabla \cdot \left(\alpha \mathbf {u} \right)=\beta } 2046:{\displaystyle \nabla \cdot \left(\alpha \mathbf {u} \right)=\beta } 1397:
flow velocity field. But a solenoidal field, besides having a zero
21: 2304: 1985:{\displaystyle {\nabla \cdot \left(\rho _{o}\mathbf {u} \right)=0}} 2268:"Low Mach Number Modeling of Type Ia Supernovae. I. Hydrodynamics" 1643:
is one that has constant density throughout. For such a material,
233:
to generate the necessary relations. The mass is calculated by a
189:
can, to a good approximation, be modelled as incompressible flow.
1926:, pressure and/or temperature fields, and can allow for pressure 1923: 1183:
And so using the continuity equation derived above, we see that:
159: 2266:
Almgren, A.S.; Bell, J.B.; Rendleman, C.A.; Zingale, M. (2006).
306:{\displaystyle {m}={\iiint \limits _{V}\!\rho \,\mathrm {d} V}.} 2265: 174:— is time-invariant. An equivalent statement that implies 833:
The previous relation (where we have used the appropriate
428:{\displaystyle \mathbf {J} \cdot \mathrm {d} \mathbf {S} } 2245:
10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2
1401:, also has the additional connotation of having non-zero 1710:{\displaystyle {\frac {\partial \rho }{\partial t}}=0} 1566: 2140: 2120: 2073: 2012: 1942: 1892: 1764: 1725: 1680: 1649: 1607: 1590:{\displaystyle {\tfrac {\partial \rho }{\partial t}}} 1564: 1474: 1433: 1328: 1274: 1192: 1104: 858: 693: 647: 568: 453: 406: 386: 338: 266: 243: 225:. Mathematically, this constraint implies that the 203: 674:{\displaystyle {\mathbf {J} }={\rho \mathbf {u} }.} 46:. Unsourced material may be challenged and removed. 2173:Artificial compressibility technique (approximate) 2146: 2126: 2106: 2045: 1984: 1914: 1859: 1740: 1709: 1663: 1624: 1589: 1543: 1454: 1374: 1296: 1250: 1172: 1052: 822: 673: 611: 548: 427: 392: 367: 305: 249: 209: 841:. Now, we need the following relation about the 286: 2330: 1388: 684:So that the conservation of mass implies that: 368:{\displaystyle {\partial m \over \partial t}=-} 1755:From the continuity equation it follows that 1625:{\displaystyle \mathbf {u} \cdot \nabla \rho } 1455:{\displaystyle \nabla \cdot \mathbf {u} =0.\,} 1311: 1297:{\displaystyle {\nabla \cdot \mathbf {u} }=0.} 1915:{\displaystyle {\nabla \cdot \mathbf {u} =0}} 217:, is constant within a small element volume, 120:Fluid flow in which density remains constant 2157: 1873: 1419: 1412:, then the flow velocity field is actually 1091:), then this expression simplifies to the 2286: 1451: 1393:An incompressible flow is described by a 533: 485: 290: 106:Learn how and when to remove this message 2218:"Improving the Anelastic Approximation" 1664:{\displaystyle \rho ={\text{constant}}} 2331: 2215: 2114:for general flow dependent functions 1641:homogeneous, incompressible material 127:. For the topological property, see 44:adding citations to reliable