Knowledge

Sodium-ion battery

Source 📝

1229: 169: 459:/Na through a spontaneous reaction. This anode could operate at a high temperature of 90 Â°C (194 Â°F) in a carbonate solvent at 1 mA cm with 1 mA h cm loading, and the full cell exhibited a stable charge-discharge cycling for 100 cycles at a current density of 2C. (2C means that full charge or discharge was achieved in 0.5 hour). Despite sodium alloy's ability to operate at extreme temperatures and regulate dendritic growth, the severe stress-strain experienced on the material in the course of repeated storage cycles limits cycling stability, especially in large-format cells. 608:, than other posode materials (such as phosphates). Due to a larger size of the Na ion (116 pm) compared to Li ion (90 pm), cation mixing between Na and first row transition metal ions usually does not occur. Thus, low-cost iron and manganese oxides can be used for Na-ion batteries, whereas Li-ion batteries require the use of more expensive cobalt and nickel oxides. The drawback of the larger size of Na ion is its slower intercalation kinetics compared to Li ion and the presence of multiple intercalation stages with different voltages and kinetic rates. 2490: 2398: 2373: 27: 297: 1275:-based carbon anode. In 2023, HiNa partnered with JAC as the first company to put a sodium-ion battery in an electric car, the Sehol E10X. HiNa also revealed three sodium-ion products, the NaCR32140-ME12 cylindrical cell, the NaCP50160118-ME80 square cell and the NaCP73174207-ME240 square cell, with gravimetric energy densities of 140 Wh/kg, 145 Wh/kg and 155 Wh/kg respectively. In 2019, it was reported that HiNa installed a 100 kWh sodium-ion battery power bank in East China. 5307: 1195:. The company offers a proprietary iron-based Prussian blue analogue for the positive electrode in non-aqueous sodium-ion batteries that use hard carbon as the anode. Altris holds patents on non-flammable fluorine-free electrolytes consisting of NaBOB in alkyl-phosphate solvents, Prussian white cathode, and cell production. Clarios is partnering to produce batteries using Altris technology. 1291:
Education and Research over the course of almost a decade and claims several notable benefits over existing alternatives such as lead-acid and lithium-ion. Among its standout features are a longer lifespan of 3,000–6,000 cycles, faster charging than traditional batteries, greater resistance to below-freezing temperatures and with varied energy densities between 100 and 170 Wh/Kg.
383:) mono/bilayer has been explored as an anode material due to high specific gravity (794/596 mAh/g), low expansion (1.2%), and ultra low diffusion barrier (0.16/0.09 eV), indicating rapid charge/discharge cycle capability, during sodium intercalation. After sodium adsorption, a carbon arsenide anode maintains structural stability at 300 K, indicating long cycle life. 1252:) to over 1,000 cycles (80% depth of discharge). Its battery packs have demonstrated use for e-bike and e-scooter applications. They demonstrated transporting sodium-ion cells in the shorted state (at 0 V), eliminating risks from commercial transport of such cells. It is partnering with AMTE Power plc (formerly known as AGM Batteries Limited). 1317:, Europe's only large homegrown electric battery maker, has said it has made a "breakthrough" sodium-ion battery. Northvolt said its new battery, which has an energy density of more than 160 watt-hours per kilogram, has been designed for electricity storage plants but could in future be used in electric vehicles, such as two wheeled scooters. 968:
as the salt is demonstrated to be non-flammable. In addition, NaTFSI (TFSI = bis(trifluoromethane)sulfonimide) and NaFSI (FSI = bis(fluorosulfonyl)imide, NaDFOB (DFOB = difluoro(oxalato)borate) and NaBOB (bis(oxalato)borate) anions have emerged lately as new interesting salts. Of course, electrolyte
400:
reported that a self-regulating alloy interface of nickel antimony (NiSb) was chemically deposited on Na metal during discharge. This thin layer of NiSb regulates the uniform electrochemical plating of Na metal, lowering overpotential and offering dendrite-free plating/stripping of Na metal over 100
256:
Sodium-ion battery development took place in the 1970s and early 1980s. However, by the 1990s, lithium-ion batteries had demonstrated more commercial promise, causing interest in sodium-ion batteries to decline. In the early 2010s, sodium-ion batteries experienced a resurgence, driven largely by the
1341:
cylindrical cells based on polyanionic materials. It achieved energy density between 100 Wh/kg to 120 Wh/kg. The technology targets applications in the fast charge and discharge markets. Power density is between 2 and 5 kW/kg, allowing for a 5 min charging time. Lifetime is 5000+ cycles to 80%
1219:
announced in 2021 that it would bring a sodium-ion based battery to market by 2023. It uses Prussian blue analogue for the positive electrode and porous carbon for the negative electrode. They claimed a specific energy density of 160 Wh/kg in their first generation battery. The company planned to
409:
Many metals and semi-metals (Pb, P, Sn, Ge, etc.) form stable alloys with sodium at room temperature. Unfortunately, the formation of such alloys is usually accompanied by a large volume change, which in turn results in the pulverization (crumbling) of the material after a few cycles. For example,
977:
Sodium-ion batteries have several advantages over competing battery technologies. Compared to lithium-ion batteries, sodium-ion batteries have somewhat lower cost, better safety characteristics (for the aqueous versions), and similar power delivery characteristics, but also a lower energy density
1290:
introduced India's first sodium-ion battery technology, marking a significant breakthrough in the country. This newly developed technology is predicted to reduce the cost of batteries for electric vehicles by 25-30%. It has been developed in cooperation with Pune's Indian Institute of Science
2202:
Rudola, Ashish; Rennie, Anthony J. R.; Heap, Richard; Meysami, Seyyed Shayan; Lowbridge, Alex; Mazzali, Francesco; Sayers, Ruth; Wright, Christopher J.; Barker, Jerry (2021). "Commercialisation of high energy density sodium-ion batteries: Faradion's journey and outlook".
828:
Na/Na). Besides that, sodium manganese silicate has also been demonstrated to deliver a very high capacity (>200 mAh/g) with decent cycling stability. A French startup TIAMAT develops Na ion batteries based on a sodium-vanadium-phosphate-fluoride cathode material
176:
SIBs received academic and commercial interest in the 2010s and early 2020s, largely due to lithium's high cost, uneven geographic distribution, and environmentally-damaging extraction process. An obvious advantage of sodium is its natural abundance, particularly in
205:), whereas the ionic radius of Li is similar (90 pm). Similar ionic radii of lithium and iron result in their mixing in the cathode material during battery cycling, and a resultant loss of cyclable charge. A downside of the larger ionic radius of Na is a slower 1278:
Chinese automaker Yiwei debuted the first sodium-ion battery-powered car in 2023. It uses JAC Group's UE module technology, which is similar to CATL's cell-to-pack design. The car has a 23.2 kWh battery pack with a CLTC range of 230 kilometres (140 mi).
321:, a disordered carbon material consisting of a non-graphitizable, non-crystalline and amorphous carbon. Hard carbon's ability to absorb sodium was discovered in 2000. This anode was shown to deliver 300 mAh/g with a sloping potential profile above ⁓0.15 V 4447: 391:
Numerous reports described anode materials storing sodium via alloy reaction and/or conversion reaction. Alloying sodium metal brings the benefits of regulating sodium-ion transport and shielding the accumulation of electric field at the tip of sodium
731:
can deliver 157 mAh/g in a sodium-ion "full cell" with a hard carbon anode at average discharge voltage of 3.2 V utilising the Ni redox couple. Such performance in full cell configuration is better or on par with commercial lithium-ion systems. A
4912:
Broux, Thibault; Fauth, François; Hall, Nikita; Chatillon, Yohann; Bianchini, Matteo; Bamine, Tahya; Leriche, Jean-Bernard; Suard, Emmanuelle; Carlier, Dany; Reynier, Yvan; Simonin, Loïc; Masquelier, Christian; Croguennec, Laurence (April 2019).
212:
The development of Na+ batteries started in the 1990s. After three decades of development, NIBs are at a critical moment of commercialization. Several companies such as HiNa and CATL in China, Faradion in the United Kingdom, Tiamat in France,
889:
M, and it corresponds to the theoretical capacity of ca. 170 mAh/g, which is equally split between two one-electron voltage plateaus. Such high specific charges are rarely observed only in PBA samples with a low number of structural defects.
3374: 1360:
It is based in Singapore and leverages on research conducted by Alternative Energy Systems Laboratory (AESL) from Energy and Bio-Thermal Systems Division in the Department of Mechanical Engineering, National University of Singapore
341:
due to its excellent combination of capacity, (lower) working potentials, and cycling stability. Notably, nitrogen-doped hard carbons display even larger specific capacity of 520 mAh/g at 20 mA/g with stability over 1000 cycles.
1473:
The number of charge-discharge cycles a battery supports depends on multiple considerations, including depth of discharge, rate of discharge, rate of charge, and temperature. The values shown here reflect generally favorable
964:) dissolved in a mixture of these solvents. It is a well-established fact that these carbonate-based electrolytes are flammable, which pose safety concerns in large-scale applications. A type of glyme-based electrolyte, with 3496:"Transition metal hexacyanoferrate battery cathode with single plateau charge/discharge curve United States Patent No. 9,099,718 Issued August 4, 2015; Filed by Sharp Laboratories of America, Inc. on October 3, 2013" 1255:
In November 2019, Faradion co-authored a report with Bridge India titled 'The Future of Clean Transportation: Sodium-ion Batteries' looking at the growing role India can play in manufacturing sodium-ion batteries.
345:
In 2015, researchers demonstrated that graphite could co-intercalate sodium in ether-based electrolytes. Low capacities around 100 mAh/g were obtained with relatively high working potentials between 0 – 1.2 V
1495:
Temperature affects charging behavior, capacity, and battery lifetime, and affects each of these differently, at different temperature ranges for each. The values given here are general ranges for battery
3216:
Kang, Kisuk; Lee, Seongsu; Gwon, Hyeokjo; Kim, Sung-Wook; Kim, Jongsoon; Park, Young-Uk; Kim, Hyungsub; Seo, Dong-Hwa; Shakoor, R. A. (2012-09-11). "A combined first principles and experimental study on
1400:
electrolyte. After receiving government and private loans, the company filed for bankruptcy in 2017. Its assets were sold to a Chinese manufacturer Juline-Titans, who abandoned most of Aquion's patents.
2230:
Gaddam, Rohit Ranganathan; Farokh Niaei, Amir H.; Hankel, Marlies; Searles, Debra J.; Kumar, Nanjundan Ashok; Zhao, X. S. (2017). "Capacitance-enhanced sodium-ion storage in nitrogen-rich hard carbon".
1207:
is a Chinese electric vehicle manufacturer and battery manufacturer. In 2023, they invested $ 1.4B USD into the construction of a sodium-ion battery plant in Xuzhou with an annual output of 30 GWh.
2839:
Zhao, Qinglan; Gaddam, Rohit Ranganathan; Yang, Dongfang; Strounina, Ekaterina; Whittaker, Andrew K.; Zhao, X.S. (2018). "Pyromellitic dianhydride-based polyimide anodes for sodium-ion batteries".
1751:
Yadav, P.; Patrike, A.; Wasnik, K.; Shelke, V.; Shelke, M. (2023). "Strategies and practical approaches for stable and high energy density sodium-ion battery: A step closer to commercialization".
3512:
Brant, William R.; Mogensen, Ronnie; Colbin, Simon; Ojwang, Dickson O.; Schmid, Siegbert; HÀggström, Lennart; Ericsson, Tore; Jaworski, Aleksander; Pell, Andrew J.; Younesi, Reza (2019-09-24).
4218:
Hutchinson, Ronda (June 2004). Temperature effects on sealed lead acid batteries and charging techniques to prolong cycle life (Report). Sandia National Labs. pp. SAND2004–3149, 975252.
4316: 1334: 912:
While Ti, Mn, Fe and Co PBAs show a two-electron electrochemistry, the Ni PBA shows only one-electron (Ni is not electrochemically active in the accessible voltage range). Iron-free PBA Na
217:
in Sweden, and Natron Energy in the US, are close to achieving the commercialization of NIBs, with the aim of employing sodium layered transition metal oxides (NaxTMO2), Prussian white (a
2258:
Jache, Birte; Adelhelm, Philipp (2014). "Use of Graphite as a Highly Reversible Electrode with Superior Cycle Life for Sodium-Ion Batteries by Making Use of Co-Intercalation Phenomena".
1345:
They are responsible for one of the first commercialized product powered by Sodium-Ion battery technology, as of October 2023, through the commercialization of an electric screw-driver.
244:, Ltd. placed a 140 Wh/kg sodium-ion battery in an electric test car for the first time, and energy storage manufacturer Pylontech obtained the first sodium-ion battery certificate from 4291: 4980:
Ponrouch, Alexandre; DedryvĂšre, RĂ©mi; Monti, Damien; Demet, Atif E.; Ateba Mba, Jean Marcel; Croguennec, Laurence; Masquelier, Christian; Johansson, Patrik; PalacĂ­n, M. Rosa (2013).
