Knowledge

Serial analysis of gene expression

Source 📝

377:
1500 bps of a transcript. The technique does not depend on restriction enzymes anymore and thereby circumvents bias that is related to the absence or location of the restriction site within the cDNA. Instead, the cDNA is randomly fragmented and the 3'ends are sequenced from the 5' end of the cDNA molecule that carries the poly-A tail. The sequencing length of the tag can be freely chosen. Because of this, the tags can be assembled into contigs and the annotation of the tags can be drastically improved. Therefore, MACE is also use for the analyses of non-model organisms. In addition, the longer contigs can be screened for polymorphisms. As UTRs show a large number of polymorphisms between individuals, the MACE approach can be applied for allele determination, allele specific gene expression profiling and the search for molecular markers for breeding. In addition, the approach allows determining alternative polyadenylation of the transcripts. Because MACE does only require 3’ ends of transcripts, even partly degraded RNA can be analyzed with less degradation dependent bias. The MACE approach uses unique molecular identifiers to allow for identification of PCR bias.
304:. Following this, the linkers, containing internal restriction sites, are digested with the appropriate restriction enzyme and the sticky ends are ligated together into concatamers. Following concatenation, the fragments are ligated into plasmids and are used to transform bacteria to generate many copies of the plasmid containing the inserts. Those may then be sequenced to identify the miRNA present, as well as analysing expression levels of a given miRNA by counting the number of times it is present, similar to SAGE. 20: 141:
attachment site: 1) Sticky ends with the AE cut site to allow for attachment to cleaved cDNA; 2) A recognition site for a restriction endonuclease known as the tagging enzyme (TE), which cuts about 15 nucleotides downstream of its recognition site (within the original cDNA/mRNA sequence); 3) A short primer sequence unique to either adaptor A or B, which will later be used for further amplification via PCR.
312:
LongSAGE was a more robust version of the original SAGE developed in 2002 which had a higher throughput, using 20 μg of mRNA to generate a cDNA library of thousands of tags. Robust LongSage (RL-SAGE) Further improved on the LongSAGE protocol with the ability to generate a library with an insert size
93:
population in a sample of interest in the form of small tags that correspond to fragments of those transcripts. Several variants have been developed since, most notably a more robust version, LongSAGE, RL-SAGE and the most recent SuperSAGE. Many of these have improved the technique with the capture
376:
In the mid 2010s several techniques combined with Next Generation Sequencing were developed that employ the "tag" principle for "digital gene expression profiling" but without the use of the tagging enzyme. The "MACE" approach, (=Massive Analysis of cDNA Ends) generates tags somewhere in the last
228:
In 1979 teams at Harvard and Caltech extended the basic idea of making DNA copies of mRNAs in vitro to amplifying a library of such in bacterial plasmids. In 1982–1983, the idea of selecting random or semi-random clones from such a cDNA library for sequencing was explored by Greg Sutcliffe and
140:
The cleaved cDNA downstream from the cleavage site is then discarded, and the remaining immobile cDNA fragments upstream from cleavage sites are divided in half and exposed to one of two adaptor oligonucleotides (A or B) containing several components in the following order upstream from the
345:, expanding the tag-size by at least 6 bp as compared to the predecessor techniques SAGE and LongSAGE. The longer tag-size allows for a more precise allocation of the tag to the corresponding transcript, because each additional base increases the precision of the annotation considerably. 296:, or miRNAs for short, are small (~22nt) segments of RNA which have been found to play a crucial role in gene regulation. One of the most commonly used methods for cloning and identifying miRNAs within a cell or tissue was developed in the Bartel Lab and published in a paper by Lau 300:(2001). Since then, several variant protocols have arisen, but most have the same basic format. The procedure is quite similar to SAGE: The small RNA are isolated, then linkers are added to each, and the RNA is converted to cDNA by 158:
These cDNA tag fragments (with adaptor primers and AE and TE recognition sites attached) are ligated, sandwiching the two tag sequences together, and flanking adaptors A and B at either end. These new constructs, called
233:(EST) and initiated more systematic sequencing of cDNAs as a project (starting with 600 brain cDNAs). The identification of ESTs proceeded rapidly, millions of ESTs now available in public databases (e.g. 264:. However, SAGE sampling is based on sequencing mRNA output, not on hybridization of mRNA output to probes, so transcription levels are measured more quantitatively than by microarray. In addition, the 1050:
Matsumura, H.; Bin Nasir, K. H.; Yoshida, K.; Ito, A.; Kahl, G. N.; Krüger, D. H.; Terauchi, R. (2006). "SuperSAGE array: the direct use of 26-base-pair transcript tags in oligonucleotide arrays".
