Knowledge

Radio astronomy

Source πŸ“

362: 450: 738:, and then stored for later analysis on magnetic tape or hard disk. At that later time, the data is correlated with data from other antennas similarly recorded, to produce the resulting image. Using this method it is possible to synthesise an antenna that is effectively the size of the Earth. The large distances between the telescopes enable very high angular resolutions to be achieved, much greater in fact than in any other field of astronomy. At the highest frequencies, synthesised beams less than 1 580: 2751: 156: 561: 913: 307: 4955: 4180: 928: 635:. This group used the principle of a sea-cliff interferometer in which the antenna (formerly a World War II radar) observed the Sun at sunrise with interference arising from the direct radiation from the Sun and the reflected radiation from the sea. With this baseline of almost 200 meters, the authors determined that the solar radiation during the burst phase was much smaller than the solar disk and arose from a region associated with a large 31: 778: 573: 753:(telescopes in Europe, China, South Africa and Puerto Rico). Each array usually operates separately, but occasional projects are observed together producing increased sensitivity. This is referred to as Global VLBI. There are also a VLBI networks, operating in Australia and New Zealand called the LBA (Long Baseline Array), and arrays in Japan, China and South Korea which observe together to form the East-Asian VLBI Network (EAVN). 4967: 4190: 1390: 279:. Jansky concluded that since the Sun (and therefore other stars) were not large emitters of radio noise, the strange radio interference may be generated by interstellar gas and dust in the galaxy, in particular, by "thermal agitation of charged particles." (Jansky's peak radio source, one of the brightest in the sky, was designated 401:, created a radiophysics group at the university where radio wave emissions from the Sun were observed and studied. This early research soon branched out into the observation of other celestial radio sources and interferometry techniques were pioneered to isolate the angular source of the detected emissions. 257:; the time it took for "fixed" astronomical objects, such as a star, to pass in front of the antenna every time the Earth rotated. By comparing his observations with optical astronomical maps, Jansky eventually concluded that the radiation source peaked when his antenna was aimed at the densest part of the 756:
Since its inception, recording data onto hard media was the only way to bring the data recorded at each telescope together for later correlation. However, the availability today of worldwide, high-bandwidth networks makes it possible to do VLBI in real time. This technique (referred to as e-VLBI) was
1604:
In April 1933, closing in on nearly two years of study, Jansky read his breakthrough paper, "Electrical Disturbances Apparently of Extraterrestrial Origin," before a meeting of the International Scientific Radio Union in Washington, DC. The strongest of the extraterrestrial waves, he found, emanate
711:
will add to each other while two waves that have opposite phases will cancel each other out. This creates a combined telescope that is the size of the antennas furthest apart in the array. In order to produce a high quality image, a large number of different separations between different telescopes
252:
crossing the view of his directional antenna. Continued analysis, however, showed that the source was not following the 24-hour daily cycle of the Sun exactly, but instead repeating on a cycle of 23 hours and 56 minutes. Jansky discussed the puzzling phenomena with his friend, astrophysicist Albert
1896:
Jansky died in 1950 at the age of 44, the result of a massive stroke stemming from his kidney disease. When that first 1933 paper was reprinted in Proceedings of the IEEE in 1984, the editors noted that Jansky's work would mostly likely have won a Nobel prize, had the scientist not died so young.
992:
In order to improve harmonisation in spectrum utilisation, the majority of service-allocations stipulated in this document were incorporated in national Tables of Frequency Allocations and Utilisations which is with-in the responsibility of the appropriate national administration. The allocation
294:
After 1935, Jansky wanted to investigate the radio waves from the Milky Way in further detail, but Bell Labs reassigned him to another project, so he did no further work in the field of astronomy. His pioneering efforts in the field of radio astronomy have been recognized by the naming of the
465:
Radio astronomers use different techniques to observe objects in the radio spectrum. Instruments may simply be pointed at an energetic radio source to analyze its emission. To "image" a region of the sky in more detail, multiple overlapping scans can be recorded and pieced together in a
651:
The Cambridge group of Ryle and Vonberg observed the Sun at 175 MHz for the first time in mid July 1946 with a Michelson interferometer consisting of two radio antennas with spacings of some tens of meters up to 240 meters. They showed that the radio radiation was smaller than 10
1605:
from a region in Sagittarius centered around right ascension 18 hours and declination β€” 20 degrees β€” in other words, from the direction of the galactic center. Jansky's discovery made the front page of the New York Times on 5 May 1933, and the field of radio astronomy was born.
272:
Jansky announced his discovery at a meeting in Washington, D.C., in April 1933 and the field of radio astronomy was born. In October 1933, his discovery was published in a journal article entitled "Electrical disturbances apparently of extraterrestrial origin" in the
341:
like Jansky, also detected radiowaves from the Sun. Both researchers were bound by wartime security surrounding radar, so Reber, who was not, published his 1944 findings first. Several other people independently discovered solar radio waves, including
324:
was inspired by Jansky's work, and built a parabolic radio telescope 9m in diameter in his backyard in 1937. He began by repeating Jansky's observations, and then conducted the first sky survey in the radio frequencies. On February 27, 1942,
712:
are required (the projected separation between any two telescopes as seen from the radio source is called a "baseline") – as many different baselines as possible are required in order to get a good quality image. For example, the
647:
had been demonstrated by numerous groups in Australia, Iran and the UK during World War II, who had observed interference fringes (the direct radar return radiation and the reflected signal from the sea) from incoming aircraft.
595:, VLA), and an image of the center section (VLBA) using a Very Long Baseline Array (Global VLBI) consisting of antennas in the US, Germany, Italy, Finland, Sweden and Spain. The jet of particles is suspected to be powered by a 247:
pen-and-paper recording system kept recording a persistent repeating signal or "hiss" of unknown origin. Since the signal peaked about every 24 hours, Jansky first suspected the source of the interference was the
940: 801:. This is because radio astronomy allows us to see things that are not detectable in optical astronomy. Such objects represent some of the most extreme and energetic physical processes in the universe. 781:
A radio image of the central region of the Milky Way galaxy. The arrow indicates a supernova remnant which is the location of a newly discovered transient, bursting low-frequency radio source
757:
originally pioneered in Japan, and more recently adopted in Australia and in Europe by the EVN (European VLBI Network) who perform an increasing number of scientific e-VLBI projects per year.
3870: 942: 429:
inversions required, they used aperture synthesis to create a 'One-Mile' and later a '5 km' effective aperture using the One-Mile and Ryle telescopes, respectively. They used the
730:
Beginning in the 1970s, improvements in the stability of radio telescope receivers permitted telescopes from all over the world (and even in Earth orbit) to be combined to perform
540:, whereas a radio telescope "dish" many times that size may, depending on the wavelength observed, only be able to resolve an object the size of the full moon (30 minutes of arc). 1376: 2074: 2055: 808:
was also first detected using radio telescopes. However, radio telescopes have also been used to investigate objects much closer to home, including observations of the
536:
counterparts. For example, a 1-meter diameter optical telescope is two million times bigger than the wavelength of light observed giving it a resolution of roughly 0.3
3528: 3420: 2236: 217:
between 1897 and 1900. These attempts were unable to detect any emission due to technical limitations of the instruments. The discovery of the radio reflecting
941: 656:
in size and also detected circular polarization in the Type I bursts. Two other groups had also detected circular polarization at about the same time (
496:
wavelengths at very high and dry sites, in order to minimize the water vapor content in the line of sight. Finally, transmitting devices on Earth may cause
789:
Radio astronomy has led to substantial increases in astronomical knowledge, particularly with the discovery of several classes of new objects, including
2696: 620: 4885: 177:
Before Jansky observed the Milky Way in the 1930s, physicists speculated that radio waves could be observed from astronomical sources. In the 1860s,
477:'s surface are limited to wavelengths that can pass through the atmosphere. At low frequencies or long wavelengths, transmission is limited by the 291:
at the center of the galaxy at a point now designated as Sagittarius A*. The asterisk indicates that the particles at Sagittarius A are ionized.)
4892: 3302: 2659: 1781:
Gillessen, S.; Eisenhauer, F.; Trippe, S.; et al. (2009). "Monitoring Stellar Orbits around the Massive Black Hole in the Galactic Center".
275: 2304: 1883: 3518: 2668: 221:
in 1902, led physicists to conclude that the layer would bounce any astronomical radio transmission back into space, making them undetectable.
1591: 772: 3508: 1008: 2629: 917: 434: 343: 4226: 3443: 2412: 2351: 734:. Instead of physically connecting the antennas, data received at each antenna is paired with timing information, usually from a local 438: 3209: 2326: 2113: 394: 138:, as the resolving power of an interferometer is set by the distance between its components, rather than the size of its components. 4148: 3899: 3622: 3459: 492:
interferes with radio astronomy at higher frequencies, which has led to building radio observatories that conduct observations at
4604: 2163: 2211: 1516: 2689: 147:
in that the former is a passive observation (i.e., receiving only) and the latter an active one (transmitting and receiving).
5007: 3860: 3582: 2389:
ITU Radio Regulations, CHAPTER II – Frequencies, ARTICLE 5 Frequency allocations, Section IV – Table of Frequency Allocations
2147: 1765: 1734: 1486: 958: 805: 108: 2620: 1913: 619:
in 1946. The first use of a radio interferometer for an astronomical observation was carried out by Payne-Scott, Pawsey and
3836: 3730: 1482: 3828: 418: 3662: 1947: 3498: 3320: 3263: 2682: 2493: 2232: 731: 725: 4997: 4723: 4193: 4059: 3428: 3330: 4541: 3934: 3552: 3257: 696: 351: 17: 453:
Window of radio waves observable from Earth, on rough plot of Earth's atmospheric absorption and scattering (or
4219: 3915: 3652: 3488: 1403: 565: 1457: 5002: 4827: 3338: 3202: 2185: 4493: 4102: 3780: 3680: 2449:
Hendrik Christoffel van de Hulst (1945). "Radiostraling uit het wereldruim. II. Herkomst der radiogolven".