4462: 981:
The table below compares how NIBs in general fare against the two established rechargeable battery technologies in the market currently: the lithium-ion battery and the rechargeable
4061: 2866:
Komaba, Shinichi; Yamada, Yasuhiro; Usui, Ryo; Okuyama, Ryoichi; Hitomi, Shuji; Nishikawa, Heisuke; Iwatate, Junichi; Kajiyama, Masataka; Yabuuchi, Naoaki (June 2012). "P2-type Na
4859: 3740:
Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.; Lu, Xiaochuan; Choi, Daiwon; Lemmon, John P.; Liu, Jun (2011-05-11). "Electrochemical Energy Storage for Green Grid".
4543:
Rudola, Ashish; Rennie, Anthony J. R.; Heap, Richard; Meysami, Seyyed Shayan; Lowbridge, Alex; Mazzali, Francesco; Sayers, Ruth; Wright, Christopher J.; Barker, Jerry (2021).
1187:, Sweden, launched in 2017 as part of research efforts from the team on sodium-ion batteries. The research was conducted at the Ångström Advanced Battery Centre led by Prof. 4798: 1271:(CAS). It leverages research conducted by Prof. Hu Yong-sheng's group at the Institute of Physics at CAS. HiNa's batteries are based on Na-Fe-Mn-Cu based oxide cathodes and 288:
solvents. During charging, sodium ions move from the cathode to the anode while electrons travel through the external circuit. During discharge, the reverse process occurs.
1807:
Rudola, Ashish; Coowar, Fazlil; Heap, Richard; Barker, Jerry (2021). "The Design, Performance and Commercialization of Faradion's Non-aqueous Na-ion Battery Technology".
3328: 3824: 1908:
Bauer, Alexander; Song, Jie; Vail, Sean; Pan, Wei; Barker, Jerry; Lu, Yuhao (2018). "The Scale-up and Commercialization of Nonaqueous Na-Ion Battery Technologies".
337:. The first sodium-ion cell using hard carbon was demonstrated in 2003 and showed a 3.7 V average voltage during discharge. Hard carbon was the preferred choice of 3439:
Song, Jie; Wang, Long; Lu, Yuhao; Liu, Jue; Guo, Bingkun; Xiao, Penghao; Lee, Jong-Jan; Yang, Xiao-Qing; Henkelman, Graeme (2015-02-25). "Removal of Interstitial H
1330: 4518: 3852: 1879:
Deng, Jianqiu; Luo, Wen-Bin; Chou, Shu-Lei; Liu, Hua-Kun; Dou, Shi-Xue (2018). "Sodium-Ion Batteries: From Academic Research to Practical Commercialization".
4487: 1183:
Altris AB was founded by Associate Professor Reza Younesi, his former PhD student, Ronnie Mogensen, and Associate Professor William Brant as a spin-off from
1306:, uses Prussian blue analogues for both cathode and anode with an aqueous electrolyte. Clarios is partnering to produce a battery using Natron technology. 4248: 647:. However, its sodium deficient nature lowered energy density. Significant efforts were expended in developing Na-richer oxides. A mixed P3/P2/O3-type Na 3388:
Goodenough, John B.; Cheng, Jinguang; Wang, Long; Lu, Yuhao (2012-06-06). "Prussian blue: a new framework of electrode materials for sodium batteries".
820:
of the polyanion positively impacts cycle life and safety and increases the cell voltage. Among polyanion-based cathodes, sodium vanadium phosphate and
4816: 553:
suffers from poor electrochemical kinetics and relatively weak structural stability. In 2021, researchers from Ningbo, China employed pre-potassiated
4780: 4036: 824:
have demonstrated excellent cycling stability and in the latter, an acceptably high capacity (⁓120 mAh/g) at high average discharge voltages (⁓3.6 V
353:
One drawback of carbonaceous materials is that, because their intercalation potentials are fairly negative, they are limited to non-aqueous systems.
4266: 3108:
Wang, Lei; Sun, Yong-Gang; Hu, Lin-Lin; Piao, Jun-Yu; Guo, Jing; Manthiram, Arumugam; Ma, Jianmin; Cao, An-Min (2017-04-09). "Copper-substituted Na
4365: 2514:
Kamiyama, Azusa; Kubota, Kei; Igarashi, Daisuke; Youn, Yong; Tateyama, Yoshitaka; Ando, Hideka; Gotoh, Kazuma; Komaba, Shinichi (December 2020).
5127:"Dynamic Interfacial Stability Confirmed by Microscopic Optical Operando Experiments Enables High-Retention-Rate Anode-Free Na Metal Full Cells" 1654: 4883: 240:, the world's biggest lithium-ion battery manufacturer, announced in 2022 the start of mass production of SIBs. In February 2023, the Chinese 2761:
Liu, Yadong; Tang, Cheng; Sun, Weiwei; Zhu, Guanjia; Du, Aijun; Zhang, Haijiao (2021-06-09). "In-situ conversion growth of carbon-coated MoS
916:
Mn is also known. It has a fairly large reversible capacity of 209 mAh/g at C/5, but its voltage is unfortunately low (1.8 V versus Na/Na).
4445:, Barker, Jeremy & Wright, Christopher John, "Storage and/or transportation of sodium-ion cells", issued 2016-02-25 3327:
Damay, Nicolas; Recoquillé, Rémi; Rabab, Houssam; Kozma, Joanna; Forgez, Christophe; El Mejdoubi, Asmae; El Kadri Benkara, Khadija (2023).
1326: 3592:
Du, Kang; Wang, Chen; Subasinghe, Lihil Uthpala; Gajella, Satyanarayana Reddy; Law, Markas; Rudola, Ashish; Balaya, Palani (2020-08-01).
1957: 1683:"Understanding dehydration of Prussian white: from material to aqueous processed composite electrodes for sodium-ion battery application" 4068: 4680: 4017: 546:
is another potential material for SIBs because of its layered structure, but has yet to overcome the problem of capacity fade, since
5236: 4730: 3372:, PALANI, Balaya; RUDOLA, Ashish & Du, Kang et al., "Non-flammable sodium-ion batteries", issued 2019-10-10 1364:. The division is founded by Prof Palani Balaya. SgNaPlus also has rights for the patent for a non-flammable sodium-ion batteries. 3155:
Uebou, Yasushi; Kiyabu, Toshiyasu; Okada, Shigeto; Yamaki, Jun-Ichi. "Electrochemical Sodium Insertion into the 3D-framework of Na
1338: 804:
electrode, the as-prepared Cu-substituted cathodes deliver better sodium storage. However, cathodes with Cu are more expensive.
4340: 1415: 517:
as a new type of anode for sodium-ion batteries. A dissolution-recrystallization process densely assembled carbon layer-coated
3062:
Billaud, Juliette; Singh, Gurpreet; Armstrong, A. Robert; Gonzalo, Elena; Roddatis, Vladimir; Armand, Michel (2014-02-21). "Na
885:
and various Prussian blue analogues (PBAs) as cathodes for Na-ion batteries. The ideal formula for a discharged material is Na
539:/NCNTs anode can store 348 mAh/g at 2 A/g, with a cycling stability of 82% capacity after 400 cycles at 1 A/g. 3594:"A comprehensive study on the electrolyte, anode and cathode for developing commercial type non-flammable sodium-ion battery" 3576: 1824: 1797: 1634: 1598: 4755: 2025:
Yabuuchi, Naoaki; Kubota, Kei; Dahbi, Mouad; Komaba, Shinichi (2014-12-10). "Research Development on Sodium-Ion Batteries".
1244:
have energy densities comparable to commercial Li-ion batteries (160 Wh/kg at cell-level), with good rate performance up to
5020: 4640: 2927:"Layered Na-Ion Cathodes with Outstanding Performance Resulting from the Synergetic Effect of Mixed P- and O-Type Phases" 1862:
Barker, Jerry (2019). "(Invited) the Scale-up and Commercialization of a High Energy Density Na-Ion Battery Technology".
371:. One side provides interaction sites while the other provides inter-layer separation. Energy density reached 337 mAh/g. 304:
Due to the physical and electrochemical properties of sodium, SIBs require different materials from those used for LIBs.
4391: 1944: 5507: 5394: 4417: 2991: 1166:
Companies around the world have been working to develop commercially viable sodium-ion batteries. A 2-hour 5MW/10MWh
784:
cathode materials showed a high reversible capacity with better capacity retention. In contrast to the copper-free Na
325:
Na/Na. It accounts for roughly half of the capacity and a flat potential profile (a potential plateau) below ⁓0.15 V
3495: 3199: 2160:
Barker, J.; Saidi, M. Y.; Swoyer, J. L. (2003-01-01). "A Sodium-Ion Cell Based on the Fluorophosphate Compound NaVPO
627:
oxide from earth-abundant Fe and Mn resources can reversibly store 190 mAh/g at average discharge voltage of 2.75 V
5547: 2565:
Senguttuvan, Premkumar; Rousse, Gwenaëlle; Seznec, Vincent; Tarascon, Jean-Marie; Palacín, M.Rosa (2011-09-27). "Na
1354: 4494: 5717: 5557: 5108: 5094: 2117:
Dahn, J. R.; Stevens, D. A. (2000-04-01). "High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries".
1835: 197:-based materials (such as NaFeO2 with the Fe3+/Fe4+ redox pair) work well in Na+ batteries. This is because the 1040:
75–200 W·h/kg, based on prototypes and product announcements Low end for aqueous, high end for carbon batteries
873:
cathode material, which shows very good cycling stability, utilising the non-flammable glyme-based electrolyte.
5485: 5179: 3825:"Battery Pack Prices Cited Below $ 100/kWh for the First Time in 2020, While Market Average Sits at $ 137/kWh" 1259:
On December 5, 2022, Faradion installed its first sodium-ion battery for Nation in New South Wales Australia.
5567: 1167: 901:
displaying 150–160 mAh/g in capacity and a 3.4 V average discharge voltage and rhombohedral Prussian white Na
225: 816:. Such cathodes offer lower tap density, lowering energy density than oxides. On the other hand, a stronger 5722: 5229: 3994:"CATL Unveils Its Latest Breakthrough Technology by Releasing Its First Generation of Sodium-ion Batteries" 435:, which is equivalent to 847 mAh/g specific capacity, with a resulting enormous volume change up to 420%. 4317:"Clarios and Altris announce collaboration agreement to advance sustainable sodium-ion battery technology" 2397:
Wang, L.; Shang, J.; Huang, Q.; Hu, H.; Zhang, Y.; Xie, C.; Luo, Y.; Gao, Y.; Wang, H.; Zheng, Z. (2021).
2327: 127: 5532: 5399: 2990:
Kendrick, E.; Gruar, R.; Nishijima, M.; Mizuhata, H.; Otani, T.; Asako, I.; Kamimura, Y. (May 22, 2014).
1268: 463: 4666: 5572: 5542: 5527: 5495: 4106: 1836:"Non-Aqueous Electrolytes for Sodium-Ion Batteries: Challenges and Prospects Towards Commercialization" 1681:
Maddar, F. M.; Walker, D.; Chamberlain, T. W.; Compton, J.; Menon, A. S.; Copley, M.; Hasa, I. (2023).
1385: 1228: 957: 849:, which undergoes two reversible 0.5 e-/V transitions: at 3.2V and at 4.0 V. A startup from Singapore, 560:, presenting rate capability of 165.9mAh/g and a cycling stability of 85.3% capacity after 500 cycles. 5019:
Hall, N.; Boulineau, S.; Croguennec, L.; Launois, S.; Masquelier, C.; Simonin, L. (October 13, 2015).
4136:"Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems" 3593: 3273: 2302: 5587: 5334: 1523: 206: 202: 147: 4705: 5602: 5500: 4891: 4092: 965: 600:
oxides can reversibly intercalate sodium ions upon reduction. These oxides typically have a higher
583:
derivatives, have also been demonstrated in laboratories, but did not provoke commercial interest.
233: 168: 5607: 5552: 5537: 5490: 5470: 5429: 5404: 5384: 5364: 5222: 3648: 1536:
The (round trip) energy efficiency of sodium-ion batteries is 92% at a discharge time of 5 hours.
1241: 3851:
Mongird K, Fotedar V, Viswanathan V, Koritarov V, Balducci P, Hadjerioua B, Alam J (July 2019).
2765:/N-doped carbon nanotubes as anodes with superior capacity retention for sodium-ion batteries". 1484: 131: 5727: 5696: 5597: 4545:"Commercialisation of high energy density sodium-ion batteries: Faradion's journey and outlook" 929: 576: 154: 112: 5562: 5458: 5379: 4914: 1726:"Sodium-based batteries: Development, commercialization journey and new emerging chemistries" 1434: 1410: 1240:. Its cell design uses oxide cathodes with hard carbon anode and a liquid electrolyte. Their 1051: 982: 334: 285: 2660: 165:. However, in some cases, such as aqueous batteries, SIBs can be quite different from LIBs. 5440: 5424: 5409: 5245: 4267:"Major successes for Uppsala University researchers' battery material – Uppsala University" 3954: 3668: 3605: 3343: 3293: 3026: 2938: 2883: 2339: 2126: 1917: 1888: 1760: 1454: 1441: 4249:"'World-first' grid-scale sodium-ion battery project in China enters commercial operation" 2460:
Bommier, Clement; Ji, Xiulei (2015). "Recent Development on Anodes for Na-Ion Batteries".
