Knowledge

Pulsed laser deposition

Source 📝

168:
surface of the material within the penetration depth. This dimension is dependent on the laser wavelength and the index of refraction of the target material at the applied laser wavelength and is typically in the region of 10 nm for most materials. The strong electrical field generated by the laser light is sufficiently strong to remove the electrons from the bulk material of the penetrated volume. This process occurs within 10 ps of a ns laser pulse and is caused by non-linear processes such as multiphoton ionization which are enhanced by microscopic cracks at the surface, voids, and nodules, which increase the electric field. The free electrons oscillate within the electromagnetic field of the laser light and can collide with the atoms of the bulk material thus transferring some of their energy to the lattice of the target material within the surface region. The surface of the target is then heated up and the material is vaporized.
389:(RF, magnetron, and ion beam). The history of laser-assisted film growth started soon after the technical realization of the first laser in 1960 by Maiman. Smith and Turner utilized a ruby laser to deposit the first thin films in 1965, three years after Breech and Cross studied the laser-vaporization and excitation of atoms from solid surfaces. However, the deposited films were still inferior to those obtained by other techniques such as chemical vapor deposition and molecular beam epitaxy. In the early 1980s, a few research groups (mainly in the former USSR) achieved remarkable results on manufacturing of thin film structures utilizing laser technology. The breakthrough came in 1987 when D. Dijkkamp, Xindi Wu and T. Venkatesan were able to laser deposit a thin film of YBa 29: 401:, a high temperature superconductive material, which was of superior quality to that of films deposited with alternative techniques. Since then, the technique of pulsed laser deposition has been utilized to fabricate high quality crystalline films, such as doped garnet thin films for use as planar waveguide lasers. The deposition of ceramic oxides, nitride films, ferromagnetic films, metallic multilayers and various superlattices has been demonstrated. In the 1990s the development of new laser technology, such as lasers with high repetition rate and short pulse durations, made PLD a very competitive tool for the growth of thin, well defined films with complex stoichiometry. 415: 313: 143: 1673: 292:– In this growth mode, islands nucleate on the surface until a critical island density is reached. As more material is added, the islands continue to grow until the islands begin to run into each other. This is known as coalescence. Once coalescence is reached, the surface has a large density of pits. When additional material is added to the surface the atoms diffuse into these pits to complete the layer. This process is repeated for each subsequent layer. 286:– All substrates have a miscut associated with the crystal. These miscuts give rise to atomic steps on the surface. In step-flow growth, atoms land on the surface and diffuse to a step edge before they have a chance to nucleated a surface island. The growing surface is viewed as steps traveling across the surface. This growth mode is obtained by deposition on a high miscut substrate, or depositing at elevated temperatures 17: 203:
film. The sputtered species from the substrate and the particles emitted from the target form a collision region, which serves as a source for condensation of particles. When the condensation rate is high enough, a thermal equilibrium can be reached and the film grows on the substrate surface at the expense of the direct flow of ablation particles and the thermal equilibrium obtained.
176:
In the second stage the material expands in a plasma parallel to the normal vector of the target surface towards the substrate due to Coulomb repulsion and recoil from the target surface. The spatial distribution of the plume is dependent on the background pressure inside the PLD chamber. The density
479:
There are many different arrangements to build a deposition chamber for PLD. The target material which is evaporated by the laser is normally found as a rotating disc attached to a support. However, it can also be sintered into a cylindrical rod with rotational motion and a translational up and down
193:
The most important consequence of increasing the background pressure is the slowing down of the high energetic species in the expanding plasma plume. It has been shown that particles with kinetic energies around 50 eV can resputter the film already deposited on the substrate. This results in a lower
167:
The ablation of the target material upon laser irradiation and the creation of plasma are very complex processes. The removal of atoms from the bulk material is done by vaporization of the bulk at the surface region in a state of non-equilibrium. In this the incident laser pulse penetrates into the
202:
The third stage is important to determine the quality of the deposited films. The high energetic species ablated from the target are bombarding the substrate surface and may cause damage to the surface by sputtering off atoms from the surface but also by causing defect formation in the deposited
298:– This mode is similar to the layer-by-layer growth, except that once an island is formed an additional island will nucleate on top of the 1st island. Therefore, the growth does not persist in a layer by layer fashion, and the surface roughens each time material is added. 1019:
Vispute, R. D.; Talyansky, V.; Trajanovic, Z.; Choopun, S.; Downes, M.; Sharma, R. P.; Venkatesan, T.; Woods, M. C.; Lareau, R. T. (1997-05-19). "High quality crystalline ZnO buffer layers on sapphire (001) by pulsed laser deposition for III–V nitrides".
