Knowledge

Molecular-beam epitaxy

Source šŸ“

166: 287: 214:(after a time window where the impinging atoms will hop around the surface) or reflected. Atoms on the surface may also desorb. Controlling the temperature of the source will control the rate of material impinging on the substrate surface and the temperature of the substrate will affect the rate of hopping or desorption. The term "beam" means that evaporated atoms do not interact with each other or vacuum-chamber gases until they reach the wafer, due to the long 31: 268:). Cold surfaces act as a sink for impurities in the vacuum, so vacuum levels need to be several orders of magnitude better to deposit films under these conditions. In other systems, the wafers on which the crystals are grown may be mounted on a rotating platter, which can be heated to several hundred degrees Celsius during operation. 363:
The Asaroā€“Tillerā€“Grinfeld (ATG) instability, also known as the Grinfeld instability, is an elastic instability often encountered during molecular-beam epitaxy. If there is a mismatch between the lattice sizes of the growing film and the supporting crystal, elastic energy will be accumulated in the
169:
One-atom-thick islands of silver deposited on the (111) surface of palladium by thermal evaporation. The substrate, even though it received a mirror polish and vacuum annealing, appears as a series of terraces. Calibration of the coverage was achieved by tracking the time needed to complete a full
338:
MBE systems can also be modified according to need. Oxygen sources, for example, can be incorporated for depositing oxide materials for advanced electronic, magnetic and optical applications. Here, a molecular beam of an oxidant is used to achieve the desired oxidation state of a multicomponent
229:, allowing precise control of the thickness of each layer, down to a single layer of atoms. Intricate structures of layers of different materials may be fabricated this way. Such control has allowed the development of structures where the electrons can be confined in space, giving 105:
The original ideas of the MBE process were first established by K. G. GĆ¼nther. Films that he deposited were not epitaxial, but were deposited on glass substrates. With the development of vacuum technology, the MBE process was demonstrated by John Davey and
775:
Mayer, B.; Janker, L.; Loitsch, B.; Treu, J.; Kostenbader, T.; Lichtmannecker, S.; Reichert, T.; Morkƶtter, S.; Kaniber, M.; Abstreiter, G.; Gies, C.; KoblmĆ¼ller, G.; Finley, J. J. (2016). "Monolithically Integrated High-Ī² Nanowire Lasers on Silicon".
696:
Trontl, V. MikÅ”ić; Pletikosić, I.; Milun, M.; Pervan, P.; Lazić, P.; Å okčević, D.; Brako, R. (2005-12-16). "Experimental and ab initio study of the structural and electronic properties of subnanometer thick Ag films on Pd(111)".
364:
growing film. At some critical height, the free energy of the film can be lowered if the film breaks into isolated islands, where the tension can be relaxed laterally. The critical height depends on the
351:
and quantum structures built within them can allow for information processing and the possible integration with on-chip applications for quantum communication and computing. These heterostructure
347:
One of the achievements of molecular-beam epitaxy is the nano-structures that permit the formation of atomically flat and abrupt hetero-interfaces. Most recently, the construction of
165: 162:
levels as other deposition techniques. The absence of carrier gases, as well as the ultra-high vacuum environment, result in the highest achievable purity of the grown films.
978:
Frigeri, P.; Seravalli, L.; Trevisi, G.; Franchi, S. (2011). "3.12: Molecular Beam Epitaxy: An Overview". In Pallab Bhattacharya; Roberto Fornari; Hiroshi Kamimura (eds.).
295: 1011: 1021: 1041: 252:
In systems where the substrate needs to be cooled, the ultra-high vacuum environment within the growth chamber is maintained by a system of
355:
are only possible to build using advanced MBE techniques, allowing monolithical integration on silicon and picosecond signal processing.