1245: 201:
of Na (116 pm) is substantially larger than that of Fe and Fe (69–92 pm depending on the
8: 5592: 5577: 5512: 5480: 5475: 5291: 4519:"Dundee in running as battery cell pioneer AMTE Power closes in on UK 'gigafactory' site" 3701:"Issues and challenges facing aqueous sodium-ion batteries toward practical applications" 1426: 1303: 1237: 949: 821: 162: 135: 3958: 3672: 3609: 3347: 3297: 3030: 2942: 2887: 2343: 2130: 1921: 1892: 1764: 1188: 5453: 5264: 5161: 5126: 4962: 4572: 4229: 4200: 3773: 3629: 3541: 3476: 3421: 3369: 2967: 2926: 2821: 2800:
Huang, Chengcheng; Liu, Yiwen; Zheng, Runtian (2021-08-07). "Interlayer gap widened TiS
2782: 2542: 2515: 2436: 2355: 1958:"Pylontech Obtains the World's First Sodium Ion Battery Certificate from TÜV Rheinland" 1704: 1397: 1249: 1192: 1184: 941: 937: 909:
O displaying initial capacity of 158 mAh/g and retaining 90% capacity after 50 cycles.
393: 5306: 5074: 4442: 5656: 5344: 5166: 5148: 5001: 4966: 4954: 4799:"KPIT rolls out India's first sodium-ion battery tech, aims at revenue within a year" 4706:"Sodium-ion Battery Power Bank Operational in East China—Chinese Academy of Sciences" 4576: 4564: 4233: 4204: 3972: 3777: 3765: 3757: 3722: 3699:
Rao, Ruohui; Chen, Long; Su, Jing; Cai, Shiteng; Wang, Sheng; Chen, Zhongxue (2024).
3633: 3621: 3572: 3545: 3533: 3514:"Selective Control of Composition in Prussian White for Enhanced Material Properties" 3468: 3460: 3413: 3405: 3309: 3254: 3044: 2972: 2954: 2907: 2899: 2825: 2786: 2743: 2704: 2641: 2594: 2547: 2440: 2428: 2359: 2283: 2275: 2181: 2142: 2099: 2091: 2050: 2042: 2007: 1999: 1820: 1793: 1708: 1630: 1594: 1393: 1381: 1287: 945: 572: 278: 5374: 4731:"Volkswagen-backed EV maker rolls out first sodium-ion battery powered electric car" 4681:"Hina Battery Becomes 1st Battery Maker to Put Sodium-ion Batteries in Evs in China" 3425: 3128:
cathode materials for sodium-ion batteries with suppressed P2–O2 phase transition".
3013:
Bauer, Alexander; Song, Jie; Vail, Sean; Pan, Wei; Barker, Jerry; Lu, Yuhao (2018).
2852: 2577:: Lowest Voltage Ever Reported Oxide Insertion Electrode for Sodium Ion Batteries". 5522: 5517: 5329: 5269: 5156: 5138: 4993: 4982:"Towards high energy density sodium ion batteries through electrolyte optimization" 4946: 4556: 4219: 4190: 4147: 4122:
The data shows all technologies delivering between 85–95% DC round-trip efficiency.
3962: 3893: 3804: 3749: 3712: 3680: 3676: 3613: 3564: 3525: 3480: 3452: 3397: 3355: 3351: 3305: 3301: 3246: 3180: 3137: 3090: 3034: 2962: 2946: 2891: 2848: 2813: 2774: 2735: 2722:
Ceder, Gerbrand; Liu, Lei; Twu, Nancy; Xu, Bo; Li, Xin; Wu, Di (2014-12-18). "NaTiO
2696: 2633: 2612:
Rudola, Ashish; Saravanan, Kuppan; Mason, Chad W.; Balaya, Palani (2013-01-23). "Na
2586: 2537: 2527: 2469: 2418: 2410: 2351: 2347: 2267: 2240: 2212: 2173: 2134: 2081: 2034: 1989: 1925: 1896: 1867: 1850: 1812: 1785: 1768: 1737: 1694: 1622: 1586: 1561: 1220:
produce a hybrid battery pack that includes both sodium-ion and lithium-ion cells.
597: 529: 229: 3898: 3881: 3529: 3200:"Sodium ion Batteries United States Patent No. US 6,872,492 Issued March 29, 2005" 2516:"MgO-Template Synthesis of Extremely High Capacity Hard Carbon for Na-Ion Battery" 1945:
Hina Battery becomes 1st battery maker to put sodium-ion batteries in EVs in China
1566: 1549: 245: 26: 5389: 5316: 4366:"China's CATL unveils sodium-ion battery – a first for a major car battery maker" 2700: 2070:"From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises" 2068:
Nayak, Prasant Kumar; Yang, Liangtao; Brehm, Wolfgang; Adelhelm, Philipp (2018).
1772: 1447: 1035: 933: 925: 364: 123: 37: 4860:"Natron Collaborates With Clarios on Mass Manufacturing of Sodium-Ion Batteries" 4135: 3513: 5625: 5279: 4835: 4195: 4178: 3617: 2817: 2778: 1871: 1121: 671:
was demonstrated to deliver 140 mAh/g at an average discharge voltage of 3.2 V
498:, delivered capacities around 90–180 mAh/g at low working potentials (< 1 V 368: 281: 158: 63: 5198: 4836:"Sodium-Ion Batteries Poised to Pick Off Large-Scale Lithium-Ion Applications" 4591: 3967: 3942: 3015:"The Scale-up and Commercialization of Nonaqueous Na-Ion Battery Technologies" 2328:"Monolayer and bilayer AsC5 as promising anode materials for Na-ion batteries" 1816: 1789: 5711: 5259: 5152: 5005: 4958: 4568: 4396: 3976: 3916: 3809: 3792: 3761: 3726: 3625: 3537: 3464: 3409: 3313: 3258: 3048: 2958: 2903: 2747: 2708: 2645: 2598: 2279: 2185: 2146: 2095: 2046: 2003: 1742: 1725: 1377: 1299: 932:
of water results in lower voltages and limited energy densities. Non-aqueous
882: 817: 704: 580: 296: 218: 4179:""Temperature effect and thermal impact in lithium-ion batteries: A review"" 1043:
120–260 W·h/kg (without protective case needed for battery pack in vehicle)
5463: 5419: 5354: 5296: 5274: 5170: 5143: 4950: 3769: 3472: 3417: 3039: 3014: 2976: 2950: 2911: 2551: 2532: 2473: 2432: 2414: 2287: 2271: 2103: 2086: 2069: 2054: 2011: 1929: 1900: 1854: 1659: 1420: 601: 198: 193:
are not required for many types of sodium-ion batteries, and more abundant
80: 4593:
This UK based sodium battery threatens to change the EV industry forever!!
4292:"Researchers develop electric vehicle battery made from seawater and wood" 3717: 3700: 3568: 3443:
O in Hexacyanometallates for a Superior Cathode of a Sodium-Ion Battery".
2303:"Two-faced graphene offers sodium-ion battery a tenfold boost in capacity" 1626: 1590: 5691: 5676: 5414: 5339: 3993: 1204: 605: 318: 274: 5214: 4981: 1724:
Yadav, Poonam; Shelke, Vilas; Patrike, Apurva; Shelke, Manjusha (2023).
1337:
EU-project called NAIADES. Its technology focuses on the development of
300:
Illustration of the various electrode structures in sodium-ion batteries
5635: 5369: 5349: 5109:"Large format electrochemical energy storage device housing and module" 5041:
particulate material United States Patent Application No. 2018/0297847"
4997: 4560: 4463:"Faradion announces a collaboration and licensing deal with AMTE Power" 4152: 3657:
as an attractive high capacity cathode material for sodium-ion battery"
3401: 3282:
as an attractive high capacity cathode material for sodium-ion battery"
3250: 3141: 3094: 2739: 2637: 2423: 2244: 2216: 1994: 1977: 1699: 1682: 1358: 1272: 3882:"How Comparable Are Sodium-Ion Batteries to Lithium-Ion Counterparts?" 3753: 3456: 3173:
The Reports of Institute of Advanced Material Study, Kyushu University
2590: 2177: 2138: 2038: 1550:"How Comparable Are Sodium-Ion Batteries to Lithium-Ion Counterparts?" 764:. This cathode contained only abundant elements. Copper-substituted Na 635:– on par or better than commercial lithium-ion cathodes such as LiFePO 502:
Na/Na), though cycling stability was limited to a few hundred cycles.
5681: 5671: 5661: 5630: 5286: 4544: 4165:
Lead–acid batteries have a ... round trip-efficiency (RTE) of ~70–90%
3184: 2895: 2624:: An intercalation based anode for sodium-ion battery applications". 1314: 1086:
Low risk for aqueous batteries, high risk for Na in carbon batteries
813: 525: 467: 214: 178: 43: 4093:"The Complete Guide to Lithium vs Lead Acid Batteries - Power Sonic" 5359: 4224: 3941:
May, Geoffrey J.; Davidson, Alistair; Monahov, Boris (2018-02-01).
3917:
Automotive Li-Ion Batteries: Current Status and Future Perspectives
748:
cathode material exhibited a discharge capacity of 175 mAh/g for Na
479: 361: 330: 5075:"Public announcement for commercializaton of sodium-ion batteries" 4613: 3850: 2874:
made from earth-abundant elements for rechargeable Na batteries".
1976:
Sun, Yang-Kook; Myung, Seung-Taek; Hwang, Jang-Yeon (2017-06-19).
969:
additives can be used as well to improve the performance metrics.
952:. The most widely used salts in non-aqueous electrolytes are NaClO 5666: 4037:"Sodium-Ion Batteries Will Diversify the Energy Storage Industry" 4018:"CATL to begin mass production of sodium-ion batteries next year" 2992:"Tin-Containing Compounds United States Patent No. US 10,263,254" 266: 139: 5057: 4134:
Akinyele, Daniel; Belikov, Juri; Levron, Yoash (November 2017).
3647:
Law, Markas; Ramar, Vishwanathan; Balaya, Palani (August 2017).
1655:"'Breakthrough battery' from Sweden may cut dependency on China" 1362: 367:
have been used in experimental sodium-ion batteries to increase
3272:
Law, Markas; Ramar, Vishwanathan; Balaya, Palani (2017-08-15).
2564: 2229: 936:
polar aprotic solvents extend the voltage range. These include
190: 186: 182: 143: 116: 5018: 4341:"BYD & Huaihai move on plans for sodium-ion battery plant" 2989: 1680: 5651: 5200:
Sodium ion batteries - The low-cost future of energy storage?
2925:
Keller, Marlou; Buchholz, Daniel; Passerini, Stefano (2016).
2659:
Rudola, Ashish; Sharma, Neeraj; Balaya, Palani (2015-12-01).
632: 270: 224:
Sodium-ion accumulators are operational for fixed electrical
69: 3791:
Peters, Jens F.; Peña Cruz, Alexandra; Weil, Marcel (2019).
3061: 850: 4979: 3919:(Report). U.S. Department Of Energy. 2019-01-01. p. 26 1834:
Hijazi, Hussein; Desai, Parth; Mariyappan, Sathiya (2021).
1780:"Chapter 6 the commercialization of sodium-ion batteries". 1216: 237: 194: 55: 51: 4817:"KPIT Tech shares zoom; here's what's powering the upmove" 4641:"The Future of Clean Transportation: Sodium-ion Batteries" 3853:
Energy Storage Technology and Cost Characterization Report
3793:"Exploring the Economic Potential of Sodium-Ion Batteries" 2611: 2513: 329:
Na/Na. Such capacities are comparable to 300–360 mAh/g of
5686: 4392:"3 reasons why sodium-ion batteries may dethrone lithium" 3511: 3326: 2024: 1267:
HiNa Battery Technology Co., Ltd is, a spin-off from the
699:
oxide can deliver 160 mAh/g at average voltage of 3.22 V
438:
In one study, Li et al. prepared sodium and metallic tin
411: 150: 119: 3739: 1750: 1723: 510:
In 2021, researchers from China tried layered structure
4911: 4542: 3591: 2924: 2865: 2838: 2201: 273:(not necessarily a sodium-based material) and a liquid 47: 4756:"JAC Group delivers first EVs with sodium-ion battery" 4296:
Electric & Hybrid Vehicle Technology International
3329:"Determination of a sodium-ion cell entropy-variation" 2726:: a layered anode material for sodium-ion batteries". 2067: 1806: 703:
Na/Na, while a series of doped Ni-based oxides of the
257:
increasing cost of lithium-ion battery raw materials.
221:
analogue) or vanadium phosphate as cathode materials.
4133: 3943:"Lead batteries for utility energy storage: A review" 3387: 3368: 3081:: a high capacity cathode for sodium-ion batteries". 2326:
Lu, Qiang; Zhang, Lian-Lian; Gong, Wei-Jiang (2023).