sources 15: 2225:Journal of the Atmospheric Sciences 1992:. Principally used in the field of 845:of the density (where we apply the 221:, which moves at the flow velocity 13: 2074: 2013: 1944: 1894: 1840: 1819: 1799: 1791: 1726: 1692: 1684: 1616: 1577: 1569: 1529: 1509: 1501: 1465:This is equivalent to saying that 1434: 1359: 1349: 1276: 1228: 1152: 1139: 1131: 1037: 1027: 1014: 1006: 990: 980: 967: 959: 943: 933: 920: 912: 897: 889: 873: 863: 797: 770: 757: 749: 718: 705: 697: 595: 580: 572: 535: 517: 487: 476: 468: 416: 350: 342: 292: 14: 2350: 2192:Euler equations (fluid dynamics) 2176:Compressibility pre-conditioning 2089: 2028: 1966: 1901: 1847: 1812: 1609: 1522: 1441: 1283: 1235: 1162: 804: 780: 733: 663: 650: 602: 524: 421: 408: 375: 20: 31:needs additional citations for 2259: 2209: 1834: 1741:{\displaystyle \nabla \rho =0} 1405:(i.e., rotational component). 1: 2202: 192: 2170:(both approximate and exact) 1389:Relation to solenoidal field 7: 2180: 1312:Relation to compressibility 320:be equal to the mass flux, 170:volume that moves with the 10: 2355: 122: 2158:Numerical approximations 2004:pseudo-incompressibility 1874:Related flow constraints 1420:Difference from material 2197:Navier–Stokes equations 2127:{\displaystyle \alpha } 125:Solenoidal vector field 2148: 2147:{\displaystyle \beta } 2128: 2108: 2047: 1986: 1916: 1861: 1742: 1711: 1671:. This implies that, 1665: 1626: 1591: 1545: 1456: 1376: 1298: 1252: 1174: 1054: 824: 675: 613: 550: 429: 394: 369: 307: 251: 211: 158:in which the material 129:Incompressible surface 2275:Astrophysical Journal 2216:Durran, D.R. (1989). 2187:Bernoulli's principle 2149: 2129: 2109: 2048: 1987: 1917: 1862: 1743: 1712: 1666: 1639:On the other hand, a 1627: 1592: 1546: 1457: 1377: 1299: 1253: 1175: 1055: 825: 676: 614: 551: 430: 395: 370: 308: 252: 250:{\displaystyle \rho } 212: 210:{\displaystyle \rho } 133:Incompressible string 55:"Incompressible flow" 2138: 2118: 2071: 2063:pressure base state. 2010: 2000:Low Mach-number flow 1994:atmospheric sciences 1940: 1890: 1762: 1723: 1678: 1647: 1605: 1562: 1472: 1431: 1326: 1272: 1190: 1102: 856: 691: 645: 566: 451: 404: 384: 336: 264: 241: 231:conservation of mass 201: 142:, or more generally 40:improve this article 2297:2006ApJ...637..922A 2237:1989JAtS...46.1453D 1884:Incompressible flow 1601:. The second term, 1556:material derivative 1093:material derivative 839:continuity equation 227:material derivative 187:compressible fluids 176:incompressible flow 148:incompressible flow 144:continuum mechanics 2144: 2124: 2104: 2043: 1982: 1912: 1857: 1738: 1707: 1661: 1622: 1587: 1585: 1541: 1452: 1372: 1294: 1248: 1170: 1050: 837:) is known as the 820: 671: 609: 546: 511: 464: 442:divergence theorem 425: 390: 365: 303: 285: 247: 207: 2231:(11): 1453–1461. 