Knowledge

Recombination hotspot

Source đź“ť

970:"Despite 99% DNA similarity between humans and our nearest relative, chimpanzees, the locations of DNA swapping between chr</ref> omosomes, known as recombination hotspots, are almost entirely different. The surprising finding is reported in a paper published in Science by Oxford University statisticians and US and Dutch geneticists." 85:
Recombination hotspots do not seem to be solely caused by DNA sequence arrangements or chromosome structure. Alternatively, initiation sites of recombination hotspots can be coded for in the genome. Through the comparison of recombination between different mouse strains, locus Dsbc1 was identified as
73:
repeats: CGG-CCG, GAG-CTG, GAA-TTC, and GCN-NGC. These fragile sites are conserved in mammals and in yeast, suggesting that the instability is caused by something inherent to the molecular structure of DNA and is associated with DNA-repeat instability. These fragile sites are thought to form hairpin
122:
Homologous recombination is very frequent in RNA viruses. Recombination frequently occurs among very similar viruses, where crossover sites may occur anywhere across the genome, but after selection pressure these sites tend to localize in certain regions/hotspots. For example, in Enteroviruses,
77:
Recombination hotspots are also thought to arise due to higher-order chromosome structure that make some areas of the chromosome more accessible to recombination than others. A double stranded-break initiation site was identified in mice and yeast, located at a common chromatin feature: the
60:
Recombination can also occur due to errors in DNA replication that lead to genomic rearrangements. These events are often associated with pathology. However, genomic rearrangement is also thought to be a driving force in evolutionary development as it gives rise to novel gene combinations.
47:
Meiotic recombination through crossing over is thought to be a mechanism by which a cell promotes correct segregation of homologous chromosomes and the repair of DNA damages. Crossing over requires a DNA double-stranded break followed by strand invasion of the homolog and subsequent repair.
110:, as observed in a range of different organisms. Transcription associated recombination appears to be due, at least in part, to the ability of transcription to open the DNA structure and enhance accessibility of DNA to exogenous chemicals and internal metabolites that cause recombinogenic 806:
Nikolaidis, Marios; Mimouli, Kalliopi; Kyriakopoulou, Zaharoula; Tsimpidis, Michail; Tsakogiannis, Dimitris; Markoulatos, Panayotis; Amoutzias, Grigoris D. (January 2019). "Large-scale genomic analysis reveals recurrent patterns of intertypic recombination in human enteroviruses".
52:. Linkage disequilibrium has identified more than 30,000 hotspots within the human genome. In humans, the average number of crossover recombination events per hotspot is one crossover per 1,300 meioses, and the most extreme hotspot has a crossover frequency of one per 110 meioses. 94:
in the Dsbc1 region, providing evidence of a non-random, genetic basis for recombination initiation sites in mice. Rapid evolution of the PRDM9 gene explains the observation that human and chimpanzees share few recombination hotspots, despite a high level of sequence identity.
86:
a locus that contributes to the specification of initiation sites in the genome in at least two recombination hotspot locations. Additional crossing over mapping located the Dsbc1 locus to the 12.2 to 16.7-Mb region of mouse chromosome 17, which contains the PRDM9 gene. The
123:
recombination hotspots have been identified at the 5'UTR-capsid region junction, and at the beginning of the P2 region. These two hotspots flank the P1 region that encodes for the capsid. In coronaviruses, the Spike genomic region is a recombination hotspot.
74:
structures on the lagging strand during replication from single-stranded DNA base-pairing with itself in the trinucleotide repeat region. These hairpin structures cause DNA breaks that lead to a higher frequency of recombination at these sites.
61:
Recombination hotspots may arise from the interaction of the following selective forces: the benefit of driving genetic diversity through genomic rearrangement coupled with selection acting to maintain favorable gene combinations.
597:"Recombinogenic effects of DNA-damaging agents are synergistically increased by transcription in Saccharomyces cerevisiae. New insights into transcription-associated recombination" 27:
relative to a neutral expectation. The recombination rate within hotspots can be hundreds of times that of the surrounding region. Recombination hotspots result from higher
162:
Jeffreys AJ, Kauppi L, Neumann R (October 2001). "Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex".
70: 69:
DNA contains "fragile sites" within the sequence that are more prone to recombination. These fragile sites are associated with the following
39:
cells. This appellation can refer to recombination events resulting from the uneven distribution of programmed meiotic double-strand breaks.
