Knowledge

Sol–gel process

Source 📝

410: 91: 713: 606:) will be capable of condensation, so relatively little branching will occur. The mechanisms of hydrolysis and condensation, and the factors that bias the structure toward linear or branched structures are the most critical issues of sol–gel science and technology. This reaction is favored in both basic and acidic conditions. 951:
Furthermore, microscopic pores in sintered ceramic nanomaterials, mainly trapped at the junctions of microcrystalline grains, cause light to scatter and prevented true transparency. The total volume fraction of these nanoscale pores (both intergranular and intragranular porosity) must be less than 1%
293:
The sol–gel process is a wet-chemical technique used for the fabrication of both glassy and ceramic materials. In this process, the sol (or solution) evolves gradually towards the formation of a gel-like network containing both a liquid phase and a solid phase. Typical precursors are metal alkoxides
785:
It would therefore appear desirable to process a material in such a way that it is physically uniform with regard to the distribution of components and porosity, rather than using particle size distributions which will maximize the green density. The containment of a uniformly dispersed assembly of
836:
synthesis. Other elements (metals, metal oxides) can be easily incorporated into the final product and the silicate sol formed by this method is very stable. Semi-stable metal complexes can be used to produce sub-2 nm oxide particles without thermal treatment. During base-catalyzed synthesis,
939:
can be made by the sol–gel route. In the processing of high performance ceramic nanomaterials with superior opto-mechanical properties under adverse conditions, the size of the crystalline grains is determined largely by the size of the crystalline particles present in the raw material during the
303:
is used primarily to describe a broad range of solid-liquid (and/or liquid-liquid) mixtures, all of which contain distinct solid (and/or liquid) particles which are dispersed to various degrees in a liquid medium. The term is specific to the size of the individual particles, which are larger than
869:
or dip-coating. Protective and decorative coatings, and electro-optic components can be applied to glass, metal and other types of substrates with these methods. Cast into a mold, and with further drying and heat-treatment, dense ceramic or glass articles with novel properties can be formed that
805:
colloidal solid which results from aggregation. The degree of order appears to be limited by the time and space allowed for longer-range correlations to be established. Such defective polycrystalline structures would appear to be the basic elements of nanoscale materials science, and, therefore,
781:
process, yielding heterogeneous densification. Some pores and other structural defects associated with density variations have been shown to play a detrimental role in the sintering process by growing and thus limiting end-point densities. Differential stresses arising from heterogeneous
902:
and crystalline, have found use in various forms from bulk solid-state components to high surface area forms such as thin films, coatings and fibers. Also, thin films have found their application in the electronic field and can be used as sensitive components of a resistive gas sensors.
690:
systems, the concept of steric immobilisation becomes relevant. To avoid the formation of multiple phases of binary oxides as the result of differing hydrolysis and condensation rates, the entrapment of cations in a polymer network is an effective approach, generally termed the
348:, which are affected both by sedimentation and forces of gravity. Stabilized suspensions of such sub-micrometre spherical particles may eventually result in their self-assembly—yielding highly ordered microstructures reminiscent of the prototype colloidal crystal: precious 114:, the volume fraction of particles (or particle density) may be so low that a significant amount of fluid may need to be removed initially for the gel-like properties to be recognized. This can be accomplished in any number of ways. The simplest method is to allow time for 1832:
Mokrushin, Artem S.; Fisenko, Nikita A.; Gorobtsov, Philipp Yu; Simonenko, Tatiana L.; Glumov, Oleg V.; Melnikova, Natalia A.; Simonenko, Nikolay P.; Bukunov, Kirill A.; Simonenko, Elizaveta P.; Sevastyanov, Vladimir G.; Kuznetsov, Nikolay T. (January 2021).
699:
agent is used, most often citric acid, to surround aqueous cations and sterically entrap them. Subsequently, a polymer network is formed to immobilize the chelated cations in a gel or resin. This is most often achieved by poly-esterification using
294:
and metal chlorides, which undergo hydrolysis and polycondensation reactions to form a colloid. The basic structure or morphology of the solid phase can range anywhere from discrete colloidal particles to continuous chain-like polymer networks.
316:. But if they are small enough to be colloids, then their irregular motion in suspension can be attributed to the collective bombardment of a myriad of thermally agitated molecules in the liquid suspending medium, as described originally by 1633:
Curran, Christopher D., et al. "Ambient temperature aqueous synthesis of ultrasmall copper doped ceria nanocrystals for the water gas shift and carbon monoxide oxidation reactions." Journal of Materials Chemistry A 6.1 (2018):
728:
condition, a highly porous and extremely low density material called aerogel is obtained. Drying the gel by means of low temperature treatments (25–100 °C), it is possible to obtain porous solid matrices called
1880:
Ciriminna, Rosaria; Fidalgo, Alexandra; Pandarus, Valerica; Béland, François; Ilharco, Laura M.; Pagliaro, Mario (2013). "The Sol–Gel Route to Advanced Silica-Based Materials and Recent Applications".
1793:
Gorobtsov, Philipp Yu.; Fisenko, Nikita A.; Solovey, Valentin R.; Simonenko, Nikolay P.; Simonenko, Elizaveta P.; Volkov, Ivan A.; Sevastyanov, Vladimir G.; Kuznetsov, Nikolay T. (July 2021).
160:. One of the distinct advantages of using this methodology as opposed to the more traditional processing techniques is that densification is often achieved at a much lower temperature. 379:). Formation of a metal oxide involves connecting the metal centers with oxo (M-O-M) or hydroxo (M-OH-M) bridges, therefore generating metal-oxo or metal-hydroxo polymers in solution. 602:
is tetrafunctional (can branch or bond in 4 different directions). Alternatively, under certain conditions (e.g., low water concentration) fewer than 4 of the OR or OH groups (
211:). The sol–gel approach is a cheap and low-temperature technique that allows the fine control of the product's chemical composition. Even small quantities of dopants, such as 806:
provide the first step in developing a more rigorous understanding of the mechanisms involved in microstructural evolution in inorganic systems such as sintered ceramic
386:
glass or micro-crystalline ceramic. Subsequent thermal treatment (firing) may be performed in order to favor further polycondensation and enhance mechanical properties.