2168:projection method 1839: 1833: 1806: 1783: 1699: 1659: 1584: 1516: 1493: 1367: 1343: 1211: 1146: 1123: 1045: 1021: 998: 974: 951: 927: 904: 881: 764: 712: 587: 502: 483: 455: 393:{\displaystyle S} 357: 276: 116: 115: 108: 90: 2346: 2323: 2322: 2320: 2319: 2313: 2307:. Archived from 2290: 2288:astro-ph/0509892 2272: 2263: 2257: 2256: 2222: 2213: 2153: 2151: 2150: 2145: 2133: 2131: 2130: 2125: 2113: 2111: 2110: 2105: 2097: 2093: 2092: 2052: 2050: 2049: 2044: 2036: 2032: 2031: 1991: 1989: 1988: 1983: 1981: 1974: 1970: 1969: 1964: 1963: 1921: 1919: 1918: 1913: 1911: 1904: 1866: 1864: 1863: 1858: 1850: 1837: 1831: 1815: 1807: 1805: 1797: 1789: 1784: 1782: 1774: 1766: 1747: 1745: 1744: 1739: 1716: 1714: 1713: 1708: 1700: 1698: 1690: 1682: 1670: 1668: 1667: 1662: 1660: 1657: 1631: 1629: 1628: 1623: 1612: 1596: 1594: 1593: 1588: 1586: 1583: 1575: 1567: 1550: 1548: 1547: 1542: 1525: 1517: 1515: 1507: 1499: 1494: 1492: 1484: 1476: 1461: 1459: 1458: 1453: 1444: 1381: 1379: 1378: 1373: 1368: 1366: 1362: 1356: 1352: 1346: 1344: 1336: 1303: 1301: 1300: 1295: 1287: 1286: 1257: 1255: 1254: 1249: 1244: 1243: 1239: 1238: 1212: 1210: 1202: 1194: 1179: 1177: 1176: 1171: 1166: 1165: 1147: 1145: 1137: 1129: 1124: 1122: 1114: 1106: 1059: 1057: 1056: 1051: 1046: 1044: 1040: 1034: 1030: 1024: 1022: 1020: 1012: 1004: 999: 997: 993: 987: 983: 977: 975: 973: 965: 957: 952: 950: 946: 940: 936: 930: 928: 926: 918: 910: 905: 903: 895: 887: 882: 880: 876: 870: 866: 860: 843:total derivative 829: 827: 826: 821: 813: 812: 808: 807: 784: 783: 765: 763: 755: 747: 742: 741: 737: 736: 713: 711: 703: 695: 680: 678: 677: 672: 667: 666: 654: 653: 618: 616: 615: 610: 605: 588: 586: 578: 570: 555: 553: 552: 547: 542: 538: 532: 528: 527: 510: 494: 490: 484: 482: 474: 466: 463: 435: 434: 432: 431: 426: 424: 419: 411: 400: 399: 397: 396: 391: 379: 378: 374: 372: 371: 366: 358: 356: 348: 340: 326:surface integral 312: 310: 309: 304: 299: 295: 284: 271: 256: 254: 253: 248: 237:of the density, 216: 214: 213: 208: 111: 104: 100: 97: 91: 89: 48: 24: 16: 2354: 2353: 2349: 2348: 2347: 2345: 2344: 2343: 2339:Fluid mechanics 2329: 2328: 2327: 2326: 2317: 2315: 2311: 2270: 2264: 2260: 2220: 2214: 2210: 2205: 2183: 2160: 2139: 2136: 2135: 2119: 2116: 2115: 2088: 2084: 2080: 2072: 2069: 2068: 2027: 2023: 2019: 2011: 2008: 2007: 1965: 1959: 1955: 1954: 1950: 1943: 1941: 1938: 1937: 1900: 1893: 1891: 1888: 1887: 1876: 1846: 1811: 1798: 1790: 1788: 1775: 1767: 1765: 1763: 1760: 1759: 1724: 1721: 1720: 1691: 1683: 1681: 1679: 1676: 1675: 1656: 1648: 1645: 1644: 1608: 1606: 1603: 1602: 1576: 1568: 1565: 1563: 1560: 1559: 1521: 1508: 1500: 1498: 1485: 1477: 1475: 1473: 1470: 1469: 1440: 1432: 1429: 1428: 1422: 1391: 1358: 1357: 1348: 1347: 1345: 1335: 1327: 1324: 1323: 1318:compressibility 1314: 1282: 1275: 1273: 1270: 1269: 1234: 1227: 1223: 1216: 1203: 1195: 1193: 1191: 1188: 1187: 1161: 1151: 1138: 1130: 1128: 1115: 1107: 1105: 1103: 1100: 1099: 1036: 