896:
Earth's radio signal is mostly natural and stronger than for example Jupiter's, but is produced by Earth's
497: 410: 374: 253:
Melvin Skellett, who pointed out that the observed time between the signal peaks was the exact length of a
470:
image. The type of instrument used depends on the strength of the signal and the amount of detail needed.
4123: 4014: 3880: 3788: 3602: 3404: 3253: 2797: 2636: 885: 675:
consist of widely separated radio telescopes observing the same object that are connected together using
549: 266: 127: 83:. Subsequent observations have identified a number of different sources of radio emission. These include 76: 3844: 361: 4970: 4878: 4660: 4452: 3354: 2792: 2233:"A technological breakthrough for radio astronomy – Astronomical observations via high-speed data link" 966: 2656: 1876:"This Month in Physics History May 5, 1933: The New York Times Covers Discovery of Cosmic Radio Waves" 672: 555: 4899: 4716: 4681: 4674: 4521: 4212: 3642: 3562: 3279: 3269: 1875: 766: 186: 2652:
UnwantedEmissions.com A general reference for radio spectrum allocations, including radio astronomy.
4992: 4922: 4688: 4183: 3852: 3820: 3720: 3396: 3284: 3195: 3092: 2705: 2624: 746: 657: 430: 2258: 1587: 126:, that are either used singularly, or with multiple linked telescopes utilizing the techniques of 4783: 4569: 4428: 4407: 4366: 4330: 4298: 4092: 4082: 3546: 3412: 3142: 854: 849: 334: 2107: 969:
involving the use of radio astronomy". Subject of this radiocommunication service is to receive
4836: 4709: 4702: 4625: 4419: 3804: 3690: 2527: 661: 588: 182: 1751: 1724: 691:. This not only increases the total signal collected, it can also be used in a process called 421:
near Cambridge in the 1950s. During the late 1960s and early 1970s, as computers (such as the
333:
research officer, made the first detection of radio waves emitted by the Sun. Later that year
287:
in a strong magnetic field. Current thinking is that these are ions in orbit around a massive
4806: 4500: 4438: 4291: 4261: 4097: 4064: 3984: 3592: 3538: 3478: 3378: 2560:
Science, Cold War and American State: Lloyd V. Berkner and the Balance of Professional Ideals
962: 862: 750: 515: 422: 2132:
The New Astronomy: Opening the Electromagnetic Window and Expanding Our View of Planet Earth
4798: 4730: 4548: 4486: 4277: 4254: 4247: 4165: 3954: 3812: 3370: 3346: 3102: 3097: 2421: 2280: 2078: 1999: 1847: 1800: 1757: 1550: 932: 382: 366: 2376:
ITU Radio Regulations, Section IV. Radio Stations and Systems – Article 1.58, definition:
2330: 8: 4929: 4871: 4667: 4618: 4514: 4461: 4284: 4138: 3949: 3944: 3939: 3796: 3700: 3572: 3137: 3132: 3107: 3087: 2838: 2207: 1413: 974: 628: 240: 178: 170:, the world's first radio telescope, which was used to discover radio emissions from the 167: 163: 104: 64: 2646: 2425: 2284: 2082: 2003: 1851: 1804: 1554: 1348:
23.6–24               
4958: 4857: 4562: 4532: 4479: 4414: 4362: 4337: 4118: 4087: 4034: 3994: 3964: 3907: 3672: 3451: 3127: 2975: 2948: 2858: 2843: 2437: 2433: 2296: 2270: 1816: 1812: 1790: 1705: 1662: 1568: 1418: 692: 640: 612: 603:
The difficulty in achieving high resolutions with single radio telescopes led to radio
523: 519: 414: 135: 131: 2167: 1897:
Today the "jansky" is the unit of measurement for radio wave intensity (flux density).
449: 4864: 4850: 4649: 4634: 4611: 4555: 4323: 4143: 3989: 3312: 2983: 2979: 2960: 2956: 2952: 2588:
The Early Years of Radio Astronomy: Reflections Fifty Years after Jansky's Discovery.
2489: 2143: 1976: 1943: 1836:"Precessing jets in Sagittarius A – Gas dynamics in the central parsec of the galaxy" 1761: 1730: 1685: 1640: 1617: 1510: 874: 688: 665: 632: 533: 514:
Radio telescopes may need to be extremely large in order to receive signals with low
426: 326: 314: 2441: 2300: 1709: 1666: 4769: 4748: 4583: 4576: 4133: 4029: 4024: 3959: 3710: 3362: 3117: 2888: 2863: 2731: 2553:
A Single Sky: How an International Community Forged the Science of Radio Astronomy.
2468: 2429: 2288: 2135: 2030: 1972: 1855: 1820: 1808: 1697: 1654: 1629: 1572: 1558: 1452: 1395: 997:
primary allocation: is indicated by writing in capital letters (see example below)
713: 616: 592: 526:" in proportion to the wavelength of the electromagnetic radiation being observed, 482: 454: 206: 71:. The first detection of radio waves from an astronomical object was in 1933, when 38: 1478: 4915: 4590: 4507: 4445: 4344: 4054: 3999: 3243: 3166: 3079: 2921: 2853: 2663: 1620:(October 1933). "Electrical disturbances apparently of extraterrestrial origin". 1433: 1423: 837: 782: 528: 509: 390: 210: 143: 123: 119: 68: 1909: 1003:
exclusive or shared utilization: is within the responsibility of administrations
4762: 4695: 4597: 4128: 4009: 3112: 2896: 2130:
Orchiston, W. (2005). "Dr Elizabeth Alexander: First Female Radio Astronomer".
1939: 1701: 1673:
Introduction To "Electrical Disturbances Apparently Of Extraterrestrial Origin"
1633: 868: 845: 644: 604: 579: 355: 42: 35: 1672: 1658: 1643:(July 1998). "Electrical disturbances apparently of extraterrestrial origin". 4986: 4820: 4049: 4004: 3979: 3122: 3059: 3040: 2944: 2878: 2873: 2868: 2117: 2035: 2018: 1428: 833: 739: 708: 684: 676: 653: 406: 280: 262: 254: 244: 50: 2750: 2139: 560: 4776: 4755: 4373: 3974: 3247: 2998: 2993: 2971: 2966: 2674: 1438: 1381: 813: 798: 735: 386: 330: 296: 235:, he was assigned the task to investigate static that might interfere with 214: 92: 30: 4843: 4153: 4044: 4039: 3969: 3171: 2848: 2830: 2726: 2275: 2134:. Astrophysics and Space Science Library. Vol. 334. pp. 71–92. 608: 402: 321: 310: 228: 224: 190: 159: 72: 27:
Subfield of astronomy that studies celestial objects at radio frequencies
1990:
Kellerman, K. I. (1999). "Grote Reber's Observations on Cosmic Static".
1357:
31.3–31.5            
912: 500:. Because of this, many radio observatories are built at remote places. 306: 4813: 4790: 4270: 3152: 2820: 2815: 2769: 2746: 1645: 1408: 970: 927: 921: 901: 881:
are a type of supernova remnant that shows highly synchronous emission.
596: 584: 537: 493: 478: 458: 288: 236: 218: 198: 46: 4908: 4235: 4158: 3386: 3161: 3008: 2784: 2762: 2741: 2716: 1688:(October 1935). "A note on the source of interstellar interference". 1563: 1538: 889: 841: 695:
to vastly increase resolution. This technique works by superposing ("
680: 643:
in a ground-breaking paper published in 1947. The use of a sea-cliff
481:, which reflects waves with frequencies less than its characteristic 338: 284: 258: 232: 194: 171: 155: 80: 60: 2378:
radio astronomy service / radio astronomy radiocommunication service
777: 572: 4019: 3871:
Special Astrophysical Observatory of the Russian Academy of Science
3761: 3176: 2936: 2736: 2651: 2641: 2292: 1860: 1835: 134:. The use of interferometry allows radio astronomy to achieve high 112: 3187: 1795: 1339:
22.21–22.5          
1330:
15.35–15.4          
1321:
14.47–14.5          
1312:
10.68–10.7          
3612: 3045: 3031: 2352:"The Earth is a Strong Radio Source even without Man's Tinkering" 2181: 828: 636: 347: 2508:
Explorers of the Southern Sky: A History of Australian Astronomy
2448: 2410:
Gart Westerhout (1972). "The early history of radio astronomy".
1011:
the frequency bands are allocated (primary or secondary) to the
4938: 3632: 3237: 3069: 3064: 3054: 3026: 3021: 3016: 2987: 2916: 2344: 1073:
25 550–25 650         
897: 878: 858: 794: 790: 568:(ALMA), many antennas linked together in a radio interferometer 467: 370: 300: 201:. Several attempts were made to detect radio emission from the 100: 96: 88: 611:
and Australian engineer, radiophysicist, and radio astronomer
417:. The radio astronomy group in Cambridge went on to found the 3751: 2911: 2807: 2721: 2166:. Cambridge University: Department of Physics. Archived from 1963:
Southworth, G.C. (1945). "Microwave radiation from the Sun".
1170:
1 400–1 427   EARTH EXPLORATION-SATELLITE (passive)
985:
The allocation of radio frequencies is provided according to
489: 486: 474: 398: 4204: 1882:. American Physical Society (May 2015) Volume 24, Number 5. 716:
has 27 telescopes giving 351 independent baselines at once.
213:
in 1896 and a centimeter wave radiation apparatus set up by
3233: 2906: 2901: 2633: 2615: 2583:
Green Bank, WV: National Radio Astronomy Observatory, 1983.
2263:
The Publications of the Astronomical Society of the Pacific
1034:     Region 3      1031:     Region 2      1028:     Region 1      704: 700: 425:) became capable of handling the computationally intensive 84: 2071:
Report of the Investigation of the "Norfolk Island Effect"
227:
made the discovery of the first astronomical radio source
4380: 2926: 1780: 823: 809: 283:
in the 1950s and was later hypothesized to be emitted by
249: 231:
in the early 1930s. As a newly hired radio engineer with
202: 3529:
Combined Array for Research in Millimeter-wave Astronomy
2647:
Visualization of Radio Telescope Data Using Google Earth
2546:
Introduction to Solar Radio Astronomy and Radio Physics.