148:, cDNA are cleaved using TE to remove them from the beads, leaving only a short "tag" of about 11 nucleotides of original cDNA (15 nucleotides minus the 4 corresponding to the AE recognition site). 240:
In 1995, the idea of reducing the tag length from 100 to 800 bp down to tag length of 10 to 22 bp helped reduce the cost of mRNA surveys. In this year, the original SAGE protocol was published by
280:
is more exact in SAGE because it involves directly counting the number of transcripts whereas spot intensities in microarrays fall in non-discrete gradients and are prone to background noise.
364:. Therefore, tag-based gene expression profiling also called "digital gene expression profiling" (DGE) can today provide most accurate transcription profiles that overcome the limitations of 881:
Gowda, M., et al. (2004). "Robust-LongSAGE (RL-SAGE): a substantially improved LongSAGE method for gene discovery and transcriptome analysis." Plant Physiol 134(3): 890-897.
352:
tags. However, SuperSAGE avoids the bias observed during the less random LongSAGE 20 bp ditag-ligation. By direct sequencing with high-throughput sequencing techniques (
137:
called an anchoring enzyme (AE). The location of the cleavage site and thus the length of the remaining cDNA bound to the bead will vary for each individual cDNA (mRNA).
301: 765:
Adams MD, Kelley JM, Gocayne JD, et al. (June 1991). "Complementary DNA sequencing: expressed sequence tags and human genome project".
714:
Putney SD; Herlihy WC; Schimmel P (1983). "A new troponin T and cDNA clones for 13 different muscle proteins, found by shotgun sequencing".
1149: 166:
The ditags are then cleaved using the original AE, and allowed to link together with other ditags, which will be ligated to create a cDNA
229:
coworkers. and Putney et al. who sequenced 178 clones from a rabbit muscle cDNA library. In 1991 Adams and co-workers coined the term
1095:"Massive analysis of cDNA Ends (MACE) and miRNA expression profiling identifies proatherogenic pathways in chronic kidney disease" 58:(at location 'X' and 'X'+11) to produce 11-nucleotide 'tag' fragments. These tags are concatenated and sequenced using long-read 891:
Matsumura, H.; Reich, S.; Ito, A.; Saitoh, H.; Kamoun, S.; Winter, P.; Kahl, G.; Reuter, M.; Krüger, D.; Terauchi, R. (2003).
317:, much smaller than previous LongSAGE insert size of 2 μg mRNA and using a lower number of ditag polymerase chain reactions ( 133:
The cDNA is bound to Streptavidin beads via interaction with the biotin attached to the primers, and is then cleaved using a
952:"Robust-LongSAGE (RL-SAGE): A Substantially Improved LongSAGE Method for Gene Discovery and Transcriptome Analysis" 518:"Robust-LongSAGE (RL-SAGE): a substantially improved LongSAGE method for gene discovery and transcriptome analysis" 248:. Although SAGE was originally conceived for use in cancer studies, it has been successfully used to describe the 396: 360:), hundred thousands or millions of tags can be analyzed simultaneously, producing very precise and quantitative 616:"Use of a cDNA library for studies on evolution and developmental expression of the chorion multigene families" 180:, and these sequences can be analysed with computer programs which quantify the recurrence of individual tags. 204:
Statistical methods can be applied to tag and count lists from different samples in order to determine which
145: 82: 872:
Saha, S., et al. (2002). "Using the transcriptome to annotate the genome." Nat Biotechnol 20(5): 508-512.