1035: 1026: 1025: 1023: 1013: 1005: 1003: 989: 988: 979: 978: 976: 966: 958: 956: 942: 941: 932: 931: 929: 919: 911: 909: 896: 888: 886: 872: 871: 862: 861: 859: 857: 854: 853: 803: 796: 792: 788: 779: 769: 756: 748: 746: 732: 728: 724: 717: 704: 696: 694: 692: 689: 688: 662: 658: 649: 648: 646: 643: 642: 601: 579: 571: 569: 567: 564: 563: 534: 523: 516: 512: 506: 498: 486: 475: 467: 465: 459: 454: 452: 449: 448: 420: 415: 407: 405: 402: 401: 385: 382: 381: 380: 376: 349: 341: 339: 337: 334: 333: 332: 291: 280: 275: 267: 265: 262: 261: 242: 239: 238: 235:volume integral 202: 199: 198: 195: 140:fluid mechanics 136: 121: 112: 101: 95: 92: 49: 47: 37: 25: 12: 11: 5: 2352: 2342: 2341: 2325: 2324: 2305:10.1086/498426 2281:(2): 922–936. 2258: 2207: 2206: 2204: 2201: 2200: 2199: 2194: 2189: 2182: 2179: 2178: 2177: 2174: 2171: 2159: 2156: 2143: 2123: 2103: 2100: 2096: 2091: 2087: 2083: 2079: 2076: 2065: 2064: 2042: 2039: 2035: 2030: 2026: 2022: 2018: 2015: 1997: 1980: 1977: 1973: 1968: 1962: 1958: 1953: 1949: 1946: 1934:Anelastic flow 1931: 1930:in the domain. 1928:stratification 1910: 1907: 1903: 1899: 1896: 1875: 1872: 1868: 1867: 1856: 1853: 1849: 1845: 1842: 1836: 1830: 1827: 1824: 1821: 1818: 1814: 1810: 1804: 1801: 1796: 1793: 1787: 1781: 1778: 1773: 1770: 1753: 1752: 1737: 1734: 1731: 1728: 1718: 1706: 1703: 1697: 1694: 1689: 1686: 1655: 1652: 1634:advection term 1621: 1618: 1615: 1611: 1582: 1579: 1574: 1571: 1552: 1551: 1540: 1537: 1534: 1531: 1528: 1524: 1520: 1514: 1511: 1506: 1503: 1497: 1491: 1488: 1483: 1480: 1463: 1462: 1450: 1447: 1443: 1439: 1436: 1421: 1418: 1390: 1387: 1383: 1382: 1371: 1365: 1361: 1355: 1351: 1342: 1339: 1334: 1331: 1313: 1310: 1305: 1304: 1293: 1290: 1285: 1281: 1278: 1259: 1258: 1247: 1242: 1237: 1233: 1230: 1226: 1222: 1219: 1215: 1209: 1206: 1201: 1198: 1181: 1180: 1169: 1164: 1160: 1157: 1154: 1150: 1144: 1141: 1136: 1133: 1127: 1121: 1118: 1113: 1110: 1087:) =  1061: 1060: 1049: 1043: 1039: 1033: 1029: 1019: 1016: 1011: 1008: 1002: 996: 992: 986: 982: 972: 969: 964: 961: 955: 949: 945: 939: 935: 925: 922: 917: 914: 908: 902: 899: 894: 891: 885: 879: 875: 869: 865: 831: 830: 819: 816: 811: 806: 802: 799: 795: 791: 787: 782: 778: 775: 772: 768: 762: 759: 754: 751: 745: 740: 735: 731: 727: 723: 720: 716: 710: 707: 702: 699: 682: 681: 670: 665: 661: 657: 652: 628:fixed position 620: 619: 608: 604: 600: 597: 594: 591: 585: 582: 577: 574: 557: 556: 545: 541: 537: 531: 526: 522: 519: 515: 509: 505: 501: 497: 493: 489: 481: 478: 473: 470: 462: 458: 437: 436: 423: 418: 414: 410: 389: 364: 361: 355: 352: 347: 344: 318:control volume 314: 313: 302: 298: 294: 289: 283: 279: 274: 270: 246: 206: 194: 191: 154:) refers to a 152:isochoric flow 119: 114: 113: 28: 26: 19: 9: 6: 4: 3: 2: 2351: 2340: 2337: 2336: 2334: 2314:on 2008-10-31 2310: 2306: 2302: 2298: 2294: 2289: 2284: 2280: 2276: 2269: 2262: 