1481:
Lange, F. F. & Metcalf, M. (1983). "Processing-Related Fracture Origins: II, Agglomerate Motion and Cracklike Internal Surfaces Caused by Differential Sintering".
940:
synthesis or formation of the object. Thus a reduction of the original particle size well below the wavelength of visible light (~500 nm) eliminates much of the
582:. This type of reaction can continue to build larger and larger silicon-containing molecules by the process of polymerization. Thus, a polymer is a huge molecule (or 832:, used in a variety of finishing operations, are made using a sol–gel type process. One of the more important applications of sol–gel processing is to carry out 285:
in the form of fibers and monoliths. Sol–gel research grew to be so important that in the 1990s more than 35,000 papers were published worldwide on the process.
853:
The applications for sol gel-derived products are numerous. For example, scientists have used it to produce the world's lightest materials and also some of its
704:. The resulting polymer is then combusted under oxidising conditions to remove organic content and yield a product oxide with homogeneously dispersed cations. 382:
In both cases (discrete particles or continuous polymer network), the drying process serves to remove the liquid phase from the gel, yielding a micro-porous
367:
exhibits certain advantages with regard to physical properties in the formation of high performance glass and glass/ceramic components in 2 and 3 dimensions.
816:
can be formed by precipitation. These powders of single and multiple component compositions can be produced at a nanoscale particle size for dental,
652:
during sol–gel process. The product is a molecular-scale composite with improved mechanical properties. Sono-Ormosils are characterized by a higher
2621: 2500: 1548:
Whitesides, G. M.; et al. (1991). "Molecular Self-Assembly and Nanochemistry: A Chemical Strategy for the Synthesis of Nanostructures".
1318: 152:
process, is often necessary in order to favor further polycondensation and enhance mechanical properties and structural stability via final
145:
of the final component will clearly be strongly influenced by changes imposed upon the structural template during this phase of processing.
308:. If the particles are large enough, then their dynamic behavior in any given period of time in suspension would be governed by forces of 1233:
Nishio, Keishi; Tsuchiya, Tsuchiya (2004-12-17). "Chapter 3 Sol–Gel Processing of Thin Films with Metal Salts". In Sakka, JSumio (ed.).
678:, hydrolysis and condensation processes naturally give rise to homogenous compositions. For systems involving multiple cations, such as 460:
are ideal chemical precursors for sol–gel synthesis because they react readily with water. The reaction is called hydrolysis, because a
656:
than classic gels as well as an improved thermal stability. An explanation therefore might be the increased degree of polymerization.
328:, with sedimentation being a possible long-term result. This critical size range (or particle diameter) typically ranges from tens of 102:" (a colloidal solution) is formed that then gradually evolves towards the formation of a gel-like diphasic system containing both a 898:
fibers can be drawn which are used for fiber optic sensors and thermal insulation, respectively. Thus, many ceramic materials, both
1260:"Enhancement of Ce/Cr Codopant Solubility and Chemical Homogeneity in TiO2 Nanoparticles through Sol–Gel versus Pechini Syntheses" 782:
densification have also been shown to result in the propagation of internal cracks, thus becoming the strength-controlling flaws.
2052: 1133: 1079: 758:
Differential stresses that develop as a result of non-uniform drying shrinkage are directly related to the rate at which the
1670:
Brinker, C. J. and Scherer, G. W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, (Academic Press, 1990)
1259: 1148:
Klein, L.C. and Garvey, G.J., "Kinetics of the Sol-Gel Transition" Journal of Non-Crystalline Solids, Vol. 38, p.45 (1980)
841:
which is strong enough to prevent reaction in the hydroxo regime but weak enough to allow reaction in the oxo regime (see
1687:
German Patent 736411 (Granted 6 May 1943) Anti-Reflective Coating (W. Geffcken and E. Berger, Jenaer Glasswerk Schott).
1214:, "The Sol-Gel Transition: Formation of Glass Fibers & Thin Films", J. Non-Crystalline Solids, Vol. 48, p.31 (1982) 1358:
Evans, A. G. & Davidge, R. W. (1969). "The strength and fracture of fully dense polycrystalline magnesium oxide".
1675: 1242: 766:. Such stresses have been associated with a plastic-to-brittle transition in consolidated bodies, and can yield to 274:
The interest in sol–gel processing can be traced back in the mid-1800s with the observation that the hydrolysis of
2525: 2321: 982: 952:
for high-quality optical transmission, i.e. the density has to be 99.99% of the theoretical crystalline density.
17: 1331:
Franks, G. V. & Lange, F. F. (1996). "Plastic-to-Brittle Transition of Saturated, Alumina Powder Compacts".
137:
and densification. The rate at which the solvent can be removed is ultimately determined by the distribution of
2636: 260: 397:, respectively. In addition, uniform ceramic powders of a wide range of chemical composition can be formed by 2631: 2626: 2437: 2414: 1661:
Phalippou, J., Sol-Gel: A Low temperature Process for the Materials of the New Millennium, solgel.com (2000).
1393:
Evans, A. G.; Davidge, R. W. (1970). "Strength and fracture of fully dense polycrystalline magnesium oxide".
1223:
Rosa-Fox, N. de la; Pinero, M.; Esquivias, L. (2002): Organic-Inorganic Hybrid Materials from Sonogels. 2002.
595: 168: 2601: 2270: 1395: 987: 717: 110:
phase whose morphologies range from discrete particles to continuous polymer networks. In the case of the
2045: 786:
strongly interacting particles in suspension requires total control over particle-particle interactions.
1438:
Evans, A. G.; Davidge, R. W. (1970). "The strength and oxidation of reaction-sintered silicon nitride".