276:
experiments are much cheaper to perform, so large-scale studies do not typically use SAGE. Quantifying
1169: 386: 353: 1144: 361: 318: 173:
These concatemers are then transformed into bacteria for amplification through bacterial replication.
47: 245: 189:
The output of SAGE is a list of short sequence tags and the number of times it is observed. Using
134: 67: 27: 819:
Velculescu VE; Zhang L; Vogelstein B; Kinzler KW. (1995). "Serial analysis of gene expression".
411: 230: 115: 43: 904: 828: 774: 723: 668: 8: 950:
Gowda, Malali; Jantasuriyarat, Chatchawan; Dean, Ralph A.; Wang, Guo-Liang (2004-03-01).
565:
Matsumura H; Ito A; Saitoh H; Winter P; Kahl G; Reuter M; Krüger DH; Terauchi R. (2005).
908: 832: 778: 727: 672: 1119: 1094: 1075: 1032: 852: 798: 747: 596: 498: 55: 984: 951: 927: 892: 691: 656: 614:
Sim GK; Kafatos FC; Jones CW; Koehler MD; Efstratiadis A; Maniatis T (December 1979).
542: 517: 1124: 1067: 1024: 989: 971: 932: 844: 790: 739: 696: 637: 632: 615: 600: 588: 583: 566: 547: 490: 455: 241: 209: 190: 176:
The cDNA concatemers can then be isolated and sequenced using modern high-throughput
86: 59: 51: 1079: 1036: 856: 802: 502: 1114: 1106: 1059: 1016: 979: 963: 922: 912: 836: 782: 751: 731: 686: 676: 627: 578: 537: 529: 482: 445: 840: 391: 277: 62:(different shades of blue indicate tags from different genes). The sequences are 406: 357: 273: 261: 160: 152: 473:
Saha S, et al. (2002). "Using the transcriptome to annotate the genome".
193:
a researcher can usually determine, with some confidence, from which original
66:
to find the frequency of each tag. The tag frequency can be used to report on
1163: 975: 459: 249: 177: 119: 90: 63: 39: 917: 786: 681: 450: 433: 1128: 1071: 1028: 993: 936: 893:"Gene expression analysis of plant host-pathogen interactions by SuperSAGE" 818: 592: 551: 494: 334: 31: 1020: 967: 848: 794: 743: 700: 533: 641: 365: 94:
of longer tags, enabling more confident identification of a source gene.
486: 371: 349: 348:
Like in the original SAGE protocol, so-called ditags are formed, using
167: 1110: 654: 515: 1063: 735: 35: 272:, so genes or gene variants which are not known can be discovered. 338: 1007:
Shendure, J. (2008). "The beginning of the end for microarrays?".
613: 19: 401: 234: 1155:
A review of the SAGE technique at the Science Creative Quarterly
564: 42:
transcripts (red). The mRNA is extracted from the organism, and
1154: 163:, are then PCR amplified using anchor A and B specific primers. 111: 713: 293: 213: 1049: 655:
Sutcliffe JG; Milner RJ; Bloom FE; Lerner RA (August 1982).
949: 342: 322: 314: 265: 217: 205: 198: 194: 170:
with each ditag being separated by the AE recognition site.
127: 123: 107: 46:
is used to copy the mRNA into stable double-stranded–cDNA (
341:, to cut 26 bp long sequence tags from each transcript's 333:
SuperSAGE is a derivative of SAGE that uses the type III-
890: 252:
of other diseases and in a wide variety of organisms.
516:
Gowda M; Jantasuriyarat C; Dean RA; Wang GL. (2004).