2537:
Jobn D. Kraus, Martt; E. Tiuri, and Antti V. RΓ€isΓ€nen,
749:(with telescopes located across North America) and the 639:
group. The Australia group laid out the principles of
591:), a radio image of same galaxy using interferometry ( 91:, as well as entirely new classes of objects, such as 2590:
Cambridge, England: Cambridge University Press, 1984.
1588:"Karl Jansky and the Discovery of Cosmic Radio Waves" 2657:
Improving Radio Astronomy Images by Array Processing
2472:
The Invisible Universe: The Story of Radio Astronomy
2096:
Alexander, F.E.S. (1946). "The Sun's radio energy".
1671:
along with an explanatory preface by W.A. Imbriale,
1371: 993:
might be primary, secondary, exclusive, and shared.
745:
The pre-eminent VLBI arrays operating today are the
719: 703:
from the different telescopes on the principle that
385:, where ionospheric research had taken place during 2506:Raymond Haynes, Roslynn Haynes, and Richard McGee, 2208:"East Asia VLBI Network and Asia Pacific Telescope" 1000:
secondary allocation: is indicated by small letters
205:including an experiment by German astrophysicists 3633:Multi-Element Radio Linked Interferometer Network 2595:Cosmic Noise: A History of Early Radio Astronomy. 2565:Joseph Lade Pawsey and Ronald Newbold Bracewell, 239:transatlantic voice transmissions. Using a large 4984: 2075:Department of Scientific and Industrial Research 2056:Department of Scientific and Industrial Research 1726:Relativity, Astrophysics and Cosmology: Volume 1 2409: 1536: 276:Proceedings of the Institute of Radio Engineers 3519:Canadian Hydrogen Intensity Mapping Experiment 2625:Reber Radio Telescope – National Park Services 1505: 1503: 1019: 532:have to be much larger in comparison to their 4220: 3203: 2690: 2616:nrao.edu National Radio Astronomy Observatory 2604:. Reidel Publishing Company, Dordrecht, 1982. 2581:Serendipitous Discoveries in Radio Astronomy. 989:of the ITU Radio Regulations (edition 2012). 812:and solar activity, and radar mapping of the 773:Radio object with continuous optical spectrum 627:converted radar antenna (broadside array) at 3509:Australian Square Kilometre Array Pathfinder 2704: 2488:Princeton University Press, Princeton 2016, 1512:World of Scientific Discovery on Karl Jansky 441:(3C) Cambridge Catalogues of Radio Sources. 3303:500 meter Aperture Spherical Telescope 1539:"Radio waves from outside the solar system" 1500: 918:Goldstone Deep Space Communications Complex 907: 556:Radio telescope Β§ Radio interferometry 397:that had carried out wartime research into 4227: 4213: 3210: 3196: 2766:        2697: 2683: 2413:Annals of the New York Academy of Sciences 1962: 1753:Viewing the Constellations with Binoculars 955:radio astronomy radiocommunication service 861:have jets of charged particles which emit 413:developed the technique of Earth-rotation 2274: 2129: 2123: 2095: 2068: 2049: 2034: 1989: 1859: 1794: 1722: 1585: 1562: 395:Telecommunications Research Establishment 317:, world's first parabolic radio telescope 118:Radio astronomy is conducted using large 3623:Molonglo Observatory Synthesis Telescope 3460:Warkworth Radio Astronomical Observatory 1458:WΓΌrzburg radar#Post-war use in astronomy 1020: 938: 926: 911: 776: 607:, developed by British radio astronomer 578: 571: 559: 448: 360: 305: 154: 29: 2451:Nederlands Tijdschrift voor Natuurkunde 2256: 2250: 980: 959:International Telecommunication Union's 957:) is, according to Article 1.58 of the 760: 543: 14: 4985: 2307:from the original on 12 September 2009 2016: 1886:from the original on 14 September 2021 1749: 1684: 1639: 1616: 1594:from the original on 29 September 2021 877:can also show diffuse radio emission; 522:is a function of the diameter of the " 4208: 4124:Cosmic microwave background radiation 3861:Pushchino Radio Astronomy Observatory 3583:Large Latin American Millimeter Array 3191: 2678: 1833: 806:cosmic microwave background radiation 109:cosmic microwave background radiation 4966: 4189: 3837:National Radio Astronomy Observatory 3731:Westerbork Synthesis Radio Telescope 2642:Society of Amateur Radio Astronomers 2541:, 2nd ed, Cygnus-Quasar Books, 1986. 1483:National Radio Astronomy Observatory 1476: 848:thought to be a radio wave emitting 433:to map the radio sky, producing the 115:, was made through radio astronomy. 3829:Mullard Radio Astronomy Observatory 3217: 2579:D.T. Wilkinson and P.J.E. Peebles, 2503:. Cambridge University Press, 1985. 1933: 1868: 503: 419:Mullard Radio Astronomy Observatory 79:reported radiation coming from the 24: 3663:Northern Extended Millimeter Array 2749: 2510:. Cambridge University Press 1996. 2481:. Cambridge University Press 1990. 2434:10.1111/j.1749-6632.1972.tb12724.x 2397: 1579: 25: 5019: 3499:Australia Telescope Compact Array 3321:Caltech Submillimeter Observatory 3264:Very Long Baseline Interferometry 2609: 2597:Cambridge University Press, 2009. 2572:Kristen Rohlfs, Thomas L Wilson, 2515:The Evolution of Radio Astronomy. 1965:Journal of the Franklin Institute 1590:. American Astronomical Society. 1153:MOBILE except aeronautical mobile 871:often show diffuse radio emission 732:very-long-baseline interferometry 726:Very-long-baseline interferometry 720:Very-long-baseline interferometry 4965: 4954: 4953: 4724:Southern African Large Telescope 4188: 4179: 4178: 2077:, Radio Development Laboratory. 1479:"Pre-History of Radio Astronomy" 1388: 1374: 393:along with other members of the 3553:Giant Metrewave Radio Telescope 3421:UTR-2 decameter radio telescope 2555:Cambridge, MA: MIT Press, 2013. 2532:Introduction to Radio Astronomy 2382: 2370: 2319: 2239:from the original on 2008-12-03 2225: 2214:from the original on 2021-04-28 2200: 2188:from the original on 1 May 2021 2174: 2156: 2089: 2062: 2058:, Radio Development Laboratory. 2043: 2010: 1983: 1956: 1927: 1916:from the original on 2020-08-07 1902: 1827: 1519:from the original on 2012-01-21 1489:from the original on 2020-06-15 1055:      583:An optical image of the galaxy 369:first recognised evidence of a 111:, regarded as evidence for the 3653:Northern Cross Radio Telescope 3489:Atacama Large Millimeter Array 2621:The History of Radio Astronomy 2522:Radio Astronomy and Cosmology. 2479:Modern Cosmology in Retrospect 1774: 1743: 1716: 1678: 1610: 1530: 1470: 1404:Atacama Large Millimeter Array 566:Atacama Large Millimeter Array 13: 1: 4234: 2019:"175 MHz-Strahlung der Sonne" 1750:Kambič, B. (6 October 2009). 1463: 1143:406.1–410     FIXED 1116:322–328.6     FIXED 444: 141:Radio astronomy differs from 5008:Astronomical sub-disciplines 4103:Gravitational-wave astronomy 3681:Primeval Structure Telescope 2517:Neale Watson Academic, 1973. 2257:Shields, Gregory A. (1999). 1977:10.1016/0016-0032(45)90163-3 1813:10.1088/0004-637X/692/2/1075 1638:Reprinted 65 years later as 1026: 707:that coincide with the same 599:in the center of the galaxy. 