222: 127: 179: 17: 995: 845: 680: 158:(in layers on top of the existing crystal). These deposition rates require proportionally better vacuum to achieve the same 210:
is formed. When evaporation sources such as copper or gold are used, the gaseous elements impinging on the surface may be
298:. The system is designed for growth of monocrystalline semiconductors, semiconducting heterostructures, materials for 225:(RHEED) is often used for monitoring the growth of the crystal layers. A computer controls shutters in front of each 414: 408: 393: 275:. In this case, molecules, rather than atoms, are evaporated and deposited onto the wafer. Other variations include 522: 1051: 1046: 376: 171: 902:
Shchukin, Vitaliy A.; Dieter Bimberg (1999). "Spontaneous ordering of nanostructures on crystal surfaces".
206:
on the wafer, where they may react with each other. In the example of gallium and arsenic, single-crystal
732:
Mata, Maria de la; Zhou, Xiang; Furtmayr, Florian; Teubert, Jƶrg; Gradečak, Silvija; Eickhoff, Martin;
934: 820:"Long-term mutual phase locking of picosecond pulse pairs generated by a semiconductor nanowire laser" 942: 904: 733: 280: 74: 388: 199: 114:
GaAs substrates using GĆ¼nther's method. Major subsequent development of MBE films was enabled by
203: 601:
Davey, John E.; Pankey, Titus (1968). "Epitaxial GaAs films deposited by vacuum evaporation".
857: 466: 444: 424: 276: 272: 195: 58: 951: 913: 866: 785: 749: 706: 610: 557: 475: 246: 50: 8: 242: 34:
A simple sketch showing the layout of the main chamber in a molecular-beam epitaxy system
955: 917: 870: 789: 753: 710: 614: 561: 479: 987: 890: 583: 499: 365: 226: 115: 737: 991: 894: 882: 841: 801: 676: 649: 575: 503: 491: 151: 143: 587: 983: 959: 921: 874: 793: 757: 714: 668: 645: 618: 565: 483: 434: 207: 797: 419: 352: 257: 517: 925: 718: 403: 398: 215: 111: 54: 963: 819: 672: 286: 271:
Molecular-beam epitaxy (MBE) is also used for the deposition of some types of
1035: 579: 439: 372: 238: 119: 86: 886: 878: 805: 495: 487: 230: 175: 154:(typically less than 3,000 nm per hour) that allows the films to grow 107: 570: 545: 371:
Some applications for this instability have been researched, such as the
299: 234: 155: 147: 761: 429: 211: 139: 62: 935:"Structural properties of self-organized semiconductor nanostructures" 738:"A review of MBE grown 0D, 1D and 2D quantum structures in a nanowire" 622: 1016: 348: 319: 303: 78: 855:
McCray, W. P. (2007). "MBE Deserves a Place in the History Books".
315: 253: 159: 464:
McCray, W.P. (2007). "MBE Deserves a Place in the History Books".
327: 311: 307: 191: 187: 123: 46: 636:
Cho, A. Y.; Arthur, J. R. Jr. (1975). "Molecular beam epitaxy".