1833: 4183:
Progress in Natural Science: Materials International
3988: 3986: 2661:"Introducing a 0.2V sodium-ion battery anode: The Na 1357:, that uses a propeitary electrode and electrolyte. 241: 5177: 3790: 3940: 3154: 2658: 1262: 1232:A Faradion sodium-ion battery manufactured in 2022 4112:(pdf). ITP Renewables. September 2018. p. 13 3983: 2159: 1392:) were based on sodium titanium phosphate anode, 881:Numerous research groups investigated the use of 5709: 4589: 3875: 3873: 3846: 3844: 3842: 3493: 3012: 2396: 1907: 4667:"First Faradion battery installed in Australia" 4418:"Reliance takes over Faradion for ÂŁ100 million" 812:Research has also considered cathodes based on 5125:Ma, Bingyuan; Lee, Youngju; Bai, Peng (2021). 4389: 4067:. Trojan Battery Company. 2008. Archived from 3911: 3909: 3646: 3494:Lu, Y.; Kisdarjono, H.; Lee, J. J.; Evans, D. 3271: 3215: 1878: 876: 675:Na/Na in 2015. In particular, the O3-type NaNi 172:A sodium-ion accumulator stack (Germany, 2019) 5230: 5178:Wunderlich-Pfeiffer, Frank (April 19, 2023). 4452:Filed by Faradion Limited on August 22, 2014. 3870: 3858:(pdf). U.S. Department Of Energy. p. iix 3839: 3438: 3197: 3107: 2806:Journal of Materials Science & Technology 2799: 2767:Journal of Materials Science & Technology 2760: 2721: 2257: 1975: 236:are not yet commercially available. However, 4781:"KPIT Tech launches sodium-ion battery tech" 4441: 3698: 1236:Faradion Limited is a subsidiary of India's 1036:Gravimetric energy density (specific energy) 209:kinetics of sodium-ion electrode materials. 5095:"Aqueous electrolyte energy storage device" 4915:"High Rate Performance for Carbon-Coated Na 3906: 2325: 2116: 1581:Xie, Man; Wu, Feng; Huang, Yongxin (2022). 5237: 5223: 4217: 4107:Lithium Ion Battery Test – Public Report 5 3558: 2804:for highly efficient sodium-ion storage". 1978:"Sodium-ion batteries: present and future" 1616: 1580: 1518: 1516: 1514: 1512: 928:and non-aqueous electrolytes. The limited 25: 5244: 5160: 5142: 4223: 4194: 4151: 3966: 3897: 3808: 3716: 3038: 2966: 2541: 2531: 2459: 2422: 2085: 1993: 1741: 1698: 1565: 1059:~340-420 W/kg (NMC), ~175-425 W/kg (LFP) 893:For example, the patented rhombohedral Na 401:h at a high areal capacity of 10 mAh cm. 5124: 3445:Journal of the American Chemical Society 1648: 1646: 1227: 505: 295: 167: 4728: 3892:(11). American Chemical Society: 3546. 3879: 3559:Gaddam, Rohit R.; Zhao, George (2023). 2520:Angewandte Chemie International Edition 2260:Angewandte Chemie International Edition 2197: 2195: 2166:Electrochemical and Solid-State Letters 2074:Angewandte Chemie International Edition 1617:Gaddam, Rohit R.; Zhao, George (2023). 1612: 1610: 1547: 1509: 563: 470:particles, announced in December 2020. 277:containing dissociated sodium salts in 5710: 5069: 5067: 4638: 4246: 4054: 2300: 2119:Journal of the Electrochemical Society 1861: 1416:Comparison of commercial battery types 260: 5218: 4833: 4753: 4590:The Tesla Domain (November 6, 2022), 4390:Lykiardopoulou, Loanna (2021-11-10). 4031: 4029: 4027: 3936: 3934: 3694: 3692: 3690: 3198:Barker, J.; Saidi, Y.; Swoyer, J. L. 3008: 3006: 3004: 2485: 2483: 1971: 1969: 1967: 1643: 1129:Direct current round-trip efficiency 338: 269:based on a sodium-based material, an 2192: 1607: 1282: 1161: 853:is developing and commercialising Na 5180:"Na-ion: A battery worth its salt?" 5064: 4884:"Sodium to boost batteries by 2020" 4639:Rudola, Ashish (24 November 2019). 1223: 1024:250–375 W·h/L, based on prototypes 1007:Cost per kilowatt-hour of capacity 978:(especially the aqueous versions). 466:achieved 478 mAh/g with nano-sized 13: 5196: 4986:Energy & Environmental Science 4435: 4176: 4024: 3931: 3880:Abraham, K. M. (23 October 2020). 3784: 3687: 3083:Energy & Environmental Science 3001: 2728:Energy & Environmental Science 2480: 1964: 1652: 1117:High (negligible self-discharge) 374: 14: 5739: 5184:intercalationstation.substack.com 5118: 4611: 4247:Murray, Cameron (3 August 2023). 3827:. Bloomberg NEF. 16 December 2020 1114:High (negligible self-discharge) 1069:Cycles at 80% depth of discharge 5305: 5101: 5087: 5050: 5012: 4549:Journal of Materials Chemistry A 3561:Handbook of Sodium-Ion Batteries 3237:for rechargeable Na batteries". 3130:Journal of Materials Chemistry A 2626:Journal of Materials Chemistry A 2205:Journal of Materials Chemistry A 1687:Journal of Materials Chemistry A 1619:Handbook of Sodium-Ion Batteries 1372: 1355:National University of Singapore 1294: 1170:was installed in China in 2023. 930:electrochemical stability window 161:as lithium and thus has similar 4973: 4905: 4876: 4852: 4827: 4809: 4791: 4773: 4747: 4722: 4698: 4673: 4659: 4632: 4605: 4583: 4536: 4511: 4480: 4455: 4410: 4383: 4358: 4333: 4309: 4284: 4259: 4240: 4211: 4170: 4127: 4099: 4085: 4010: 3817: 3733: 3640: 3585: 3552: 3505: 3487: 3432: 3381: 3362: 3320: 3265: 3209: 3191: 3148: 3101: 3055: 2983: 2918: 2859: 2853:10.1016/j.electacta.2018.01.208 2832: 2793: 2754: 2715: 2689:Electrochemistry Communications 2652: 2605: 2558: 2507: 2453: 2390: 2366: 2319: 2294: 2251: 2223: 2153: 2110: 2061: 2018: 1489: 1477: 1467: 1263:HiNA Battery Technology Company 1248:, and cycle lives of 300 (100% 919: 524:nanosheets onto the surface of 386: 242:HiNA Battery Technology Company 3681:10.1016/j.jpowsour.2017.05.069 3356:10.1016/j.jpowsour.2023.233460 3306:10.1016/j.jpowsour.2017.05.069 3239:Journal of Materials Chemistry 2352:10.1016/j.jpowsour.2023.233439 1950: 1938: 1753:Materials Today Sustainability 1715: 1674: 1574: 1541: 1380:was (between 2008 and 2017) a 1010:$ 40–77 (theoretical in 2019) 571:Some other materials, such as 31:A sodium-ion cell (size 18650) 1: 5197:Wu, Billy (January 3, 2024). 4754:McDee, Max (6 January 2024). 4729:Johnson, Peter (2023-12-27). 4062:"Product Specification Guide" 3899:10.1021/acsenergylett.0c02181 3530:10.1021/acs.chemmater.9b01494 2495:prd-nusso.it.northwestern.edu 2378:prd-nusso.it.northwestern.edu 1730:Oxford Open Materials Science 1567:10.1021/acsenergylett.0c02181 1503: 1215:Chinese battery manufacturer 972: 924:Sodium-ion batteries can use 153:. Sodium belongs to the same 138:(LIB) types, but it replaces 126:carriers. In some cases, its 4890:. 2018-03-26. Archived from 4834:Patel, Prachi (2021-05-10). 2701:10.1016/j.elecom.2015.09.016 1947:, CnEVPost, 23 February 2023 1773:10.1016/j.mtsust.2023.100385 1353:SgNaPlus is a spin off from 1309: 1178: 1149:Acceptable:−20 °C to 60 °C. 807: 291: 16:Type of rechargeable battery 7: 4888:2017 une annĂ©e avec le CNRS 4177:Ma, Shuai (December 2018). 2462:Israel Journal of Chemistry 2301:Lavars, Nick (2021-08-26). 1485:Lithium-ion battery safety. 1404: 1348: 1269:Chinese Academy of Sciences 877:Prussian blue and analogues 591: 586: 464:Tokyo University of Science 356: 10: 5746: 5021:"Method for preparing a Na 4493:. May 2020. Archived from 4196:10.1016/j.pnsc.2018.11.002 3618:10.1016/j.ensm.2020.04.021 2818:10.1016/j.jmst.2021.08.035 2779:10.1016/j.jmst.2021.06.036 1784:. 2022. pp. 306–362. 1386:Carnegie Mellon University 1367: 1021:Volumetric energy density 958:sodium hexafluorophosphate 312: 251: 5644: 5616: 5438: 5395:Metal–air electrochemical 5314: 5303: 5252: 3968:10.1016/j.est.2017.11.008 3947:Journal of Energy Storage 3019:Advanced Energy Materials 2931:Advanced Energy Materials 1910:Advanced Energy Materials 1881:Advanced Energy Materials 1843:Batteries & Supercaps 1817:10.1002/9781119818069.ch8 1790:10.1515/9783110749069-006 1325:TIAMAT spun off from the 1320: 1173: 473: 404: 307: 181:. Another factor is that 86: 75: 62: 36: 24: 4647:. Bridge India, Faradion 3810:10.3390/batteries5010010 3661:Journal of Power Sources 3598:Energy Storage Materials 3336:Journal of Power Sources 3286:Journal of Power Sources 2332:Journal of Power Sources 1982:Chemical Society Reviews 1460: 1151:Optimal: 15 °C to 35 °C 1013:$ 137 (average in 2020) 966:sodium tetrafluoroborate 134:are similar to those of 111:) are several types of 4614:"Bridge India Homepage" 3390:Chemical Communications 1548:Abraham, K. M. (2020). 1210: 631:Na/Na utilising the Fe 604:and a lower electronic 414:sodium forms an alloy 265:SIB cells consist of a 5718:Rechargeable batteries 5697:Semipermeable membrane 5486:Lithium–iron–phosphate 5144:10.1002/advs.202005006 4951:10.1002/smtd.201800215 3518:Chemistry of Materials 3040:10.1002/aenm.201702869 2951:10.1002/aenm.201501555 2579:Chemistry of Materials 2533:10.1002/anie.202013951 2474:10.1002/ijch.201400118 2415:10.1002/adma.202102802 2272:10.1002/anie.201403734 2087:10.1002/anie.201703772 1930:10.1002/aenm.201702869 1901:10.1002/aenm.201701428 1872:10.1149/ma2019-03/1/64 1855:10.1002/batt.202000277 1743:10.1093/oxfmat/itac019 1233: 1198: 1072:Hundreds to thousands 577:electroactive polymers 301: 173: 113:rechargeable batteries 5568:Rechargeable alkaline 5246:Electrochemical cells 3718:10.1002/bte2.20230036 3569:10.1201/9781003308744 1864:ECS Meeting Abstracts 1627:10.1201/9781003308744 1591:10.1515/9783110749069 1435:Potassium-ion battery 1411:List of battery types 1396:cathode, and aqueous 1231: 1052:Power-to-weight ratio 506:Molybdenum disulphide 335:lithium-ion batteries 299: 171: 5548:Nickel–metal hydride 4935:in Na-Ion Batteries" 4823:. December 13, 2023. 