2254: 2250: 2246: 2242: 2238: 2234: 2230: 2226: 2219: 2212: 2208: 2198: 2195: 2193: 2190: 2188: 2185: 2184: 2175: 2172: 2169: 2165: 2164: 2163: 2155: 2141: 2121: 2101: 2098: 2094: 2085: 2081: 2077: 2061: 2056: 2040: 2037: 2033: 2024: 2020: 2016: 2005: 2001: 1998: 1995: 1978: 1975: 1971: 1960: 1956: 1951: 1947: 1935: 1932: 1929: 1925: 1908: 1905: 1897: 1885: 1882: 1881: 1880: 1871: 1854: 1851: 1843: 1828: 1825: 1822: 1816: 1808: 1802: 1794: 1785: 1779: 1776: 1771: 1768: 1758: 1757: 1756: 1750: 1749:independently 1735: 1732: 1729: 1719: 1704: 1701: 1695: 1687: 1674: 1673: 1672: 1653: 1650: 1642: 1637: 1635: 1619: 1613: 1600: 1599:unsteady term 1580: 1572: 1557: 1538: 1535: 1532: 1526: 1518: 1512: 1504: 1495: 1489: 1486: 1481: 1478: 1468: 1467: 1466: 1448: 1445: 1437: 1427: 1426: 1425: 1417: 1415: 1411: 1406: 1404: 1400: 1396: 1386: 1369: 1363: 1353: 1340: 1337: 1332: 1329: 1322: 1321: 1320: 1319: 1309: 1291: 1288: 1279: 1268: 1267: 1266: 1264: 1245: 1240: 1231: 1224: 1220: 1217: 1213: 1207: 1204: 1199: 1196: 1186: 1185: 1184: 1167: 1158: 1155: 1148: 1142: 1134: 1125: 1119: 1116: 1111: 1108: 1098: 1097: 1096: 1094: 1090: 1086: 1082: 1078: 1074: 1070: 1066: 1047: 1041: 1031: 1017: 1009: 1000: 994: 984: 970: 962: 953: 947: 937: 923: 915: 906: 900: 892: 883: 877: 867: 852: 851: 850: 848: 844: 840: 836: 817: 814: 809: 800: 793: 789: 785: 776: 773: 766: 760: 752: 743: 738: 729: 725: 721: 714: 708: 700: 687: 686: 685: 668: 659: 655: 641: 640: 639: 637: 633: 629: 625: 606: 598: 592: 589: 583: 575: 562: 561: 560: 543: 539: 529: 520: 513: 507: 503: 499: 495: 491: 479: 471: 460: 456: 447: 446: 445: 443: 412: 387: 362: 359: 353: 345: 331: 330: 329: 327: 323: 319: 300: 296: 287: 281: 277: 272: 268: 260: 259: 258: 244: 236: 232: 228: 224: 220: 204: 190: 188: 183: 181: 177: 173: 172:flow velocity 169: 168:infinitesimal 165: 161: 157: 153: 149: 145: 141: 134: 130: 126: 118: 110: 107: 99: 96:December 2019 88: 85: 81: 78: 74: 71: 67: 64: 60: 57: â€“  56: 52: 51:Find sources: 45: 41: 35: 34: 29:This article 27: 23: 18: 17: 2316:. Retrieved 2309:the original 2278: 2274: 2261: 2228: 2224: 2211: 2161: 2066: 2059: 2003: 1999: 1933: 1883: 1877: 1869: 1754: 1748: 1640: 1638: 1633: 1598: 1553: 1464: 1423: 1410:irrotational 1407: 1392: 1384: 1315: 1306: 1262: 1260: 1182: 1088: 1084: 1080: 1076: 1072: 1068: 1064: 1062: 835:product rule 832: 683: 635: 631: 627: 623: 621: 558: 438: 321: 315: 222: 218: 196: 184: 178:is that the 175: 164:fluid parcel 147: 137: 117: 102: 93: 83: 76: 69: 62: 50: 38:Please help 33:verification 30: 2055:Mach-number 559:therefore: 2318:2008-12-04 2203:References 2053:. The low 1399:divergence 1395:solenoidal 847:chain rule 193:Derivation 180:divergence 66:newspapers 2253:1520-0469 2142:β 2122:α 2102:β 2086:α 2078:⋅ 2075:∇ 2041:β 2025:α 2017:⋅ 2014:∇ 1957:ρ 1948:⋅ 1945:∇ 1898:⋅ 1895:∇ 1844:⋅ 1841:∇ 1835:⇒ 1823:ρ 1820:∇ 1817:⋅ 