Knowledge

Soft laser desorption

Source đź“ť

1327: 141: 171:(SELDI) variant is similar to MALDI, but uses a biochemical affinity target. The technique known as surface-enhanced neat desorption (SEND) is a related variant of MALDI with the matrix is covalently linked to the target surface. The SELDI technology was commercialized by Ciphergen Biosystems in 1997 as the ProteinChip system. It is now produced and marketed by 131:
approach is laser desorption/ionization of a sample deposited on a porous silicon surface. Nanostructure-initiator mass spectrometry (NIMS) is a variant of DIOS that uses "initiator" molecules trapped in the nanostructures. Although nanostructures are typically formed by etching, laser etching can
148:
Silicon nanowires were initially developed as a DIOS-MS application. This approach was later commercialized as Nanowire-assisted laser desorption/ionization (NALDI) uses a target consisting of nanowires made from metal oxides or nitrides. NALDI targets are available from
93:
Some have argued that Karas and Hillenkamp were more deserving of the Nobel Prize than Tanaka because their crystalline matrix method is much more widely used than Tanaka's liquid matrix. Countering this argument is the fact that Tanaka was the first to use a 337 nm
799:
Kang, Min-Jung; Pyun, Jae-Chul; Lee, Jung-Chul; Choi, Young-Jin; Park, Jae-Hwan; Park, Jae-Gwan; Lee, June-Gunn; Choi, Heon-Jin (2005). "Nanowire-assisted laser desorption and ionization mass spectrometry for quantitative analysis of small molecules".
81:
in what he called the “ultra fine metal plus liquid matrix method” of laser desorption ionization. With this approach, he was able to demonstrate the soft ionization of proteins. The MALDI technique was demonstrated (and the name coined) in 1985 by
949:"Evaluation of a Novel Approach for Peptide Sequencing: Laser-induced Acoustic Desorption Combined with Chemical Ionization and Collision-activated Dissociation in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer" 677:
Northen, Trent R.; Yanes, Oscar; Northen, Michael T.; Marrinucci, Dena; Uritboonthai, Winnie; Apon, Junefredo; Golledge, Stephen L.; Nordström, Anders; Siuzdak, Gary (2007). "Clathrate nanostructures for mass spectrometry".
118:
The surface-assisted laser desorption/ionization (SALDI) approach uses a liquid plus graphite particle matrix. A colloidal graphite matrix has been called "GALDI" for colloidal graphite-assisted laser desorption/ionization.
587:
Cha, Sangwon; Yeung, Edward S. (2007). "Colloidal Graphite-Assisted Laser Desorption/Ionization Mass Spectrometry and MSnof Small Molecules. 1. Imaging of Cerebrosides Directly from Rat Brain Tissue".
517:
Sunner, J.; Dratz, E.; Chen, Y.-C. (1995). "Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions".
262:
Karas, M.; Bachmann, D.; Hillenkamp, F. (1985). "Influence of the Wavelength in High-Irradiance Ultraviolet Laser Desorption Mass Spectrometry of Organic Molecules".
764:
Go EP, Apon JV, Luo G, Saghatelian A, Daniels RH, Sahi V, Dubrow R, Cravatt BF, Vertes A, Siuzdak G (March 2005). "Desorption/ionization on silicon nanowires".
58:(MALDI) to indicate soft laser desorption ionization that is aided by a separate matrix compound. The term soft laser desorption was used most notably by the 105:
The term soft laser desorption is now used to refer to MALDI as well as "matrix free" methods for laser desorption ionization with minimal fragmentation.
435:
Strupat K, Karas M, Hillenkamp F; Karas; Hillenkamp (1991). "2,5-Dihidroxybenzoic acid: a new matrix for laser desorption-ionization mass spectrometry".
552:
Dale, Michael J.; Knochenmuss, Richard; Zenobi, Renato (1996). "Graphite/Liquid Mixed Matrices for Laser Desorption/Ionization Mass Spectrometry".
470: 221:
Tanaka, Koichi; Hiroaki Waki; Yutaka Ido; Satoshi Akita; Yoshikazu Yoshida; Tamio Yoshida; T. Matsuo (1988). "Protein and polymer analyses up to
757: 168: 162: 729:
Chen, Yong; Vertes, Akos (2006). "Adjustable Fragmentation in Laser Desorption/Ionization from Laser-Induced Silicon Microcolumn Arrays".
55: 999: 227: 916:
Golovlev, V. V.; Allman, S. L.; Garrett, W. R.; Taranenko, N. I.; Chen, C. H. (December 1997). "Laser-induced acoustic desorption".