4805:. December 13, 2023. 4787:. December 13, 2023. 4488:"Ultra Safe AMTE A5" 1811:. pp. 313–344. 1782:Sodium-Ion Batteries 1583:Sodium-Ion Batteries 1455:Rechargeable battery 1442:Alkaline earth metal 999:Lithium-ion battery 379:Carbon arsenide (AsC 97:Sodium-ion batteries 87:Nominal cell voltage 5723:Metal-ion batteries 5558:Polysulfide–bromide 5400:Nickel oxyhydroxide 5292:Thermogalvanic cell 4253:Energy-Storage.News 3959:2018JEnSt..15..145M 3673:2017JPS...359..277L 3610:2020EneSM..29..287D 3348:2023JPS...58133460D 3298:2017JPS...359..277L 3245:(38): 20535–20541. 3031:2018AdEnM...802869B 2943:2016AdEnM...601555K 2888:2012NatMa..11..512Y 2841:Electrochimica Acta 2344:2023JPS...58033439L 2266:(38): 10169–10173. 2239:(42): 22186–22192. 2131:2000JElS..147.1271S 2033:(23): 11636–11682. 1922:2018AdEnM...802869B 1893:2018AdEnM...801428D 1765:2023MTSus..2200385Y 1693:(29): 15778–15791. 1448:Calcium-ion battery 1427:Lithium-ion battery 1388:. Their batteries ( 1304:Stanford University 1238:Reliance Industries 996:Sodium-ion battery 990: 989:Battery comparison 950:propylene carbonate 261:Operating principle 163:chemical properties 136:lithium-ion battery 21: 5321:(non-rechargeable) 5265:Concentration cell 4998:10.1039/c3ee41379a 4785:The Times of India 4687:. 23 February 2023 4669:. 5 December 2022. 4645:bridgeindia.org.uk 4618:bridgeindia.org.uk 4561:10.1039/d1ta00376c 4153:10.3390/en10111760 4020:. 29 October 2022. 3886:ACS Energy Letters 3402:10.1039/C2CC31777J 3251:10.1039/C2JM33862A 3142:10.1039/c7ta00880e 3095:10.1039/c4ee00465e 2740:10.1039/C4EE03045A 2638:10.1039/C2TA01057G 2491:"Northwestern SSO" 2403:Advanced Materials 2399:"Northwestern SSO" 2374:"Northwestern SSO" 2245:10.1039/C7TA06754B 2217:10.1039/d1ta00376c 1995:10.1039/C6CS00776G 1700:10.1039/D3TA02570E 1554:ACS Energy Letters 1526:. Faradion Limited 1431:Sodium-ion battery 1398:sodium perchlorate 1390:salt water battery 1302:, a spin-off from 1250:depth of discharge 1234: 1193:Uppsala University 1185:Uppsala University 1143:Temperature range 1111:Cycling stability 1002:Lead–acid battery 988: 942:dimethyl carbonate 938:ethylene carbonate 302: 174: 20:Sodium-ion battery 19: 5705: 5704: 4685:batteriesnews.com 4555:(13): 8279–8302. 3754:10.1021/cr100290v 3578:978-1-003-30874-4 3524:(18): 7203–7211. 3457:10.1021/ja512383b 3396:(52): 6544–6546. 3136:(18): 8752–8761. 2591:10.1021/cm202076g 2585:(18): 4109–4111. 2526:(10): 5114–5120. 2233:J. Mater. Chem. A 2211:(13): 8279–8302. 2178:10.1149/1.1523691 2139:10.1149/1.1393348 2039:10.1021/cr500192f 1988:(12): 3529–3614. 1826:978-1-78945-013-2 1799:978-3-11-074906-9 1636:978-1-003-30874-4 1600:978-3-11-074906-9 1560:(11): 3544–3547. 1394:manganese dioxide 1288:KPIT Technologies 1283:KPIT Technologies 1162:Commercialization 1159: 1158: 983:lead–acid battery 946:diethyl carbonate 564:Other anodes for 532:. This kind of C- 528:-derived N-doped 482:phases such as Na 462:Researchers from 232:using sodium-ion 132:cell construction 128:working principle 94: 93: 5735: 5501:Lithium–titanate 5446: 5322: 5309: 5270:Electric battery 5239: 5232: 5225: 5216: 5215: 5211: 5209: 5208: 5193: 5191: 5190: 5174: 5164: 5146: 5131:Advanced Science 5113: 5112: 5105: 5099: 5098: 5091: 5085: 5084: 5082: 5081: 5071: 5062: 5061: 5054: 5048: 5047: 5045: 5016: 5010: 5009: 4977: 4971: 4970: 4909: 4903: 4902: 4900: 4899: 4880: 4874: 4873: 4871: 4870: 4856: 4850: 4849: 4847: 4846: 4831: 4825: 4824: 4813: 4807: 4806: 4795: 4789: 4788: 4777: 4771: 4770: 4768: 4766: 4751: 4745: 4744: 4742: 4741: 4726: 4720: 4719: 4717: 4716: 4702: 4696: 4695: 4693: 4692: 4677: 4671: 4670: 4663: 4657: 4656: 4654: 4652: 4636: 4630: 4629: 4627: 4625: 4609: 4603: 4602: 4601: 4600: 4587: 4581: 4580: 4540: 4534: 4533: 4531: 4530: 4525:. 5 October 2021 4523:www.scotsman.com 4515: 4509: 4508: 4506: 4505: 4499: 4492: 4484: 4478: 4477: 4475: 4474: 4459: 4453: 4451: 4450: 4446: 4439: 4433: 4432: 4430: 4429: 4414: 4408: 4407: 4405: 4404: 4387: 4381: 4380: 4378: 4377: 4362: 4356: 4355: 4353: 4352: 4337: 4331: 4330: 4328: 4327: 4313: 4307: 4306: 4304: 4303: 4288: 4282: 4281: 4279: 4278: 4263: 4257: 4256: 4244: 4238: 4237: 4227: 4215: 4209: 4208: 4198: 4174: 4168: 4167: 4162: 4160: 4155: 4131: 4125: 4124: 4119: 4117: 4111: 4103: 4097: 4096: 4089: 4083: 4082: 4080: 4079: 4073: 4066: 4058: 4052: 4051: 4049: 4048: 4033: 4022: 4021: 4014: 4008: 4007: 4005: 4004: 3990: 3981: 3980: 3970: 3938: 3929: 3928: 3926: 3924: 3913: 3904: 3903: 3901: 3877: 3868: 3867: 3865: 3863: 3857: 3848: 3837: 3836: 3834: 3832: 3821: 3815: 3814: 3812: 3788: 3782: 3781: 3748:(5): 3577–3613. 3742:Chemical Reviews 3737: 3731: 3730: 3720: 3696: 3685: 3684: 3644: 3638: 3637: 3589: 3583: 3582: 3556: 3550: 3549: 3509: 3503: 3502: 3500: 3491: 3485: 3484: 3451:(7): 2658–2664. 3436: 3430: 3429: 3385: 3379: 3378: 3377: 3373: 3366: 3360: 3359: 3333: 3324: 3318: 3317: 3269: 3263: 3262: 3213: 3207: 3206: 3204: 3195: 3189: 3188: 3152: 3146: 3145: 3105: 3099: 3098: 3080: 3059: 3053: 3052: 3042: 3010: 2999: 2998: 2996: 2987: 2981: 2980: 2970: 2922: 2916: 2915: 2896:10.1038/nmat3309 2876:Nature Materials 2863: 2857: 2856: 2836: 2830: 2829: 2797: 2791: 2790: 2758: 2752: 2751: 2719: 2713: 2712: 2656: 2650: 2649: 2632:(7): 2653–2662. 2609: 2603: 2602: 2562: 2556: 2555: 2545: 2535: 2511: 2505: 2504: 2502: 2501: 2487: 2478: 2477: 2457: 2451: 2450: 2448: 2447: 2426: 2409:(41): e2102802. 2394: 2388: 2387: 2385: 2384: 2370: 2364: 2363: 2323: 2317: 2316: 2314: 2313: 2298: 2292: 2291: 2255: 2249: 2248: 2227: 2221: 2220: 2199: 2190: 2189: 2157: 2151: 2150: 2125:(4): 1271–1273. 2114: 2108: 2107: 2089: 2065: 2059: 2058: 2027:Chemical Reviews 2022: 2016: 2015: 1997: 1973: 1962: 1961: 1954: 1948: 1942: 1936: 1933: 1904: 1875: 1858: 1840: 1830: 1809:Na-ion Batteries 1803: 1776: 1747: 1745: 1719: 1713: 1712: 1702: 1678: 1672: 1671: 1669: 1667: 1650: 1641: 1640: 1614: 1605: 1604: 1578: 1572: 1571: 1569: 1545: 1539: 1538: 1533: 1531: 1520: 1497: 1493: 1487: 1481: 1475: 1471: 1444:-ion batteries: 1423:-ion batteries: 1224:Faradion Limited 1189:Kristina Edström 1155:−20 °C to 60 °C 1146:−20 °C to 60 °C 991: 987: 818:covalent bonding 598:transition metal 567: 559: 552: 545: 538: 530:carbon nanotubes 523: 516: 458: 457: 456: 448: 447: 434: 433: 432: 424: 423: 109:Na-ion batteries 76:Cycle durability 29: 22: 18: 5745: 5744: 5738: 5737: 5736: 5734: 5733: 5732: 5708: 5707: 5706: 5701: 5640: 5619: 5612: 5533:Nickel–hydrogen 5491:Lithium–polymer 5447: 5444: 5443: 5434: 5323: 5320: 5319: 5310: 5301: 5248: 5243: 5206: 5204: 5188: 5186: 5137:(12): 2005006. 5121: 5116: 5107: 5106: 5102: 5093: 5092: 5088: 5079: 5077: 5073: 5072: 5065: 5056: 5055: 5051: 5043: 5040: 5036: 5032: 5028: 5024: 5017: 5013: 4978: 4974: 4934: 4930: 4926: 4922: 4918: 4910: 4906: 4897: 4895: 4882: 4881: 4877: 4868: 4866: 4858: 4857: 4853: 4844: 4842: 4832: 4828: 4815: 4814: 4810: 4797: 4796: 4792: 4779: 4778: 4774: 4764: 4762: 4752: 4748: 4739: 4737: 4727: 4723: 4714: 4712: 4704: 4703: 4699: 4690: 4688: 4679: 4678: 4674: 4665: 4664: 4660: 4650: 4648: 4637: 4633: 4623: 4621: 4612:India, Bridge. 4610: 4606: 4598: 4596: 4588: 4584: 4541: 4537: 4528: 4526: 4517: 4516: 4512: 4503: 4501: 4497: 4490: 4486: 4485: 4481: 4472: 4470: 4461: 4460: 4456: 4448: 4440: 4436: 4427: 4425: 4416: 4415: 4411: 4402: 4400: 4388: 4384: 4375: 4373: 4364: 4363: 4359: 4350: 4348: 4339: 4338: 4334: 4325: 4323: 4315: 4314: 4310: 4301: 4299: 4290: 4289: 4285: 4276: 4274: 4265: 4264: 4260: 4245: 4241: 4216: 4212: 4175: 4171: 4158: 4156: 4132: 4128: 4115: 4113: 4109: 4105: 4104: 4100: 4091: 4090: 4086: 4077: 4075: 4071: 4064: 4060: 4059: 4055: 4046: 4044: 4035: 4034: 4025: 4016: 4015: 4011: 4002: 4000: 3992: 3991: 3984: 3939: 3932: 3922: 3920: 3915: 3914: 3907: 3878: 3871: 3861: 3859: 3855: 3849: 3840: 3830: 3828: 3823: 3822: 3818: 3789: 3785: 3738: 3734: 3697: 3688: 3656: 3652: 3645: 3641: 3590: 3586: 3579: 3557: 3553: 3510: 3506: 3498: 3492: 3488: 3442: 3437: 3433: 3386: 3382: 3375: 3370:US20190312299A1 3367: 3363: 3331: 3325: 3321: 3281: 3277: 3270: 3266: 3236: 3232: 3228: 3224: 3220: 3214: 3210: 3202: 3196: 3192: 3175:(in Japanese). 3170: 3166: 3162: 3158: 3153: 3149: 3127: 3123: 3119: 3115: 3111: 3106: 3102: 3078: 3077: 3073: 3069: 3065: 3060: 3056: 3025:(17): 1702869. 