188:
High pressure region where we find a more diffusion-like expansion of the ablated material. Naturally this scattering is also dependent on the mass of the background gas and can influence the stoichiometry of the deposited
184:
The intermediate region where a splitting of the high energetic ions from the less energetic species can be observed. The time-of-flight (TOF) data can be fitted to a shock wave model; however, other models could also be
480:
movement along its axis. This special configuration allows not only the utilization of a synchronized reactive gas pulse but also of a multicomponent target rod with which films of different multilayers can be created.
232:– The surface temperature has a large effect on the nucleation density. Generally, the nucleation density decreases as the temperature is increased. Heating of the surface can involve a heating plate or the use of a 158:, where it condenses and solidifies, building up one atomic layer at a time. The substrate is mounted on a heating plate, glowing red at a temperature of 650 °C, to improve the crystallinity of the alumina thin film. 252:– Common in oxide deposition, an oxygen background is needed to ensure stoichiometric transfer from the target to the film. If, for example, the oxygen background is too low, the film will grow off 1309:
Pérez Taborda, Jaime Andrés; Caicedo, J.C.; Grisales, M.; Saldarriaga, W.; Riascos, H. (2015). "Deposition pressure effect on chemical, morphological and optical properties of binary Al-nitrides".
732:
Koster, Gertjan; Kropman, Boike L.; Rijnders, Guus J. H. M.; Blank, Dave H. A.; Rogalla, Horst (1998). "Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide".
118:
plume with high energetic ions, electrons as well as neutrals and the crystalline growth of the film itself on the heated substrate. The process of PLD can generally be divided into four stages:
976:
Koinuma, Hideomi; Nagata, Hirotoshi; Tsukahara, Tadashi; Gonda, Satoshi; Yoshimoto, Mamoru (1991-05-06). "Ceramic layer epitaxy by pulsed laser deposition in an ultrahigh vacuum system".
74:
below). When the laser pulse is absorbed by the target, energy is first converted to electronic excitation and then into thermal, chemical and mechanical energy resulting in evaporation,
146:
Thin films of oxides are deposited with atomic layer precision using pulsed laser deposition. In this picture, a high-intensity pulsed laser shoots a rotating white disk of Al
177:
of the plume can be described by a cos(x) law with a shape similar to a Gaussian curve. The dependency of the plume shape on the pressure can be described in three stages:
246:– The nucleation and growth can be affected by the surface preparation (such as chemical etching), the miscut of the substrate, as well as the roughness of the substrate. 154:(alumina). The laser pulse creates a plasma explosion, visible as the purple cloud. The plasma cloud from the alumina expands towards the square substrate, made of SrTiO 70:
While the basic setup is simple relative to many other deposition techniques, the physical phenomena of laser-target interaction and film growth are quite complex (see
535:
Vaziri, M R R (2010). "Microscopic description of the thermalization process during pulsed laser deposition of aluminium in the presence of argon background gas".
613:
Ferguson, J. D.; Arikan, G.; Dale, D. S.; Woll, A. R.; Brock, J. D. (2009). "Measurements of Surface Diffusivity and Coarsening during Pulsed Laser Deposition".
55:
chamber to strike a target of the material that is to be deposited. This material is vaporized from the target (in a plasma plume) which deposits it as a
1209:
Grant-Jacob, James A.; Beecher, Stephen J.; Riris, Haris; Yu, Anthony W.; Shepherd, David P.; Eason, Robert W.; Mackenzie, Jacob I. (23 October 2017).
1063:
Yoshitake, Tsuyoshi; Nakagauchi, Dai; Nagayama, Kunihito (2003-07-15). "Ferromagnetic Iron Silicide Thin Films Prepared by Pulsed-Laser Deposition".