392:
Beavis RC, Chait BT (1989). "Cinnamic acid derivatives as matrices for ultraviolet laser desorption mass spectrometry of proteins".
1287: 102:. The "modern" MALDI approach came into being several years after the first soft laser desorption of proteins was demonstrated. 501: 132:
also be used, for example as in laser-induced silicon microcolumn arrays (LISMA) for matrix-free mass spectrometry analysis.
838:
Hutchens, T. W.; Yip, T. T. (1993). "New desorption strategies for the mass spectrometric analysis of macromolecules".
183:
The technique known as laser induced acoustic desorption (LIAD) is transmission geometry LDI with a metal film target.
291: 90:, but ionization of proteins by MALDI was not reported until 1988, immediately after Tanaka's results were reported. 1026: 128: 1196: 264: 42:. "Hard" ionization is the formation of ions with the breaking of bonds and the formation of fragment ions. 873:
Poon TC (2007). "Opportunities and limitations of SELDI-TOF-MS in biomedical research: practical advices".
1252: 349:
Beavis RC, Chait BT (1989). "Matrix-assisted laser-desorption mass spectrometry using 355 nm radiation".
1356: 1056: 200: 63: 1226: 1046: 320: 1114: 464: 1221: 1104: 1092: 1019: 921: 847: 809: 687: 635: 444: 401: 358: 236: 484:
Vertes, Akos (2007). "Soft Laser Desorption Ionization — Maldi, Dios and Nanostructures".
8: 1351: 1272: 1191: 1131: 1051: 925: 851: 813: 691: 639: 448: 405: 362: 240: 973: 948: 898: 711: 659: 933: 1292: 1166: 1141: 978: 890: 781: 746: 703: 651: 604: 569: 534: 497: 456: 417: 374: 328: 51: 902: 1302: 1267: 1247: 1216: 968: 960: 929: 915: 882: 855: 817: 773: 738: 715: 695: 663: 643: 596: 561: 526: 489: 452: 409: 366: 272: 244: 150: 87: 59: 1330: 1211: 1201: 1012: 493: 153:(although they are marketed as "nanostructured" rather than "nanowire" targets). 964: 1307: 1297: 1257: 1206: 1124: 1077: 1061: 434: 95: 1345: 1262: 1242: 1183: 1109: 83: 67: 39: 886: 1282: 1151: 1146: 1087: 982: 894: 859: 785: 750: 707: 655: 608: 573: 413: 370: 299: 248: 99: 74: 538: 421: 378: 1312: 1173: 1156: 1136: 623: 220: 699: 530: 488:. Springer Series in Optical Sciences. Vol. 129. pp. 505–528. 276: 1161: 156: 31: 27: 777: 742: 600: 565: 1277: 1119: 1099: 1082: 821: 626:(1999). "Desorption-ionization mass spectrometry on porous silicon". 261: 78: 647: 172: 50:
The term "soft laser desorption" has not been widely used by the
225:
100 000 by laser ionization time-of-flight mass spectrometry".
140: 71: 1000:
The Nobel Prize in Chemistry 2002 – Information for the Public
1035: 676: 321:"ABC News Online: 2002 Nobel chemistry choice sparks protest" 24: 918:
International Journal of Mass Spectrometry and Ion Processes
62:
in public information released in conjunction with the 2002
1004: 70:
was awarded 1/4 of the prize for his use of a mixture of
35: 946: 551: 763: 157:
Surface-enhanced laser desorption/ionization (SELDI)
98:
while Karas and Hillenkamp were using a 266 nm