498:radio-frequency interference 461:of electromagnetic radiation 411:Cavendish Astrophysics Group 375:Cambridge University Library 7: 4015:Christiaan Alexander Muller 3881:Vermilion River Observatory 3789:Algonquin Radio Observatory 3254:Astronomical interferometer 2798:Ultra-high-energy gamma ray 2637:Goddard Space Flight Center 2602:Classics in Radio Astronomy 1367: 1007:In line to the appropriate 886:cosmic microwave background 623:on 26 January 1946 using a 550:Astronomical interferometry 233:Bell Telephone Laboratories 77:Bell Telephone Laboratories 10: 5024: 3355:Large Millimeter Telescope 2793:Very-high-energy gamma ray 2600:Woodruff T. Sullivan III, 2593:Woodruff T. Sullivan III, 2586:Woodruff T. Sullivan III, 2486:Essential Radio Astronomy. 2069:Alexander, F.E.S. (1945). 2050:Alexander, F.E.S. (1945). 1729:. Wiley-VCH. p. 163. 1702:10.1109/JRPROC.1935.227275 1634:10.1109/JRPROC.1933.227458 1292:satellite (Earth-to-space) 1257:SATELLITE (Earth-to-space) 967:radiocommunication service 933:Green Bank radio telescope 770: 764: 723: 553: 547: 507: 243:, Jansky noticed that his 150: 4948: 4740: 4717:Large Binocular Telescope 4682:Extremely Large Telescope 4675:Extremely large telescope 4648: 4531: 4471: 4392: 4354: 4315: 4308: 4242: 4174: 4111: 4073: 3927: 3892: 3779: 3744: 3643:Murchison Widefield Array 3563:Green Bank Interferometer 3471: 3387:RATAN-600 Radio Telescope 3293: 3278: 3270:Astronomical radio source 3225: 3151: 3078: 3007: 2935: 2887: 2829: 2806: 2783: 2712: 2630:Radio Telescope Developed 2484:James J. Condon, et al.: 2052:Long Wave Solar Radiation 1783:The Astrophysical Journal 1659:10.1109/JPROC.1998.681378 1445:(radio instrument on the 1356: 1347: 1338: 1329: 1320: 1311: 1298: 1261: 1226: 1196: 1169: 1142: 1115: 1080: 1072: 1038: 767:Astronomical radio source 197:, and could exist at any 187:electromagnetic radiation 4689:Gran Telescopio Canarias 3853:Onsala Space Observatory 3845:NanΓ§ay Radio Observatory 3821:Jodrell Bank Observatory 3721:Very Long Baseline Array 3397:Sardinia Radio Telescope 2706:Electromagnetic spectrum 2574:Tools of Radio Astronomy 2259:"A brief history of AGN" 2036:10.1002/phbl.19470030508 1586:Hirshfeld, Alan (2018). 1537:Jansky, Karl G. (1933). 1184:SPACE RESEARCH (passive) 908:International regulation 892:radio/microwave emission 747:Very Long Baseline Array 431:Cambridge Interferometer 373:, in 1967 (exhibited at 4998:Observational astronomy 4784:Astrology and astronomy 4494:Gravitational radiation 4083:Submillimetre astronomy 3695:Australia, South Africa 3547:Event Horizon Telescope 2669:What is Radio Astronomy 2632:– a brief history from 2140:10.1007/1-4020-3724-4_5 2098:Radio & Electronics 1013:radio astronomy service 951:Radio astronomy service 850:supermassive black hole 819:Other sources include: 335:George Clark Southworth 107:. The discovery of the 4703:Hubble Space Telescope 3805:Green Bank Observatory 3691:Square Kilometre Array 2754: 2569:Clarendon Press, 1955. 2528:Roger Clifton Jennison 2477:Bruno Bertotti (ed.), 1723:BeluseviΔ‡, R. (2008). 1022:Allocation to services 977:or celestial objects. 947: 936: 924: 855:Active galactic nuclei 786: 600: 576: 569: 473:Observations from the 462: 378: 318: 174: 53: 4807:Astroparticle physics 4542:Australian Aboriginal 4098:High-energy astronomy 3985:Sebastian von Hoerner 3593:Long Wavelength Array 3539:European VLBI Network 3479:Allen Telescope Array 3379:Qitai Radio Telescope 2753: 2499:Robin Michael Green, 2356:Geophysical Institute 2023:Physikalische BlΓ€tter 1992:Astrophysical Journal 1840:Astrophysical Journal 945: 930: 915: 863:synchrotron radiation 780: 751:European VLBI Network 673:radio interferometers 582: 575: 563: 516:signal-to-noise ratio 452: 364: 309: 158: 33: 5003:Astronomical imaging 4799:Astronomers Monument 4731:Very Large Telescope 4278:Astronomical symbols 4166:Solar radio emission 3955:Jocelyn Bell Burnell 3813:Haystack Observatory 3347:Green Bank Telescope 3331:Effelsberg Telescope 1834:Brown, R.L. (1982). 1760:. pp. 131–133. 981:Frequency allocation 965:(RR), defined as "A 946:Jupiter radio-bursts 931:Antenna 110m of the 916:Antenna 70 m of the 761:Astronomical sources 544:Radio interferometry 383:Cambridge University 367:Jocelyn Bell Burnell 295:fundamental unit of 128:radio interferometry 4872:List of astronomers 4285:Astronomical object 4139:Pulsar timing array 3945:Edward George Bowen 3935:Elizabeth Alexander 3797:Arecibo Observatory 3701:Submillimeter Array 3603:Low-Frequency Array 3573:Korean VLBI Network 3439:Southern Hemisphere 3350:(West Virginia, US) 2839:Extreme ultraviolet 2501:Spherical Astronomy 2426:1972NYASA.198..211W 2285:1999PASP..111..661S 2235:. 26 January 2004. 2184:. 7 December 2016. 2083:1945rdlr.book.....A 2017:Schott, E. (1947). 2004:1999ApJ...525C.371K 1852:1982ApJ...262..110B 1805:2009ApJ...692.1075G 1555:1933Natur.132...66J 1414:Gamma-ray astronomy 1361:and other services 1352:and other services 1343:and other services 1334:and other services 1325:and other services 1316:and other services 1307:and other services 1287:Radiodetermination- 1252:RADIODETERMINATION- 900:and bounces at the 844:, with one portion 687:, or other type of 352:Elizabeth Alexander 241:directional antenna 189:is associated with 179:James Clerk Maxwell 168:Holmdel, New Jersey 164:directional antenna 4858:Physical cosmology 4119:Aperture synthesis 4088:Infrared astronomy 4025:Joseph Lade Pawsey 3995:Kenneth Kellermann 3965:Nan Dieter-Conklin 3673:One-Mile Telescope 3452:Parkes Observatory 2844:Vacuum ultraviolet 2755: 2662:2011-04-04 at the 2562:. Routledge, 2000. 2558:Allan A. Needell, 2551:David P.D. Munns, 2520:David L. Jauncey, 2182:"VLBI at the ATNF" 1934:Hey, J.S. (1975). 1686:Jansky, Karl Guthe 1641:Jansky, Karl Guthe 1618:Jansky, Karl Guthe 1419:Infrared astronomy 948: 937: 925: 875:Supernova remnants 787: 693:aperture synthesis 641:aperture synthesis 613:Joseph Lade Pawsey 601: 577: 570: 520:angular resolution 463: 415:aperture synthesis 379: 319: 175: 136:angular resolution 132:aperture synthesis 54: 4980: 4979: 4865:Quantum cosmology 4851:Planetary geology 4644: 4643: 4355:Celestial subject 4202: 4201: 4144:Radio propagation 4093:Optical astronomy 3990:Karl Guthe Jansky 3800:(Puerto Rico, US) 3775: 3774: 3567:West Virginia, US 3316:(Puerto Rico, US) 3313:Arecibo Telescope 3185: 3184: 2889:Visible (optical) 2544:Albrecht KrΓΌger, 2164:"Radio Astronomy" 2149:978-1-4020-3723-8 1767:978-0-387-85355-0 1736:978-3-527-40764-4 1365: 1364: 1265:MOBILE-SATELLITE 1230:MOBILE-SATELLITE 1200:MOBILE-SATELLITE 963:Radio Regulations 943: 904:back into space. 