871:
Grant-Jacob, James A.; Beecher, Stephen J.; Parsonage, Tina L.; Hua, Ping; Mackenzie, Jacob I.; Shepherd, David P.; Eason, Robert W. (2016-01-01).
925:
Beecher, Stephen J.; Grant-Jacob, James A.; Hua, Ping; Prentice, Jake J.; Eason, Robert W.; Shepherd, David P.; Mackenzie, Jacob I. (2017-05-01).
1114:
Shen, J.; Gai, Zheng; Kirschner, J. (February 2004). "Growth and magnetism of metallic thin films and multilayers by pulsed-laser deposition".
444: 342: 1697: 67:
or in the presence of a background gas, such as oxygen which is commonly used when depositing oxides to fully oxygenate the deposited films.
222:– several factors such as the laser fluence , laser energy, and ionization degree of the ablated material will affect the film quality, the 1297: 676:"Design and performance of a ZnSe tetra-prism for homogeneous substrate heating using a CO2 laser for pulsed laser deposition experiments" 264:
occurs on the substrate during the pulse duration. The pulse lasts around 10–40 microseconds depending on the laser parameters. This high
1176:
Grant-Jacob, James A.; Beecher, Stephen J.; Prentice, Jake J.; Shepherd, David P.; Mackenzie, Jacob I.; Eason, Robert W. (June 2018).
1702: 578:
Ohnishi, Tsuyoshi; Shibuya, Keisuke; Yamamoto, Takahisa; Lippmaa, Mikk (2008). "Defects and transport in complex oxide thin films".
1633: 1252:
Scharf, T.; Krebs, H.U. (1 November 2002). "Influence of inert gas pressure on deposition rate during pulsed laser deposition".
181:
The vacuum stage, where the plume is very narrow and forward directed; almost no scattering occurs with the background gases.
86:. The ejected species expand into the surrounding vacuum in the form of a plume containing many energetic species including 823: 518:
Pulsed Laser Deposition of Thin Films, edited by Douglas B. Chrisey and Graham K. Hubler, John Wiley & Sons, 1994
523: 466: 364: 437: 335: 1372: 836:
Lippmaa, M.; Nakagawa, N.; Kawasaki, M.; Ohashi, S.; Koinuma, H. (2000). "Growth mode mapping of SrTiO epitaxy".
1542: 1707: 1345: 226:, and the deposition flux. Generally, the nucleation density increases when the deposition flux is increased. 110:
The detailed mechanisms of PLD are very complex including the ablation process of the target material by the
1717: 1598: 122:
Laser absorption on the target surface and laser ablation of the target material and creation of a plasma
1402: 1215: 931: 880: 427: 382: 325: 44: 1712: 767:
Ohtomo, A.; Hwang, H. Y. (2007). "Growth mode control of the free carrier density in SrTiO films".
431: 423: 377:
Pulsed laser deposition is only one of many thin film deposition techniques. Other methods include
329: 321: 1141:
Lunney, James G. (February 1995). "Pulsed laser deposition of metal and metal multilayer films".
102:, clusters, particulates and molten globules, before depositing on the typically hot substrate. 1572: 1392: 448: 378: 346: 269: 1460: 1178:"Pulsed laser deposition of crystalline garnet waveguides at a growth rate of 20 μm per hour" 83: 1567: 1450: 1438: 1365: 1318: 1261: 1224: 1150: 1072: 1029: 985: 940: 889: 845: 786: 741: 690: 632: 587: 544: 233: 8: 1618: 1537: 1477: 1397: 556: 194:
deposition rate and can furthermore result in a change in the stoichiometry of the film.
60: 1322: 1265: 1228: 1154: 1076: 1033: 989: 944: 893: 849: 790: 745: 694: 636: 591: 548: 1277: 1096: 802: 776: 656: 622: 560: 386: 215:
process and growth kinetics of the film depend on several growth parameters including:
872: 1638: 1512: 1487: 1162: 1100: 1088: 1045: 1001: 958: 907: 806: 714: 706: 648: 564: 519: 64: 28: 1330: 1281: 1211:"Dynamic control of refractive index during pulsed-laser-deposited waveguide growth" 660: 276:
deposition. This nucleation density increases the smoothness of the deposited film.