331: 323: 261: 82: 70: 977: 291: 66: 265: 118:
investigations of kinetic behavior of growth mechanisms and
1026: 1022:
Physics of Thin Films: Molecular Beam Epitaxy (class notes)
695: 296:
FZU ā€“ Institute of Physics of the Czech Academy of Sciences
94: 1012:
Silicon and germanium nanowires by molecular beam epitaxy
662: 90: 546:"Aufdampfschidhten aus halbleitenden III-V-Verbindungen" 198:
or electron-beam evaporators until they begin to slowly
731: 260:
or cold nitrogen gas to a temperature close to 77 
982:. Vol. 3. Amsterdam: Elsevier. pp. 480ā€“522. 901: 774: 150:). The most important aspect of an MBE process is the 30: 932: 237:. Such layers are now a critical part of many modern 1017:
University of Texas MBE group (Primer on MBE growth)
358: 840:(2nd ed.). Upper Saddle River: Prentice Hall. 194:, in ultra-pure form, are heated in separate quasi- 980:Comprehensive Semiconductor Science and Technology 375:of quantum dots. Some communities use the name of 110:who succeeded in growing GaAs epitaxial films on 1033: 302:and other compound material systems containing 178:characteristic of the silver film thickness in 836:Jaeger, Richard C. (2002). "Film Deposition". 1027:CrystalXE: A specialized software in epitaxy 838:Introduction to Microelectronic Fabrication 600: 223:reflection high-energy electron diffraction 128:reflection high-energy electron diffraction 57:. MBE is widely used in the manufacture of 635: 569: 342: 822:. Nature Communications 8 (2017): 15521. 665:RHEED Transmission Mode and Pole Figures 285: 182:(ARPES). Image size is 250 nm by 250 nm. 164: 29: 543: 14: 1034: 933:Stangl, J.; V. HolĆ½; G. Bauer (2004). 854: 835: 463: 368:, mismatch size, and surface tension. 186:In solid source MBE, elements such as 138:Molecular-beam epitaxy takes place in 1042:Physical vapor deposition techniques 663:Gwo-Ching Wang; Toh-Ming Lu (2013). 81:frequencies, and to manufacture the 24: 988:10.1016/B978-0-44-453153-7.00099-7 971: 25: 1063: 1005: 415:Heterojunction bipolar transistor 409:High-electron-mobility transistor 394:Metalorganic vapour phase epitaxy 359:Asaroā€“Tillerā€“Grinfeld instability 126:observation of MBE process using 742:Journal of Materials Chemistry C 550:Zeitschrift fĆ¼r Naturforschung A 174:(STM) and from the emergence of 812: 523:National Inventors Hall of Fame 768: 725: 689: 656: 629: 594: 537: 510: 457: 290:Molecular beam epitaxy system 256:and cryopanels, chilled using 13: 1: 829: 544:GĆ¼nther, K. G. (1958-12-01). 202:. The gaseous elements then 798:10.1021/acs.nanolett.5b03404 650:10.1016/0079-6786(75)90005-9 7: 382: 130:(RHEED) in the late 1960s. 10: 1068: 926:10.1103/RevModPhys.71.1125 734:Fontcuberta i Morral, Anna 719:10.1103/PhysRevB.72.235418 180:photoemission spectroscopy 100: 964:10.1103/RevModPhys.76.725 943:Reviews of Modern Physics 905:Reviews of Modern Physics 673:10.1007/978-1-4614-9287-0 377:Stranskiā€“Krastanov growth 281:chemical vapor deposition 133: 736:; Arbiol, Jordi (2013). 