850:
Nikolaidis, Marios; Markoulatos, Panayotis; Van de Peer, Yves; Oliver, Stephen G; Amoutzias, Grigorios D (2021-10-12). Hepp, Crystal (ed.).
852:"The neighborhood of the Spike gene is a hotspot for modular intertypic homologous and non-homologous recombination in Coronavirus genomes" 48:
Initiation sites for recombination are usually identified by mapping crossing over events through pedigree analysis or through analysis of
114:. These findings suggest that transcription-associated recombination may contribute significantly to recombination hotspot formation. 320:
Myers S, Spencer CC, Auton A, et al. (August 2006). "The distribution and causes of meiotic recombination in the human genome".
207:"Initiation of meiotic homologous recombination: flexibility, impact of histone modifications, and chromatin remodeling" 496:"The strong ADH1 promoter stimulates mitotic and meiotic recombination at the ADE6 gene of Schizosaccharomyces pombe" 111: 851: 364:
Aguilera, A.; Gomez-Gonzalez, B. (2008). "Genome Instability: A Mechanistic View of Its Causes and Consequences".
973: 993: 909:"Characterizing Transcriptional Regulatory Sequences in Coronaviruses and Their Role in Recombination" 91: 103: 24: 107: 49: 907:
Yang, Yiyan; Yan, Wei; Hall, A Brantley; Jiang, Xiaofang (2021-04-13). Rasmus, Nielsen (ed.).
142: 657: 8: 908: 941: 884: 832: 780: 747: 723: 690: 621: 596: 471: 446: 389: 297: 272: 239: 206: 187: 569: 544: 520: 495: 445:
Auton, Adam; Fledel-Alon, Adi; Pfeifer, Susanne; Venn, Oliver; SĂ©gurel, Laure (2012).
946: 928: 889: 871: 824: 785: 767: 763: 748:"Random nature of coronavirus RNA recombination in the absence of selection pressure" 728: 710: 671: 626: 574: 545:"Transcription enhances intrachromosomal homologous recombination in mammalian cells" 525: 476: 427: 381: 337: 302: 244: 226: 179: 836: 393: 191: 936: 920: 879: 863: 816: 775: 759: 718: 702: 661: 653: 616: 608: 564: 556: 515: 507: 466: 458: 423: 419: 373: 329: 292: 284: 273:"Prdm9 Is a Major Determinant of Meiotic Recombination Hotspots in Humans and Mice" 234: 218: 171: 612: 820: 644:
Gaillard H, Aguilera A (2016). "Transcription as a Threat to Genome Integrity".
222: 987: 932: 924: 875: 867: 771: 714: 230: 462: 288: 950: 893: 828: 732: 675: 630: 594: 560: 480: 385: 341: 306: 248: 183: 967: 789: 578: 529: 431: 511: 410:
Lichten, M.; Goldman, A. S. H. (1995). "Meiotic Recombination Hotspots".
706: 805: 666: 333: 175: 968:
Researchers find surprising difference between human and chimp genomes
849: 137: 377: 977: 132: 595:
García-Rubio M, Huertas P, González-Barrera S, Aguilera A (2003).
205:
Székvölgyi, Lóránt; Ohta, Kunihiro; Nicolas, Alain (2015-05-01).
79: 36: 32: 447:"A fine-scale chimpanzee genetic map from population sequencing" 20: 87: 444: 689:
Simon-Loriere, Etienne; Holmes, Edward C. (August 2011).