142: 1648: 1613: 1593: 1562: 1334: 1326: 1269: 1232: 1194: 1189: 1177: 1158: 1123: 1080: 1037: 993: 948: 897: 853: 794: 749: 698: 644: 640: 595: 552: 115: 79: 1127: 927:"Ytterbium-doped-garnet crystal waveguide lasers grown by pulsed laser deposition" 1676: 1557: 1547: 1358: 265: 261: 162: 1653: 1643: 1603: 1552: 1470: 1423: 1407: 873:"An 115 W Yb:YAG planar waveguide laser fabricated via pulsed laser deposition" 675: 1273: 1691: 1608: 1588: 1529: 1455: 1092: 1049: 1005: 962: 911: 710: 253: 223: 206: 136: 1628: 1497: 1492: 1433: 718: 674:
May-Smith, T. C.; Muir, A. C.; Darby, M. S. B.; Eason, R. W. (2008-04-10).
652: 1303: 1658: 1519: 1502: 1482: 1237: 1210: 1084: 953: 926: 902: 781: 702: 1338: 1507: 1308: 273: 212: 197: 798: 599: 1623: 1465: 1445: 1428: 1041: 997: 857: 753: 268:
causes a very large nucleation density on the surface as compared to
135:
Each of these steps is crucial for the crystallinity, uniformity and
95: 91: 56: 75: 1175: 627: 1018: 824:
In-situ Investigation of Surface Oxygen Vacancies in Perovskites
52: 870: 163:
Laser ablation of the target material and creation of a plasma
1381: 924: 835: 577: 111: 87: 48: 16: 1062: 975: 99: 1304:
Laser-MBE: Pulsed Laser Deposition under Ultra-High Vacuum
731: 256:
which will affect the nucleation density and film quality.
207:
Nucleation and growth of the film on the substrate surface
131:
Nucleation and growth of the film on the substrate surface
1350: 1208: 502:
Type of gas and pressure in chamber (oxygen, argon, etc.)
673: 32:
One possible configuration of a PLD deposition chamber.
612: 1254:
Applied Physics A: Materials Science & Processing
198:
Deposition of the ablation material on the substrate
128:
Deposition of the ablation material on the substrate
1346:A Brief Overview of Pulse Laser Deposition System 483:Some factors that influence the deposition rate: 1689: 1113: 436:but its sources remain unclear because it lacks 334:but its sources remain unclear because it lacks 63:facing the target). This process can occur in 1366: 1251: 766: 1373: 1359: 279:In PLD, three growth modes are possible: 47:(PVD) technique where a high-power pulsed 1236: 1193: 952: 901: 780: 626: 467:Learn how and when to remove this message 365:Learn how and when to remove this message 171: 141: 27: 15: 1634:Multiple-prism grating laser oscillator 1300:Introduction to Pulsed laser deposition 1298:Introduction to Pulsed Laser Deposition 1690: 1140: 534: 24:target during pulsed laser deposition. 1354: 537:Journal of Physics D: Applied Physics 1698:Physical vapor deposition techniques 512: 408: 404: 306: 1065:Japanese Journal of Applied Physics 13: 114:irradiation, the development of a 59:on a substrate (such as a silicon 14: 1729: 1291: 826:Mat. Res. Soc. Proc. 967E, (2006) 499:Distance from target to substrate 1703:Semiconductor device fabrication 1672: 1671: 413: 311: 1331:10.1016/j.optlastec.2014.12.009 1245: 1202: 1182:Surface and Coatings Technology 1169: 1134: 1107: 1056: 1012: 969: 918: 864: 1543:Amplified spontaneous emission 1195:10.1016/j.surfcoat.2017.12.008 829: 813: 760: 725: 667: 645:10.1103/PhysRevLett.103.256103 606: 571: 557:10.1088/0022-3727/43/42/425205 528: 1: 1311:Optics & Laser Technology 1128:10.1016/j.surfrep.2003.10.001 1071:(Part 2, No. 7B): L849–L851. 