Knowledge

Laser

Source 📝

1013:. But each stimulated emission event returns an atom from its excited state to the ground state, reducing the gain of the medium. With increasing beam power the net gain (gain minus loss) reduces to unity and the gain medium is said to be saturated. In a continuous wave (CW) laser, the balance of pump power against gain saturation and cavity losses produces an equilibrium value of the laser power inside the cavity; this equilibrium determines the operating point of the laser. If the applied pump power is too small, the gain will never be sufficient to overcome the cavity losses, and laser light will not be produced. The minimum pump power needed to begin laser action is called the 3601: 51: 2270: 3378: 2784:. In conjunction, several advantages were expected from two-stage pumping of a three-level system. It was conjectured that the nucleus of an atom, embedded in the near field of a laser-driven coherently-oscillating electron cloud would experience a larger dipole field than that of the driving laser. Furthermore, the nonlinearity of the oscillating cloud would produce both spatial and temporal harmonics, so nuclear transitions of higher multipolarity could also be driven at multiples of the laser frequency. 943: 1990: 2093: 2490:. This type of fiber consists of a fiber core, an inner cladding, and an outer cladding. The index of the three concentric layers is chosen so that the fiber core acts as a single-mode fiber for the laser emission while the outer cladding acts as a highly multimode core for the pump laser. This lets the pump propagate a large amount of power into and through the active inner core region, while still having a high numerical aperture (NA) to have easy launching conditions. 2673: 1320: 864: 8188: 1761: 3610: 1223: 735: 582: 367: 1802: 1335: 1347: 1660: 1009:. The resonator typically consists of two mirrors between which a coherent beam of light travels in both directions, reflecting on itself so that an average photon will pass through the gain medium repeatedly before it is emitted from the output aperture or lost to diffraction or absorption. If the gain (amplification) in the medium is larger than the resonator losses, then the power of the recirculating light can rise 923: 2867: 2539: 420: 3282: 3330: 7106: 823: 635: 1032: 1382:) laser. Many types of lasers can be made to operate in continuous-wave mode to satisfy such an application. Many of these lasers lase in several longitudinal modes at the same time, and beats between the slightly different optical frequencies of those oscillations will produce amplitude variations on time scales shorter than the round-trip time (the reciprocal of the 2730: 1468:
approached the maximum possible level, the introduced loss mechanism (often an electro- or acousto-optical element) is rapidly removed (or that occurs by itself in a passive device), allowing lasing to begin which rapidly obtains the stored energy in the gain medium. This results in a short pulse incorporating that energy, and thus a high peak power.
2600:) are semiconductor lasers whose emission direction is perpendicular to the surface of the wafer. VCSEL devices typically have a more circular output beam than conventional laser diodes. As of 2005, only 850 nm VCSELs are widely available, with 1300 nm VCSELs beginning to be commercialized, and 1550 nm devices an area of research. 1841:(later an essential laser-device component). Moreover, in 1958, Prokhorov independently proposed using an open resonator, the first published appearance of this idea. Meanwhile, Schawlow and Townes had decided on an open-resonator laser design – apparently unaware of Prokhorov's publications and Gould's unpublished laser work. 975:. Particles can interact with light by either absorbing or emitting photons. Emission can be spontaneous or stimulated. In the latter case, the photon is emitted in the same direction as the light that is passing by. When the number of particles in one excited state exceeds the number of particles in some lower-energy state, 496:. For this to happen, many of the atoms or molecules must be in the proper excited state so that the photons can trigger them. In most materials, atoms or molecules drop out of excited states fairly rapidly, making it difficult or impossible to produce a chain reaction. The materials chosen for lasers are the ones that have 2639:) could be fabricated on the same chip. Unfortunately, silicon is a difficult lasing material to deal with, since it has certain properties which block lasing. However, recently teams have produced silicon lasers through methods such as fabricating the lasing material from silicon and other semiconductor materials, such as 3354:, although some have made their own class IV types. However, compared to other hobbyists, laser hobbyists are far less common, due to the cost and potential dangers involved. Due to the cost of lasers, some hobbyists use inexpensive means to obtain lasers, such as salvaging laser diodes from broken DVD players (red), 1848:. Gould's intention was that different "-ASER" acronyms should be used for different parts of the spectrum: "XASER" for x-rays, "UVASER" for ultraviolet, etc. "LASER" ended up becoming the generic term for non-microwave devices, although "RASER" was briefly popular for denoting radio-frequency-emitting devices. 1631: 1426:, for example, a small volume of material at the surface of a workpiece can be evaporated if it is heated in a very short time, while supplying the energy gradually would allow for the heat to be absorbed into the bulk of the piece, never attaining a sufficiently high temperature at a particular point. 1554:
which are then switched to discharge through flashlamps, producing an intense flash. Pulsed pumping is also required for three-level lasers in which the lower energy level rapidly becomes highly populated preventing further lasing until those atoms relax to the ground state. These lasers, such as the
1421:
In other cases, the application requires the production of pulses having as large an energy as possible. Since the pulse energy is equal to the average power divided by the repetition rate, this goal can sometimes be satisfied by lowering the rate of pulses so that more energy can be built up between
1398:
For continuous-wave operation, it is required for the population inversion of the gain medium to be continually replenished by a steady pump source. In some lasing media, this is impossible. In some other lasers, it would require pumping the laser at a very high continuous power level, which would be
893:
from one state to that at a higher energy level with energy difference ΔE, it will not stay that way forever. Eventually, a photon will be spontaneously created from the vacuum having energy ΔE. Conserving energy, the electron transitions to a lower energy level that is not occupied, with transitions
675:
light by way of stimulated emission. Light of a specific wavelength that passes through the gain medium is amplified (power increases). Feedback enables stimulated emission to amplify predominantly the optical frequency at the peak of the gain-frequency curve. As stimulated emission grows, eventually
1413:
The pulsed operation of lasers refers to any laser not classified as a continuous wave so that the optical power appears in pulses of some duration at some repetition rate. This encompasses a wide range of technologies addressing many different motivations. Some lasers are pulsed simply because they
679:
The process of stimulated emission is analogous to that of an audio oscillator with positive feedback which can occur, for example, when the speaker in a public-address system is placed in proximity to the microphone. The screech one hears is audio oscillation at the peak of the gain-frequency curve
2185:
gas by various international teams. This was accomplished by using an external maser to induce "optical transparency" in the medium by introducing and destructively interfering the ground electron transitions between two paths so that the likelihood for the ground electrons to absorb any energy has
1358:
A laser can be classified as operating in either continuous or pulsed mode, depending on whether the power output is essentially continuous over time or whether its output takes the form of pulses of light on one or another time scale. Of course, even a laser whose output is normally continuous can
2655:
directly on silicon for optical interconnects, paving the way for chip-level applications. These heterostructure nanowire lasers capable of optical interconnects in silicon are also capable of emitting pairs of phase-locked picosecond pulses with a repetition frequency up to 200 GHz, allowing
2577:
other lasers with high efficiency. The highest-power industrial laser diodes, with power of up to 20 kW, are used in industry for cutting and welding. External-cavity semiconductor lasers have a semiconductor active medium in a larger cavity. These devices can generate high power outputs with
2307:
is maintained in the dopant. These materials are pumped optically using a shorter wavelength than the lasing wavelength, often from a flash tube or another laser. The usage of the term "solid-state" in laser physics is narrower than in typical use. Semiconductor lasers (laser diodes) are typically
1386:
between modes), typically a few nanoseconds or less. In most cases, these lasers are still termed "continuous-wave" as their output power is steady when averaged over longer periods, with the very high-frequency power variations having little or no impact on the intended application. (However, the
2751:
and infrared to the visible spectrum, to soft X-rays. They have the widest frequency range of any laser type. While FEL beams share the same optical traits as other lasers, such as coherent radiation, FEL operation is quite different. Unlike gas, liquid, or solid-state lasers, which rely on bound
913:
A photon with the correct wavelength to be absorbed by a transition can also cause an electron to drop from the higher to the lower level, emitting a new photon. The emitted photon exactly matches the original photon in wavelength, phase, and direction. This process is called stimulated emission.