372:
3'end mRNA sequencing, massive analysis of cDNA ends
260:
The general goal of the technique is similar to the
657:"Common 82-nucleotide sequence unique to brain RNA" 764: 208:are more highly expressed. For example, a normal 1161: 868: 866: 255: 897:Proceedings of the National Academy of Sciences 212:sample can be compared against a corresponding 102:Briefly, SAGE experiments proceed as follows: 884: 863: 151:The cleaved cDNA tags are then repaired with 54:; blue). In SAGE, the ds-cDNA is digested by 434:"Eukaryotic and prokaryotic gene structure" 431: 1118: 983: 926: 916: 690: 680: 631: 582: 541: 449: 1006: 558: 18: 307: 1162: 1092: 814: 812: 758: 509: 472: 432:Shafee, Thomas; Lowe, Rohan (2017). 283: 155:to produce blunt end cDNA fragments. 809: 466: 70:of the gene that the tag came from. 13: 268:sequences do not need to be known 220:tend to be more (or less) active. 75:Serial Analysis of Gene Expression 14: 1181: 1138: 584:10.1111/j.1462-5822.2004.00478.x 288: 26:Within the organisms, genes are 1086: 1043: 1000: 943: 875: 397:Cap analysis of gene expression 122:primers are used to synthesize 707: 648: 607: 425: 1: 1093:Zawada, Adam (January 2014). 419: 256:Comparison to DNA microarrays 89:to produce a snapshot of the 841:10.1126/science.270.5235.484 633:10.1016/0092-8674(79)90241-1 328: 7: 380: 184: 110:of an input sample (e.g. a 97: 16:Molecular biology technique 10: 1186: 387:High-throughput sequencing 354:next-generation sequencing 244:at the Oncology Center of 223: 201:) the tag was extracted. 661:Proc Natl Acad Sci U S A 362:gene expression profiles 246:Johns Hopkins University 135:restriction endonuclease 83:transcriptomic technique 918:10.1073/pnas.2536670100 787:10.1126/science.2047873 682:10.1073/pnas.79.16.4942 438:WikiJournal of Medicine 412:Expressed sequence tags 321:) to obtain a complete 231:expressed sequence tag 71: 1021:10.1038/nmeth0708-585 968:10.1104/pp.103.034496 534:10.1104/pp.103.034496 451:10.15347/wjm/2017.002 197:(and therefore which 116:reverse transcriptase 44:reverse transcriptase 22: 308:LongSAGE and RL-SAGE 114:) is isolated and a 87:molecular biologists 38:) to produce mature 909:2003PNAS..10015718M 903:(26): 15718–15723. 833:1995Sci...270..484V 779:1991Sci...252.1651A 728:1983Natur.302..718P 673:1982PNAS...79.4942S 487:10.1038/nbt0502-508 216:to determine which 56:restriction enzymes 1150:SAGE for Beginners 191:sequence databases 72: 1170:Molecular biology 1111:10.4161/epi.26931 284:Variant protocols 242:Victor Velculescu 60:Sanger sequencing 1177: 1133: 1132: 1122: 1090: 1084: 1083: 1064:10.1038/nmeth882 1047: 1041: 1040: 1004: 998: 997: 987: 956:Plant Physiology 947: 941: 940: 930: 920: 888: 882: 879: 873: 870: 861: 860: 816: 807: 806: 773:(5013): 1651–6. 762: 756: 755: 736:10.1038/302718a0 722:(5910): 718–21. 