506: 1163:10.1016/0169-4332(94)00368-8 496:Temperature of the substrate 493:Repetition rate of the laser 71: 20:A plume ejected from a SrRuO 7: 1599:Chirped pulse amplification 10: 1734: 1403:List of laser applications 1380: 769:Journal of Applied Physics 580:Journal of Applied Physics 302: 105: 1667: 1581: 1528: 1416: 1388: 1274:10.1007/s00339-002-1442-4 1216:Optical Materials Express 932:Optical Materials Express 881:Optical Materials Express 383:chemical vapor deposition 51:beam is focused inside a 45:physical vapor deposition 422:This section includes a 320:This section includes a 139:of the resulting film. 1143:Applied Surface Science 1116:Surface Science Reports 1022:Applied Physics Letters 978:Applied Physics Letters 838:Applied Physics Letters 734:Applied Physics Letters 615:Physical Review Letters 586:(10): 103703–103703–6. 451:more precise citations. 349:more precise citations. 37:Pulsed laser deposition 1393:List of laser articles 775:(8): 083704–083704–6. 379:molecular beam epitaxy 270:molecular beam epitaxy 159: 33: 25: 490:Pulse energy of laser 290:Layer-by-layer growth 172:Dynamic of the plasma 145: 125:Dynamic of the plasma 31: 19: 1708:Thin film deposition 1568:Population inversion 1238:10.1364/OME.7.004073 1085:10.1143/JJAP.42.L849 954:10.1364/OME.7.001628 903:10.1364/ome.6.000091 703:10.1364/AO.47.001767 1619:Laser beam profiler 1538:Active laser medium 1478:Free-electron laser 1398:List of laser types 1323:2015OptLT..69...92P 1266:2002ApPhA..75..551S 1229:2017OMExp...7.4073G 1155:1995ApSS...86...79L 1077:2003JaJAP..42L.849Y 1034:1997ApPhL..70.2735V 990:1991ApPhL..58.2027K 945:2017OMExp...7.1628B 894:2016OMExp...6...91G 850:2000ApPhL..76.2439L 791:2007JAP...102h3704O 746:1998ApPhL..73.2920K 695:2008ApOpt..47.1767M 637:2009PhRvL.103y6103F 592:2008JAP...103j3703O 549:2010JPhD...43P5205R 250:Background pressure 230:Surface temperature 82:formation and even 1718:Laser applications 424:list of references 387:sputter deposition 322:list of references 160: 34: 26: 1685: 1684: 1639:Optical amplifier 1488:Solid-state laser 1028:(20): 2735–2737. 984:(18): 2027–2029. 799:10.1063/1.2798385 689:(11): 1767–1780. 600:10.1063/1.2921972 477: 476: 469: 405:Technical aspects 375: 374: 367: 244:Substrate surface 65:ultra high vacuum 1725: 1675: 1674: 1649:Optical isolator 1614:Injection seeder 1594:Beam homogenizer 1573:Ultrashort pulse 1563:Lasing threshold 1375: 1368: 1361: 1352: 1351: 1342: 1286: 1285: 1249: 1243: 1242: 1240: 1206: 1200: 1199: 1197: 1173: 1167: 1166: 1138: 1132: 1131: 1122:(5–6): 163–218. 