3011: 3002: 2994: 2988: 2984: 2923: 2919: 2873: 2869: 2864: 2860: 2837: 2833: 2803: 2798: 2794: 2764: 2759: 2755: 2725: 2720: 2716: 2684: 2680: 2676: 2672: 2668: 2664: 2657: 2653: 2623: 2619: 2615: 2610: 2606: 2576: 2572: 2568: 2563: 2559: 2512: 2508: 2499: 2497: 2489: 2488: 2481: 2458: 2454: 2445: 2443: 2395: 2391: 2382: 2380: 2372: 2371: 2367: 2324: 2320: 2311: 2309: 2299: 2295: 2256: 2252: 2228: 2224: 2200: 2193: 2163: 2158: 2154: 2115: 2111: 2066: 2062: 2023: 2019: 1974: 1965: 1960:. 8 March 2023. 1956: 1955: 1951: 1943: 1939: 1838: 1827: 1800: 1779: 1720: 1716: 1679: 1675: 1665: 1663: 1651: 1644: 1637: 1615: 1608: 1601: 1579: 1575: 1546: 1542: 1529: 1527: 1522: 1521: 1510: 1506: 1501: 1500: 1494: 1490: 1482: 1478: 1472: 1468: 1463: 1407: 1375: 1370: 1351: 1323: 1312: 1297: 1285: 1265: 1226: 1213: 1201: 1181: 1176: 1164: 1120:Moderate (high 975: 963: 955: 934:carbonate ester 922: 915: 908: 904: 900: 896: 888: 879: 872: 868: 864: 860: 856: 848: 844: 840: 836: 832: 822:fluorophosphate 810: 803: 799: 795: 791: 787: 783: 779: 775: 771: 767: 763: 759: 755: 751: 747: 743: 739: 735: 730: 726: 722: 718: 714: 710: 698: 694: 690: 686: 682: 678: 670: 666: 662: 658: 654: 650: 646: 642: 638: 626: 622: 618: 614: 594: 589: 569: 565: 558: 554: 551: 547: 544: 540: 537: 533: 522: 518: 515: 511: 508: 497: 493: 489: 485: 476: 455: 452: 451: 450: 446: 443: 442: 441: 439: 431: 428: 427: 426: 422: 419: 418: 417: 415: 407: 389: 382: 377: 375:Carbon arsenide 365:Janus particles 359: 315: 310: 294: 263: 254: 79:"thousands" of 38:Specific energy 32: 17: 12: 11: 5: 5743: 5742: 5731: 5730: 5725: 5720: 5703: 5702: 5700: 5699: 5694: 5689: 5684: 5679: 5674: 5669: 5664: 5659: 5654: 5648: 5646: 5642: 5641: 5639: 5638: 5633: 5628: 5626:Atomic battery 5622: 5620: 5617: 5614: 5613: 5611: 5610: 5605: 5600: 5598:Vanadium redox 5595: 5590: 5585: 5580: 5575: 5573:Silver–cadmium 5570: 5565: 5560: 5555: 5550: 5545: 5543:Nickel–lithium 5540: 5535: 5530: 5528:Nickel–cadmium 5525: 5520: 5515: 5510: 5505: 5504: 5503: 5498: 5496:Lithium–sulfur 5493: 5488: 5483: 5473: 5468: 5467: 5466: 5456: 5450: 5448: 5445:(rechargeable) 5441:Secondary cell 5439: 5436: 5435: 5433: 5432: 5427: 5422: 5417: 5412: 5407: 5402: 5397: 5392: 5387: 5382: 5377: 5372: 5367: 5365:Edison–Lalande 5362: 5357: 5352: 5347: 5342: 5337: 5332: 5326: 5324: 5315: 5312: 5311: 5304: 5302: 5300: 5299: 5294: 5289: 5284: 5283: 5282: 5280:Trough battery 5277: 5267: 5262: 5256: 5254: 5250: 5249: 5242: 5241: 5234: 5227: 5219: 5213: 5212: 5194: 5175: 5120: 5119:External links 5117: 5115: 5114: 5100: 5086: 5063: 5049: 5038: 5034: 5030: 5026: 5022: 5011: 4972: 4945:(4): 1800215. 4932: 4928: 4924: 4920: 4916: 4904: 4875: 4851: 4826: 4808: 4790: 4772: 4746: 4721: 4710:english.cas.cn 4697: 4672: 4658: 4631: 4620:. Bridge India 4604: 4582: 4535: 4510: 4479: 4454: 4443:WO2016027082A1 4434: 4409: 4382: 4357: 4332: 4308: 4283: 4258: 4239: 4225:10.2172/975252 4210: 4189:(6): 653–666. 4169: 4126: 4098: 4084: 4053: 4023: 4009: 3982: 3930: 3905: 3869: 3838: 3816: 3783: 3732: 3705:Battery Energy 3686: 3654: 3650: 3639: 3584: 3577: 3551: 3504: 3486: 3440: 3431: 3380: 3361: 3319: 3279: 3275: 3264: 3234: 3230: 3226: 3222: 3218: 3208: 3190: 3168: 3164: 3160: 3156: 3147: 3125: 3121: 3117: 3113: 3109: 3100: 3075: 3071: 3067: 3063: 3054: 3000: 2982: 2937:(3): 1501555. 2917: 2882:(6): 512–517. 2871: 2867: 2858: 2831: 2801: 2792: 2762: 2753: 2734:(1): 195–202. 2723: 2714: 2682: 2678: 2674: 2670: 2666: 2662: 2651: 2621: 2617: 2613: 2604: 2574: 2570: 2566: 2557: 2506: 2479: 2468:(5): 486–507. 2452: 2389: 2365: 2318: 2293: 2250: 2222: 2191: 2161: 2152: 2109: 2080:(1): 102–120. 2060: 2017: 1963: 1949: 1937: 1935: 1934: 1905: 1876: 1859: 1849:(6): 881–896. 1831: 1825: 1804: 1798: 1777: 1748: 1714: 1673: 1653:Lawson, Alex. 1642: 1635: 1606: 1599: 1573: 1540: 1507: 1505: 1502: 1499: 1498: 1488: 1476: 1465: 1464: 1462: 1459: 1458: 1457: 1452: 1451: 1450: 1439: 1438: 1437: 1432: 1429: 1418: 1413: 1406: 1403: 1374: 1371: 1369: 1366: 1350: 1347: 1322: 1319: 1311: 1308: 1296: 1293: 1284: 1281: 1264: 1261: 1225: 1222: 1212: 1209: 1200: 1197: 1180: 1177: 1175: 1172: 1163: 1160: 1157: 1156: 1153: 1147: 1144: 1140: 1139: 1136: 1133: 1130: 1126: 1125: 1122:self-discharge 1118: 1115: 1112: 1108: 1107: 1104: 1101: 1098: 1094: 1093: 1092:Moderate risk 1090: 1087: 1084: 1080: 1079: 1076: 1073: 1070: 1066: 1065: 1060: 1057: 1054: 1048: 1047: 1044: 1041: 1038: 1032: 1031: 1028: 1027:200–683 W·h/L 1025: 1022: 1018: 1017: 1014: 1011: 1008: 1004: 1003: 1000: 997: 994: 974: 971: 961: 953: 921: 918: 913: 906: 902: 898: 894: 886: 878: 875: 870: 866: 862: 858: 854: 846: 842: 838: 834: 830: 809: 806: 801: 797: 793: 789: 785: 781: 777: 773: 769: 765: 761: 757: 753: 749: 745: 741: 737: 733: 728: 724: 720: 716: 712: 708: 696: 692: 688: 684: 680: 676: 668: 664: 660: 656: 652: 648: 644: 640: 636: 624: 620: 616: 612: 593: 590: 588: 585: 568: 562: 556: 549: 542: 535: 520: 513: 507: 504: 495: 491: 487: 483: 475: 472: 453: 444: 429: 420: 406: 403: 388: 385: 380: 376: 373: 369:energy density 358: 355: 314: 311: 309: 306: 293: 290: 262: 259: 253: 250: 159:periodic table 122:(Na) as their 92: 91: 88: 84: 83: 77: 73: 72: 66: 64:Energy density 60: 59: 40: 34: 33: 30: 15: 9: 6: 4: 3: 2: 5741: 5740: 5729: 5728:Battery types 5726: 5724: 5721: 5719: 5716: 5715: 5713: 5698: 5695: 5693: 5690: 5688: 5685: 5683: 5680: 5678: 5675: 5673: 5670: 5668: 5665: 5663: 5660: 5658: 5655: 5653: 5650: 5649: 5647: 5643: 5637: 5634: 5632: 5629: 5627: 5624: 5623: 5621: 5615: 5609: 5606: 5604: 5601: 5599: 5596: 5594: 5591: 5589: 5588:Sodium–sulfur 5586: 5584: 5581: 5579: 5576: 5574: 5571: 5569: 5566: 5564: 5563:Potassium ion 5561: 5559: 5556: 5554: 5551: 5549: 5546: 5544: 5541: 5539: 5536: 5534: 5531: 5529: 5526: 5524: 5521: 5519: 5516: 5514: 5511: 5509: 5506: 5502: 5499: 5497: 5494: 5492: 5489: 5487: 5484: 5482: 5479: 5478: 5477: 5474: 5472: 5469: 5465: 5462: 5461: 5460: 5457: 5455: 5452: 5451: 5449: 5442: 5437: 5431: 5428: 5426: 5423: 5421: 5418: 5416: 5413: 5411: 5408: 5406: 5403: 5401: 5398: 5396: 5393: 5391: 5388: 5386: 5383: 5381: 5380:Lithium metal 5378: 5376: 5373: 5371: 5368: 5366: 5363: 5361: 5358: 5356: 5353: 5351: 5348: 5346: 5343: 5341: 5338: 5336: 5335:Aluminium–air 5333: 5331: 5328: 5327: 5325: 5318: 5313: 5308: 5298: 5295: 5293: 5290: 5288: 5285: 5281: 5278: 5276: 5273: 5272: 5271: 5268: 5266: 5263: 5261: 5260:Galvanic cell 5258: 5257: 5255: 5251: 5247: 5240: 5235: 5233: 5228: 5226: 5221: 5220: 5217: 5202: 5201: 5195: 5185: 5181: 5176: 5172: 5168: 5163: 5158: 5154: 5150: 5145: 5140: 5136: 5132: 5128: 5123: 5122: 5110: 5104: 5096: 5090: 5076: 5070: 5068: 5059: 5053: 5042: 5015: 5007: 5003: 4999: 4995: 4991: 4987: 4983: 4976: 4968: 4964: 4960: 4956: 4952: 4948: 4944: 4940: 4939:Small Methods 4936: 4908: 4894:on 2020-04-18 4893: 4889: 4885: 4879: 4865: 4861: 4855: 4841: 4840:IEEE Spectrum 4837: 4830: 4822: 4818: 4812: 4804: 4800: 4794: 4786: 4782: 4776: 4761: 4757: 4750: 4736: 4732: 4725: 4711: 4707: 4701: 4686: 4682: 4676: 4668: 4662: 4646: 4642: 4635: 4619: 4615: 4608: 4595: 4594: 4586: 4578: 4574: 4570: 4566: 4562: 4558: 4554: 4550: 4546: 4539: 4524: 4520: 4514: 4500:on 2020-09-27 4496: 4489: 4483: 4468: 4464: 4458: 4444: 4438: 4423: 4422:electrive.com 4419: 4413: 4399: 4398: 4393: 4386: 4371: 4367: 4361: 4346: 4345:electrive.com 4342: 4336: 4322: 4318: 4312: 4297: 4293: 4287: 4273:. 8 June 2022 4272: 4268: 4262: 4254: 4250: 4243: 4235: 4231: 4226: 4221: 4214: 4206: 4202: 4197: 4192: 4188: 4184: 4180: 4173: 4166: 4154: 4149: 4145: 4141: 4137: 4130: 4123: 4108: 4102: 4094: 4088: 4074:on 2013-06-04 4070: 4063: 4057: 4042: 4038: 4032: 4030: 4028: 4019: 4013: 3999: 3995: 3989: 3987: 3978: 3974: 3969: 3964: 3960: 3956: 3952: 3948: 3944: 3937: 3935: 3918: 3912: 3910: 3900: 3895: 3891: 3887: 3883: 3876: 3874: 3854: 3847: 3845: 3843: 3826: 3820: 3811: 3806: 3802: 3798: 3794: 3787: 3779: 3775: 3771: 3767: 3763: 3759: 3755: 3751: 3747: 3743: 3736: 3728: 3724: 3719: 3714: 3710: 3706: 3702: 3695: 3693: 3691: 3682: 3678: 3674: 3670: 3666: 3662: 3658: 3643: 3635: 3631: 3627: 3623: 3619: 3615: 3611: 3607: 3603: 3599: 3595: 3588: 3580: 3574: 3570: 3566: 3562: 3555: 3547: 3543: 3539: 3535: 3531: 3527: 3523: 3519: 3515: 3508: 3497: 3490: 3482: 3478: 3474: 3470: 3466: 3462: 3458: 3454: 3450: 3446: 3435: 3427: 3423: 3419: 3415: 3411: 3407: 3403: 3399: 3395: 3391: 3384: 3371: 3365: 3357: 3353: 3349: 3345: 3341: 3337: 3330: 3323: 3315: 3311: 3307: 3303: 3299: 3295: 3291: 3287: 3283: 3268: 3260: 3256: 3252: 3248: 3244: 3240: 3212: 3201: 3194: 3186: 3182: 3178: 3174: 3151: 3143: 3139: 3135: 3131: 3104: 3096: 3092: 3089:: 1387–1391. 