1800:∂ 1795:ρ 1792:∂ 1772:ρ 1730:ρ 1727:∇ 1693:∂ 1688:ρ 1685:∂ 1651:ρ 1620:ρ 1617:∇ 1614:⋅ 1578:∂ 1573:ρ 1570:∂ 1554:i.e. the 1533:ρ 1530:∇ 1527:⋅ 1510:∂ 1505:ρ 1502:∂ 1482:ρ 1438:⋅ 1435:∇ 1414:Laplacian 1354:ρ 1341:ρ 1330:β 1280:⋅ 1277:∇ 1232:⋅ 1229:∇ 1221:ρ 1218:− 1200:ρ 1159:⋅ 1156:ρ 1153:∇ 1140:∂ 1135:ρ 1132:∂ 1112:ρ 1015:∂ 1010:ρ 1007:∂ 968:∂ 963:ρ 960:∂ 921:∂ 916:ρ 913:∂ 898:∂ 893:ρ 890:∂ 868:ρ 801:⋅ 798:∇ 790:ρ 777:⋅ 774:ρ 771:∇ 758:∂ 753:ρ 750:∂ 730:ρ 722:⋅ 719:∇ 706:∂ 701:ρ 698:∂ 660:ρ 599:⋅ 596:∇ 593:− 581:∂ 576:ρ 573:∂ 521:⋅ 518:∇ 504:∭ 500:− 477:∂ 472:ρ 469:∂ 457:∭ 413:⋅ 363:− 351:∂ 343:∂ 288:ρ 278:∭ 245:ρ 205:ρ 2333:Category 2181:See also 1658:constant 162:of each 2293:Bibcode 2233:Bibcode 1924:density 1079:,  1071:,  160:density 80:scholar 2251:  1838:  1832:  632:fluids 82:  75:  68:  61:  53:  2312:(PDF) 2283:arXiv 2271:(PDF) 2221:(PDF) 2060:large 2002:, or 166:— an 87:JSTOR 73:books 2249:ISSN 2166:The 2134:and 1403:curl 624:flow 156:flow 59:news 2301:doi 2279:637 2241:doi 1717:and 849:): 138:In 42:by 2335:: 2299:. 2291:. 2277:. 2273:. 2247:. 2239:. 2229:46 2227:. 2223:. 2154:. 2006:: 1936:: 1886:: 1449:0. 1416:. 1292:0. 1263:dV 1095:: 1085:dt 1081:dz 1077:dt 1073:dy 1069:dt 1065:dx 818:0. 328:: 257:: 219:dV 146:, 2321:. 2303:: 2295:: 2285:: 2255:. 2243:: 2235:: 2099:= 2095:) 2090:u 2082:( 2038:= 2034:) 2029:u 2021:( 1979:0 1976:= 1972:) 1967:u 1961:o 1952:( 1909:0 1906:= 1902:u 1855:0 1852:= 1848:u 1829:0 1826:= 1813:u 1809:+ 1803:t 1786:= 1780:t 1777:D 1769:D 1751:. 1736:0 1733:= 1705:0 1702:= 1696:t 1654:= 1610:u 1581:t 1539:0 1536:= 1523:u 1519:+ 1513:t 1496:= 1490:t 1487:D 1479:D 1446:= 1442:u 1370:. 1364:p 1360:d 1350:d 1338:1 1333:= 1289:= 1284:u 1246:. 1241:) 1236:u 1225:( 1214:= 1208:t 1205:D 1197:D 1168:. 1163:u 1149:+ 1143:t 1126:= 1120:t 1117:D 1109:D 1089:u 1083:/ 1075:/ 1067:/ 1048:. 1042:t 1038:d 1032:z 1028:d 1018:z 1001:+ 995:t 991:d 985:y 981:d 971:y 954:+ 948:t 944:d 938:x 934:d 924:x 907:+ 901:t 884:= 878:t 874:d 864:d 815:= 810:) 805:u 794:( 786:+ 781:u 767:+ 761:t 744:= 739:) 734:u 726:( 715:+ 709:t 669:. 664:u 656:= 651:J 636:u 607:. 603:J 590:= 584:t 544:, 540:V 536:d 530:) 525:J 514:( 508:V 496:= 492:V 488:d 480:t 461:V 422:S 417:d 409:J 388:S 360:= 354:t 346:m 322:J 301:. 297:V 293:d 282:V 273:= 269:m 223:u 150:( 135:. 109:) 103:( 98:) 94:( 84:· 77:· 70:· 63:· 36:.

Index


verification
improve this article
adding citations to reliable sources
"Incompressible flow"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
Solenoidal vector field
Incompressible surface
Incompressible string
fluid mechanics
continuum mechanics
isochoric flow
flow
density
fluid parcel
infinitesimal
flow velocity
divergence
compressible fluids
material derivative
conservation of mass
volume integral
control volume
surface integral
divergence theorem

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