98: 28: 106:
in functional regions of DNA is strongly stimulated by
363: 204: 161: 493: 31:
break formation in these regions, and apply to both
688: 319: 985: 906: 643: 590: 588: 117: 409: 637: 585: 974:What's so hot about recombination hotspots? 746:Banner, L. R.; Lai, M. M. (November 1991). 494:Grimm C, Schaer P, Munz P, Kohli J (1991). 536: 487: 359: 357: 355: 353: 351: 211:Cold Spring Harbor Perspectives in Biology 78:trimethylation of lysine 4 of histone H3 ( 940: 883: 779: 745: 722: 665: 620: 568: 542: 519: 470: 405: 403: 296: 238: 55: 266: 264: 262: 260: 258: 42: 348: 986: 976:A primer on recombination hotspots by 400: 270: 99:Transcription associated recombination 801: 799: 658:10.1146/annurev-biochem-060815-014908 255: 64: 13: 961: 796: 14: 1005: 271:Baudat, F.; et al. (2010). 913:Molecular Biology and Evolution 900: 856:Molecular Biology and Evolution 843: 739: 691:"Why do RNA viruses recombine?" 682: 23:that exhibit elevated rates of 438: 424:10.1146/annurev.genet.29.1.423 313: 198: 155: 1: 148: 764:10.1016/0042-6822(91)90795-d 118:Viral recombination hotspots 7: 821:10.1016/j.virol.2018.10.006 695:Nature Reviews Microbiology 223:10.1101/cshperspect.a016527 126: 10: 1010: 613:10.1093/genetics/165.2.457 412:Annual Review of Genetics 92:histone methyltransferase 104:Homologous recombination 463:10.1126/science.1216872 366:Nature Reviews Genetics 289:10.1126/science.1183439 925:10.1093/molbev/msaa281 868:10.1093/molbev/msab292 561:10.1128/mcb.12.12.5311 56:Genomic rearrangements 50:linkage disequilibrium 17:Recombination hotspots 543:Nickoloff JA (1992). 143:Genetic recombination 43:Meiotic recombination 512:10.1128/mcb.11.1.289 707:10.1038/nrmicro2614 322:Biochem. Soc. Trans 994:Molecular genetics 646:Annu. Rev. Biochem 334:10.1042/BST0340526 176:10.1038/ng1001-217 457:(6078): 193–198. 19:are regions in a 1001: 980:in PLoS Biology 955: 954: 944: 919:(4): 1241–1248. 904: 898: 897: 887: 847: 841: 840: 803: 794: 793: 783: 743: 737: 736: 726: 686: 680: 679: 669: 641: 635: 634: 624: 592: 583: 582: 572: 540: 534: 533: 523: 491: 485: 484: 474: 442: 436: 435: 407: 398: 397: 361: 346: 345: 328:(Pt 4): 526–30. 317: 311: 310: 300: 283:(5967): 836–40. 268: 253: 252: 242: 202: 196: 195: 159: 65:Initiation sites 1009: 1008: 1004: 1003: 1002: 1000: 999: 998: 984: 983: 964: 962:Further reading 959: 958: 905: 901: 848: 844: 804: 797: 744: 740: 687: 683: 642: 638: 593: 586: 549:Mol. Cell. Biol 541: 537: 500:Mol. Cell. Biol 492: 488: 443: 439: 408: 401: 378:10.1038/nrg2268 362: 349: 318: 314: 269: 256: 203: 199: 160: 156: 151: 129: 120: 101: 90:gene encodes a 67: 58: 45: 12: 11: 5: 1007: 997: 996: 982: 981: 971: 963: 960: 957: 956: 899: 842: 795: 758:(1): 441–445. 738: 701:(8): 617–626. 681: 636: 584: 555:(12): 5311–8. 535: 486: 437: 399: 347: 312: 254: 217:(5): a016527. 197: 153: 152: 150: 147: 146: 145: 140: 135: 128: 125: 119: 116: 100: 97: 66: 63: 57: 54: 44: 41: 9: 6: 4: 3: 2: 1006: 995: 992: 991: 989: 979: 975: 972: 969: 966: 965: 952: 948: 943: 938: 934: 930: 926: 922: 918: 914: 910: 903: 895: 891: 886: 881: 877: 873: 869: 865: 861: 857: 853: 846: 838: 834: 830: 826: 822: 818: 814: 810: 802: 800: 791: 787: 782: 777: 773: 769: 765: 761: 757: 753: 749: 742: 734: 730: 725: 720: 716: 712: 708: 704: 700: 696: 692: 685: 677: 673: 668: 663: 659: 655: 651: 647: 640: 632: 628: 623: 618: 614: 610: 607:(2): 457–66. 606: 602: 598: 591: 589: 580: 576: 571: 566: 562: 558: 554: 550: 546: 539: 531: 527: 522: 517: 513: 509: 506:(1): 289–98. 