Knowledge

Rate-of-living theory

Source đź“ť

20: 132:, and many other factors that affect maximum life span. Furthermore, a number of species with high metabolic rate, like bats and birds, are long-lived. In a 2007 analysis it was shown that, when modern statistical methods for correcting for the effects of body size and phylogeny are employed, metabolic rate does not correlate with longevity in mammals or birds. 68:
could be predicted by taking 3/4 the power of the organism's body weight. This finding was noteworthy because the inversion of the scaling exponent, between 0.2 and 0.33, also demonstrated the scaling for both lifespan and metabolic rate, and was colloquially called the "mouse-to-elephant" curve.
44:
in 1908, the theory was based on his observation that smaller animals had faster metabolisms and shorter lifespans compared to larger animals with slower metabolisms. The theory gained further credibility through the work of
23:
As metabolic rate increases, the lifespan of an organism is expected to decrease as a direct result. The rate at which this occurs is not fixed and thus the -45° slope in this graph is just an example and not a
85:, created in the 1950s. This theory stated that organisms age over time due to the accumulation of damage from free radicals in the body. It also showed that metabolic processes, specifically the 384: 89:, are prominent producers of free radicals. This provided a mechanistic link between Rubner's initial observations of decreased lifespan in conjunction with increased metabolism. 57:, in 1928, in which he expounded upon Rubner's theory and demonstrated a causal relationship between the slowing of metabolism and an increase in lifespan. 313: 392: 101:(evident with a lowered heartbeat) to increased life expectancy. This has been proposed by some to be the key to why animals like the 503:"An Analysis of the Relationship Between Metabolism, Developmental Schedules, and Longevity Using Phylogenetic Independent Contrasts" 702: 477: 53:
and cantaloupe seeds, which supported Rubner's initial observation. Pearl's findings were later published in his book,
460: 664:
Holloszy J. O.; Smith E. K. (1986). "Longevity of cold-exposed rats: A reevaluation of the "rate-of-living theory".
548:
Rubner, M. (1908). Das Problem der Lebensdauer und seiner beziehungen zum Wachstum und Ernährung. Munich: Oldenberg.
165:
Rubner, M. (1908). Das Problem det Lebensdaur und seiner beziehunger zum Wachstum und Ernarnhung. Munich: Oldenberg.
502: 125: 82: 141: 604: 242: 599: 237: 61: 98: 65: 8: 707: 527: 407: 274: 146: 681: 652: 617: 578: 532: 456: 449: 429: 366: 325: 294: 255: 207: 344: 673: 642: 609: 568: 522: 514: 419: 356: 286: 247: 197: 590:
Harman D (1956). "Aging: a theory based on free radical and radiation chemistry".
273:
Hulbert, A. J.; Pamplona, Reinald; Buffenstein, Rochelle; Buttemer, W. A. (2007).
228:
Harman D (1956). "Aging: a theory based on free radical and radiation chemistry".
677: 275:"Life and Death: Metabolic Rate, Membrane Composition, and Life Span of Animals" 290: 102: 613: 518: 507:
The Journals of Gerontology Series A: Biological Sciences and Medical Sciences
251: 696: 647: 630: 451:
Why We Age: What Science Is Discovering about the Body's Journey through Life