1812:
coined the acronym LASER, and described the elements required to construct one. Manuscript text: "Some rough calculations on the feasibility / of a LASER: Light Amplification by Stimulated / Emission of Radiation. / Conceive a tube terminated by optically flat / / partially reflecting parallel
1467:
In a Q-switched laser, the population inversion is allowed to build up by introducing loss inside the resonator which exceeds the gain of the medium; this can also be described as a reduction of the quality factor or 'Q' of the cavity. Then, after the pump energy stored in the laser medium has
1044:
of the emitted light is 90 degrees in lead of the stimulating light. This, combined with the filtering effect of the optical resonator gives laser light its characteristic coherence, and may give it uniform polarization and monochromaticity, depending on the resonator's design. The fundamental
2197:
are powered by a chemical reaction permitting a large amount of energy to be released quickly. Such very high-power lasers are especially of interest to the military, however continuous wave chemical lasers at very high power levels, fed by streams of gasses, have been developed and have some
1549:
Another method of achieving pulsed laser operation is to pump the laser material with a source that is itself pulsed, either through electronic charging in the case of flash lamps, or another laser that is already pulsed. Pulsed pumping was historically used with dye lasers where the inverted
3676:
The indicated powers are for visible-light, continuous-wave lasers. For pulsed lasers and invisible wavelengths, other power limits apply. People working with class 3B and class 4 lasers can protect their eyes with safety goggles which are designed to absorb light of a particular wavelength.
2772:
has been the subject of wide-ranging academic research since the early 1970s. Much of this is summarized in three review articles. This research has been international in scope but mainly based in the former Soviet Union and the United States. While many scientists remain optimistic that a
2237:. Once the molecule transfers its excitation energy to a photon, its atoms are no longer bound to each other and the molecule disintegrates. This drastically reduces the population of the lower energy state thus greatly facilitating a population inversion. Excimers currently used are all 348:
as suggested by the acronym. It has been humorously noted that the acronym LOSER, for "light oscillation by stimulated emission of radiation", would have been more correct. With the widespread use of the original acronym as a common noun, optical amplifiers have come to be referred to as
2504:
when they are exposed to radiation of certain wavelengths. In particular, this can lead to degradation of the material and loss in laser functionality over time. The exact causes and effects of this phenomenon vary from material to material, although it often involves the formation of
1883:, featuring scientific prestige and money as the stakes. Gould won his first minor patent in 1977, yet it was not until 1987 that he won the first significant patent lawsuit victory when a Federal judge ordered the USPTO to issue patents to Gould for the optically pumped and the 1039:
In most lasers, lasing begins with spontaneous emission into the lasing mode. This initial light is then amplified by stimulated emission in the gain medium. Stimulated emission produces light that matches the input signal in direction, wavelength, and polarization, whereas the
994:), the light output from such a device lacks the spatial and temporal coherence achievable with lasers. Such a device cannot be described as an oscillator but rather as a high-gain optical amplifier that amplifies its spontaneous emission. The same mechanism describes so-called 3684:
micrometers are often referred to as "eye-safe", because the cornea tends to absorb light at these wavelengths, protecting the retina from damage. The label "eye-safe" can be misleading, however, as it applies only to relatively low-power continuous wave beams; a high-power or
954:
by an external source of energy. In most lasers, this medium consists of a population of atoms that have been excited into such a state using an outside light source, or an electrical field that supplies energy for atoms to absorb and be transformed into their excited states.
825: 1440:
The optical bandwidth of a pulse cannot be narrower than the reciprocal of the pulse width. In the case of extremely short pulses, that implies lasing over a considerable bandwidth, quite contrary to the very narrow bandwidths typical of CW lasers. The lasing medium in some
829: 828: 824: 483:
The underlying physical process creating photons in a laser is the same as in thermal radiation, but the actual emission is not the result of random thermal processes. Instead, the release of a photon is triggered by the nearby passage of another photon. This is called
2096:
Wavelengths of commercially available lasers. Laser types with distinct laser lines are shown above the wavelength bar, while below are shown lasers that can emit in a wavelength range. The color codifies the type of laser material (see the figure description for more
830: 2557:
that are electrically pumped. Recombination of electrons and holes created by the applied current introduces optical gain. Reflection from the ends of the crystal forms an optical resonator, although the resonator can be external to the semiconductor in some designs.