1111: 1105: 1104: 1060: 1054: 1053: 1042:10.1063/1.119006 1016: 1010: 1009: 998:10.1063/1.105002 973: 967: 966: 956: 922: 916: 915: 905: 877: 868: 862: 861: 858:10.1063/1.126369 833: 827: 819:Granozio, F. M. 817: 811: 810: 784: 782:cond-mat/0604117 764: 758: 757: 754:10.1063/1.122630 729: 723: 722: 680: 671: 665: 664: 630: 610: 604: 603: 575: 569: 568: 532: 526: 516: 472: 465: 461: 458: 452: 447:this section by 438:inline citations 417: 416: 409: 370: 363: 359: 356: 350: 345:this section by 336:inline citations 315: 314: 307: 284:Step-flow growth 260:In PLD, a large 220:Laser parameters 1733: 1732: 1728: 1727: 1726: 1724: 1723: 1722: 1713:Laser machining 1688: 1687: 1686: 1681: 1663: 1577: 1558:Laser linewidth 1548:Continuous wave 1524: 1417:Types of lasers 1412: 1384: 1379: 1294: 1289: 1250: 1246: 1207: 1203: 1174: 1170: 1139: 1135: 1112: 1108: 1061: 1057: 1017: 1013: 974: 970: 923: 919: 875: 869: 865: 834: 830: 818: 814: 765: 761: 730: 726: 678: 672: 668: 611: 607: 576: 572: 533: 529: 517: 513: 509: 487:Target material 473: 462: 456: 453: 442: 428:related reading 418: 414: 407: 400: 396: 392: 371: 360: 354: 351: 340: 326:related reading 316: 312: 305: 266:supersaturation 262:supersaturation 237: 209: 200: 174: 165: 157: 153: 149: 108: 23: 12: 11: 5: 1731: 1721: 1720: 1715: 1710: 1705: 1700: 1683: 1682: 1680: 1679: 1668: 1665: 1664: 1662: 1661: 1656: 1654:Output coupler 1651: 1646: 1644:Optical cavity 1641: 1636: 1631: 1626: 1621: 1616: 1611: 1606: 1604:Gain-switching 1601: 1596: 1591: 1585: 1583: 1579: 1578: 1576: 1575: 1570: 1565: 1560: 1555: 1553:Laser ablation 1550: 1545: 1540: 1534: 1532: 1526: 1525: 1523: 1522: 1517: 1516: 1515: 1510: 1505: 1500: 1495: 1485: 1480: 1475: 1474: 1473: 1468: 1463: 1458: 1453: 1451:Carbon dioxide 1443: 1442: 1441: 1439:Liquid-crystal 1436: 1426: 1424:Chemical laser 1420: 1418: 1414: 1413: 1411: 1410: 1408:Laser acronyms 1405: 1400: 1395: 1389: 1386: 1385: 1378: 1377: 1370: 1363: 1355: 1349: 1348: 1343: 1306: 1301: 1293: 1292:External links 1290: 1288: 1287: 1260:(5): 551–554. 1244: 1201: 1168: 1149:(1–4): 79–85. 1133: 1106: 1055: 1011: 968: 917: 863: 828: 812: 759: 724: 683:Applied Optics 666: 621:(25): 256103. 605: 570: 543:(42): 425205. 527: 510: 508: 505: 504: 503: 500: 497: 494: 491: 488: 475: 474: 432:external links 421: 419: 412: 406: 403: 398: 394: 390: 373: 372: 330:external links 319: 317: 310: 304: 301: 300: 299: 293: 287: 258: 257: 247: 241: 235: 227: 208: 205: 199: 196: 191: 190: 186: 182: 173: 170: 164: 161: 155: 151: 147: 133: 132: 129: 126: 123: 107: 104: 21: 9: 6: 4: 3: 2: 1730: 1719: 1716: 1714: 1711: 1709: 1706: 1704: 1701: 1699: 1696: 1695: 1693: 1678: 1670: 1669: 1666: 1660: 1657: 1655: 1652: 1650: 1647: 1645: 1642: 1640: 1637: 1635: 1632: 1630: 1627: 1625: 1622: 1620: 1617: 1615: 1612: 1610: 1609:Gaussian beam 1607: 1605: 1602: 1600: 1597: 1595: 1592: 1590: 1589:Beam expander 1587: 1586: 1584: 1580: 1574: 1571: 