424: 121: 78: 46: 656: 621: 582: 536: 433: 370: 329: 298: 259: 211: 117: 86: 685: 385:"The Longevity Secret for Tortoises Is Held In Their Low Metabolism Rate" 361: 129: 50: 41: 33: 573: 556: 202: 185: 97:
Support for this theory has been bolstered by studies linking a lower
37: 19: 272: 631:"Living fast, dying when? The link between aging and energetics" 408:"Living fast, dying when? The link between aging and energetics" 113: 109: 60:
The theory gained additional credibility with the discovery of
118:
coupling between oxidative phosphorylation and ATP production
112:
expenditure can vary between 1.6 and 8.0 between species of
108:
However, the ratio of resting metabolic rate to total daily
628: 405: 629:
Speakman JR, Selman C, McLaren JS, Harper EJ (June 2002).
663: 314:"What Determines Longevity: Metabolic Rate or Stability?" 501:
de MagalhĂŁes JP, Costa J, Church GM (1 February 2007).
500: 342: 406:
Speakman JR, Selman C, McLaren JS, Harper EJ (2002).
312:
Olshansky, S. J.; Rattan, Suresh IS (25 July 2009).
448: 478:"Why do bats have such bizarrely long lifespans?" 345:"Metabolism, ubiquinone synthesis, and longevity" 694: 343:Aguilaniu, H.; Durieux, J.; Dillin, A. (2005). 311: 554: 183: 557:"Body size, energy metabolism and lifespan" 186:"Body size, energy metabolism and lifespan" 92: 64:in 1932. Kleiber found that an organism's 646: 603: 572: 526: 423: 360: 241: 201: 32:postulates that the faster an organism’s 589: 227: 18: 551:Raymond Pearl. The Rate of Living. 1928 174:Raymond Pearl. The Rate of Living. 1928 695: 475: 446: 116:. Animals also vary in the degree of 77:Mechanistic evidence was provided by 223: 221: 561:The Journal of Experimental Biology 455:. New York: John Wiley & Sons. 13: 14: 719: 218: 418:(6, Supplement 2): 1583S–1597S. 494: 469: 440: 49:, who conducted experiments on 399: 377: 336: 305: 266: 177: 168: 159: 1: 703:Theories of biological ageing 666:Journal of Applied Physiology 152: 678:10.1152/jappl.1986.61.5.1656 83:free radical theory of aging 72: 7: 476:Timmer, John (2019-06-11). 135: 16:Theory of biological ageing 10: 724: 291:10.1152/physrev.00047.2006 142:DNA damage theory of aging 105:can live over 150 years. 412:The Journal of Nutrition 614:10.1093/geronj/11.3.298 555:Speakman J. R. (2005). 519:10.1093/gerona/62.2.149 447:Austad, Steven (1997). 349:Genes & Development 252:10.1093/geronj/11.3.298 184:Speakman J. R. (2005). 93:Current state of theory 672:(Suppl 2): 1656–1660. 648:10.1093/jn/132.6.1583S 592:Journal of Gerontology 425:10.1093/jn/132.6.1583S 389:www.immortalhumans.com 230:Journal of Gerontology 25: 279:Physiological Reviews 30:rate of living theory 22: 635:Journal of Nutrition 99:basal metabolic rate 66:basal metabolic rate 40:. First proposed by 567:(Pt 9): 1717–1730. 362:10.1101/gad.1366505 318:Discovery Medicine 147:Longevity quotient 55:The Rate of Living 36:, the shorter its 26: 574:10.1242/jeb.01556 355:(20): 2399–2406. 203:10.1242/jeb.01556 124:in mitochondrial 62:Max Kleiber's law 715: 689: 660: 650: 641:(6): 1583S–97S. 625: 607: 586: 576: 541: 540: 530: 498: 492: 491: 489: 488: 473: 467: 466: 454: 444: 438: 437: 427: 403: 397: 396: 391:. Archived from 381: 375: 374: 364: 340: 334: 333: 309: 303: 302: 285:(4): 1175–1213. 270: 264: 263: 245: 225: 216: 215: 205: 196:(9): 1717–1730. 