3088: 3084: 3058: 3050: 3046: 3041: 3036: 3032: 3028: 3024: 3020: 3016: 3009: 3007: 3005: 2993: 2986: 2978: 2974: 2969: 2964: 2960: 2956: 2952: 2948: 2944: 2940: 2936: 2932: 2928: 2921: 2913: 2909: 2905: 2901: 2897: 2893: 2889: 2885: 2881: 2877: 2862: 2854: 2850: 2846: 2842: 2835: 2827: 2823: 2819: 2815: 2811: 2807: 2796: 2788: 2784: 2780: 2776: 2772: 2768: 2757: 2749: 2745: 2741: 2737: 2733: 2729: 2718: 2710: 2706: 2702: 2698: 2694: 2690: 2686: 2655: 2647: 2643: 2639: 2635: 2631: 2627: 2608: 2600: 2596: 2592: 2588: 2584: 2580: 2561: 2553: 2549: 2544: 2539: 2534: 2529: 2525: 2521: 2517: 2510: 2496: 2492: 2486: 2484: 2475: 2471: 2467: 2463: 2456: 2442: 2438: 2434: 2430: 2425: 2420: 2416: 2412: 2408: 2404: 2400: 2393: 2379: 2375: 2369: 2361: 2357: 2353: 2349: 2345: 2341: 2337: 2333: 2329: 2322: 2308: 2304: 2297: 2289: 2285: 2281: 2277: 2273: 2269: 2265: 2261: 2254: 2246: 2242: 2238: 2234: 2226: 2218: 2214: 2210: 2206: 2198: 2196: 2187: 2183: 2179: 2175: 2171: 2167: 2156: 2148: 2144: 2140: 2136: 2132: 2128: 2124: 2120: 2113: 2105: 2101: 2097: 2093: 2088: 2083: 2079: 2075: 2071: 2064: 2056: 2052: 2048: 2044: 2040: 2036: 2032: 2028: 2021: 2013: 2009: 2005: 2001: 1996: 1991: 1987: 1983: 1979: 1972: 1970: 1968: 1959: 1953: 1946: 1941: 1931: 1927: 1923: 1919: 1915: 1911: 1906: 1902: 1898: 1894: 1890: 1886: 1882: 1877: 1873: 1869: 1865: 1860: 1856: 1852: 1848: 1844: 1837: 1832: 1828: 1822: 1818: 1814: 1810: 1805: 1801: 1795: 1791: 1787: 1783: 1778: 1774: 1770: 1766: 1762: 1758: 1754: 1749: 1744: 1739: 1735: 1731: 1727: 1722: 1721: 1718: 1710: 1706: 1701: 1696: 1692: 1688: 1684: 1677: 1662: 1661: 1656: 1649: 1647: 1638: 1632: 1628: 1624: 1620: 1613: 1611: 1602: 1596: 1592: 1588: 1584: 1577: 1568: 1563: 1559: 1555: 1551: 1544: 1537: 1525: 1524:"Performance" 1519: 1517: 1515: 1513: 1508: 1492: 1486: 1480: 1470: 1466: 1456: 1453: 1449: 1446: 1445: 1443: 1440: 1436: 1433: 1430: 1428: 1425: 1424: 1422: 1419: 1417: 1414: 1412: 1409: 1408: 1402: 1399: 1395: 1391: 1387: 1383: 1379: 1378:Aquion Energy 1373:Aquion Energy 1365: 1363: 1359: 1356: 1346: 1343: 1342:of capacity. 1340: 1336: 1332: 1328: 1318: 1316: 1307: 1305: 1301: 1300:Natron Energy 1295:Natron Energy 1292: 1289: 1280: 1276: 1274: 1270: 1260: 1257: 1253: 1251: 1247: 1243: 1239: 1230: 1221: 1218: 1208: 1206: 1196: 1194: 1190: 1186: 1171: 1169: 1154: 1152: 1148: 1145: 1142: 1141: 1137: 1134: 1131: 1128: 1127: 1123: 1119: 1116: 1113: 1110: 1109: 1105: 1102: 1099: 1096: 1095: 1091: 1088: 1085: 1082: 1081: 1077: 1074: 1071: 1068: 1067: 1064: 1061: 1058: 1055: 1053: 1050: 1049: 1045: 1042: 1039: 1037: 1034: 1033: 1029: 1026: 1023: 1020: 1019: 1015: 1012: 1009: 1006: 1005: 1001: 998: 995: 993: 992: 986: 984: 979: 970: 967: 959: 951: 947: 943: 939: 935: 931: 927: 917: 910: 891: 884: 883:Prussian blue 874: 852: 827: 823: 819: 815: 805: 706: 705:stoichiometry 702: 674: 634: 630: 609: 607: 603: 599: 596:Many layered 584: 582: 581:terephthalate 578: 574: 561: 531: 527: 503: 501: 481: 471: 469: 465: 460: 436: 413: 402: 399: 395: 384: 372: 370: 366: 363: 354: 351: 349: 343: 340: 336: 332: 328: 324: 320: 317:SIBs can use 305: 298: 289: 287: 283: 280: 276: 272: 268: 258: 249: 247: 246:TÜV Rheinland 243: 239: 235: 234:battery packs 231: 227: 222: 220: 219:Prussian blue 216: 210: 208: 207:intercalation 204: 200: 196: 192: 188: 184: 180: 170: 166: 164: 160: 156: 152: 149: 148:intercalating 145: 141: 137: 133: 129: 125: 121: 118: 114: 110: 106: 102: 98: 89: 85: 82: 78: 74: 71: 67: 65: 61: 57: 53: 49: 45: 41: 39: 35: 28: 23: 5603:Zinc–bromine 5582: 5410:Silver oxide 5345:Chromic acid 5317:Primary cell 5297:Voltaic pile 5275:Flow battery 5205:. Retrieved 5199: 5187:. Retrieved 5183: 5134: 5130: 5103: 5089: 5078:. Retrieved 5052: 5014: 4989: 4985: 4975: 4942: 4938: 4907: 4896:. Retrieved 4892:the original 4887: 4878: 4867:. Retrieved 4863: 4854: 4843:. Retrieved 4839: 4829: 4821:Zee Business 4820: 4811: 4803:Moneycontrol 4802: 4793: 4784: 4775: 4763:. Retrieved 4759: 4749: 4738:. Retrieved 4734: 4724: 4713:. Retrieved 4709: 4700: 4689:. Retrieved 4684: 4675: 4661: 4649:. Retrieved 4644: 4634: 4622:. Retrieved 4617: 4607: 4597:, retrieved 4592: 4585: 4552: 4548: 4538: 4527:. Retrieved 4522: 4513: 4502:. Retrieved 4495:the original 4482: 4471:. Retrieved 4469:. 2021-03-10 4466: 4457: 4437: 4426:. Retrieved 4424:. 2022-01-18 4421: 4412: 4401:. Retrieved 4395: 4385: 4374:. Retrieved 4372:. 2021-07-29 4369: 4360: 4349:. Retrieved 4347:. 2023-11-20 4344: 4335: 4324:. Retrieved 4320: 4311: 4300:. Retrieved 4298:. 2021-06-17 4295: 4286: 4275:. Retrieved 4270: 4261: 4252: 4242: 4213: 4186: 4182: 4172: 4164: 4157:. Retrieved 4143: 4139: 4129: 4121: 4114:. Retrieved 4101: 4087: 4076:. Retrieved 4069:the original 4056: 4045:. Retrieved 4043:. 2024-01-10 4040: 4012: 4001:. Retrieved 3998:www.catl.com 3997: 3950: 3946: 3921:. Retrieved 3889: 3885: 3860:. Retrieved 3829:. Retrieved 3819: 3800: 3796: 3786: 3745: 3741: 3735: 3708: 3704: 3664: 3660: 3642: 3601: 3597: 3587: 3560: 3554: 3521: 3517: 3507: 3489: 3448: 3444: 3434: 3393: 3389: 3383: 3364: 3339: 3335: 3322: 3289: 3285: 3267: 3242: 3238: 3211: 3193: 3176: 3172: 3171:(M=Fe, V)". 3150: 3133: 3129: 3103: 3086: 3082: 3057: 3022: 3018: 2985: 2934: 2930: 2920: 2879: 2875: 2861: 2844: 2840: 2834: 2809: 2805: 2795: 2770: 2766: 2756: 2731: 2727: 2717: 2692: 2688: 2654: 2629: 2625: 2607: 2582: 2578: 2560: 2523: 2519: 2509: 2498:. Retrieved 2494: 2465: 2461: 2455: 2444:. Retrieved 2406: 2402: 2392: 2381:. Retrieved 2377: 2368: 2335: 2331: 2321: 2310:. Retrieved 2306: 2296: 2263: 2259: 2253: 2236: 2232: 2225: 2208: 2204: 2172:(1): A1–A4. 2169: 2165: 2155: 2122: 2118: 2112: 2077: 2073: 2063: 2030: 2026: 2020: 1985: 1981: 1952: 1940: 1913: 1909: 1884: 1880: 1863: 1846: 1842: 1808: 1781: 1756: 1752: 1733: 1729: 1717: 1690: 1686: 1676: 1664:. Retrieved 1660:The Guardian 1658: 1618: 1582: 1576: 1557: 1553: 1543: 1535: 1528:. Retrieved 1491: 1479: 1469: 1421:Alkali metal 1389: 1376: 1352: 1344: 1339:18650-format 1324: 1313: 1298: 1286: 1277: 1266: 1258: 1254: 1235: 1214: 1202: 1182: 1168:grid battery 1165: 1150: 1063: 1046:35–40 Wh/kg 1030:80–90 W·h/L 980: 976: 923: 920:Electrolytes 911: 892: 880: 825: 811: 700: 672: 633:redox couple 628: 611:A P2-type Na 610: 595: 570: 509: 499: 478:Some sodium 477: 461: 437: 408: 397: 390: 387:Metal alloys 378: 360: 352: 347: 344: 326: 322: 316: 303: 264: 255: 226:grid storage 223: 211: 199:ionic radius 175: 115:, which use 108: 104: 100: 96: 95: 68:250–375 W·h/ 5692:Salt bridge 5677:Electrolyte 5608:Zinc–cerium 5593:Solid state 5578:Silver–zinc 5553:Nickel–zinc 5538:Nickel–iron 5513:Molten salt 5481:Dual carbon 5476:Lithium ion 5471:Lithium–air 5430:Zinc–carbon 5405:Silicon–air 5385:Lithium–air 4992:(8): 2361. 3953:: 145–157. 3667:: 277–284. 3604:: 287–299. 3292:: 277–284. 2847:: 702–708. 2424:10397/99229 1666:22 November 1474:conditions. 1242:pouch cells 1205:BYD Company 1056:~1000 W/kg 905:Fe·0.18(9)H 606:resistivity 602:tap density 579:and sodium 319:hard carbon 275:electrolyte 5712:Categories 5645:Cell parts 5636:Solar cell 5618:Other cell 5583:Sodium ion 5454:Automotive 5207:2024-01-05 5189:2023-04-28 5080:2023-11-29 4898:2019-09-05 4869:2024-01-24 4845:2021-07-29 4765:11 January 4740:2023-12-31 4715:2019-09-05 4691:2023-02-23 4599:2022-11-27 4529:2021-11-07 4504:2021-10-14 4473:2021-11-07 4428:2022-10-29 4403:2021-11-13 4376:2021-11-07 4351:2023-11-20 4326:2024-01-24 4302:2021-07-29 4277:2023-06-29 4146:(11): 13. 4078:2014-01-09 4047:2024-05-11 4003:2023-04-24 2500:2021-11-19 2446:2021-11-19 2383:2021-11-19 2338:: 233439. 2312:2021-08-26 1504:References 1496:operation. 1273:anthracite 1132:up to 92% 1097:Materials 1089:High risk 1016:$ 100–300 973:Comparison 494:, or NaTiO 333:anodes in 203:spin state 42:0.27-0.72 5682:Half-cell 5672:Electrode 5631:Fuel cell 5508:Metal–air 5459:Lead–acid 5375:LeclanchĂ© 5287:Fuel cell 5203:(Podcast) 5153:2198-3844 5006:1754-5692 4967:106396927 4959:2366-9608 4651:17 August 4624:17 August 4577:233516956 4569:2050-7488 4271:www.uu.se 4234:111233540 4205:115675281 3977:2352-152X 3803:(1): 10. 3797:Batteries 3778:206894534 3762:0009-2665 3727:2768-1688 3634:218930265 3626:2405-8297 3546:202881037 3538:0897-4756 3465:0002-7863 3410:1364-548X 3314:0378-7753 3259:1364-5501 3185:2324/7951 3049:1614-6840 2959:1614-6840 2904:1476-4660 2826:244583592 2812:: 64–69. 2787:239640591 2748:1754-5706 2709:1388-2481 2695:: 10–13. 2646:2050-7496 2599:0897-4756 2441:237307044 2360:260322455 2307:New Atlas 2280:1521-3773 2186:1099-0062 2147:0013-4651 2096:1521-3773 2047:0009-2665 2004:1460-4744 1709:259615584 1315:Northvolt 1310:Northvolt 1179:Altris AB 1100:Abundant 1062:180 W/kg 814:oxoanions 808:Oxoanions 713:(1−x−y−z) 526:polyimide 468:magnesium 394:dendrites 292:Materials 215:Northvolt 179:saltwater 90:3.0-3.1 V 5662:Catalyst 5523:Nanowire 5518:Nanopore 5464:gel–VRLA 5425:Zinc–air 5330:Alkaline 5171:34194939 5058:"Tiamat" 4735:Electrek 4467:Faradion 4159:17 March 4140:Energies 4116:17 March 4041:IDTechEx 3923:15 March 3862:15 March 3831:15 March 3770:21375330 3473:25679040 3426:30623364 3418:22622269 2977:27134617 2912:22543301 2773:: 8–15. 