2475:. Guiding of light allows extremely long gain regions providing good cooling conditions; fibers have a high surface area to volume ratio which allows efficient cooling. In addition, the fiber's waveguiding properties tend to reduce the thermal distortion of the beam. 5973:
Mayer, B.; Janker, L.; Loitsch, B.; Treu, J.; Kostenbader, T.; Lichtmannecker, S.; Reichert, T.; Morkötter, S.; Kaniber, M.; Abstreiter, G.; Gies, C.; Koblmüller, G.; Finley, J.J. (January 13, 2016). "Monolithically Integrated High-β Nanowire Lasers on Silicon".
2134:
lasers can operate at several lasing transitions between 351 and 528.7 nm. Depending on the optical design one or more of these transitions can be lasing simultaneously; the most commonly used lines are 458 nm, 488 nm and 514.5 nm. A nitrogen
836: 834: 832: 831: 835: 833: 5732:
C. Stewen, M. Larionov, and A. Giesen, "Yb:YAG thin disk laser with 1 kW output power", in OSA Trends in Optics and Photonics, Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, ed. (Optical Society of America, Washington, D.C., 2000) pp.
2403:
wavelengths strongly absorbed by water-bearing tissues. The Ho-YAG is usually operated in a pulsed mode and passed through optical fiber surgical devices to resurface joints, remove rot from teeth, vaporize cancers, and pulverize kidney and gall stones.
2117:(HeNe) can operate at many different wavelengths, however, the vast majority are engineered to lase at 633 nm; these relatively low-cost but highly coherent lasers are extremely common in optical research and educational laboratories. Commercial 3389:
Different applications need lasers with different output powers. Lasers that produce a continuous beam or a series of short pulses can be compared on the basis of their average power. Lasers that produce pulses can also be characterized based on the
2125:
can emit many hundreds of watts in a single spatial mode which can be concentrated into a tiny spot. This emission is in the thermal infrared at 10.6 μm; such lasers are regularly used in industry for cutting and welding. The efficiency of a
2035:
In 2015, researchers made a white laser, whose light is modulated by a synthetic nanosheet made out of zinc, cadmium, sulfur, and selenium that can emit red, green, and blue light in varying proportions, with each wavelength spanning 191 nm.
6544:
Boyer, K.; Java, H.; Luk, T.S.; McIntyre, I.A.; McPherson, A.; Rosman, R.; Solem, J.C.; Rhodes, C.K.; Szöke, A. (1987). "Discussion of the role of many-electron motions in multiphoton ionization and excitation". In Smith, S.; Knight, P. (eds.).
3903: 1363:
and the period over which energy can be stored in the lasing medium or pumping mechanism, then it is still classified as a "modulated" or "pulsed" continuous wave laser. Most laser diodes used in communication systems fall into that category.
827: 7698: 3217:
or precancerous growths. They are most commonly used to treat superficial cancers that are on the surface of the body or the lining of internal organs. They are used to treat basal cell skin cancer and the very early stages of others like
2828:, which served as the laser's gain medium. The cells were then placed between two 20-micrometer-wide mirrors, which acted as the laser cavity. When the cell was illuminated with blue light, it emitted intensely directed green laser light. 3635:
blade. Today, it is accepted that even low-power lasers with only a few milliwatts of output power can be hazardous to human eyesight when the beam hits the eye directly or after reflection from a shiny surface. At wavelengths which the
2448:
overcome these issues by having a gain medium that is much thinner than the diameter of the pump beam. This allows for a more uniform temperature in the material. Thin disk lasers have been shown to produce beams of up to one kilowatt.