450: 75:field-effect transistors 389:Pulsed laser deposition 27:Crystal growth process 879:10.1038/nnano.2007.121 638:Prog. Solid State Chem 488:10.1038/nnano.2007.121 343:Quantum nanostructures 335: 273:organic semiconductors 196:Knudsen effusion cells 183: 65:. MBE is used to make 39:Molecular-beam epitaxy 35: 18:Molecular beam epitaxy 858:Nature Nanotechnology 571:10.1515/zna-1958-1210 467:Nature Nanotechnology 445:Thermal Laser Epitaxy 425:Quantum cascade laser 289: 247:light-emitting diodes 168: 59:semiconductor devices 33: 1052:Thin film deposition 1047:Semiconductor growth 243:semiconductor lasers 172:tunneling microscopy 51:thin-film deposition 956:2004RvMP...76..725S 918:1999RvMP...71.1125S 871:2007NatNa...2..259M 790:2016NanoL..16..152M 754:2013JMCC....1.4300D 711:2005PhRvB..72w5418T 615:1968JAP....39.1941D 562:1958ZNatA..13.1081G 480:2007NatNa...2..259M 241:devices, including 176:quantum-well states 818:Mayer, B., et al. 762:10.1039/C3TC30556B 336: 279:, which resembles 221:During operation, 184: 36: 997:978-0-444-53153-7 847:978-0-201-44494-0 699:Physical Review B 682:978-1-4614-9286-3 623:10.1063/1.1656467 556:(12): 1081ā€“1089. 144:ultra-high vacuum 16:(Redirected from 1059: 1001: 967: 939: 929: 912:(4): 1125ā€“1171. 898: 851: 823: 816: 810: 809: 772: 766: 765: 729: 723: 722: 693: 687: 686: 660: 654: 653: 633: 627: 626: 609:(4): 1941ā€“1948. 598: 592: 591: 573: 541: 535: 534: 532: 530: 514: 508: 507: 461: 435:Ben G. Streetman 208:gallium arsenide 170:monolayer using 21: 1067: 1066: 1062: 1061: 1060: 1058: 1057: 1056: 1032: 1031: 1008: 998: 974: 972:Further reading 937: 848: 832: 827: 826: 817: 813: 773: 769: 730: 726: 694: 690: 683: 661: 657: 634: 630: 599: 595: 542: 538: 528: 526: 518:"Alfred Y. Cho" 516: 515: 511: 462: 458: 453: 420:Herbert Kroemer 385: 366:Young's modulus 361: 353:nanowire lasers 345: 258:liquid nitrogen 216:mean free paths 152:deposition rate 136: 103: 55:single crystals 28: 23: 22: 15: 12: 11: 5: 1065: 1055: 1054: 1049: 1044: 1030: 1029: 1024: 1019: 1014: 1007: 1006:External links 1004: 1003: 1002: 996: 973: 970: 969: 968: 950:(3): 725ā€“783. 930: 899: 865:(5): 259ā€“261. 852: 846: 831: 828: 825: 824: 811: 784:(1): 152ā€“156. 767: 724: 705:(23): 235418. 688: 681: 655: 628: 593: 536: 509: 474:(5): 259ā€“261. 455: 454: 452: 449: 448: 447: 442: 437: 432: 427: 422: 417: 412: 406: 404:Arthur Gossard 401: 399:Colin P. Flynn 396: 391: 384: 381: 360: 357: 344: 341: 294:Gen II at the 277:gas-source MBE 266:degree Celsius 218:of the atoms. 135: 132: 112:single crystal 102: 99: 26: 9: 6: 4: 3: 2: 1064: 1053: 1050: 1048: 1045: 1043: 1040: 1039: 1037: 1028: 1025: 1023: 1020: 1018: 1015: 1013: 1010: 1009: 999: 993: 989: 985: 981: 976: 975: 965: 961: 957: 953: 949: 945: 944: 936: 931: 927: 923: 919: 915: 911: 907: 906: 900: 896: 892: 888: 884: 880: 876: 872: 868: 864: 860: 859: 853: 849: 843: 839: 834: 833: 821: 815: 807: 803: 799: 795: 791: 787: 783: 779: 771: 763: 759: 755: 751: 747: 743: 739: 735: 728: 720: 716: 712: 708: 704: 700: 692: 684: 678: 674: 670: 666: 659: 651: 647: 643: 639: 632: 624: 620: 616: 612: 608: 604: 603:J. Appl. Phys 597: 589: 585: 581: 577: 572: 567: 563: 559: 555: 551: 547: 540: 525: 524: 519: 513: 505: 501: 497: 493: 489: 485: 481: 477: 473: 469: 468: 460: 456: 446: 443: 441: 