909: 833: 831: 1343: 621: 34:without fragmentation. "Soft" in the context of 798: 516: 828: 38:formation means forming ions without breaking 1020: 940: 866: 469:: CS1 maint: multiple names: authors list ( 169:surface-enhanced laser desorption/ionization 163:surface-enhanced laser desorption/ionization 837: 391: 385: 348: 56:matrix-assisted laser desorption/ionization 1027: 1013: 728: 342: 122: 972: 802:Rapid Communications in Mass Spectrometry 228:Rapid Communications in Mass Spectrometry 586: 139: 1288:Multiple-prism grating laser oscillator 872: 289: 129:desorption ionization on silicon (DIOS) 1344: 483: 203:. The Nobel Foundation. 9 October 2002 1008: 947:Somuramasami J, Kenttämaa HI (2007). 290:Spinney, Laura (December 11, 2002). 54:community, which in most cases uses 486:Laser Ablation and its Applications 201:"The Nobel Prize in Chemistry 2002" 30:of large molecules that results in 13: 437:Int. J. Mass Spectrom. Ion Process 14: 1368: 993: 1326: 1325: 178: 792: 722: 670: 615: 580: 545: 510: 1197:Amplified spontaneous emission 477: 428: 313: 283: 255: 214: 193: 1: 934:10.1016/S0168-1176(97)00209-7 186: 45: 494:10.1007/978-0-387-30453-3_20 457:10.1016/0168-1176(91)85050-V 135: 7: 1253:Chirped pulse amplification 965:10.1016/j.jasms.2006.10.009 875:Expert Review of Proteomics 840:Rapid Commun. Mass Spectrom 394:Rapid Commun. Mass Spectrom 351:Rapid Commun. Mass Spectrom 113: 108: 10: 1373: 1057:List of laser applications 1034: 160: 1321: 1235: 1182: 1070: 1042: 953:J. Am. Soc. Mass Spectrom 292:"Nobel Prize controversy" 144:A commercial NALDI target 622:Wei, J.; Buriak, J. M.; 64:Nobel Prize in Chemistry 887:10.1586/14789450.4.1.51 123:Nanostructured surfaces 1047:List of laser articles 860:10.1002/rcm.1290070703 414:10.1002/rcm.1290031207 371:10.1002/rcm.1290031208 249:10.1002/rcm.1290020802 145: 86:, Doris Bachmann, and 143: 17:Soft laser desorption 1222:Population inversion 731:Analytical Chemistry 589:Analytical Chemistry 554:Analytical Chemistry 1273:Laser beam profiler 1192:Active laser medium 1132:Free-electron laser 1052:List of laser types 926:1997IJMSI.169...69G 852:1993RCMS....7..576H 814:2005RCMS...19.3166K 700:10.1038/nature06195 692:2007Natur.449.1033N 640:1999Natur.399..243W 531:10.1021/ac00119a021 449:1991IJMSI.111...89S 406:1989RCMS....3..432B 363:1989RCMS....3..436B 277:10.1021/ac00291a042 241:1988RCMS....2..151T 920:. 169–170: 69–78. 146: 1357:Mass spectrometry 1339: 1338: 1293:Optical amplifier 1142:Solid-state laser 808:(21): 3166–3170. 778:10.1021/ac048460o 743:10.1021/ac060405n 634:(6733): 243–246. 601:10.1021/ac062251h 566:10.1021/ac960558i 503:978-0-387-30452-6 329:Boston University 52:mass spectrometry 1364: 1329: 1328: 1303:Optical isolator 1268:Injection seeder 1248:Beam homogenizer 1227:Ultrashort pulse 1217:Lasing threshold 1029: 1022: 1015: 1006: 1005: 987: 986: 976: 944: 938: 937: 913: 907: 906: 870: 864: 863: 835: 826: 825: 822:10.1002/rcm.2187 796: 790: 789: 761: 755: 754: 726: 720: 719: 686:(7165): 1033–6. 674: 668: 667: 619: 613: 612: 584: 578: 577: 549: 543: 542: 514: 508: 507: 481: 475: 474: 468: 460: 432: 426: 425: 389: 383: 382: 346: 340: 339: 337: 336: 317: 311: 310: 308: 307: 298:. Archived from 287: 281: 280: 259: 253: 252: 218: 212: 211: 209: 208: 197: 151:Bruker Daltonics 88:Franz Hillenkamp 60:Nobel Foundation 1372: 1371: 1367: 1366: 1365: 1363: 1362: 1361: 1342: 1341: 1340: 1335: 1317: 1231: 1212:Laser linewidth 1202:Continuous wave 1178: 1071:Types of lasers 1066: 1038: 1033: 996: 991: 990: 945: 941: 914: 910: 871: 867: 836: 829: 797: 793: 762: 758: 737:(16): 5835–44. 