1569: 1566: 1564: 1561: 1559: 1556: 1554: 1551: 1549: 1546: 1544: 1541: 1539: 1536: 1535: 1533: 1531: 1530:Laser physics 1527: 1521: 1518: 1514: 1511: 1509: 1506: 1504: 1501: 1499: 1496: 1494: 1491: 1490: 1489: 1486: 1484: 1481: 1479: 1476: 1472: 1469: 1467: 1464: 1462: 1459: 1457: 1454: 1452: 1449: 1448: 1447: 1444: 1440: 1437: 1435: 1432: 1431: 1430: 1427: 1425: 1422: 1421: 1419: 1415: 1409: 1406: 1404: 1401: 1399: 1396: 1394: 1391: 1390: 1387: 1383: 1376: 1371: 1369: 1364: 1362: 1357: 1356: 1353: 1347: 1344: 1340: 1336: 1332: 1328: 1324: 1320: 1316: 1312: 1307: 1305: 1302: 1299: 1296: 1295: 1283: 1279: 1275: 1271: 1267: 1263: 1259: 1255: 1248: 1239: 1234: 1230: 1226: 1222: 1218: 1217: 1212: 1205: 1196: 1191: 1187: 1183: 1179: 1172: 1164: 1160: 1156: 1152: 1148: 1144: 1137: 1129: 1125: 1121: 1117: 1110: 1102: 1098: 1094: 1090: 1086: 1082: 1078: 1074: 1070: 1066: 1059: 1051: 1047: 1043: 1039: 1035: 1031: 1027: 1023: 1015: 1007: 1003: 999: 995: 991: 987: 983: 979: 972: 964: 960: 955: 950: 946: 942: 938: 934: 933: 928: 921: 913: 909: 904: 899: 895: 891: 887: 883: 882: 874: 867: 859: 855: 851: 847: 843: 839: 832: 825: 822: 816: 808: 804: 800: 796: 792: 788: 783: 778: 774: 770: 763: 755: 751: 747: 743: 739: 735: 728: 720: 716: 712: 708: 704: 700: 696: 692: 688: 684: 677: 670: 662: 658: 654: 650: 646: 642: 638: 634: 629: 624: 620: 616: 609: 601: 597: 593: 589: 585: 581: 574: 566: 562: 558: 554: 550: 546: 542: 538: 531: 525: 524:0-471-59218-8 521: 515: 511: 501: 498: 495: 492: 489: 486: 485: 484: 481: 471: 468: 460: 450: 446: 440: 439: 433: 429: 425: 420: 411: 410: 402: 388: 384: 380: 369: 366: 358: 348: 344: 338: 337: 331: 327: 323: 318: 309: 308: 297: 294: 291: 288: 285: 282: 281: 280: 277: 275: 271: 267: 263: 255: 254:stoichiometry 251: 248: 245: 242: 239: 231: 228: 225: 224:stoichiometry 221: 218: 217: 216: 214: 204: 195: 187: 183: 180: 179: 178: 169: 144: 140: 138: 137:stoichiometry 130: 127: 124: 121: 120: 119: 117: 113: 103: 101: 97: 93: 89: 85: 81: 77: 73: 68: 66: 62: 58: 54: 50: 46: 42: 38: 30: 18: 1629:Mode locking 1582:Laser optics 1339:10261/129916 1314: 1310: 1257: 1253: 1247: 1223:(11): 4073. 1220: 1214: 1204: 1185: 1181: 1171: 1146: 1142: 1136: 1119: 1115: 1109: 1068: 1064: 1058: 1025: 1021: 1014: 981: 977: 971: 936: 930: 920: 885: 879: 866: 844:(17): 2439. 841: 837: 831: 820: 815: 772: 768: 762: 740:(20): 2920. 737: 733: 727: 686: 682: 669: 618: 614: 608: 583: 579: 573: 540: 536: 530: 514: 482: 478: 463: 454: 443:Please help 435: 376: 361: 352: 341:Please help 333: 295: 289: 283: 278: 259: 249: 243: 229: 219: 210: 201: 192: 175: 166: 134: 109: 69: 40: 36: 35: 1659:Q-switching 1520:X-ray laser 1513:Ti-sapphire 1483:Laser diode 1461:Helium–neon 939:(5): 1628. 449:introducing 347:introducing 84:exfoliation 1692:Categories 1317:: 92–103. 507:References 274:sputtering 213:nucleation 1624:M squared 1446:Gas laser 1429:Dye laser 1101:119738424 1093:0021-4922 1050:0003-6951 1006:0003-6951 963:2159-3930 912:2159-3930 888:(1): 91. 