725: 484:
Depending on the amount of water and catalyst present, hydrolysis may proceed to completion to silica:
2341: 797:
silica, for example, may therefore be stabilized sufficiently to ensure a high degree of order in the
219:, can be introduced in the sol and end up uniformly dispersed in the final product. It can be used in 2301: 2222: 2112: 865:
One of the largest application areas is thin films, which can be produced on a piece of substrate by
398: 1835:"Pen plotter printing of ITO thin film as a highly CO sensitive component of a resistive gas sensor" 2616: 2570: 2202: 1795:"Microstructure and local electrophysical properties of sol-gel derived (In2O3-10%SnO2)/V2O5 films" 1779:, (2000) "Transparent ceramics for armor and EM window applications", Proc. SPIE, Vol. 4102, p. 1, 1319:
Structure development of resorcinol-formaldehyde gels: microphase separation or colloid aggregation
624:
forces, which stretch out and break the chain in a non-random process, result in a lowering of the
422: 275: 324:. Einstein concluded that this erratic behavior could adequately be described using the theory of 2565: 2432: 2306: 1834: 1794: 1706:
Yakovlev, Aleksandr V. (22 March 2016). "Inkjet Color Printing by Interference Nanostructures".
640:
over conventional stirring and results in higher molecular weights with lower polydispersities.
2038: 1198:
Allman III, R.M. and Onoda, G.Y., Jr. (Unpublished work, IBM T.J. Watson Research Center, 1984)
359:), the interparticle forces have sufficient strength to cause considerable aggregation and/or 2606: 2374: 2182: 977: 590:. The number of bonds that a monomer can form is called its functionality. Polymerization of 164: 71: 2530: 2404: 2316: 2152: 2142: 1995: 1924: 1600: 1557: 1447: 1404: 1367: 1036: 945: 79: 38:
is a method for producing solid materials from small molecules. The method is used for the
2442: 1161:, "Sol-Gel Transition in Simple Silicates", J. Non-Crystalline Solids, Vol.48, p.47 (1982) 773:
In addition, any fluctuations in packing density in the compact as it is prepared for the
8: 2550: 2472: 2394: 2369: 2197: 1643:
Wright, J. D. and Sommerdijk, N. A. J. M., Sol-Gel Materials: Chemistry and Applications.
1538:, Aksay, I. A., Adv. Ceram., Vol. 9, p. 94, Proc. Amer. Ceramic Soc. (Columbus, OH 1984). 579: 220: 196: 134: 54:(Ti). The process involves conversion of monomers in solution into a colloidal solution ( 1928: 1604: 1561: 1451: 1408: 1371: 1235:
Handbook of Sol-Gel Science and Technology, Processing Characterisation and Applications
1040: 2457: 2379: 2127: 2117: 1971: 1940: 1862: 1814: 1758: 1741:
Yakovlev, Aleksandr V. (December 2015). "Sol-Gel Assisted Inkjet Hologram Patterning".
1521: 1494: 1463: 1420: 1344: 1300: 1274: 1052: 1026: 895: 679: 628:
and poly-dispersity. Furthermore, multi-phase systems are very efficient dispersed and
394: 224: 216: 1612: 1009:
Hanaor, D. A. H.; Chironi, I.; Karatchevtseva, I.; Triani, G.; Sorrell, C. C. (2012).
375:
evolves then towards the formation of an inorganic network containing a liquid phase (
363:
prior to their growth. The formation of a more open continuous network of low density
2535: 2505: 2462: 2399: 2384: 2296: 2187: 1944: 1897: 1866: 1854: 1818: 1762: 1723: 1671: 1616: 1573: 1467: 1424: 1292: 1238: 1129: 1075: 798: 767: 517: 393:
and refractory ceramic fiber can be drawn which are used for fiber optic sensors and
264: 94:
Schematic representation of the different stages and routes of the sol–gel technology
31: 1304: 1056: 911:
Sol-gel technology has been applied for controlled release of fragrances and drugs.
418: 2326: 2311: 2081: 1967: 1932: 1889: 1846: 1806: 1750: 1715: 1652:
Aegerter, M. A. and Mennig, M., Sol-Gel Technologies for Glass Producers and Users.
1608: 1565: 1517: 1490: 1455: 1412: 1375: 1340: 1284: 1104: 1048: 1044: 941: 842: 625: 591: 123: 1850: 1696:
Klein, L. C., Sol-Gel Optics: Processing and Applications, Springer Verlag (1994).
1288: 733:. In addition, a sol–gel process was developed in the 1950s for the production of 2520: 2515: 2364: 2260: 2237: 2232: 2217: 2212: 2207: 2167: 2137: 1810: 1123: 972: 871: 802: 745: 738: 701: 692: 665: 325: 317: 305: 279: 2482: 2452: 2447: 1915:
Yoldas, B. E. (1979). "Monolithic glass formation by chemical polymerization".
967: 870:
cannot be created by any other method. Other coating methods include spraying,
637: 568: 389:
With the viscosity of a sol adjusted into a proper range, both optical quality
268: 142: 119: 75: 1379: 2611: 2595: 2389: 2346: 2252: 2227: 2122: 1508:
Evans, A. G. (1987). "Considerations of Inhomogeneity Effects in Sintering".
936: 932: 891: 807: 583: 372: 313: 235:
for various purposes. Sol–gel derived materials have diverse applications in
183:
into a suitable container with the desired shape (e.g., to obtain monolithic
115: 99: 56: 39: 2192: 1719: 1569: 409: 2555: 2510: 2467: 2157: 2132: 2086: 1958:
Prochazka, S.; Klug, F. J. (1983). "Infrared-Transparent Mullite Ceramic".
1901: 1858: 1754: 1727: 1620: 1296: 866: 821: 813: 787: 752: 621: 413:
Simplified representation of the condensation induced by hydrolysis of TEOS
360: 321: 208: 192: 176: 157: 1577: 720:. This type of disordered morphology is typical of many sol–gel materials. 712: 571:
is associated with the formation of a 1-, 2-, or 3-dimensional network of
2580: 2545: 2265: 2147: 1010: 928: 734: 578:
By definition, condensation liberates a small molecule, such as water or
513: 421:
is a well-studied example of polymerization of an alkoxide, specifically
240: 204: 172: 90: 43: 1108: 520:. Intermediate species including or may result as products of partial 212: 2575: 2540: 2409: 2177: 2172: 2030: 1936: 1459: 1416: 961: 924: 817: 687: 633: 618: 614: 525: 521: 505: 390: 333: 1893: 1170:
Einstein, A., Ann. Phys., Vol. 19, p. 289 (1906), Vol. 34 p.591 (1911)
371:
In either case (discrete particles or continuous polymer network) the
887: 854: 829: 825: 778: 696: 457: 383: 228: 153: 837:
hydroxo (M-OH) bonds may be avoided in favor of oxo (M-O-M) using a
2560: 2331: 2107: 2102: 1279: 763: 762:
can be removed, and thus highly dependent upon the distribution of
629: 572: 532: 509: 461: 329: 256: 138: 133:
process, which is typically accompanied by a significant amount of
51: 1831: 1591:
Dubbs D. M, Aksay I. A.; Aksay (2000). "Self-Assembled Ceramics".