2685:pathway" 2552:33300173 2433:34432922 2288:25056756 2104:28627780 2055:25390643 2012:28349134 1530:17 March 1405:See also 1382:spin-off 1349:SgNaPLus 897:MnFe(CN) 851:SgNaPlus 587:Cathodes 480:titanate 396:. Wang, 362:Graphene 357:Graphene 339:Faradion 331:graphite 230:vehicles 50:(75–200 5667:Cathode 5420:Zamboni 5390:Mercury 5355:Daniell 5162:8224441 4864:Default 4760:ArenaEV 4370:Reuters 4321:Default 4185:(pdf). 3955:Bibcode 3888:(pdf). 3669:Bibcode 3606:Bibcode 3481:2335024 3344:Bibcode 3294:Bibcode 3179:: 1–5. 3079:(0≀x≀2) 3027:Bibcode 2968:4845635 2939:Bibcode 2884:Bibcode 2543:7986697 2340:Bibcode 2127:Bibcode 1918:Bibcode 1889:Bibcode 1761:Bibcode 1368:Defunct 1138:70–90% 1135:85–95% 1103:Scarce 1083:Safety 926:aqueous 903:1.88(5) 639:or LiMn 573:mercury 350:Na/Na. 313:Carbons 286:aprotic 267:cathode 252:History 157:in the 146:as the 140:lithium 5657:Binder 5415:Weston 5340:Bunsen 5169:  5159:  5151:  5004:  4965:  4957:  4575:  4567:  4449:  4232:  4203:  3975:  3776:  3768:  3760:  3725:  3632:  3624:  3575:  3544:  3536:  3479:  3471:  3463:  3424:  3416:  3408:  3376:  3312:  3257:  3047:  2975:  2965:  2957:  2910:  2902:  2824:  2785:  2746:  2707:  2644:  2597:  2550:  2540:  2439:  2431:  2358:  2286:  2278:  2184:  2145:  2102:  2094:  2053:  2045:  2010:  2002:  1916:(17). 1866:: 64. 1823:  1796:  1707:  1633:  1597:  1333:and a 1321:TIAMAT 1174:Active 1106:Toxic 1075:3,500 948:, and 592:Oxides 474:Oxides 405:Metals 398:et al. 308:Anodes 282:protic 228:, but 191:nickel 187:copper 183:cobalt 144:sodium 124:charge 117:sodium 81:cycles 5652:Anode 5370:Grove 5350:Clark 5253:Types 5044:(PDF) 4963:S2CID 4573:S2CID 4498:(PDF) 4491:(PDF) 4230:S2CID 4201:S2CID 4110:(PDF) 4072:(PDF) 4065:(PDF) 3856:(PDF) 3774:S2CID 3711:(1). 3653:MnSiO 3630:S2CID 3542:S2CID 3499:(PDF) 3477:S2CID 3422:S2CID 3332:(PDF) 3278:MnSiO 3203:(PDF) 3114:0.3−x 2995:(PDF) 2822:S2CID 2783:S2CID 2673:to Na 2437:S2CID 2356:S2CID 1887:(4). 1839:(PDF) 1705:S2CID 1461:Notes 1384:from 1361:(NUS) 1335:H2020 960:(NaPF 790:0.3−x 770:0.3−x 410:with 279:polar 271:anode 155:group 142:with 107:, or 5687:Ions 5167:PMID 5149:ISSN 5002:ISSN 4955:ISSN 4767:2024 4653:2023 4626:2023 4565:ISSN 4161:2021 4118:2021 3973:ISSN 3925:2021 3864:2021 3833:2021 3766:PMID 3758:ISSN 3723:ISSN 3622:ISSN 3573:ISBN 3534:ISSN 3469:PMID 3461:ISSN 3414:PMID 3406:ISSN 3310:ISSN 3255:ISSN 3110:0.67 3064:0.67 3045:ISSN 2973:PMID 2955:ISSN 2908:PMID 2900:ISSN 2744:ISSN 2705:ISSN 2642:ISSN 2595:ISSN 2548:PMID 2429:PMID 2284:PMID 2276:ISSN 2182:ISSN 2164:F". 2143:ISSN 2100:PMID 2092:ISSN 2051:PMID 2043:ISSN 2008:PMID 2000:ISSN 1821:ISBN 1794:ISBN 1668:2023 1631:ISBN 1595:ISBN 1532:2021 1483:See 1327:CNRS 1217:CATL 1211:CATL 1203:The 1078:900 956:and 786:0.67 766:0.67 758:0.05 754:0.95 750:0.67 734:0.67 693:1/12 689:4/12 685:2/12 649:0.76 238:CATL 195:iron 189:and 130:and 120:ions 105:SIBs 101:NIBs 58:/kg) 5360:Dry 5157:PMC 5139:doi 5029:(PO 4994:doi 4947:doi 4923:(PO 4557:doi 4397:TNW 4220:doi 4191:doi 4148:doi 3963:doi 3894:doi 3805:doi 3750:doi 3746:111 3713:doi 3677:doi 3665:359 3649:"Na 3614:doi 3565:doi 3526:doi 3453:doi 3449:137 3398:doi 3352:doi 3340:581 3302:doi 3290:359 3274:"Na 3247:doi 3225:(PO 3181:hdl 3163:(PO 3138:doi 3122:0.7 3091:doi 3068:1−x 3035:doi 2963:PMC 2947:doi 2892:doi 2849:doi 2845:265 2814:doi 2810:107 2775:doi 2771:102 2736:doi 2697:doi 2675:3−x 2634:doi 2587:doi 2538:PMC 2528:doi 2470:doi 2419:hdl 2411:doi 2348:doi 2336:580 2268:doi 2241:doi 2213:doi 2174:doi 2135:doi 2123:147 2082:doi 2035:doi 2031:114 1990:doi 1926:doi 1897:doi 1868:doi 1851:doi 1813:doi 1786:doi 1769:doi 1738:doi 1695:doi 1623:doi 1587:doi 1562:doi 1331:CEA 1199:BYD 1191:at 861:(PO 837:(PO 798:0.7 778:0.7 738:1−x 681:1/6 677:1/4 665:0.1 661:0.1 657:0.3 653:0.5 621:1/2 617:1/2 613:2/3 555:TiS 548:TiS 541:TiS 534:MoS 519:MoS 512:MoS 412:tin 284:or 151:ion 5714:: 5182:. 5165:. 5155:. 5147:. 5133:. 5129:. 5066:^ 5000:. 4988:. 4984:. 4961:. 4953:. 4941:. 4937:. 4886:. 4862:. 4838:. 4819:. 4801:. 4783:. 4758:. 4733:. 4708:. 4683:. 4643:. 4616:. 4571:. 4563:. 4551:. 4547:. 4521:. 4465:. 4420:. 4394:. 4368:. 4343:. 4319:. 4294:. 4269:. 4251:. 4228:. 4199:. 4187:28 4181:. 4163:. 4144:10 4142:. 4138:. 4120:. 4039:. 4026:^ 3996:. 3985:^ 3971:. 3961:. 3951:15 3949:. 3945:. 3933:^ 3908:^ 3884:. 3872:^ 3841:^ 3799:. 3795:. 3772:. 3764:. 3756:. 3744:. 3721:. 3707:. 3703:. 3689:^ 3675:. 3663:. 3659:. 3628:. 3620:. 3612:. 3602:29 3600:. 3596:. 3571:. 3563:. 3540:. 3532:. 3522:31 3520:. 3516:. 3475:. 3467:. 3459:. 3447:. 3420:. 3412:. 3404:. 3394:48 3392:. 3350:. 3342:. 3338:. 3334:. 3308:. 3300:. 3288:. 3284:. 3253:. 3243:22 3241:. 3217:Na 3177:16 3132:. 3120:Mn 3116:Cu 3112:Ni 3085:. 3070:Mg 3066:Mn 3043:. 3033:. 3021:. 3017:. 3003:^ 2971:. 2961:. 2953:. 2945:. 2933:. 2929:. 2906:. 2898:. 2890:. 2880:11 2878:. 2843:. 2820:. 2808:. 2781:. 2769:. 2742:. 2730:. 2703:. 2693:61 2691:. 2687:. 2677:Ti 2665:Ti 2640:. 2628:. 2616:Ti 2593:. 2583:23 2581:. 2569:Ti 2546:. 2536:. 2524:60 2522:. 2518:. 2493:. 2482:^ 2466:55 2464:. 2435:. 2427:. 2417:. 2407:33 2405:. 2401:. 2376:. 2354:. 2346:. 2334:. 2330:. 2305:. 2282:. 2274:. 2264:53 2262:. 2235:. 2207:. 2194:^ 2180:. 2168:. 2141:. 2133:. 2121:. 2098:. 2090:. 2078:57 2076:. 2072:. 2049:. 2041:. 2029:. 2006:. 1998:. 1986:46 1984:. 1980:. 1966:^ 1924:. 1912:. 1895:. 1883:. 1845:. 1841:. 1819:. 1792:. 1767:. 1759:. 1757:22 1755:. 1736:. 1732:. 1728:. 1703:. 1691:11 1689:. 1685:. 1657:. 1645:^ 1629:. 1621:. 1609:^ 1593:. 1585:. 1556:. 1552:. 1534:. 1511:^ 1246:3C 1124:) 985:. 944:, 940:, 829:Na 826:vs 796:Mn 792:Cu 788:Ni 776:Mn 772:Cu 768:Ni 756:Mg 752:Mn 740:Mg 736:Mn 732:Na 723:Ti 719:Mg 715:Mn 711:Ni 707:Na 701:vs 691:Sn 687:Ti 683:Mn 679:Na 673:vs 663:Mg 659:Fe 655:Ni 651:Mn 629:vs 619:Mn 615:Fe 575:, 566:Na 500:vs 486:Ti 449:Sn 445:15 440:Na 425:Sn 421:15 416:Na 348:vs 327:vs 323:vs 248:. 185:, 103:, 48:kg 44:MJ 5238:e 5231:t 5224:v 5210:. 5192:. 5173:. 5141:: 5135:8 5111:. 5097:. 5083:. 5060:. 5046:. 5039:3 5037:F 5035:2 5033:) 5031:4 5027:2 5025:V 5023:3 5008:. 4996:: 4990:6 4969:. 4949:: 4943:3 4933:3 4931:F 4929:2 4927:) 4925:4 4921:2 4919:V 4917:3 4901:. 4872:. 4848:. 4769:. 4743:. 4718:. 4694:. 4655:. 4628:. 4579:. 4559:: 4553:9 4532:. 4507:. 4476:. 4431:. 4406:. 4379:. 4354:. 4329:. 4305:. 4280:. 4255:. 4236:. 4222:: 4207:. 4193:: 4150:: 4095:. 4081:. 4050:. 4006:. 3979:. 3965:: 3957:: 3927:. 3902:. 3896:: 3890:5 3866:. 3835:. 3813:. 3807:: 3801:5 3780:. 3752:: 3729:. 3715:: 3709:3 3683:. 3679:: 3671:: 3655:4 3651:2 3636:. 3616:: 3608:: 3581:. 3567:: 3548:. 3528:: 3501:. 3483:. 3455:: 3441:2 3428:. 3400:: 3358:. 3354:: 3346:: 3316:. 3304:: 3296:: 3280:4 3276:2 3261:. 3249:: 3235:3 3233:F 3231:2 3229:) 3227:4 3223:2 3221:V 3219:3 3205:. 3187:. 3183:: 3169:3 3167:) 3165:4 3161:2 3159:M 3157:3 3144:. 3140:: 3134:5 3126:2 3124:O 3118:x 3097:. 3093:: 3087:7 3076:2 3074:O 3072:x 3051:. 3037:: 3029:: 3023:8 2997:. 2979:. 2949:: 2941:: 2935:6 2914:. 2894:: 2886:: 2872:2 2870:O 2868:x 2855:. 2851:: 2828:. 2816:: 2802:2 2789:. 2777:: 2763:2 2750:. 2738:: 2732:8 2724:2 2711:. 2699:: 2683:7 2681:O 2679:3 2671:7 2669:O 2667:3 2663:2 2648:. 2636:: 2630:1 2622:7 2620:O 2618:3 2614:2 2601:. 2589:: 2575:7 2573:O 2571:3 2567:2 2554:. 2530:: 2503:. 2476:. 2472:: 2449:. 2421:: 2413:: 2386:. 2362:. 2350:: 2342:: 2315:. 2290:. 2270:: 2247:. 2243:: 2237:5 2219:. 2215:: 2209:9 2188:. 2176:: 2170:6 2162:4 2149:. 2137:: 2129:: 2106:. 2084:: 2057:. 2037:: 2014:. 1992:: 1932:. 1928:: 1920:: 1914:8 1903:. 1899:: 1891:: 1885:8 1874:. 1870:: 1857:. 1853:: 1847:4 1829:. 1815:: 1802:. 1788:: 1775:. 1771:: 1763:: 1746:. 1740:: 1734:3 1711:. 1697:: 1670:. 1639:. 1625:: 1603:. 1589:: 1570:. 1564:: 1558:5 1329:/ 962:6 954:4 914:2 907:2 899:6 895:2 887:2 871:3 869:F 867:2 865:) 863:4 859:2 857:V 855:3 847:3 845:F 843:2 841:) 839:4 835:2 833:V 831:3 802:2 800:O 794:x 782:2 780:O 774:x 762:2 760:O 746:2 744:O 742:x 729:2 727:O 725:z 721:y 717:x 709:a 697:2 695:O 669:2 667:O 645:4 643:O 641:2 637:4 625:2 623:O 557:2 550:2 543:2 536:2 521:2 514:2 496:2 492:7 490:O 488:3 484:2 454:4 430:4 381:5 99:( 70:L 56:h 54:· 52:W 46:/

Index


Specific energy
MJ
kg
W
h
Energy density
L
cycles
rechargeable batteries
sodium
ions
charge
working principle
cell construction
lithium-ion battery
lithium
sodium
intercalating
ion
group
periodic table
chemical properties

saltwater
cobalt
copper
nickel
iron
ionic radius

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