727: 723: 675: 671: 620: 616: 585: 581: 550: 546: 525:(23): 4335–42. 515: 511: 504: 482: 478: 462: 461: 443:(111): 89–102. 433: 429: 390: 386: 347: 343: 334: 332: 331:. December 2002 319: 318: 314: 305: 303: 302:on May 17, 2007 288: 284: 260: 256: 219: 215: 206: 204: 199: 198: 194: 189: 181: 165: 159: 138: 125: 116: 111: 48: 12: 11: 5: 1370: 1360: 1359: 1354: 1337: 1336: 1334: 1333: 1322: 1319: 1318: 1316: 1315: 1310: 1308:Output coupler 1305: 1300: 1298:Optical cavity 1295: 1290: 1285: 1280: 1275: 1270: 1265: 1260: 1258:Gain-switching 1255: 1250: 1245: 1239: 1237: 1233: 1232: 1230: 1229: 1224: 1219: 1214: 1209: 1207:Laser ablation 1204: 1199: 1194: 1188: 1186: 1180: 1179: 1177: 1176: 1171: 1170: 1169: 1164: 1159: 1154: 1149: 1139: 1134: 1129: 1128: 1127: 1122: 1117: 1112: 1107: 1105:Carbon dioxide 1097: 1096: 1095: 1093:Liquid-crystal 1090: 1080: 1078:Chemical laser 1074: 1072: 1068: 1067: 1065: 1064: 1062:Laser acronyms 1059: 1054: 1049: 1043: 1040: 1039: 1032: 1031: 1024: 1017: 1009: 1003: 1002: 995: 994:External links 992: 989: 988: 939: 908: 865: 846:(7): 576–580. 827: 791: 756: 721: 669: 614: 595:(6): 2373–85. 579: 560:(19): 3321–9. 544: 509: 502: 476: 427: 384: 341: 312: 282: 271:(14): 2935–9. 254: 235:(8): 151–153. 213: 191: 190: 188: 185: 180: 177: 175:Laboratories. 161:Main article: 158: 155: 137: 134: 124: 121: 115: 112: 110: 107: 96:nitrogen laser 47: 44: 40:chemical bonds 9: 6: 4: 3: 2: 1369: 1358: 1355: 1353: 1350: 1349: 1347: 1332: 1324: 1323: 1320: 1314: 1311: 1309: 1306: 1304: 1301: 1299: 1296: 1294: 1291: 1289: 1286: 1284: 1281: 1279: 1276: 1274: 1271: 1269: 1266: 1264: 1263:Gaussian beam 1261: 1259: 1256: 1254: 1251: 1249: 1246: 1244: 1243:Beam expander 1241: 1240: 1238: 1234: 1228: 1225: 1223: 1220: 1218: 1215: 1213: 1210: 1208: 1205: 1203: 1200: 1198: 1195: 1193: 1190: 1189: 1187: 1185: 1184:Laser physics 1181: 1175: 1172: 1168: 1165: 1163: 1160: 1158: 1155: 1153: 1150: 1148: 1145: 1144: 1143: 1140: 1138: 1135: 1133: 1130: 1126: 1123: 1121: 1118: 1116: 1113: 1111: 1108: 1106: 1103: 1102: 1101: 1098: 1094: 1091: 1089: 1086: 1085: 1084: 1081: 1079: 1076: 1075: 1073: 1069: 1063: 1060: 1058: 1055: 1053: 1050: 1048: 1045: 1044: 1041: 1037: 1030: 1025: 1023: 1018: 1016: 1011: 1010: 1007: 1001: 998: 997: 984: 980: 975: 970: 966: 962: 959:(3): 525–40. 958: 954: 950: 943: 935: 931: 927: 923: 919: 912: 904: 900: 896: 892: 888: 884: 880: 876: 869: 861: 857: 853: 849: 845: 841: 834: 832: 823: 819: 815: 811: 807: 803: 795: 787: 783: 779: 775: 772:(6): 1641–6. 771: 767: 760: 752: 748: 744: 740: 736: 732: 725: 717: 713: 709: 705: 701: 697: 693: 689: 685: 681: 673: 665: 661: 657: 653: 649: 648:10.1038/20400 645: 641: 637: 633: 629: 625: 618: 610: 606: 602: 598: 594: 590: 583: 575: 571: 567: 563: 559: 555: 548: 540: 536: 532: 528: 524: 520: 513: 505: 499: 495: 491: 487: 480: 472: 466: 458: 454: 450: 446: 442: 438: 431: 423: 419: 415: 411: 407: 403: 400:(12): 432–5. 399: 395: 388: 380: 376: 372: 368: 364: 360: 357:(12): 436–9. 356: 352: 345: 330: 326: 322: 316: 301: 297: 296:The Scientist 293: 286: 278: 274: 270: 267: 266: 258: 250: 246: 242: 238: 234: 230: 229: 224: 217: 202: 196: 192: 184: 179:Other methods 176: 174: 170: 164: 154: 152: 142: 133: 130: 120: 106: 103: 101: 97: 91: 89: 85: 84:Michael Karas 80: 76: 75:nanoparticles 73: 69: 68:Koichi Tanaka 65: 61: 57: 53: 43: 41: 37: 33: 29: 26: 22: 18: 1283:Mode locking 1236:Laser optics 956: 952: 942: 917: 911: 881:(1): 51–65. 