1031: 730: 716:
Nanostructure of a resorcinol-formaldehyde gel reconstructed from
2280: 2010:. Plinio Innocenzi. Springer Briefs in Materials. Springer. 2016. 1008: 920: 833: 794: 759: 653: 641: 587: 528: 508:
often requires an excess of water and/or the use of a hydrolysis
446: 309: 299: 252: 200: 184: 180: 111: 67: 47: 1792: 1072:
Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing
575:
bonds accompanied by the production of H−O−H and R−O−H species.
2356: 2162: 964:, small spheroidal droplet of colloidal particles in suspension 875: 838: 649: 645: 603: 244: 236: 103: 1879: 2275: 2242: 2076: 2061: 923:
elements and active optical components as well as large area
899: 442: 248: 232: 188: 107: 1590: 1015:
Powders Prepared by Excess Hydrolysis of Titanium Alkoxide"
774: 632:, so that very fine mixtures are provided. This means that 349: 129:
Removal of the remaining liquid (solvent) phase requires a
60:) that acts as the precursor for an integrated network (or 1392: 1357: 2025: 1330: 598:
of the polymer, because a fully hydrolyzed monomer Si(OH)
524:
reactions. Early intermediates result from two partially
376: 62: 27:
Method for producing solid materials from small molecules
1095:
Hench, L. L.; J. K. West (1990). "The Sol-Gel Process".
617:
is an efficient tool for the synthesis of polymers. The
2020: 1536:
Microstructural Control Through Colloidal Consolidation
1480: 344:), the particles may grow to sufficient size to become 278:(TEOS) under acidic conditions led to the formation of 1547: 464:
ion becomes attached to the silicon atom as follows:
1069: 707: 586:) formed from hundreds or thousands of units called 755:, without generation of large quantities of dust. 644:(organically modified silicate) are obtained when 118:to occur, and then pour off the remaining liquid. 425:. The chemical formula for TEOS is given by Si(OC 2593: 2004:, Zarzycki. J., Cambridge University Press, 1991 355:Under certain chemical conditions (typically in 340:Under certain chemical conditions (typically in 1094: 1232: 724:If the liquid in a wet gel is removed under a 304:atomic dimensions but small enough to exhibit 122:can also be used to accelerate the process of 2501:Conservation and restoration of glass objects 2046: 1957: 1951: 1799:Colloid and Interface Science Communications 1507: 1437: 890:of a sol adjusted into a proper range, both 1184:Structural Variations in Colloidal Crystals 1125:Sol-Gel Optics: Processing and Applications 2053: 2039: 1908: 227:material, or as a means of producing very 66:) of either discrete particles or network 1278: 1030: 288: 2060: 1740: 1705: 881: 711: 408: 203:), or used to synthesize powders (e.g., 89: 1960:Journal of the American Ceramic Society 1510:Journal of the American Ceramic Society 1251: 1004: 1002: 14: 2622:Glass coating and surface modification 2594: 1914: 1783:, Marker, A.J. and Arthurs, E.G., Eds. 1206: 1204: 1070:Brinker, C. J.; G. W. Scherer (1990). 860: 814:Ultra-fine and uniform ceramic powders 2034: 1121: 944:, resulting in a translucent or even 906: 770:in the unfired body if not relieved. 78:. Sol–gel process is used to produce 1257: 1194: 1192: 1178: 1176: 999: 594:, for instance, can lead to complex 148:Afterwards, a thermal treatment, or 1237:. Kluwer Academic. pp. 59–66. 1201: 24: 1981: 1972:10.1111/j.1151-2916.1983.tb11004.x 1522:10.1111/j.1151-2916.1982.tb10340.x 1495:10.1111/j.1151-2916.1983.tb10069.x 1345:10.1111/j.1151-2916.1996.tb08091.x 914: 670:For single cation systems like SiO 659: 25: 2648: 2014: 1613:10.1146/annurev.physchem.51.1.601 1317:Gommes, C. J., Roberts A. (2008) 1189: 1173: 1063: 790:colloids provide this potential. 708:Nanomaterials, aerogels, xerogels 404: 167:sol can be either deposited on a 1321:. Physical Review E, 77, 041409. 2571:Radioactive waste vitrification 2526:Glass fiber reinforced concrete 1873: 1825: 1786: 1769: 1734: 1699: 1690: 1681: 1664: 1655: 1646: 1637: 1627: 1584: 1541: 1528: 1501: 1474: 1431: 1386: 1351: 1324: 1311: 1226: 1217: 983:Random graph theory of gelation 848: 777:are often amplified during the 609: 98:In this chemical procedure, a " 2002:Glasses and the Vitreous State 1781:Inorganic Optical Materials II 1258:Chen, W.; et al. (2018). 