689:transmission line 666:James Stanley Hey 660:in Australia and 633:Sydney, Australia 427:Fourier transform 327:James Stanley Hey 315:Wheaton, Illinois 303:(Jy), after him. 166:(early 1930s) in 162:and his rotating 69:radio frequencies 65:celestial objects 59:is a subfield of 16:(Redirected from 5015: 4973: 4969: 4968: 4961: 4957: 4956: 4941: 4932: 4925: 4918: 4911: 4902: 4895: 4888: 4886:Medieval Islamic 4881: 4874: 4867: 4860: 4853: 4846: 4839: 4830: 4823: 4816: 4809: 4802: 4793: 4786: 4779: 4772: 4770:Astroinformatics 4765: 4758: 4751: 4749:Archaeoastronomy 4733: 4726: 4719: 4712: 4710:Keck Observatory 4705: 4698: 4691: 4684: 4677: 4670: 4663: 4637: 4628: 4621: 4614: 4607: 4605:Medieval Islamic 4600: 4593: 4586: 4579: 4572: 4565: 4558: 4551: 4544: 4524: 4517: 4510: 4503: 4496: 4489: 4482: 4464: 4455: 4448: 4441: 4434: 4432: 4424: 4422: 4410: 4403: 4383: 4376: 4369: 4347: 4340: 4333: 4326: 4313: 4312: 4301: 4294: 4287: 4280: 4273: 4264: 4257: 4250: 4229: 4222: 4215: 4206: 4205: 4192: 4191: 4182: 4181: 4159:HD 164595 signal 4134:Odd radio circle 4112:Related articles 4030:Ruby Payne-Scott 3960:Arthur Covington 3950:Ronald Bracewell 3920: 3912: 3904: 3885: 3876: 3866: 3857: 3849: 3841: 3833: 3825: 3817: 3809: 3801: 3793: 3767: 3757: 3736: 3726: 3716: 3711:Very Large Array 3706: 3696: 3686: 3677: 3668: 3658: 3648: 3638: 3628: 3618: 3608: 3598: 3588: 3587:Argentina/Brazil 3578: 3568: 3558: 3543: 3534: 3524: 3514: 3504: 3494: 3484: 3464: 3456: 3448: 3440: 3433: 3429:Yevpatoria RT-70 3425: 3417: 3409: 3401: 3392: 3383: 3375: 3367: 3363:Lovell Telescope 3359: 3351: 3343: 3335: 3326: 3317: 3308: 3291: 3290: 3280:Radio telescopes 3212: 3205: 3198: 3189: 3188: 2776: 2774: 2767: 2760: 2699: 2692: 2685: 2676: 2675: 2576:. Springer 2003. 2567:Radio Astronomy. 2469:Gerrit Verschuur 2458: 2445: 2391: 2386: 2380: 2374: 2368: 2367: 2365: 2363: 2348: 2342: 2341: 2339: 2338: 2329:. Archived from 2323: 2317: 2316: 2314: 2312: 2278: 2276:astro-ph/9903401 2269:(760): 661–678. 2254: 2248: 2247: 2245: 2244: 2229: 2223: 2222: 2220: 2219: 2204: 2198: 2197: 2195: 2193: 2178: 2172: 2171: 2160: 2154: 2153: 2127: 2121: 2111:holdings at NLNZ 2105: 2093: 2087: 2086: 2066: 2060: 2059: 2047: 2041: 2040: 2038: 2014: 2008: 2007: 1987: 1981: 1980: 1960: 1954: 1953: 1938:(2nd ed.). 1931: 1925: 1924: 1922: 1921: 1906: 1900: 1899: 1893: 1891: 1872: 1866: 1865: 1863: 1831: 1825: 1824: 1798: 1789:(2): 1075–1109. 1778: 1772: 1771: 1747: 1741: 1740: 1720: 1714: 1713: 1682: 1676: 1670: 1653:(7): 1510–1515. 1637: 1614: 1608: 1607: 1601: 1599: 1583: 1577: 1576: 1566: 1564:10.1038/132066a0 1534: 1528: 1527: 1525: 1524: 1507: 1498: 1497: 1495: 1494: 1474: 1453:Radio Galaxy Zoo 1449:Jupiter orbiter) 1398: 1396:Astronomy portal 1393: 1392: 1391: 1384: 1379: 1378: 1377: 1270:(Earth-to-space) 1235:(Earth-to-space) 1205:(Earth-to-space) 1018: 1017: 944: 714:Very Large Array 621:Lindsay McCready 617:Ruby Payne-Scott 593:Very Large Array 529:radio telescopes 504:Radio telescopes 483:plasma frequency 207:Johannes Wilsing 124:radio telescopes 39:Very Large Array 21: 5023: 5022: 5018: 5017: 5016: 5014: 5013: 5012: 4993:Radio astronomy 4983: 4982: 4981: 4976: 4964: 4952: 4944: 4937: 4928: 4921: 4916:X-ray telescope 4914: 4907: 4898: 4891: 4884: 4877: 4870: 4863: 4856: 4849: 4842: 4835: 4826: 4819: 4812: 4805: 4796: 4789: 4782: 4775: 4768: 4761: 4754: 4747: 4736: 4729: 4722: 4715: 4708: 4701: 4694: 4687: 4680: 4673: 4666: 4659: 4651: 4640: 4633: 4624: 4617: 4610: 4603: 4596: 4589: 4582: 4575: 4568: 4561: 4554: 4547: 4540: 4527: 4522:Multi-messenger 4520: 4513: 4506: 4499: 4492: 4485: 4478: 4467: 4460: 4451: 4444: 4437: 4430: 4427: 4418: 4413: 4406: 4399: 4388: 4379: 4372: 4361: 4350: 4345:Space telescope 4343: 4336: 4329: 4322: 4304: 4297: 4290: 4283: 4276: 4269: 4260: 4253: 4246: 4238: 4233: 4203: 4198: 4170: 4107: 4075: 4069: 4055:Gart Westerhout 3923: 3918: 3910: 3902: 3888: 3883: 3874: 3864: 3863:(PRAO ASC LPI, 3855: 3847: 3839: 3831: 3823: 3815: 3807: 3799: 3791: 3771: 3765: 3755: 3740: 3734: 3724: 3714: 3704: 3694: 3684: 3675: 3666: 3656: 3646: 3636: 3626: 3616: 3606: 3596: 3586: 3576: 3566: 3556: 3541: 3532: 3522: 3512: 3502: 3492: 3482: 3472:Interferometers 3467: 3462: 3454: 3446: 3438: 3431: 3423: 3415: 3413:Usuda Telescope 3407: 3399: 3390: 3381: 3373: 3365: 3357: 3349: 3341: 3333: 3324: 3315: 3306: 3295: 3282: 3274: 3244:Radio telescope 3221: 3219:Radio astronomy 3216: 3186: 3181: 3147: 3074: 3049: 3035: 3003: 2931: 2883: 2825: 2802: 2779: 2772: 2765: 2758: 2756: 2708: 2703: 2671:– Radioastrolab 2664:Wayback Machine 2612: 2607: 2539:Radio Astronomy 2400: 2398:Further reading 2395: 2394: 2387: 2383: 2375: 2371: 2361: 2359: 2358:. June 23, 1983 2350: 2349: 2345: 2336: 2334: 2325: 2324: 2320: 2310: 2308: 2255: 2251: 2242: 2240: 2231: 2230: 2226: 2217: 2215: 2206: 2205: 2201: 2191: 2189: 2180: 2179: 2175: 2162: 2161: 2157: 2150: 2128: 2124: 2094: 2090: 2067: 2063: 2048: 2044: 2015: 2011: 1988: 1984: 1961: 1957: 1950: 1932: 1928: 1919: 1917: 1908: 1907: 1903: 1889: 1887: 1874: 1873: 1869: 1832: 1828: 1779: 1775: 1768: 1748: 1744: 1737: 1721: 1717: 1683: 1679: 1615: 1611: 1597: 1595: 1584: 1580: 1535: 1531: 1522: 1520: 1509: 1508: 1501: 1492: 1490: 1475: 1471: 1466: 1434:X-ray astronomy 1424:Radar astronomy 1394: 1389: 1387: 1380: 1375: 1373: 1370: 1359:RADIO ASTRONOMY 1350:RADIO ASTRONOMY 1341:RADIO ASTRONOMY 1332:RADIO ASTRONOMY 1323:RADIO ASTRONOMY 1314:RADIO ASTRONOMY 1305:RADIO ASTRONOMY 1288: 1283:RADIONAVIGATION 1279: 1277: 1275:RADIO ASTRONOMY 1266: 1263: 1262:1 610.6–1 613.8 1253: 1248:RADIONAVIGATION 1244: 1242: 1240:RADIO ASTRONOMY 1231: 1228: 1227:1 610.6–1 613.8 1223: 1222: 1218:RADIONAVIGATION 1214: 1212: 1210:RADIO ASTRONOMY 1201: 1198: 1197:1 610.6–1 613.8 1183: 1181:RADIO ASTRONOMY 1171: 1156:RADIO ASTRONOMY 1154: 1144: 1129:RADIO ASTRONOMY 1127: 1117: 1100:Radio astronomy 1098: 1086: 1075:RADIO ASTRONOMY 1057:RADIO ASTRONOMY 1044: 983: 973:transmitted by 939: 910: 869:galaxy clusters 838:Galactic Center 783:GCRT J1745-3009 775: 769: 763: 728: 722: 662:Edward Appleton 558: 552: 546: 512: 510:Radio telescope 506: 447: 391:J. A. Ratcliffe 365:Chart on which 229:serendipitously 211:Julius Scheiner 185:had shown that 153: 144:radar astronomy 122:referred to as 113:Big Bang theory 57:Radio astronomy 28: 23: 22: 18:Radio Astronomy 15: 12: 11: 5: 5021: 5011: 5010: 5005: 5000: 4995: 4978: 4977: 4975: 4974: 4962: 4949: 4946: 4945: 4943: 4942: 4935: 4934: 4933: 4926: 4919: 4905: 4904: 4903: 4896: 4889: 4882: 4868: 4861: 4854: 4847: 4840: 4833: 4832: 4831: 4817: 4810: 4803: 4794: 4787: 4780: 4773: 4766: 4763:Astrochemistry 4759: 4752: 4744: 4742: 4738: 4737: 4735: 4734: 4727: 4720: 4713: 4706: 4699: 4696:Hale Telescope 4692: 4685: 4678: 4671: 4664: 4656: 4654: 4646: 4645: 4642: 4641: 4639: 4638: 4631: 4630: 4629: 4615: 4608: 4601: 4594: 4587: 4580: 4573: 4566: 4559: 4552: 4545: 4537: 4535: 4529: 4528: 4526: 4525: 4518: 4511: 4504: 4497: 4490: 4483: 4475: 4473: 4469: 4468: 4466: 4465: 4458: 4457: 4456: 4442: 4435: 4429:Visible-light 4425: 4411: 4404: 4396: 4394: 4390: 4389: 4387: 4386: 4385: 4384: 4370: 4358: 4356: 4352: 4351: 4349: 4348: 4341: 4334: 4327: 4319: 4317: 4310: 4306: 4305: 4303: 4302: 4295: 4288: 4281: 4274: 4267: 4266: 4265: 4251: 4243: 4240: 4239: 4232: 4231: 4224: 4217: 4209: 4200: 4199: 4197: 4196: 4186: 4175: 4172: 4171: 4169: 4168: 4163: 4162: 4161: 4156: 4146: 4141: 4136: 4131: 