562:. All such devices are classified as "lasers" based on the method of producing light by stimulated emission. Lasers are employed where light of the required spatial or temporal coherence can not be produced using simpler technologies. 2894:
When lasers were invented in 1960, they were called "a solution looking for a problem". Since then, they have become ubiquitous, finding utility in thousands of highly varied applications in every section of modern society, including
3877: 1498:), a pulse of such short temporal length has a spectrum spread over a considerable bandwidth. Thus such a gain medium must have a gain bandwidth sufficiently broad to amplify those frequencies. An example of a suitable material is 5711: 2698:
are mainly known in their liquid form, researchers have also demonstrated narrow-linewidth tunable emission in dispersive oscillator configurations incorporating solid-state dye gain media. In their most prevalent form, these
3665:
Class 3R (formerly IIIa) lasers are usually up to 5 mW and involve a small risk of eye damage within the time of the blink reflex. Staring into such a beam for several seconds is likely to cause damage to a spot on the
7022: 488:. For this process to work, the passing photon must be similar in energy, and thus wavelength, to the one that could be released by the atom or molecule, and the atom or molecule must be in the suitable excited state. 6293:. Proceedings of Advances in Laser Science-I, First International Laser Science Conference, Dallas, TX 1985 (American Institute of Physics, Optical Science and Engineering, Series 6). Vol. 146. pp. 22–25. 5861: 3258:, uses lasers to treat some cancers using hyperthermia, which uses heat to shrink tumors by damaging or killing cancer cells. Lasers are more precise than traditional surgery methods and cause less damage, pain, 958:
The gain medium of a laser is normally a material of controlled purity, size, concentration, and shape, which amplifies the beam by the process of stimulated emission described above. This material can be of any
491:
The photon that is emitted by stimulated emission is identical to the photon that triggered its emission, and both photons can go on to trigger stimulated emission in other atoms, creating the possibility of a
2926:
player, introduced in 1978, was the first successful consumer product to include a laser but the compact disc player was the first laser-equipped device to become common, beginning in 1982 followed shortly by
7230: 1160:, cannot be replicated using standard light sources (except by discarding most of the light) as can be appreciated by comparing the beam from a flashlight (torch) or spotlight to that of almost any laser. 2395:, typically operating around 1020–1050 nm. They are potentially very efficient and high-powered due to a small quantum defect. Extremely high powers in ultrashort pulses can be achieved with Yb:YAG. 2112:
Following the invention of the HeNe gas laser, many other gas discharges have been found to amplify light coherently. Gas lasers using many different gases have been built and used for many purposes. The
698:—a pair of mirrors on either end of the gain medium. Light bounces back and forth between the mirrors, passing through the gain medium and being amplified each time. Typically one of the two mirrors, the 6367:. 1988 Los Angeles Symposium: O-E/LASE '88, 1988, Los Angeles, CA, United States. Short and Ultrashort Wavelength Lasers. Vol. 146. International Society for Optics and Photonics. pp. 92–101. 3899: 979:
is achieved. In this state, the rate of stimulated emission is larger than the rate of absorption of light in the medium, and therefore the light is amplified. A system with this property is called an
7053: 3672:
Class 4 lasers (≥ 500 mW) can burn skin, and in some cases, even scattered light from these lasers can cause eye and/or skin damage. Many industrial and scientific lasers are in this class.
508:. Combined with an energy source that continues to "pump" energy into the material, this makes it possible to have enough atoms or molecules in an excited state for a chain reaction to develop. 6386:
Rinker, G. A.; Solem, J.C.; Biedenharn, L.C. (1987). Lapp, M.; Stwalley, W.C.; Kenney-Wallace G.A. (eds.). "Nuclear interlevel transfer driven by collective outer shell electron excitations".
7634: 3873: 826: 7285: 3955: 6363:
Rinker, G.A.; Solem, J.C.; Biedenharn, L.C. (April 27, 1988). "Calculation of harmonic radiation and nuclear coupling arising from atoms in strong laser fields". In Jones, Randy C (ed.).
5921: 5695: 4384: 2686:
use an organic dye as the gain medium. The wide gain spectrum of available dyes, or mixtures of dyes, allows these lasers to be highly tunable, or to produce very short-duration pulses (
1005:
is sometimes referred to as an "optical cavity", but this is a misnomer: lasers use open resonators as opposed to the literal cavity that would be employed at microwave frequencies in a
4509: 5310:
Cassidy, M. C.; Bruno, A.; Rubbert, S.; Irfan, M.; Kammhuber, J.; Schouten, R.N.; Akhmerov, A.R.; Kouwenhoven, L.P. (March 2, 2017). "Demonstration of an ac Josephson junction laser".
2780:
Some of the early studies were directed toward short pulses of neutrons exciting the upper isomer state in a solid so the gamma-ray transition could benefit from the line-narrowing of
7370: 4767: 1541:) are identical and perfectly periodic. For this reason, and the extremely large peak powers attained by such short pulses, such lasers are invaluable in certain areas of research. 2253:
eye surgery. Commonly used excimer molecules include ArF (emission at 193 nm), KrCl (222 nm), KrF (248 nm), XeCl (308 nm), and XeF (351 nm). The molecular
2047:
microwave laser. Since the laser operates in the superconducting regime, it is more stable than other semiconductor-based lasers. The device has the potential for applications in
7014: 3144:
Informational markings: Laser lighting display technology can be used to project informational markings onto surfaces such as playing fields, roads, runways, or warehouse floors.