1164: 1151: 1142: 1115: 1088: 1049:10.1179/1743676111Y.0000000059 13: 1: 2438:Chemically strengthened glass 2021:International Sol–Gel Society 1851:10.1016/j.talanta.2020.121455 1743:Advanced Functional Materials 1289:10.1021/acs.inorgchem.8b00926 993: 2271:Glass-ceramic-to-metal seals 1917:Journal of Materials Science 1811:10.1016/j.colcom.2021.100452 1396:Journal of Materials Science 1019:Advances in Applied Ceramics 718:small-angle X-ray scattering 7: 1011:"Single and Mixed Phase TiO 955: 878:printing, or roll coating. 46:, especially the oxides of 10: 2653: 1186:, M.S. Thesis, UCLA (1983) 663: 2491: 2423: 2355: 2302:Chemical vapor deposition 2289: 2251: 2223:Ultra low expansion glass 2113:Borophosphosilicate glass 2095: 2069: 2008:The Sol to Gel Transition 1380:10.1080/14786436908228708 171:to form a film (e.g., by 141:in the gel. The ultimate 85: 2541:Glass-reinforced plastic 2203:Sodium hexametaphosphate 988:Liquid–liquid extraction 793:Monodisperse powders of 648:is added to gel-derived 276:tetraethyl orthosilicate 267:, and separation (e.g., 223:and manufacturing as an 2433:Anti-reflective coating 2307:Glass batch calculation 2188:Photochromic lens glass 1720:10.1021/acsnano.5b06074 1570:10.1126/science.1962191 261:controlled drug release 1755:10.1002/adfm.201503483 721: 636:increases the rate of 414: 289:Particles and polymers 95: 2637:Transparent materials 2566:Prince Rupert's drops 2415:Transparent materials 2375:Gradient-index optics 2183:Phosphosilicate glass 1988:Colloidal Dispersions 1593:Annu. Rev. Phys. Chem 1534:Allman III, R. M. in 978:Mechanics of gelation 882:Thin films and fibers 828:applications. Powder 715: 695:. In this process, a 412: 332:(10 m) to a few 156:, densification, and 93: 80:ceramic nanoparticles 2632:Thin film deposition 2627:Industrial processes 2531:Glass ionomer cement 2405:Photosensitive glass 2332:Liquidus temperature 2153:Fluorosilicate glass 1996:Cambridge University 946:transparent material 2602:Ceramic engineering 2551:Glass-to-metal seal 2473:Self-cleaning glass 2395:Optical lens design 2026:The Sol–Gel Gateway 1929:1979JMatS..14.1843Y 1605:2000ARPC...51..601D 1562:1991Sci...254.1312W 1452:1970JMatS...5..314E 1409:1970JMatS...5..314E 1372:1969PMag...20..373E 1267:Inorganic Chemistry 1128:. Springer Verlag. 1109:10.1021/cr00099a003 1041:2012AdApC.111..149H 861:Protective coatings 559:−Si−OR + HO−Si−(OR) 543:−Si−OH + HO−Si−(OR) 357:acid-catalyzed sols 342:base-catalyzed sols 221:ceramics processing 217:rare-earth elements 2536:Glass microspheres 2458:Hydrogen darkening 2380:Hydrogen darkening 2128:Chalcogenide glass 2118:Borosilicate glass 1937:10.1007/BF00551023 1460:10.1007/BF02397783 1417:10.1007/BF02397783 1182:Allman III, R.M., 1122:Klein, L. (1994). 1074:. Academic Press. 907:Controlled release 896:refractory ceramic 722: 680:strontium titanate 415: 395:thermal insulation 225:investment casting 96: 2589: 2588: 2506:Glass-coated wire 2478:sol–gel technique 2463:Insulated glazing 2400:Photochromic lens 2385:Optical amplifier 2337:sol–gel technique 1990:, Russel, W. B., 1894:10.1021/cr300399c 1749:(47): 7375–7380. 1483:J. Am. Ceram. Soc 1339:(12): 3161–3168. 1333:J. Am. Ceram. Soc 1273:(12): 7279–7289. 1135:978-0-7923-9424-2 1081:978-0-12-134970-7 799:colloidal crystal 768:crack propagation 518:hydrochloric acid 265:reactive material 32:materials science 16:(Redirected from 2644: 2327:Ion implantation 2082:Glass transition 2055: 2048: 2041: 2032: 2031: 1976: 1975: 1955: 1949: 1948: 1923:(8): 1843–1849. 1912: 1906: 1905: 1888:(8): 6592–6620. 1882:Chemical Reviews 1877: 1871: 1870: 1829: 1823: 1822: 1790: 1784: 1773: 1767: 1766: 1738: 1732: 1731: 1714:(3): 3078–3086. 1703: 1697: 1694: 1688: 1685: 1679: 1668: 1662: 1659: 1653: 1650: 1644: 1641: 1635: 1631: 1625: 1624: 1588: 1582: 1581: 1556:(5036): 1312–9. 1545: 1539: 1532: 1526: 1525: 1505: 1499: 1498: 1478: 1472: 1471: 1435: 1429: 1428: 1390: 1384: 1383: 1366:(164): 373–388. 1355: 1349: 1348: 1328: 1322: 1315: 1309: 1308: 1282: 1264: 1255: 1249: 1248: 1230: 1224: 1221: 1215: 1208: 1199: 1196: 1187: 1180: 1171: 1168: 1162: 1155: 1149: 1146: 1140: 1139: 1119: 1113: 1112: 1097:Chemical Reviews 1092: 1086: 1085: 1067: 1061: 1060: 1034: 1006: 942:light scattering 843:Pourbaix diagram 626:molecular weight 592:silicon alkoxide 124:phase separation 21: 2652: 2651: 2647: 2646: 2645: 2643: 2642: 2641: 2617:Glass chemistry 2592: 2591: 2590: 2585: 2521:Glass electrode 2516:Glass databases 2493: 2487: 2425: 2419: 2351: 2285: 2261:Bioactive glass 2247: 2233:Vitreous enamel 2218:Thoriated glass 2213:Tellurite glass 2198:Soda–lime glass 2168:Gold ruby glass 2138:Cranberry glass 2091: 2065: 2059: 2017: 1984: 1982:Further reading 1979: 1966:(12): 874–880. 