4129:Interferometry 4126: 4121: 4115: 4113: 4109: 4108: 4106: 4105: 4100: 4095: 4090: 4085: 4079: 4077: 4071: 4070: 4068: 4067: 4062: 4057: 4052: 4047: 4042: 4037: 4032: 4027: 4022: 4017: 4012: 4010:Bernard Lovell 4007: 4002: 3997: 3992: 3987: 3982: 3977: 3972: 3967: 3962: 3957: 3952: 3947: 3942: 3940:John G. Bolton 3937: 3931: 3929: 3925: 3924: 3922: 3921: 3913: 3908:ESA New Norcia 3905: 3896: 3894: 3890: 3889: 3887: 3886: 3878: 3868: 3858: 3850: 3842: 3834: 3826: 3818: 3810: 3802: 3794: 3785: 3783: 3777: 3776: 3773: 3772: 3770: 3769: 3759: 3748: 3746: 3742: 3741: 3739: 3738: 3728: 3718: 3715:New Mexico, US 3708: 3698: 3688: 3678: 3670: 3660: 3650: 3640: 3630: 3620: 3610: 3600: 3597:New Mexico, US 3590: 3580: 3570: 3560: 3550: 3544: 3536: 3533:California, US 3526: 3516: 3506: 3496: 3486: 3483:California, US 3475: 3473: 3469: 3468: 3466: 3465: 3457: 3449: 3447:(South Africa) 3441: 3435: 3434: 3426: 3418: 3410: 3402: 3394: 3384: 3376: 3371:Ooty Telescope 3368: 3360: 3352: 3344: 3336: 3328: 3318: 3310: 3299: 3297: 3288: 3276: 3275: 3273: 3272: 3267: 3261: 3251: 3241: 3229: 3227: 3223: 3222: 3215: 3214: 3207: 3200: 3192: 3183: 3182: 3180: 3179: 3174: 3169: 3164: 3158: 3156: 3149: 3148: 3146: 3145: 3140: 3135: 3130: 3125: 3120: 3115: 3110: 3105: 3100: 3095: 3090: 3084: 3082: 3076: 3075: 3073: 3072: 3067: 3062: 3057: 3052: 3047: 3043: 3038: 3033: 3029: 3024: 3019: 3013: 3011: 3005: 3004: 3002: 3001: 2996: 2991: 2969: 2964: 2941: 2939: 2933: 2932: 2930: 2929: 2924: 2919: 2914: 2909: 2904: 2899: 2893: 2891: 2885: 2884: 2882: 2881: 2876: 2871: 2866: 2861: 2856: 2851: 2846: 2841: 2835: 2833: 2827: 2826: 2824: 2823: 2818: 2812: 2810: 2804: 2803: 2801: 2800: 2795: 2789: 2787: 2781: 2780: 2778: 2777: 2744: 2739: 2734: 2729: 2724: 2719: 2713: 2710: 2709: 2702: 2701: 2694: 2687: 2679: 2673: 2672: 2666: 2654: 2649: 2644: 2639: 2627: 2618: 2611: 2610:External links 2608: 2606: 2605: 2598: 2591: 2584: 2577: 2570: 2563: 2556: 2549: 2548:Springer 1979. 2542: 2535: 2525: 2524:Springer 1977. 2518: 2511: 2504: 2497: 2482: 2475: 2465: 2464: 2460: 2459: 2446: 2420:(1): 211–218. 2406: 2405: 2401: 2399: 2396: 2393: 2392: 2381: 2369: 2343: 2318: 2293:10.1086/316378 2249: 2224: 2199: 2173: 2170:on 2013-11-10. 2155: 2148: 2122: 2116:2016-07-23 at 2088: 2061: 2042: 2029:(5): 159–160. 2009: 1982: 1971:(4): 285–297. 1955: 1949:978-0080187617 1948: 1940:Pergamon Press 1936:Radio Universe 1926: 1901: 1867: 1861:10.1086/160401 1826: 1773: 1766: 1742: 1735: 1715: 1677: 1609: 1578: 1529: 1499: 1468: 1467: 1465: 1462: 1461: 1460: 1455: 1450: 1436: 1431: 1426: 1421: 1416: 1411: 1406: 1400: 1399: 1385: 1369: 1366: 1363: 1362: 1354: 1353: 1345: 1344: 1336: 1335: 1327: 1326: 1318: 1317: 1309: 1308: 1296: 1295: 1294: 1293: 1285: 1284: 1272: 1271: 1260: 1259: 1258: 1250: 1249: 1237: 1236: 1225: 1220: 1219: 1207: 1206: 1194: 1193: 1192: 1191: 1190: 1189: 1188: 1187: 1186: 1185: 1167: 1166: 1165: 1164: 1163: 1162: 1161: 1160: 1159: 1158: 1140: 1139: 1138: 1137: 1136: 1135: 1134: 1133: 1132: 1131: 1113: 1112: 1111: 1110: 1109: 1108: 1107: 1106: 1105: 1104: 1103: 1102: 1078: 1077: 1070: 1069: 1068: 1067: 1066: 1065: 1064: 1063: 1062: 1061: 1060: 1059: 1039:13 360–13 410 1036: 1035: 1032: 1029: 1025: 1024: 1005: 1004: 1001: 998: 982: 979: 909: 906: 894: 893: 882: 872: 865: 852: 846:Sagittarius A* 831: 826: 799:radio galaxies 765:Main article: 762: 759: 742:are possible. 740:milliarcsecond 724:Main article: 721: 718: 699:") the signal 645:interferometer 605:interferometry 548:Main article: 545: 542: 508:Main article: 505: 502: 446: 443: 356:Norfolk Island 313:'s Antenna at 152: 149: 120:radio antennas 93:radio galaxies 43:interferometer 36:Karl G. Jansky 26: 9: 6: 4: 3: 2: 5020: 5009: 5006: 5004: 5001: 4999: 4996: 4994: 4991: 4990: 4988: 4972: 4963: 4960: 4951: 4950: 4947: 4940: 4936: 4931: 4927: 4924: 4920: 4917: 4913: 4912: 4910: 4906: 4901: 4897: 4894: 4890: 4887: 4883: 4880: 4876: 4875: 4873: 4869: 4866: 4862: 4859: 4855: 4852: 4848: 4845: 4841: 4838: 4834: 4829: 4825: 4824: 4822: 4821:Constellation 4818: 4815: 4811: 4808: 4804: 4801: 4800: 4795: 4792: 4788: 4785: 4781: 4778: 4774: 4771: 4767: 4764: 4760: 4757: 4753: 4750: 4746: 4745: 4743: 4739: 4732: 4728: 4725: 4721: 4718: 4714: 4711: 4707: 4704: 4700: 4697: 4693: 4690: 4686: 4683: 4679: 4676: 4672: 4669: 4665: 4662: 4658: 4657: 4655: 4653: 4647: 4636: 4632: 4627: 4623: 4622: 4620: 4616: 4613: 4609: 4606: 4602: 4599: 4595: 4592: 4588: 4585: 4581: 4578: 4574: 4571: 4567: 4564: 4560: 4557: 4553: 4550: 4546: 4543: 4539: 4538: 4536: 4534: 4530: 4523: 4519: 4516: 4512: 4509: 4505: 4502: 4498: 4495: 4491: 4488: 4484: 4481: 4477: 4476: 4474: 4472:Other methods 4470: 4463: 4459: 4454: 4450: 4449: 4447: 4443: 4440: 4436: 4433: 4426: 4421: 4416: 4412: 4409: 4408:Submillimetre 4405: 4402: 4398: 4397: 4395: 4391: 4382: 4378: 4377: 4375: 4371: 4368: 4367:Extragalactic 4364: 4360: 4359: 4357: 4353: 4346: 4342: 4339: 4335: 4332: 4331:Observational 4328: 4325: 4321: 4320: 4318: 4314: 4311: 4307: 4300: 4296: 4293: 4289: 4286: 4282: 4279: 4275: 4272: 4268: 4263: 4259: 4258: 4256: 4252: 4249: 4245: 4244: 4241: 4237: 4230: 4225: 4223: 4218: 4216: 4211: 4210: 4207: 4195: 4187: 4185: 4177: 4176: 4173: 4167: 4164: 4160: 4157: 4155: 4152: 4151: 4150: 4147: 4145: 4142: 4140: 4137: 4135: 4132: 4130: 4127: 4125: 4122: 4120: 4117: 4116: 4114: 4110: 4104: 4101: 4099: 4096: 4094: 4091: 4089: 4086: 4084: 4081: 4080: 4078: 4072: 4066: 4065:Robert Wilson 4063: 4061: 4058: 4056: 4053: 4051: 4050:Govind Swarup 4048: 4046: 4043: 4041: 4038: 4036: 4033: 4031: 4028: 4026: 4023: 4021: 4018: 4016: 4013: 4011: 4008: 4006: 4005:John D. Kraus 4003: 4001: 4000:Frank J. Kerr 3998: 3996: 3993: 3991: 3988: 3986: 3983: 3981: 3980:Antony Hewish 3978: 3976: 3973: 3971: 3968: 3966: 3963: 3961: 3958: 3956: 3953: 3951: 3948: 3946: 3943: 3941: 3938: 3936: 3933: 3932: 3930: 3926: 3917: 3914: 3909: 3906: 3901: 3898: 3897: 3895: 3891: 3882: 3879: 3872: 3869: 3862: 3859: 3854: 3851: 3846: 3843: 3838: 3835: 3830: 3827: 3822: 3819: 3814: 3811: 3806: 3803: 3798: 3795: 3790: 3787: 3786: 3784: 3782: 3781:Observatories 3778: 3763: 3760: 3753: 3750: 3749: 3747: 3743: 3732: 3729: 3722: 3719: 3712: 3709: 3702: 3699: 3692: 3689: 3682: 3679: 3674: 3671: 3664: 3661: 3654: 3651: 3644: 3641: 3634: 3631: 3624: 3621: 3614: 3611: 3604: 3601: 3594: 3591: 3584: 3581: 3574: 3571: 3564: 3561: 3554: 3551: 3548: 3545: 3540: 3537: 3530: 3527: 3520: 3517: 3510: 3507: 3500: 3497: 3490: 3487: 3480: 3477: 3476: 3474: 3470: 3461: 3458: 3453: 3450: 3445: 3442: 3437: 3436: 3430: 3427: 3422: 3419: 3414: 3411: 3406: 3403: 3398: 3395: 3388: 3385: 3380: 3377: 3372: 3369: 3364: 3361: 3356: 3353: 3348: 3345: 3340: 3339:Galenki RT-70 3337: 3332: 3329: 3322: 3319: 3314: 3311: 3304: 3301: 3300: 3298: 3292: 3289: 3286: 3281: 3277: 3271: 3268: 3265: 3262: 3259: 3255: 3252: 3249: 3245: 3242: 3239: 3235: 3231: 3230: 3228: 3224: 3220: 3213: 3208: 3206: 3201: 3199: 3194: 3193: 3190: 3178: 3175: 3173: 3170: 