878: 874: 868: 843: 839: 805: 801: 794: 769: 765: 759: 734: 730: 724: 683: 679: 672: 631: 627: 617: 592: 588: 582: 557: 553: 547: 522: 518: 512: 485: 479: 465:cite journal 440: 436: 430: 397: 393: 387: 354: 350: 344: 333:. Retrieved 324: 315: 304:. Retrieved 300:the original 295: 285: 268: 263: 257: 232: 226: 222: 216: 205:. Retrieved 195: 182: 166: 147: 126: 117: 104: 100:Nd:YAG laser 92: 49: 20: 16: 15: 1313:Q-switching 1174:X-ray laser 1167:Ti-sapphire 1137:Laser diode 1115:Helium–neon 624:Siuzdak, G. 325:B.U. Bridge 265:Anal. Chem. 1352:Ion source 1346:Categories 519:Anal. Chem 335:2007-08-29 306:2007-08-29 207:2013-01-31 187:References 46:Background 32:ionization 28:desorption 1278:M squared 1100:Gas laser 1083:Dye laser 766:Anal Chem 136:Nanowires 1331:Category 1125:Nitrogen 983:17157527 903:30115034 895:17288515 786:15762567 751:16906730 708:17960240 656:10353246 609:17288467 574:21619267 114:Graphite 109:Variants 79:glycerol 1110:Excimer 974:1945181 922:Bibcode 848:Bibcode 810:Bibcode 716:4404703 688:Bibcode 664:4314372 636:Bibcode 539:8633776 445:Bibcode 422:2520223 402:Bibcode 379:2520224 359:Bibcode 237:Bibcode 173:Bio-Rad 1152:Nd:YAG 1147:Er:YAG 1088:Bubble 1036:Lasers 981:  971:  901:  893:  784:  749:  714:  706:  680:Nature 662:  654:  628:Nature 607:  572:  537:  500:  420:  377:  72:cobalt 1157:Raman 899:S2CID 712:S2CID 660:S2CID 167:The 25:laser 23:) is 1162:Ruby 979:PMID 891:PMID 782:PMID 747:PMID 704:PMID 652:PMID 605:PMID 570:PMID 535:PMID 498:ISBN 471:link 418:PMID 375:PMID 127:The 77:and 1120:Ion 969:PMC 961:doi 930:doi 883:doi 856:doi 818:doi 774:doi 739:doi 696:doi 684:449 644:doi 632:399 597:doi 562:doi 527:doi 490:doi 453:doi 410:doi 367:doi 273:doi 245:doi 223:m/z 36:ion 21:SLD 1348:: 977:. 967:. 957:18 955:. 951:. 928:. 897:. 889:. 877:. 854:. 842:. 830:^ 816:. 806:19 804:. 780:. 770:77 768:. 745:. 735:78 733:. 710:. 702:. 694:. 682:. 658:. 650:. 642:. 630:. 603:. 593:79 591:. 568:. 558:68 556:. 533:. 523:67 521:. 496:. 467:}} 463:{{ 451:. 441:72 439:. 416:. 408:. 396:. 373:. 365:. 353:. 327:. 323:. 294:. 269:57 243:. 231:. 66:. 1028:e 1021:t 1014:v 985:. 963:: 936:. 932:: 924:: 905:. 885:: 879:4 862:. 858:: 850:: 844:7 824:. 820:: 812:: 788:. 776:: 753:. 741:: 718:. 698:: 690:: 666:. 646:: 638:: 611:. 599:: 576:. 564:: 541:. 529:: 506:. 492:: 473:) 459:. 455:: 447:: 424:. 412:: 404:: 398:3 381:. 369:: 361:: 355:3 338:. 309:. 279:. 275:: 251:. 247:: 239:: 233:2 210:. 19:(

Index

laser
desorption
ionization
ion
chemical bonds
mass spectrometry
matrix-assisted laser desorption/ionization
Nobel Foundation
Nobel Prize in Chemistry
Koichi Tanaka
cobalt
nanoparticles
glycerol
Michael Karas
Franz Hillenkamp
nitrogen laser
Nd:YAG laser
desorption ionization on silicon (DIOS)

Bruker Daltonics
surface-enhanced laser desorption/ionization
surface-enhanced laser desorption/ionization
Bio-Rad
"The Nobel Prize in Chemistry 2002"
Rapid Communications in Mass Spectrometry
Bibcode
1988RCMS....2..151T
doi
10.1002/rcm.1290020802
Anal. Chem.

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