1956: 1952: 1913: 1909: 1878: 1874: 1830: 1826: 1791: 1787: 1774: 1770: 1739: 1735: 1704: 1700: 1695: 1691: 1686: 1682: 1669: 1665: 1660: 1656: 1651: 1647: 1642: 1638: 1632: 1628: 1589: 1585: 1546: 1542: 1533: 1529: 1516:(10): 497–501. 1506: 1502: 1479: 1475: 1436: 1432: 1391: 1387: 1356: 1352: 1329: 1325: 1316: 1312: 1262: 1256: 1252: 1245: 1231: 1227: 1222: 1218: 1209: 1202: 1197: 1190: 1181: 1174: 1169: 1165: 1157:Brinker, C.J., 1156: 1152: 1147: 1143: 1136: 1120: 1116: 1093: 1089: 1082: 1068: 1064: 1014: 1007: 1000: 996: 973:Freeze gelation 958: 917: 915:Opto-mechanical 909: 884: 872:electrophoresis 863: 851: 803:polycrystalline 749: 742: 710: 702:ethylene glycol 693:Pechini process 685: 677: 673: 668: 666:Pechini process 662: 660:Pechini process 612: 601: 562: 558: 546: 542: 499: 495: 491: 479: 475: 471: 454: 450: 440: 436: 432: 428: 407: 326:Brownian motion 318:Albert Einstein 306:Brownian motion 291: 283: 88: 76:metal alkoxides 36:sol–gel process 28: 23: 22: 18:Sol-gel process 15: 12: 11: 5: 2650: 2640: 2639: 2634: 2629: 2624: 2619: 2614: 2609: 2604: 2587: 2586: 2584: 2583: 2578: 2573: 2568: 2563: 2558: 2553: 2548: 2543: 2538: 2533: 2528: 2523: 2518: 2513: 2508: 2503: 2497: 2495: 2489: 2488: 2486: 2485: 2483:Tempered glass 2480: 2475: 2470: 2465: 2460: 2455: 2453:DNA microarray 2450: 2448:Dealkalization 2445: 2440: 2435: 2429: 2427: 2421: 2420: 2418: 2417: 2412: 2407: 2402: 2397: 2392: 2387: 2382: 2377: 2372: 2367: 2361: 2359: 2353: 2352: 2350: 2349: 2344: 2339: 2334: 2329: 2324: 2322:Glass modeling 2319: 2314: 2309: 2304: 2299: 2293: 2291: 2287: 2286: 2284: 2283: 2278: 2273: 2268: 2263: 2257: 2255: 2253:Glass-ceramics 2249: 2248: 2246: 2245: 2240: 2235: 2230: 2225: 2220: 2215: 2210: 2205: 2200: 2195: 2193:Silicate glass 2190: 2185: 2180: 2175: 2170: 2165: 2160: 2155: 2150: 2145: 2140: 2135: 2130: 2125: 2120: 2115: 2110: 2105: 2099: 2097: 2093: 2092: 2090: 2089: 2084: 2079: 2073: 2071: 2067: 2066: 2064:science topics 2058: 2057: 2050: 2043: 2035: 2029: 2028: 2023: 2016: 2015:External links 2013: 2012: 2011: 2005: 1999: 1983: 1980: 1978: 1977: 1950: 1907: 1872: 1824: 1785: 1768: 1733: 1698: 1689: 1680: 1663: 1654: 1645: 1636: 1626: 1583: 1540: 1527: 1500: 1489:(6): 398–406. 1473: 1446:(4): 314–325. 1430: 1403:(4): 314–325. 1385: 1350: 1323: 1310: 1250: 1243: 1225: 1216: 1200: 1188: 1172: 1163: 1150: 1141: 1134: 1114: 1087: 1080: 1062: 1025:(3): 149–158. 1012: 997: 995: 992: 991: 990: 985: 980: 975: 970: 968:Freeze-casting 965: 957: 954: 937:beam splitters 916: 913: 908: 905: 883: 880: 862: 859: 850: 847: 747: 740: 709: 706: 683: 675: 671: 664:Main article: 661: 658: 638:polymerisation 611: 608: 599: 569:polymerization 565: 564: 560: 556: 549: 548: 544: 540: 531:linked with a 502: 501: 497: 493: 489: 482: 481: 477: 473: 469: 452: 448: 438: 434: 430: 426: 419:Stöber process 406: 405:Polymerization 403: 369: 368: 353: 290: 287: 281: 271:) technology. 269:chromatography 143:microstructure 120:Centrifugation 87: 84: 26: 9: 6: 4: 3: 2: 2649: 2638: 2635: 2633: 2630: 2628: 2625: 2623: 2620: 2618: 2615: 2613: 2610: 2608: 2605: 2603: 2600: 2599: 2597: 2582: 2579: 2577: 2574: 2572: 2569: 2567: 2564: 2562: 2559: 2557: 2554: 2552: 2549: 2547: 2544: 2542: 2539: 2537: 2534: 2532: 2529: 2527: 2524: 2522: 2519: 2517: 2514: 2512: 2509: 2507: 2504: 2502: 2499: 2498: 2496: 2490: 2484: 2481: 2479: 2476: 2474: 2471: 2469: 2466: 2464: 2461: 2459: 2456: 2454: 2451: 2449: 2446: 2444: 2441: 2439: 2436: 2434: 2431: 2430: 2428: 2422: 2416: 2413: 2411: 2408: 2406: 2403: 2401: 2398: 2396: 2393: 2391: 2390:Optical fiber 2388: 2386: 2383: 2381: 2378: 2376: 2373: 2371: 2368: 2366: 2363: 2362: 2360: 2358: 2354: 2348: 2347:Vitrification 2345: 2343: 2340: 2338: 2335: 2333: 2330: 2328: 2325: 2323: 2320: 2318: 2317:Glass melting 2315: 2313: 2312:Glass forming 2310: 2308: 2305: 2303: 2300: 2298: 2295: 2294: 2292: 2288: 2282: 2279: 2277: 2274: 2272: 2269: 2267: 2264: 2262: 2259: 2258: 2256: 2254: 2250: 2244: 2241: 2239: 2236: 2234: 2231: 2229: 2228:Uranium glass 2226: 2224: 2221: 2219: 2216: 2214: 2211: 2209: 2208:Soluble glass 2206: 2204: 2201: 2199: 2196: 2194: 2191: 2189: 2186: 2184: 2181: 2179: 2176: 2174: 2171: 2169: 2166: 