2139:(TEA) laser is an inexpensive gas laser, often home-built by hobbyists, which produces rather incoherent UV light at 337.1 nm. Metal ion lasers are gas lasers that generate 1997:
Since the early period of laser history, laser research has produced a variety of improved and specialized laser types, optimized for different performance goals, including:
1917:
to produce red laser light at 694 nanometers wavelength. The device was only capable of pulsed operation, due to its three-level pumping design scheme. Later that year, the
1701:. In 1955, Prokhorov and Basov suggested optical pumping of a multi-level system as a method for obtaining the population inversion, later a main method of laser pumping. 5853: 5442: 1792:. In 1958, Bell Labs filed a patent application for their proposed optical maser; and Schawlow and Townes submitted a manuscript of their theoretical calculations to the 1049:
of light emitted from the lasing resonator can be orders of magnitude narrower than the linewidth of light emitted from the passive resonator. Some lasers use a separate
554:, some lasers emit a broad spectrum of light or emit different wavelengths of light simultaneously. Certain lasers are not single spatial mode and have light beams that 5694:
Bass, Michael; DeCusatis, Casimer; Enoch, Jay; Lakshminarayanan, Vasudevan; Li, Guifang; MacDonald, Carolyn; Mahajan, Virendra; Stryland, Eric Van (November 13, 2009).
5258: 1490:. These pulses repeat at the round-trip time, that is, the time that it takes light to complete one round trip between the mirrors comprising the resonator. Due to the 1144:
typically exits the tiny crystal with a large divergence: up to 50°. However even such a divergent beam can be transformed into a similarly collimated beam employing a
2721:. The spacing of the whispering gallery modes is directly related to the bubble circumference, allowing bubble lasers to be used as highly sensitive pressure sensors. 878:) only if there is a transition between energy levels that match the energy carried by the photon or phonon. For light, this means that any given transition will only 7222: 1537:
and the like). Unlike the giant pulse of a Q-switched laser, consecutive pulses from a mode-locked laser are phase-coherent, that is, the pulses (and not just their
990:, light can be sufficiently amplified in a single pass through the gain medium without requiring a resonator. Although often referred to as a laser (see for example 472:, travel in different directions, and are released at different times. The energy within the object is not random, however: it is stored by atoms and molecules in " 1969:
demonstrated the first semiconductor laser with a visible emission. This first semiconductor laser could only be used in pulsed-beam operation, and when cooled to
1099:". Unstable laser resonators (not used in most lasers) produce fractal-shaped beams. Specialized optical systems can produce more complex beam geometries, such as 2436:
Thermal limitations in solid-state lasers arise from unconverted pump power that heats the medium. This heat, when coupled with a high thermo-optic coefficient (d
1732:, "for fundamental work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the maser–laser principle". 3743: 6484: 721:
Most practical lasers contain additional elements that affect the properties of the emitted light, such as the polarization, wavelength, and shape of the beam.
7846:
Produced by the Massachusetts Institute of Technology (MIT). Real-time effects are demonstrated in a way that would be difficult to see in a classroom setting.
7666: 1644:
submitted a paper on using stimulated emissions to make a microwave amplifier to the June 1952 Institute of Radio Engineers Vacuum Tube Research Conference at
886:
of light. Photons with the correct wavelength can cause an electron to jump from the lower to the higher energy level. The photon is consumed in this process.
4542: 3262:, swelling, and scarring. A disadvantage is that surgeons must acquire specialized training and thus it will likely be more expensive than other treatments. 5943: 7119: 7045: 6780: 1977:, in the USSR, and Izuo Hayashi and Morton Panish of Bell Labs also independently developed room-temperature, continual-operation diode lasers, using the 1132:. The beam of a single transverse mode (gaussian beam) laser eventually diverges at an angle that varies inversely with the beam diameter, as required by 1079:; such beams have the minimum divergence possible for a given beam diameter. Some lasers, particularly high-power ones, produce multimode beams, with the 4823: 1053:
to start the process off with a beam that is already highly coherent. This can produce beams with a narrower spectrum than would otherwise be possible.