440:Wetting layer 438: 436: 433: 431: 428: 426: 423: 421: 418: 416: 413: 410: 407: 405: 402: 400: 397: 395: 392: 390: 387: 386: 380: 378: 374: 373:self-assembly 369: 367: 356: 354: 350: 340: 333: 329: 325: 321: 317: 313: 309: 305: 301: 297: 293: 288: 284: 282: 278: 274: 269: 267: 263: 259: 255: 250: 248: 244: 240: 239:semiconductor 236: 232: 231:quantum wells 228: 224: 219: 217: 213: 209: 205: 201: 197: 193: 189: 181: 177: 173: 167: 163: 161: 157: 153: 149: 145: 141: 131: 129: 125: 121: 120:Alfred Y. Cho 117: 116:J.R. Arthur's 113: 109: 98: 96: 92: 88: 87:optical discs 85:used to read 84: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 32: 19: 979: 947: 941: 909: 903: 862: 856: 837: 814: 781: 778:Nano Letters 777: 770: 748:(28): 4300. 745: 741: 727: 702: 698: 691: 664: 658: 641: 637: 631: 606: 602: 596: 553: 549: 539: 527:. Retrieved 521: 512: 471: 465: 459: 370: 362: 346: 337: 270: 251: 235:quantum dots 220: 185: 146:(10ā€“10  137: 108:Titus Pankey 104: 61:, including 42: 38: 37: 644:: 157ā€“192. 300:spintronics 264:(āˆ’196  156:epitaxially 140:high vacuum 63:transistors 49:method for 1036:Categories 830:References 430:Solar cell 895:205442147 580:1865-7109 529:17 August 504:205442147 379:for ATG. 349:nanowires 254:cryopumps 89:(such as 79:microwave 887:18654274 806:26618638 588:97543040 496:18654274 383:See also 233:or even 212:adsorbed 204:condense 160:impurity 45:) is an 952:Bibcode 914:Bibcode 867:Bibcode 786:Bibcode 750:Bibcode 707:Bibcode 611:Bibcode 558:Bibcode 476:Bibcode 339:oxide. 262:kelvins 227:furnace 200:sublime 192:arsenic 188:gallium 124:in situ 101:History 71:MOSFETs 47:epitaxy 994:  893:  885:  844:  804:  679:  586:  578:  502:  494:  411:(HEMT) 134:Method 83:lasers 67:diodes 938:(PDF) 891:S2CID 584:S2CID 500:S2CID 451:Notes 292:Veeco 77:) at 73:(MOS 992:ISBN 883:PMID 842:ISBN 802:PMID 677:ISBN 576:ISSN 531:2019 492:PMID 330:and 245:and 190:and 148:Torr 95:DVDs 93:and 69:and 984:doi 960:doi 922:doi 875:doi 794:doi 758:doi 715:doi 669:doi 646:doi 619:doi 566:doi 484:doi 142:or 122:'s 97:). 91:CDs 53:of 43:MBE 1038:: 990:. 958:. 948:76 946:. 940:. 920:. 910:71 908:. 889:. 881:. 873:. 861:. 800:. 792:. 782:16 780:. 756:. 744:. 740:. 713:. 703:72 701:. 675:. 667:. 642:10 640:. 617:. 607:39 605:. 582:. 574:. 564:. 554:13 552:. 548:. 520:. 498:. 490:. 482:. 470:. 328:Si 326:, 324:Cu 322:, 320:Mn 318:, 314:, 312:As 310:, 308:Ga 306:, 304:Al 283:. 249:. 1000:. 986:: 966:. 962:: 954:: 928:. 924:: 916:: 897:. 877:: 869:: 863:2 850:. 808:. 796:: 788:: 764:. 760:: 752:: 746:1 721:. 717:: 709:: 685:. 671:: 652:. 648:: 625:. 621:: 613:: 590:. 568:: 560:: 533:. 506:. 486:: 478:: 472:2 334:. 332:C 316:P 41:( 20:)

Index

Molecular beam epitaxy

epitaxy
thin-film deposition
single crystals
semiconductor devices
transistors
diodes
MOSFETs
field-effect transistors
microwave
lasers
optical discs
CDs
DVDs
Titus Pankey
single crystal
J.R. Arthur's
Alfred Y. Cho
in situ
reflection high-energy electron diffraction
high vacuum
ultra-high vacuum
Torr
deposition rate
epitaxially
impurity

tunneling microscopy
quantum-well states

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