2164: 2161: 2159: 2156: 2154: 2151: 2149: 2146: 2144: 2141: 2139: 2136: 2134: 2131: 2129: 2126: 2124: 2123:Ceramic glaze 2121: 2119: 2116: 2114: 2111: 2109: 2106: 2104: 2101: 2100: 2098: 2094: 2088: 2085: 2083: 2080: 2078: 2075: 2074: 2072: 2068: 2063: 2056: 2051: 2049: 2044: 2042: 2037: 2036: 2033: 2027: 2024: 2022: 2019: 2018: 2009: 2006: 2003: 2000: 1997: 1993: 1989: 1986: 1985: 1973: 1969: 1965: 1961: 1954: 1946: 1942: 1938: 1934: 1930: 1926: 1922: 1918: 1911: 1903: 1899: 1895: 1891: 1887: 1883: 1876: 1868: 1864: 1860: 1856: 1852: 1848: 1844: 1840: 1836: 1828: 1820: 1816: 1812: 1808: 1804: 1800: 1796: 1789: 1782: 1778: 1775:Patel, P.J., 1772: 1764: 1760: 1756: 1752: 1748: 1744: 1737: 1729: 1725: 1721: 1717: 1713: 1709: 1702: 1693: 1684: 1677: 1676:9780121349707 1673: 1667: 1658: 1649: 1640: 1630: 1622: 1618: 1614: 1610: 1606: 1602: 1598: 1594: 1587: 1579: 1575: 1571: 1567: 1563: 1559: 1555: 1551: 1544: 1537: 1531: 1523: 1519: 1515: 1511: 1504: 1496: 1492: 1488: 1484: 1477: 1469: 1465: 1461: 1457: 1453: 1449: 1445: 1441: 1440:J. Mater. Sci 1434: 1426: 1422: 1418: 1414: 1410: 1406: 1402: 1398: 1397: 1389: 1381: 1377: 1373: 1369: 1365: 1361: 1354: 1346: 1342: 1338: 1334: 1327: 1320: 1314: 1306: 1302: 1298: 1294: 1290: 1286: 1281: 1276: 1272: 1268: 1261: 1254: 1246: 1244:9781402079696 1240: 1236: 1229: 1220: 1213: 1207: 1205: 1195: 1193: 1185: 1179: 1177: 1167: 1160: 1154: 1145: 1137: 1131: 1127: 1126: 1118: 1110: 1106: 1102: 1098: 1091: 1083: 1077: 1073: 1066: 1058: 1054: 1050: 1046: 1042: 1038: 1033: 1028: 1024: 1020: 1016: 1005: 1003: 998: 989: 986: 984: 981: 979: 976: 974: 971: 969: 966: 963: 960: 959: 953: 949: 947: 943: 938: 934: 930: 926: 922: 912: 904: 901: 897: 893: 889: 879: 877: 873: 868: 858: 856: 846: 844: 840: 835: 831: 827: 823: 819: 815: 811: 809: 808:nanomaterials 804: 800: 796: 791: 789: 783: 780: 776: 771: 769: 765: 761: 756: 754: 753:nuclear fuels 750: 743: 736: 732: 727: 726:supercritical 719: 714: 705: 703: 698: 694: 689: 681: 667: 657: 655: 651: 647: 643: 639: 635: 631: 627: 623: 620: 616: 607: 605: 597: 593: 589: 585: 584:macromolecule 581: 576: 574: 570: 554: 553: 552: 538: 537: 536: 534: 530: 527: 523: 519: 515: 511: 507: 487: 486: 485: 476:O → HO−Si(OR) 467: 466: 465: 463: 459: 455: 444: 424: 420: 411: 402: 400: 399:precipitation 396: 392: 387: 385: 380: 378: 374: 366: 362: 358: 354: 351: 347: 343: 339: 338: 337: 336:(10 m). 335: 331: 327: 323: 319: 315: 314:sedimentation 311: 307: 302: 301: 295: 286: 284: 277: 272: 270: 266: 262: 258: 254: 250: 246: 242: 238: 234: 230: 226: 222: 218: 214: 210: 206: 202: 198: 194: 190: 186: 182: 178: 174: 170: 166: 161: 159: 155: 151: 146: 144: 140: 136: 132: 127: 125: 121: 117: 116:sedimentation 113: 109: 105: 101: 92: 83: 81: 77: 73: 69: 65: 64: 59: 58: 53: 49: 45: 41: 37: 33: 19: 2607:Dosage forms 2556:Porous glass 2511:Safety glass 2477: 2468:Porous glass 2426:modification 2336: 2238:Wood's glass 2158:Fused quartz 2133:Cobalt glass 2087:Supercooling 2007: 2001: 1998:Press (1989) 1991: 1987: 1963: 1959: 1953: 1920: 1916: 1910: 1885: 1881: 1875: 1842: 1838: 1827: 1802: 1798: 1788: 1780: 1776: 1771: 1746: 1742: 1736: 1711: 1707: 1701: 1692: 1683: 1666: 1657: 1648: 1639: 1629: 1596: 1592: 1586: 1553: 1549: 1543: 1535: 1530: 1513: 1509: 1503: 1486: 1482: 1476: 1443: 1439: 1433: 1400: 1394: 1388: 1363: 1359: 1353: 1336: 1332: 1326: 1313: 1270: 1266: 1253: 1234: 1228: 1219: 1211: 1183: 1166: 1158: 1153: 1144: 1124: 1117: 1100: 1096: 1090: 1071: 1065: 1022: 1018: 950: 929:cold mirrors 919:Macroscopic 918: 910: 885: 867:spin coating 864: 852: 849:Applications 822:agrochemical 812: 792: 788:Monodisperse 784: 772: 757: 723: 669: 619:cavitational 613: 610:Sono-Ormosil 577: 566: 550: 503: 483: 441:, where the 416: 388: 381: 370: 364: 361:flocculation 356: 345: 341: 322:dissertation 298: 296: 292: 273: 213:organic dyes 205:microspheres 177:spin coating 162: 158:grain growth 149: 147: 130: 128: 97: 61: 55: 44:metal oxides 35: 29: 2581:Glass fiber 2546:Glass cloth 2290:Preparation 2266:CorningWare 2148:Flint glass 2143:Crown glass 2096:Formulation 925:hot mirrors 737:powders of 735:radioactive 514:acetic acid 437:, or Si(OR) 391:glass fiber 334:micrometres 241:electronics 209:nanospheres 173:dip-coating 40:fabrication 2596:Categories 2576:Windshield 2410:Refraction 2370:Dispersion 2178:Milk glass 2173:Lead glass 1845:: 121455. 1805:: 100452. 