2593:
developed and manufactured commercial high-power green laser diodes (515/520 nm), which compete with traditional diode-pumped solid-state lasers.
5549: 2257:
laser, emitting at 157 nm in the vacuum ultraviolet is sometimes referred to as an excimer laser, however, this appears to be a misnomer since F
1550:
population lifetime of a dye molecule was so short that a high-energy, fast pump was needed. The way to overcome this problem was to charge up large
1513:
Such mode-locked lasers are a most versatile tool for researching processes occurring on extremely short time scales (known as femtosecond physics,
7803: 4909: 4802: 1140:
would spread out to a size of perhaps 500 kilometers when shone on the Moon (from the distance of the earth). On the other hand, the light from a
702:, is partially transparent. Some of the light escapes through this mirror. Depending on the design of the cavity (whether the mirrors are flat or 7781: 7277: 5069: 3951: 7849: 7828: 5913: 7199: 4400: 2274: 5198: 2524:(DOS) structure required for the feedback to take place. They are typical micrometer-sized and tunable on the bands of the photonic crystals. 902:. The emitted photon has a random direction, but its wavelength matches the absorption wavelength of the transition. This is the mechanism of 6018: 2287:
use a crystalline or glass rod that is "doped" with ions that provide the required energy states. For example, the first working laser was a
1728:
expected that it would be impractical and not worth the effort. In 1964 Charles H. Townes, Nikolay Basov, and Aleksandr Prokhorov shared the
934:
for the laser. The laser produces a tiny, intense spot on the screen to the right. The center of the spot appears white because the image is
5526: 4775: 3618:
Left: European laser warning symbol required for Class 2 lasers and higher. Right: US laser warning label, in this case for a Class 3B laser
2151:-copper (NeCu) 248 nm are two examples. Like all low-pressure gas lasers, the gain media of these lasers have quite narrow oscillation 5143: 1359:
be intentionally turned on and off at some rate to create pulses of light. When the modulation rate is on time scales much slower than the
1205:, atomic energy levels are not involved; it appears that the operation of this rather exotic device can be explained without reference to 7083: 6509:
Solem, J.C.; Biedenharn, L.C. (1988). "Laser coupling to nuclei via collective electronic oscillations: A simple heuristic model study".
4637: 3851: 3929: 1681:
radiation rather than infrared or visible radiation. Townes's maser was incapable of continuous output. Meanwhile, in the Soviet Union,
1608:
Retherford found apparent stimulated emission in hydrogen spectra and effected the first demonstration of stimulated emission. In 1950,
523:, or they can have a very low divergence to concentrate their power at a great distance. Temporal (or longitudinal) coherence implies a 6310: 2391:
are other common "dopants" in solid-state lasers. Ytterbium is used in crystals such as Yb:YAG, Yb:KGW, Yb:KYW, Yb:SYS, Yb:BOYS, Yb:CaF
7790: 6933: 946:
Spectrum of a helium–neon laser. The actual bandwidth is much narrower than shown; the spectrum is limited by the measuring apparatus.
6841: 1872: 6712: 6631: 5579: 5374:
Mayer, B.; Regler, A.; Sterzl, S.; Stettner, T.; Koblmüller, G.; Kaniber, M.; Lingnau, B.; Lüdge, K.; Finley, J.J. (May 23, 2017).
5228: 4770:[The risk from laser: what it is and what it is like facing it; analysis of a problem which is thus not far away from us]. 8148: 687:. The energy is typically supplied as an electric current or as light at a different wavelength. Pump light may be provided by a 7843: 5831: 1433:
effects. For a given pulse energy, this requires creating pulses of the shortest possible duration utilizing techniques such as
7255: 5446: 3346:
In recent years, some hobbyists have taken an interest in lasers. Lasers used by hobbyists are generally of class IIIa or IIIb
2241:; noble gasses are chemically inert and can only form compounds while in an excited state. Excimer lasers typically operate at 1946: 879: 3692:
Lasers can be a hazard to both civil and military aviation, due to the potential to temporarily distract or blind pilots. See
3689:
laser at these wavelengths can burn the cornea, causing severe eye damage, and even moderate-power lasers can injure the eye.