711: 705: 704: 694: 684: 652: 646: 645: 635: 611: 605: 604: 586: 562: 556: 555: 545: 513: 507: 506: 470: 464: 463: 453: 429: 278:gene expressions 24:Summary of SAGE. 1185: 1184: 1180: 1179: 1178: 1176: 1175: 1174: 1160: 1159: 1141: 1136: 1091: 1087: 1048: 1044: 1005: 1001: 948: 944: 889: 885: 880: 876: 871: 864: 827:(5235): 484–7. 817: 810: 763: 759: 712: 708: 653: 649: 612: 608: 563: 559: 514: 510: 471: 467: 430: 426: 422: 407:DNA microarrays 392:Transcriptomics 383: 374: 331: 310: 291: 286: 258: 226: 187: 100: 17: 12: 11: 5: 1183: 1173: 1172: 1158: 1157: 1152: 1147: 1140: 1139:External links 1137: 1135: 1134: 1105:(1): 161–172. 1085: 1052:Nature Methods 1042: 1009:Nature Methods 999: 962:(3): 890–897. 942: 883: 874: 862: 808: 757: 706: 667:(16): 4942–6. 647: 626:(4): 1303–16. 606: 571:Cell Microbiol 557: 508: 475:Nat Biotechnol 465: 423: 421: 418: 417: 416: 415: 414: 409: 404: 399: 389: 382: 379: 373: 370: 358:pyrosequencing 330: 327: 313:of 50 ng 309: 306: 290: 287: 285: 282: 262:DNA microarray 257: 254: 225: 222: 186: 183: 182: 181: 178:DNA sequencers 174: 171: 164: 156: 153:DNA polymerase 149: 144:After adaptor 142: 138: 131: 99: 96: 15: 9: 6: 4: 3: 2: 1182: 1171: 1168: 1167: 1165: 1156: 1153: 1151: 1148: 1146: 1143: 1142: 1130: 1126: 1121: 1116: 1112: 1108: 1104: 1100: 1096: 1089: 1081: 1077: 1073: 1069: 1065: 1061: 1058:(6): 469–74. 1057: 1053: 1046: 1038: 1034: 1030: 1026: 1022: 1018: 1014: 1010: 1003: 995: 991: 986: 981: 977: 973: 969: 965: 961: 957: 953: 946: 938: 934: 929: 924: 919: 914: 910: 906: 902: 898: 894: 887: 878: 869: 867: 858: 854: 850: 846: 842: 838: 834: 830: 826: 822: 815: 813: 804: 800: 796: 792: 788: 784: 780: 776: 772: 768: 761: 753: 749: 745: 741: 737: 733: 729: 725: 721: 717: 710: 702: 698: 693: 688: 683: 678: 674: 670: 666: 662: 658: 651: 643: 639: 634: 629: 625: 621: 617: 610: 602: 598: 594: 590: 585: 580: 576: 572: 568: 561: 553: 549: 544: 539: 535: 531: 527: 523: 522:Plant Physiol 519: 512: 504: 500: 496: 492: 488: 484: 481:(5): 508–12. 480: 476: 469: 461: 457: 452: 447: 443: 439: 435: 428: 424: 413: 410: 408: 405: 403: 400: 398: 395: 394: 393: 390: 388: 385: 384: 378: 369: 367: 363: 359: 355: 351: 346: 344: 340: 336: 326: 324: 320: 316: 305: 303: 299: 295: 289:miRNA cloning 281: 279: 275: 271: 267: 263: 253: 251: 250:transcriptome 247: 243: 238: 236: 232: 221: 219: 215: 211: 207: 202: 200: 196: 192: 179: 175: 172: 169: 165: 162: 157: 154: 150: 147: 143: 139: 136: 132: 129: 125: 121: 117: 113: 109: 105: 104: 103: 95: 92: 91:messenger RNA 88: 84: 80: 76: 69: 68:transcription 65: 61: 57: 53: 49: 45: 41: 37: 33: 29: 25: 21: 1102: 1098: 1088: 1055: 1051: 1045: 1015:(7): 585–7. 1012: 1008: 1002: 959: 955: 945: 900: 896: 886: 877: 824: 820: 770: 766: 760: 719: 715: 709: 664: 660: 650: 623: 619: 609: 574: 570: 560: 528:(3): 890–7. 