1599:: 601–22. 1280:2203.11507 1210:Sakka, S. 994:References 962:Coacervate 857:ceramics. 818:biomedical 688:perovskite 686:and other 634:ultrasound 630:emulsified 615:Sonication 547:→ + H−O−H 526:hydrolyzed 522:hydrolysis 506:hydrolysis 445:group R = 229:thin films 106:phase and 72:precursors 70:. Typical 2443:Corrosion 2342:Viscosity 2297:Annealing 1945:137347665 1867:224811369 1819:237762446 1763:138778285 1468:137539240 1425:137539240 1360:Phil. Mag 1103:: 33–72. 1032:1410.8255 888:viscosity 886:With the 830:abrasives 826:catalytic 795:colloidal 779:sintering 697:chelating 596:branching 563:→ + R−OH 504:Complete 458:Alkoxides 384:amorphous 330:angstroms 297:The term 231:of metal 197:membranes 169:substrate 165:precursor 154:sintering 135:shrinkage 50:(Si) and 2561:Pre-preg 2365:Achromat 2108:Bioglass 2103:AgInSbTe 1994:, Eds., 1902:23782155 1859:33076078 1728:26805775 1708:ACS Nano 1634:244-255. 1621:11031294 1305:44149390 1297:29863346 1057:98265180 956:See also 855:toughest 764:porosity 731:xerogels 642:Ormosils 588:monomers 573:siloxane 533:siloxane 529:monomers 512:such as 510:catalyst 500:+ 4 R−OH 462:hydroxyl 365:polymers 346:colloids 257:medicine 201:aerogels 185:ceramics 139:porosity 68:polymers 52:titanium 2492:Diverse 2424:Surface 2281:Zerodur 1925:Bibcode 1839:Talanta 1601:Bibcode 1578:1962191 1558:Bibcode 1550:Science 1448:Bibcode 1405:Bibcode 1368:Bibcode 1037:Bibcode 921:optical 892:optical 834:zeolite 760:solvent 682:, SrTiO 674:and TiO 654:density 604:ligands 580:alcohol 496:O → SiO 320:in his 310:gravity 300:colloid 259:(e.g., 253:sensors 251:, (bio) 189:glasses 112:colloid 48:silicon 2494:topics 2357:Optics 2163:GeSbTe 2070:Basics 1992:et al. 1943:  1900:  1865:  1857:  1817:  1777:et al. 1761:  1726:  1674:  1619:  1576:  1466:  1423:  1303:  1295:  1241:  1212:et al. 1159:et al. 1132:  1078:  1055:  935:, and 933:lenses 900:glassy 876:inkjet 839:ligand 650:silica 646:silane 567:Thus, 535:bond: 488:Si(OR) 480:+ R−OH 468:Si(OR) 245:energy 237:optics 233:oxides 193:fibers 150:firing 131:drying 104:liquid 86:Stages 34:, the 2276:Macor 2243:ZBLAN 2077:Glass 2062:Glass 1941:S2CID 1863:S2CID 1815:S2CID 1759:S2CID 1464:S2CID 1421:S2CID 1301:S2CID 1275:arXiv 1263:(PDF) 1053:S2CID 1027:arXiv 824:, or 622:shear 492:+ 2 H 443:alkyl 249:space 108:solid 2612:Gels 1898:PMID 1855:PMID 1724:PMID 1672:ISBN 1617:PMID 1574:PMID 1293:PMID 1239:ISBN 1130:ISBN 1076:ISBN 894:and 775:kiln 751:for 744:and 555:(OR) 539:(OR) 423:TEOS 417:The 350:opal 312:and 215:and 181:cast 163:The 74:are 1968:doi 1933:doi 1890:doi 1886:113 1847:doi 1843:221 1807:doi 1751:doi 1716:doi 1609:doi 1566:doi 1554:254 1518:doi 1491:doi 1456:doi 1413:doi 1376:doi 1341:doi 1285:doi 1105:doi 1045:doi 1023:111 845:). 801:or 746:ThO 551:or 516:or 472:+ H 377:gel 373:sol 280:SiO 263:), 179:), 175:or 100:sol 63:gel 57:sol 42:of 30:In 2598:: 1964:66 1962:. 1939:. 1931:. 1921:14 1919:. 1896:. 1884:. 1861:. 1853:. 1841:. 1837:. 1813:. 1803:43 1801:. 1797:. 1757:. 1747:25 1745:. 1722:. 1712:10 1710:. 1615:. 1607:. 1597:51 1595:. 1572:. 1564:. 1552:. 1514:65 1512:. 1487:66 1485:. 1462:. 1454:. 1442:. 1419:. 1411:. 1399:. 1374:. 1364:20 1362:. 1337:79 1335:. 1299:. 1291:. 1283:. 1271:57 1269:. 1265:. 1203:^ 1191:^ 1175:^ 1101:90 1099:. 1051:. 1043:. 1035:. 1021:. 1017:. 1001:^ 948:. 931:, 927:, 874:, 820:, 810:. 739:UO 456:. 401:. 255:, 247:, 243:, 239:, 207:, 199:, 195:, 191:, 187:, 126:. 82:. 2054:e 2047:t 2040:v 1974:. 1970:: 1947:. 1935:: 1927:: 1904:. 1892:: 1869:. 1849:: 1821:. 1809:: 1765:. 1753:: 1730:. 1718:: 1678:. 1623:. 1611:: 1603:: 1580:. 1568:: 1560:: 1524:. 1520:: 1497:. 1493:: 1470:. 1458:: 1450:: 1444:5 1427:. 1415:: 1407:: 1401:5 1382:. 1378:: 1370:: 1347:. 1343:: 1307:. 1287:: 1277:: 1247:. 1138:. 1111:. 1107:: 1084:. 1059:. 1047:: 1039:: 1029:: 1013:2 748:2 741:2 684:3 676:2 672:2 600:4 561:3 557:3 545:3 541:3 498:2 494:2 490:4 478:3 474:2 470:4 453:5 451:H 449:2 447:C 439:4 435:4 433:) 431:5 429:H 427:2 352:. 282:2 20:)

Index

Sol-gel process
materials science
fabrication
metal oxides
silicon
titanium
sol
gel
polymers
precursors
metal alkoxides
ceramic nanoparticles

sol
liquid
solid
colloid
sedimentation
Centrifugation
phase separation
shrinkage
porosity
microstructure
sintering
grain growth
precursor
substrate
dip-coating
spin coating
cast

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.