505: 501: 497: 490: 482: 478: 473: 468: 464: 460: 456: 452: 448: 441: 433: 429: 425: 421: 417: 413: 406: 404: 395: 391: 387: 383: 379: 375: 372:(3): 204–17. 371: 367: 360: 358: 356: 354: 352: 343: 339: 335: 331: 327: 323: 316: 308: 304: 299: 294: 290: 286: 282: 278: 274: 267: 265: 263: 261: 259: 250: 246: 241: 236: 232: 228: 224: 220: 216: 212: 208: 201: 193: 189: 185: 181: 177: 173: 170:(2): 217–22. 169: 165: 158: 154: 144: 141: 139: 136: 134: 131: 130: 124: 115: 113: 109: 108:transcription 105: 96: 93: 89: 83: 81: 75: 72: 71:trinucleotide 62: 53: 51: 40: 38: 34: 30: 26: 25:recombination 22: 18: 916: 912: 902: 859: 855: 845: 812: 808: 755: 751: 741: 698: 694: 684: 649: 645: 639: 604: 600: 552: 548: 538: 503: 499: 489: 454: 450: 440: 415: 411: 369: 365: 325: 321: 315: 280: 276: 214: 210: 200: 167: 163: 157: 121: 102: 84: 76: 68: 59: 46: 16: 15: 862:: msab292. 667:11441/78271 652:: 291–317. 112:DNA damages 418:: 423–44. 164:Nat. Genet 149:References 933:1537-1719 876:0737-4038 815:: 72–80. 772:0042-6822 715:1740-1526 231:1943-0264 138:Evolution 988:Category 978:Jody Hey 951:33146390 894:34638137 837:53115712 829:30366300 809:Virology 752:Virology 733:21725337 676:27023844 631:14573461 601:Genetics 481:22422862 394:14024154 386:18227811 342:16856851 307:20044539 249:25934010 192:23026001 184:11586303 133:Chi site 127:See also 942:7665640 885:8549283 790:1656597 781:7131166 724:3324781 622:1462770 579:1333040 530:1986226 472:3532813 451:Science 432:8825482 298:4295902 277:Science 240:4448624 80:H3K4me3 37:meiotic 33:mitotic 949:  939:  931:  892:  882:  874:  835:  827:  788:  778:  770:  731:  721:  713:  674:  629:  619:  577:  570:360468 567:  528:  521:359619 518:  479:  469:  430:  392:  384:  340:  305:  295:  247:  237:  229:  190:  182:  21:genome 833:S2CID 390:S2CID 188:S2CID 88:PRDM9 947:PMID 929:ISSN 890:PMID 872:ISSN 825:PMID 786:PMID 768:ISSN 729:PMID 711:ISSN 672:PMID 627:PMID 575:PMID 526:PMID 477:PMID 428:PMID 382:PMID 338:PMID 303:PMID 245:PMID 227:ISSN 180:PMID 35:and 937:PMC 921:doi 880:PMC 864:doi 817:doi 813:526 776:PMC 760:doi 756:185 719:PMC 703:doi 662:hdl 654:doi 617:PMC 609:doi 605:165 565:PMC 557:doi 516:PMC 508:doi 467:PMC 459:doi 455:336 420:doi 374:doi 330:doi 293:PMC 285:doi 281:327 235:PMC 219:doi 172:doi 82:). 29:DNA 990:: 945:. 935:. 927:. 917:38 915:. 911:. 888:. 878:. 870:. 860:39 858:. 854:. 831:. 823:. 811:. 798:^ 784:. 774:. 766:. 754:. 750:. 727:. 717:. 709:. 697:. 693:. 670:. 660:. 650:85 648:. 625:. 615:. 603:. 599:. 587:^ 573:. 563:. 553:12 551:. 547:. 524:. 514:. 504:11 502:. 498:. 475:. 465:. 453:. 449:. 426:. 416:29 414:. 402:^ 388:. 380:. 368:. 350:^ 336:. 326:34 324:. 301:. 291:. 279:. 275:. 257:^ 243:. 233:. 225:. 213:. 209:. 186:. 178:. 168:29 166:. 953:. 923:: 896:. 866:: 839:. 819:: 792:. 762:: 735:. 705:: 699:9 678:. 664:: 656:: 633:. 611:: 581:. 559:: 532:. 510:: 483:. 461:: 434:. 422:: 396:. 376:: 370:9 344:. 332:: 309:. 287:: 251:. 221:: 215:7 194:. 174::

Index

genome
recombination
DNA
mitotic
meiotic
linkage disequilibrium
trinucleotide
H3K4me3
PRDM9
histone methyltransferase
Homologous recombination
transcription
DNA damages
Chi site
Evolution
Genetic recombination
doi
10.1038/ng1001-217
PMID
11586303
S2CID
23026001
"Initiation of meiotic homologous recombination: flexibility, impact of histone modifications, and chromatin remodeling"
doi
10.1101/cshperspect.a016527
ISSN
1943-0264
PMC
4448624
PMID

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