807:118558366 711:1539-4522 628:0910.3601 565:120309363 296:3D growth 185:possible. 96:electrons 92:molecules 57:thin film 1677:Category 1471:Nitrogen 1282:93176756 1188:: 7–10. 719:18404174 661:11210950 653:20366266 457:May 2016 355:May 2016 76:ablation 1456:Excimer 1319:Bibcode 1262:Bibcode 1225:Bibcode 1151:Bibcode 1073:Bibcode 1030:Bibcode 986:Bibcode 941:Bibcode 890:Bibcode 846:Bibcode 787:Bibcode 742:Bibcode 691:Bibcode 633:Bibcode 588:Bibcode 545:Bibcode 445:improve 385:(CVD), 381:(MBE), 343:improve 303:History 106:Process 72:Process 43:) is a 1498:Nd:YAG 1493:Er:YAG 1434:Bubble 1382:Lasers 1280:  1099:  1091:  1048:  1004:  961:  910:  821:et al. 805:  717:  709:  659:  651:  563:  522:  116:plasma 80:plasma 53:vacuum 1503:Raman 1278:S2CID 1097:S2CID 876:(PDF) 803:S2CID 777:arXiv 679:(PDF) 657:S2CID 623:arXiv 561:S2CID 430:, or 328:, or 238:laser 189:film. 112:laser 88:atoms 61:wafer 49:laser 1508:Ruby 1089:ISSN 1046:ISSN 1002:ISSN 959:ISSN 908:ISSN 715:PMID 707:ISSN 649:PMID 520:ISBN 211:The 100:ions 1466:Ion 1335:hdl 1327:doi 1270:doi 1233:doi 1190:doi 1186:343 1159:doi 1124:doi 1081:doi 1038:doi 994:doi 949:doi 898:doi 854:doi 795:doi 773:102 750:doi 699:doi 641:doi 619:103 596:doi 584:103 553:doi 272:or 41:PLD 1694:: 1333:. 1325:. 1315:69 1313:. 1276:. 1268:. 1258:75 1256:. 1231:. 1219:. 1213:. 1184:. 1180:. 1157:. 1147:86 1145:. 1120:52 1118:. 1095:. 1087:. 1079:. 1069:42 1067:. 1044:. 1036:. 1026:70 1024:. 1000:. 992:. 982:58 980:. 957:. 947:. 935:. 929:. 906:. 896:. 884:. 878:. 852:. 842:76 840:. 801:. 793:. 785:. 771:. 748:. 738:73 736:. 713:. 705:. 697:. 687:47 685:. 681:. 655:. 647:. 639:. 631:. 617:. 594:. 582:. 559:. 551:. 541:43 539:. 434:, 426:, 393:Cu 332:, 324:, 234:CO 98:, 94:, 90:, 78:, 1374:e 1367:t 1360:v 1341:. 1337:: 1329:: 1321:: 1284:. 1272:: 1264:: 1241:. 1235:: 1227:: 1221:7 1198:. 1192:: 1165:. 1161:: 1153:: 1130:. 1126:: 1103:. 1083:: 1075:: 1052:. 1040:: 1032:: 1008:. 996:: 988:: 965:. 951:: 943:: 937:7 914:. 900:: 892:: 886:6 860:. 856:: 848:: 809:. 797:: 789:: 779:: 756:. 752:: 744:: 721:. 701:: 693:: 663:. 643:: 635:: 625:: 602:. 598:: 590:: 567:. 555:: 547:: 470:) 464:( 459:) 455:( 441:. 399:7 397:O 395:3 391:2 368:) 362:( 357:) 353:( 339:. 240:. 236:2 156:3 152:3 150:O 148:2 39:( 22:3

Index


The diagram shows the following: A laser beam is by a lens, enters a vacuum chamber, and hits a dot labeled target. A plasma plume is shown leaving the target and heading toward a heated substrate.
physical vapor deposition
laser
vacuum
thin film
wafer
ultra high vacuum
Process
ablation
plasma
exfoliation
atoms
molecules
electrons
ions
laser
plasma
stoichiometry

nucleation
stoichiometry
CO2 laser
stoichiometry
supersaturation
supersaturation
molecular beam epitaxy
sputtering
list of references
related reading

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.