3168: 3165: 3163: 3160: 3159: 3157: 3154: 3150: 3144: 3141: 3139: 3136: 3134: 3131: 3129: 3126: 3124: 3121: 3119: 3116: 3114: 3111: 3109: 3106: 3104: 3101: 3099: 3096: 3094: 3091: 3089: 3086: 3085: 3083: 3081: 3077: 3071: 3068: 3066: 3063: 3061: 3058: 3056: 3053: 3051: 3044: 3042: 3039: 3037: 3030: 3028: 3025: 3023: 3020: 3018: 3015: 3014: 3012: 3010: 3006: 3000: 2997: 2995: 2992: 2989: 2985: 2981: 2977: 2973: 2970: 2968: 2965: 2962: 2958: 2954: 2950: 2946: 2943: 2942: 2940: 2938: 2934: 2928: 2925: 2923: 2920: 2918: 2915: 2913: 2910: 2908: 2905: 2903: 2900: 2898: 2895: 2894: 2892: 2890: 2886: 2880: 2877: 2875: 2872: 2870: 2867: 2865: 2862: 2860: 2857: 2855: 2852: 2850: 2847: 2845: 2842: 2840: 2837: 2836: 2834: 2832: 2828: 2822: 2819: 2817: 2814: 2813: 2811: 2809: 2805: 2799: 2796: 2794: 2791: 2790: 2788: 2786: 2782: 2775: 2771: 2764: 2752: 2748: 2745: 2743: 2740: 2738: 2735: 2733: 2730: 2728: 2725: 2723: 2720: 2718: 2715: 2714: 2711: 2707: 2700: 2695: 2693: 2688: 2686: 2681: 2680: 2677: 2670: 2667: 2665: 2661: 2658: 2655: 2653: 2650: 2648: 2645: 2643: 2640: 2638: 2635: 2631: 2628: 2626: 2622: 2619: 2617: 2614: 2613: 2603: 2599: 2596: 2592: 2589: 2585: 2582: 2578: 2575: 2571: 2568: 2564: 2561: 2557: 2554: 2550: 2547: 2543: 2540: 2536: 2533: 2529: 2526: 2523: 2519: 2516: 2512: 2509: 2505: 2502: 2498: 2495: 2494:9780691137797 2491: 2487: 2483: 2480: 2476: 2474:Springer 2015 2473: 2470: 2467: 2466: 2462: 2461: 2456: 2452: 2447: 2443: 2439: 2435: 2431: 2427: 2423: 2419: 2415: 2414: 2408: 2407: 2403: 2402: 2390: 2385: 2379: 2373: 2357: 2353: 2347: 2333:on 2006-01-28 2332: 2328: 2322: 2306: 2302: 2298: 2294: 2290: 2286: 2282: 2277: 2272: 2268: 2264: 2260: 2253: 2238: 2234: 2228: 2213: 2209: 2203: 2187: 2183: 2177: 2169: 2165: 2159: 2151: 2145: 2141: 2137: 2133: 2126: 2119: 2118:archive.today 2115: 2112: 2110: 2103: 2099: 2092: 2084: 2080: 2076: 2072: 2065: 2057: 2053: 2046: 2037: 2032: 2028: 2025:(in German). 2024: 2020: 2013: 2005: 2001: 1997: 1993: 1986: 1978: 1974: 1970: 1966: 1959: 1951: 1945: 1941: 1937: 1930: 1915: 1911: 1910:"Grote Reber" 1905: 1898: 1885: 1881: 1877: 1871: 1862: 1857: 1853: 1849: 1845: 1841: 1837: 1830: 1822: 1818: 1814: 1810: 1806: 1802: 1797: 1792: 1788: 1784: 1777: 1769: 1763: 1759: 1755: 1754: 1746: 1738: 1732: 1728: 1727: 1719: 1711: 1707: 1703: 1699: 1695: 1691: 1687: 1681: 1674: 1668: 1664: 1660: 1656: 1652: 1648: 1647: 1642: 1635: 1631: 1627: 1623: 1619: 1613: 1606: 1593: 1589: 1582: 1574: 1570: 1565: 1560: 1556: 1552: 1548: 1544: 1540: 1533: 1518: 1514: 1513: 1506: 1504: 1488: 1484: 1480: 1473: 1469: 1459: 1456: 1454: 1451: 1448: 1444: 1442: 1437: 1435: 1432: 1430: 1429:Time smearing 1427: 1425: 1422: 1420: 1417: 1415: 1412: 1410: 1407: 1405: 1402: 1401: 1397: 1386: 1383: 1372: 1360: 1355: 1351: 1346: 1342: 1337: 1333: 1328: 1324: 1319: 1315: 1310: 1306: 1302: 1297: 1291: 1290: 1289: 1282: 1281: 1280: 1278:AERONAUTICAL 1276: 1269: 1268: 1267: 1256: 1255: 1254: 1247: 1246: 1245: 1243:AERONAUTICAL 1241: 1234: 1233: 1232: 1224: 1217: 1216: 1215: 1213:AERONAUTICAL 1211: 1204: 1203: 1202: 1195: 1182: 1179: 1178: 1177: 1176: 1175: 1174: 1173: 1172: 1168: 1157: 1152: 1151: 1150: 1149: 1148: 1147: 1146: 1145: 1141: 1130: 1125: 1124: 1123: 1122: 1121: 1120: 1119: 1118: 1114: 1101: 1096: 1095: 1094: 1093: 1092: 1091: 1090: 1089: 1088: 1087: 1084: 1079: 1076: 1071: 1058: 1054: 1053: 1052: 1051: 1050: 1049: 1048: 1047: 1046: 1045: 1042: 1037: 1033: 1030: 1027: 1023: 1016: 1014: 1010: 1002: 999: 996: 995: 994: 990: 988: 978: 976: 972: 968: 964: 960: 956: 952: 934: 929: 923: 919: 914: 905: 903: 899: 891: 887: 883: 880: 876: 873: 870: 866: 864: 860: 856: 853: 851: 847: 843: 839: 835: 834:Sagittarius A 832: 830: 827: 825: 822: 821: 820: 817: 815: 811: 807: 802: 800: 796: 792: 784: 779: 774: 768: 758: 754: 752: 748: 743: 741: 737: 733: 727: 717: 715: 710: 706: 702: 698: 694: 690: 686: 685:optical fiber 682: 678: 677:coaxial cable 674: 669: 667: 663: 659: 655: 649: 646: 642: 638: 634: 630: 626: 622: 618: 614: 610: 606: 598: 594: 590: 586: 581: 574: 567: 562: 557: 551: 541: 539: 535: 531: 530: 525: 521: 518:. Also since 517: 511: 501: 499: 495: 491: 488: 484: 480: 476: 471: 469: 460: 457:) of various 456: 451: 442: 440: 436: 432: 428: 424: 420: 416: 412: 408: 407:Antony Hewish 404: 400: 396: 392: 388: 384: 376: 372: 368: 363: 359: 357: 353: 349: 345: 340: 336: 332: 328: 323: 316: 312: 308: 304: 302: 298: 292: 290: 286: 282: 281:Sagittarius A 278: 277: 270: 268: 264: 263:constellation 260: 256: 251: 246: 242: 238: 234: 230: 226: 222: 220: 216: 212: 208: 204: 200: 196: 192: 188: 184: 180: 173: 169: 165: 161: 157: 148: 146: 145: 139: 137: 133: 129: 125: 121: 116: 114: 110: 106: 102: 98: 94: 90: 86: 82: 78: 74: 70: 66: 63:that studies 62: 58: 52: 51:United States 48: 44: 40: 37: 32: 19: 4797: 4777:Astrophysics 4756:Astrobiology 4420:Far-infrared 4400: 4374:Local system 4309:Astronomy by 4299:... in space 4074:Astronomy by 4035:Arno Penzias 3975:Cyril Hazard 3617:South Africa 3408:(Uzbekistan) 3248:Radio window 3218: 2757: 2601: 2594: 2587: 2580: 2573: 2566: 2559: 2552: 2545: 2538: 2531: 2521: 2514: 2507: 2500: 2485: 2478: 2471: 2454: 2453:(in Dutch). 2450: 2417: 2411: 2388: 2384: 2377: 2372: 2360:. Retrieved 2355: 2346: 2335:. Retrieved 2331:the original 2327:"Conclusion" 2321: 2309:. Retrieved 2266: 2262: 2252: 2241:. Retrieved 2227: 2216:. Retrieved 2202: 2190:. Retrieved 2176: 2168:the original 2158: 2131: 2125: 2108: 2101: 2097: 2091: 2070: 2064: 2051: 2045: 2026: 2022: 2012: 1995: 1991: 1985: 1968: 1964: 1958: 1935: 1929: 1918:. Retrieved 1904: 1895: 1890:21 September 1888:. Retrieved 1879: 1870: 1843: 1839: 1829: 1786: 1782: 1776: 1752: 1745: 1725: 1718: 1696:(10): 1158. 1693: 1689: 1680: 1650: 1644: 1628:(10): 1387. 1625: 1621: 1612: 1603: 1598:21 September 1596:. Retrieved 1581: 1549:(3323): 66. 1546: 1542: 1532: 1521:. Retrieved 1511: 1491:. Retrieved 1472: 1446: 1440: 1382:Radio portal 1358: 1349: 1340: 1331: 1322: 1313: 1304: 1300: 1286: 1274: 1273: 1264: 1251: 1239: 1238: 1229: 1221: 1209: 1208: 1199: 1180: 1155: 1128: 1099: 1085:  FIXED 1082: 1074: 1056: 1043:  FIXED 1040: 1021: 1015:as follows. 1012: 1006: 991: 986: 984: 975:astronomical 954: 950: 949: 895: 818: 803: 788: 755: 744: 736:atomic clock 729: 670: 668:in the UK). 658:David Martyn 650: 624: 602: 527: 513: 472: 464: 387:World War II 380: 331:British Army 320: 297:flux density 293: 274: 271: 255:sidereal day 223: 215:Oliver Lodge 176: 142: 140: 117: 56: 55: 4844:Planetarium 4501:High-energy 4487:Cosmic rays 4439:Ultraviolet 4154:Wow! signal 4045:Martin Ryle 4040:Grote Reber 3970:Frank Drake 3911:(Australia) 3745:Space-based 3735:Netherlands 3607:Netherlands 3577:South Korea 3455:(Australia) 3405:Suffa RT-70 3172:Medium wave 2849:Lyman-alpha 2831:Ultraviolet 2770:wavelengths 2763:frequencies 2727:Ultraviolet 2104:(1): 16–17. 1846:: 110–119. 