525: 521: 511: 478: 474: 468: 441: 437: 427: 375: 347: 335:endonuclease 332: 311: 297: 292: 269: 259: 239: 227: 203: 188: 120:biotinylated 101: 78: 74: 73: 64:deconvoluted 23: 1099:Epigenetics 577:(1): 11–8. 567:"SuperSAGE" 366:microarrays 350:blunt-ended 337:EcoP15I of 28:transcribed 420:References 274:Microarray 168:concatemer 36:eukaryotes 976:1532-2548 601:221579149 460:2002-4436 329:SuperSAGE 325:library. 294:MicroRNAs 1164:Category 1129:24184689 1080:19160070 1072:16721381 1037:29682662 1029:18587314 994:15020752 937:14676315 857:16281846 803:13436211 593:15617519 552:15020752 503:12709815 495:11981567 381:See also 339:phage P1 270:a priori 185:Analysis 146:ligation 98:Overview 85:used by 1145:SAGEnet 1120:3928179 905:Bibcode 849:7570003 829:Bibcode 821:Science 795:2047873 775:Bibcode 767:Science 752:4364361 744:6687628 724:Bibcode 701:6956902 669:Bibcode 402:RNA-Seq 356:, i.e. 235:GenBank 224:History 81:) is a 32:spliced 1127:  1117:  1078:  1070:  1035:  1027:  992:  985:389912 982:  974:  935:  928:307634 925:  855:  847:  801:  793:  750:  742:  716:Nature 699:  692:346801 689:  642:519770 640:  599:  591:  550:  543:389912 540:  501:  493:  458:  302:RT-PCR 298:et al. 210:tissue 161:ditags 112:tumour 1076:S2CID 1033:S2CID 853:S2CID 799:S2CID 748:S2CID 597:S2CID 499:S2CID 444:(1). 218:genes 214:tumor 206:genes 126:from 1125:PMID 1068:PMID 1025:PMID 990:PMID 972:ISSN 933:PMID 845:PMID 791:PMID 740:PMID 697:PMID 638:PMID 620:Cell 589:PMID 548:PMID 491:PMID 456:ISSN 343:cDNA 323:cDNA 315:mRNA 266:mRNA 199:gene 195:mRNA 128:mRNA 124:cDNA 118:and 108:mRNA 106:The 79:SAGE 52:cDNA 40:mRNA 34:(in 30:and 1115:PMC 1107:doi 1060:doi 1017:doi 980:PMC 964:doi 960:134 923:PMC 913:doi 901:100 837:doi 825:270 783:doi 771:252 732:doi 720:302 687:PMC 677:doi 628:doi 579:doi 538:PMC 530:doi 526:134 483:doi 446:doi 319:PCR 237:). 1166:: 1123:. 1113:. 1101:. 1097:. 1074:. 1066:. 1054:. 1031:. 1023:. 1011:. 988:. 978:. 970:. 958:. 954:. 931:. 921:. 911:. 899:. 895:. 865:^ 851:. 843:. 835:. 823:. 811:^ 797:. 789:. 781:. 769:. 746:. 738:. 730:. 718:. 695:. 685:. 675:. 665:79 663:. 659:. 636:. 624:18 622:. 618:. 595:. 587:. 573:. 569:. 546:. 536:. 524:. 520:. 497:. 489:. 479:20 477:. 454:. 440:. 436:. 368:. 48:ds 1131:. 1109:: 1103:9 1082:. 1062:: 1056:3 1039:. 1019:: 1013:5 996:. 966:: 939:. 915:: 907:: 859:. 839:: 831:: 805:. 785:: 777:: 754:. 734:: 726:: 703:. 679:: 671:: 644:. 630:: 603:. 581:: 575:7 554:. 532:: 505:. 485:: 462:. 448:: 442:4 130:. 77:( 50:-

Index


transcribed
spliced
eukaryotes
mRNA
reverse transcriptase
ds
cDNA
restriction enzymes
Sanger sequencing
deconvoluted
transcription
transcriptomic technique
molecular biologists
messenger RNA
mRNA
tumour
reverse transcriptase
biotinylated
cDNA
mRNA
restriction endonuclease
ligation
DNA polymerase
ditags
concatemer
DNA sequencers
sequence databases
mRNA
gene

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.