181: 175: 172: 166: 163: 128:, the amount of 120:, the amount of 723: 722: 718: 717: 716: 714: 713: 712: 693: 692: 605:10.1.1.663.3809 545: 544: 499: 495: 486: 484: 474: 470: 463: 445: 441: 404: 400: 383: 382: 378: 341: 337: 324:(28): 359–362. 310: 306: 271: 267: 243:10.1.1.663.3809 226: 219: 182: 178: 173: 169: 164: 160: 155: 138: 95: 75: 17: 12: 11: 5: 721: 711: 710: 705: 691: 690: 661: 626: 598:(3): 298–300. 587: 552: 549: 543: 542: 493: 468: 461: 439: 398: 395:on 2010-07-20. 376: 335: 304: 265: 236:(3): 298–300. 217: 176: 167: 157: 156: 154: 151: 150: 149: 144: 137: 134: 103:giant tortoise 94: 91: 74: 71: 15: 9: 6: 4: 3: 2: 720: 709: 706: 704: 701: 700: 698: 687: 683: 679: 675: 671: 667: 662: 658: 654: 649: 644: 640: 636: 632: 627: 623: 619: 615: 611: 606: 601: 597: 593: 588: 584: 580: 575: 570: 566: 562: 558: 553: 550: 547: 546: 538: 534: 529: 524: 520: 516: 513:(2): 149–60. 512: 508: 504: 497: 483: 479: 472: 464: 462:9780471148036 458: 453: 452: 443: 435: 431: 426: 421: 417: 413: 409: 402: 394: 390: 386: 380: 372: 368: 363: 358: 354: 350: 346: 339: 331: 327: 323: 319: 315: 308: 300: 296: 292: 288: 284: 280: 276: 269: 261: 257: 253: 249: 244: 239: 235: 231: 224: 222: 213: 209: 204: 199: 195: 191: 187: 180: 171: 162: 158: 148: 145: 143: 140: 139: 133: 131: 127: 123: 122:saturated fat 119: 115: 111: 106: 104: 100: 90: 88: 84: 80: 79:Denham Harman 70: 67: 63: 58: 56: 52: 48: 47:Raymond Pearl 43: 39: 35: 31: 21: 669: 665: 638: 634: 595: 591: 564: 560: 510: 506: 496: 485:. Retrieved 482:Ars Technica 481: 471: 450: 442: 415: 411: 401: 393:the original 388: 379: 352: 348: 338: 321: 317: 307: 282: 278: 268: 233: 229: 193: 189: 179: 170: 161: 107: 96: 87:mitochondria 76: 59: 54: 29: 27: 708:Metabolism 697:Categories 487:2021-08-31 190:J Exp Biol 153:References 130:DNA repair 51:drosophila 42:Max Rubner 34:metabolism 600:CiteSeerX 238:CiteSeerX 126:membranes 73:Mechanism 24:constant. 657:12042467 622:13332224 583:15855403 537:17339640 434:12042467 371:16230529 330:20704872 299:17928583 260:13332224 212:15855403 136:See also 38:lifespan 686:3781978 528:2288695 114:mammals 684:  655:  620:  602:  581:  535:  525:  459:  432:  369:  328:  297:  258:  240:  210:  110:energy 682:PMID 653:PMID 618:PMID 579:PMID 533:PMID 457:ISBN 430:PMID 367:PMID 326:PMID 295:PMID 256:PMID 208:PMID 28:The 674:doi 643:doi 639:132 610:doi 569:doi 565:208 523:PMC 515:doi 420:doi 416:132 357:doi 287:doi 248:doi 198:doi 194:208 81:'s 699:: 680:. 670:61 668:. 651:. 637:. 633:. 616:. 608:. 596:11 594:. 577:. 563:. 559:. 531:. 521:. 511:62 509:. 505:. 480:. 428:. 414:. 410:. 387:. 365:. 353:19 351:. 347:. 320:. 316:. 293:. 283:87 281:. 277:. 254:. 246:. 234:11 232:. 220:^ 206:. 192:. 188:. 688:. 676:: 659:. 645:: 624:. 612:: 585:. 571:: 539:. 517:: 490:. 465:. 436:. 422:: 373:. 359:: 332:. 322:5 301:. 289:: 262:. 250:: 214:. 200::

Index


metabolism
lifespan
Max Rubner
Raymond Pearl
drosophila
Max Kleiber's law
basal metabolic rate
Denham Harman
free radical theory of aging
mitochondria
basal metabolic rate
giant tortoise
energy
mammals
coupling between oxidative phosphorylation and ATP production
saturated fat
membranes
DNA repair
DNA damage theory of aging
Longevity quotient
"Body size, energy metabolism and lifespan"
doi
10.1242/jeb.01556
PMID
15855403


CiteSeerX
10.1.1.663.3809

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