1299:10.6–10.68 1081:37.5–38.25 971:radio waves 697:interfering 654:arc minutes 609:Martin Ryle 538:arc seconds 459:wavelengths 403:Martin Ryle 354:working on 322:Grote Reber 311:Grote Reber 267:Sagittarius 225:Karl Jansky 191:electricity 160:Karl Jansky 73:Karl Jansky 4987:Categories 4837:Photometry 4814:Binoculars 4791:Astrometry 4652:telescopes 4549:Babylonian 4393:EM methods 4271:Astronomer 4076:EM methods 3296:telescopes 3294:Individual 3153:Wavelength 3009:Microwaves 2821:Hard X-ray 2816:Soft X-ray 2785:Gamma rays 2717:Gamma rays 2513:J.S. Hey, 2457:: 210–221. 2337:2006-03-29 2243:2008-07-22 2218:2015-06-16 1920:2010-04-09 1646:Proc. IEEE 1523:2010-04-09 1493:2010-04-09 1477:F. Ghigo. 1464:References 1409:Channel 37 1009:ITU Region 922:California 902:ionosphere 771:See also: 597:black hole 554:See also: 494:millimeter 479:ionosphere 445:Techniques 289:black hole 237:short wave 219:ionosphere 199:wavelength 47:New Mexico 41:, a radio 4909:Telescope 4515:Spherical 4462:Gamma-ray 4431:(optical) 4236:Astronomy 4060:Paul Wild 3893:Multi-use 3873:(SAORAS, 3647:Australia 3635:(MERLIN, 3627:Australia 3513:Australia 3503:Australia 3432:(Ukraine) 3424:(Ukraine) 3334:(Germany) 3167:Shortwave 3162:Microwave 2742:Microwave 2311:3 October 1796:0810.4674 1690:Proc. IRE 1622:Proc. IRE 987:Article 5 890:blackbody 842:Milky Way 681:waveguide 524:objective 437:(2C) and 344:E. Schott 339:Bell Labs 285:electrons 259:Milky Way 195:magnetism 183:equations 172:Milky Way 81:Milky Way 61:astronomy 4959:Category 4668:Category 4563:Egyptian 4480:Neutrino 4415:Infrared 4363:Galactic 4338:Sidewalk 4292:Glossary 4262:Timeline 4184:Category 4020:Jan Oort 3919:(Canada) 3903:(Canada) 3856:(Sweden) 3848:(France) 3792:(Canada) 3762:Spektr-R 3605:(LOFAR, 3585:(LLAMA, 3542:(Europe) 3531:(CARMA, 3521:(CHIME, 3511:(ASKAP, 3358:(Mexico) 3342:(Russia) 3226:Concepts 3177:Longwave 2937:Infrared 2737:Infrared 2660:Archived 2442:56034495 2404:Journals 2305:Archived 2301:18953602 2237:Archived 2212:Archived 2186:Archived 2114:Archived 1914:Archived 1884:Archived 1758:Springer 1710:51632813 1667:47549559 1592:Archived 1517:Archived 1487:Archived 1368:See also 867:Merging 89:galaxies 4971:Commons 4923:history 4893:Russian 4741:Related 4650:Optical 4635:Tibetan 4619:Serbian 4612:Persian 4556:Chinese 4533:Culture 4453:History 4324:Amateur 4255:History 4248:Outline 4194:Commons 3733:(WSRT, 3723:(VLBA, 3683:(PaST, 3625:(MOST, 3613:MeerKAT 3555:(GMRT, 3501:(ATCA, 3491:(ALMA, 3444:HartRAO 3416:(Japan) 3400:(Italy) 3382:(China) 3374:(India) 3305:(FAST, 3258:History 3232:Units ( 2768:longer 2761:higher 2732:Visible 2534:. 1967. 2422:Bibcode 2281:Bibcode 2192:16 June 2109:R&E 2079:Bibcode 2000:Bibcode 1998:: 371. 1880:aps.org 1848:Bibcode 1821:1431308 1801:Bibcode 1675: . 1573:4063838 1551:Bibcode 1439:Waves ( 1303:  953:(also: 898:auroras 879:pulsars 859:pulsars 840:of the 829:Jupiter 814:planets 795:quasars 791:pulsars 671:Modern 637:sunspot 629:200 MHz 534:optical 455:opacity 409:at the 348:Denmark 261:in the 151:History 101:pulsars 97:quasars 4939:Zodiac 4879:French 4584:Indian 4577:Hebrew 4316:Manner 3928:People 3875:Russia 3865:Russia 3766:Russia 3713:(VLA, 3703:(SMA, 3693:(SKA, 3667:France 3645:(MWA, 3595:(LWA, 3575:(KVN, 3565:(GBI, 3523:Canada 3481:(ATA, 3391:Russia 3323:(CSO, 3266:(VLBI) 3238:jansky 3070:L band 3065:S band 3060:C band 3055:X band 3041:K band 3027:Q band 3022:V band 3017:W band 2922:Orange 2917:Yellow 2897:Violet 2808:X-rays 2722:X-rays 2492:  2440:  2362:May 2, 2299:  2146:  1946:  1819:  1764:  1733:  1708:  1665:  1571:  1543:Nature 1126:MOBILE 1097:MOBILE 961:(ITU) 836:, the 625:single 468:mosaic 435:Second 371:pulsar 301:jansky 299:, the 245:analog 105:masers 103:, and 4930:lists 4900:Women 4591:Inuit 4570:Greek 4508:Radar 4446:X-ray 4401:Radio 4381:Solar 3756:Japan 3752:HALCA 3685:China 3657:Italy 3557:India 3549:(EHT) 3493:Chile 3307:China 3155:types 3080:Radio 2976:Bands 2949:Bands 2912:Green 2747:Radio 2463:Books 2438:S2CID 2297:S2CID 2271:arXiv 2106:(see 1817:S2CID 1791:arXiv 1706:S2CID 1663:S2CID 1569:S2CID 709:phase 705:waves 701:waves 664:with 631:near 490:vapor 487:Water 475:Earth 439:Third 423:Titan 399:radar 337:, at 85:stars 4661:List 4626:folk 4598:Maya 4149:SETI 3916:PARL 3900:DRAO 3884:(US) 3840:(US) 3832:(UK) 3824:(UK) 3816:(US) 3808:(US) 3676:(UK) 3463:(NZ) 3366:(UK) 3285:List 3236:and 3234:watt 3050:band 3036:band 2994:LWIR 2972:MWIR 2967:SWIR 2907:Cyan 2902:Blue 2634:NASA 2490:ISBN 2364:2024 2313:2014 2194:2015 2144:ISBN 1996:525C 1944:ISBN 1892:2021 1762:ISBN 1731:ISBN 1600:2021 1447:Juno 1441:Juno 935:, US 884:The 857:and 804:The 797:and 615:and 564:The 405:and 350:and 329:, a 209:and 193:and 130:and 87:and 34:The 4828:IAU 3143:ELF 3138:SLF 3133:ULF 3128:VLF 3108:VHF 3103:UHF 3098:SHF 3093:EHF 3088:THF 2999:FIR 2945:NIR 2927:Red 2879:UVA 2874:UVB 2869:UVC 2864:NUV 2859:MUV 2854:FUV 2430:doi 2418:189 2289:doi 2267:111 2136:doi 2031:doi 1973:doi 1969:239 1856:doi 1844:262 1809:doi 1787:692 1698:doi 1655:doi 1630:doi 1559:doi 1547:132 1301:GHz 1083:MHz 1041:kHz 888:is 824:Sun 810:Sun 589:HST 585:M87 381:At 346:in 269:. 265:of 250:Sun 203:Sun 181:'s 75:at 67:at 45:in 4989:: 4365:/ 3725:US 3705:US 3637:UK 3325:US 3123:LF 3118:MF 3113:HF 2986:, 2982:, 2978:: 2959:, 2955:, 2951:: 2623:* 2530:, 2455:11 2436:. 2428:. 2416:. 2354:. 2303:. 2295:. 2287:. 2279:. 2265:. 2261:. 2210:. 2142:. 2120:.) 2100:. 2073:. 2054:. 2021:. 1994:. 1967:. 1942:. 1912:. 1894:. 1878:. 1854:. 1842:. 1838:. 1815:. 1807:. 1799:. 1785:. 1756:. 1704:. 1694:23 1692:. 1661:. 1651:86 1649:. 1626:21 1624:. 1602:. 1567:. 1557:. 1545:. 1541:. 1515:. 1502:^ 1485:. 1481:. 920:, 816:. 793:, 683:, 679:, 485:. 389:, 377:) 358:. 99:, 95:, 49:, 4423:) 4417:( 4228:e 4221:t 4214:v 3877:) 3867:) 3768:) 3764:( 3758:) 3754:( 3737:) 3727:) 3717:) 3707:) 3697:) 3687:) 3669:) 3665:( 3659:) 3655:( 3649:) 3639:) 3629:) 3619:) 3615:( 3609:) 3599:) 3589:) 3579:) 3569:) 3559:) 3535:) 3525:) 3515:) 3505:) 3495:) 3485:) 3393:) 3389:( 3327:) 3309:) 3287:) 3283:( 3260:) 3256:( 3250:) 3246:( 3240:) 3211:e 3204:t 3197:v 3048:u 3046:K 3034:a 3032:K 2990:) 2988:N 2984:M 2980:L 2974:( 2963:) 2961:H 2957:K 2953:J 2947:( 2773:β†’ 2759:← 2698:e 2691:t 2684:v 2496:. 2444:. 2432:: 2424:: 2366:. 2340:. 2315:. 2291:: 2283:: 2273:: 2246:. 2221:. 2196:. 2152:. 2138:: 2102:1 2085:. 2081:: 2039:. 2033:: 2027:3 2006:. 2002:: 1979:. 1975:: 1952:. 1923:. 1864:. 1858:: 1850:: 1823:. 1811:: 1803:: 1793:: 1770:. 1739:. 1712:. 1700:: 1669:. 1657:: 1636:. 1632:: 1575:. 1561:: 1553:: 1526:. 1496:. 1443:) 785:. 587:( 20:)

Index

Radio Astronomy

Karl G. Jansky
Very Large Array
interferometer
New Mexico
United States
astronomy
celestial objects
radio frequencies
Karl Jansky
Bell Telephone Laboratories
Milky Way
stars
galaxies
radio galaxies
quasars
pulsars
masers
cosmic microwave background radiation
Big Bang theory
radio antennas
radio telescopes
radio interferometry
aperture synthesis
angular resolution
radar astronomy

Karl Jansky
directional antenna

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