2747:(FEL) generate coherent, high-power radiation that is widely tunable, currently ranging in wavelength from microwaves through 1449:
produces optical gain over a wide bandwidth, making a laser possible that can thus generate pulses of light as short as a few
7547: 7518: 7424: 6986: 6891: 6415:"Theorem relating spatial and temporal harmonics for nuclear interlevel transfer driven by collective electronic oscillation" 5752: 5705: 5678: 5250: 5174: 4923: 4856: 4472: 4439: 4394: 4355: 4307: 4274: 4241: 4153: 4126: 4105: 4072: 4039: 3998: 3827: 2323: 2063: 7797: 7561: 230: 7618: 5891: 4093: 1834: 6228: 7650: 4566:"Spectral coherence, Part I: Passive resonator linewidth, fundamental laser linewidth, and Schawlow-Townes approximation" 2803: 1693:
and solved the problem of continuous-output systems by using more than two energy levels. These gain media could release
1339: 1189:, where energy is extracted from a transition in an atom or molecule. This is a quantum phenomenon that was predicted by 2059:
laser capable of emitting pairs of phase-locked picosecond laser pulses with a repetition frequency up to 200 GHz.
1194: 3796: 5288: 2821:
pumped by a nuclear explosion have also been proposed as antimissile weapons. Such devices would be one-shot weapons.
7682: 7604: 7589: 7502: 7487: 7469: 7454: 7439: 7409: 6465: 2349:
spectrum at 1064 nm. They are used for cutting, welding, and marking of metals and other materials, and also in
1306: 774: 621: 406: 3753: 1383: 1287: 930:
demonstration. The glow running through the center of the tube is an electric discharge. This glowing plasma is the
7887: 7165: 6336:. Proceedings of AIP Advances in Laser Science-I, Dallas, TX, November 18–22, 1985. Vol. 146. pp. 50–51. 5039:(1959). "The LASER, Light Amplification by Stimulated Emission of Radiation". In Franken, P.A.; Sands R.H. (eds.). 4774:. Programma Corso di Formazione Obbligatorio (in Italian). University of Milano-Bicocca. p. 12. Archived from 4262: 2943: 1887:
laser devices. The question of just how to assign credit for inventing the laser remains unresolved by historians.
1686: 1634: 531:) along the beam. A beam produced by a thermal or other incoherent light source has an instantaneous amplitude and 186: 6804:"Discovery of Natural Gain Amplification in the 10-Micrometer Carbon Dioxide Laser Bands on Mars: A Natural Laser" 5697:
Handbook of Optics, Third Edition Volume V: Atmospheric Optics, Modulators, Fiber Optics, X-Ray and Neutron Optics
1837:, as a general subject; afterward, in November 1957, Gould noted his ideas for a "laser", including using an open 1764: 1259: 1019:. The gain medium will amplify any photons passing through it, regardless of direction; but only the photons in a 5951: 4887: 3640:
and the lens can focus well, the coherence and low divergence of laser light means that it can be focused by the
2861: 7793:—The world's most powerful laser as of 2008 might create supernova-like shock waves and possibly even antimatter 7147: 7115: 1372:
Some applications of lasers depend on a beam whose output power is constant over time. Such a laser is known as
8057: 7816: 6770: 6597: 6442: 6127: 2506: 2071: 2052: 2040: 1244: 756: 603: 388: 6332:
Biedenharn, L.C.; Boyer, K.; Solem, J.C. (1986). "Possibility of grasing by laser-driven nuclear excitation".
4819: 3990: 1677:
produced the first microwave amplifier, a device operating on similar principles to the laser, but amplifying
1023:
supported by the resonator will pass more than once through the medium and receive substantial amplification.
7334: 5460:
Matei, D.G.; Legero, T.; Häfner, S.; et al. (June 30, 2017). "1.5 μm Lasers with Sub-10 mHz Linewidth".
3655:
Class 1 is inherently safe, usually because the light is contained in an enclosure, for example in CD players
3187: 3086: 1534: 1491: 1266: 6388:
Proceedings of the Second International Laser Science Conference, Seattle, WA (Advances in Laser Science-II)
6044:
Baldwin, G.C.; Solem, J.C.; Gol'danskii, V. I. (1981). "Approaches to the development of gamma-ray lasers".
1945:
that was capable of continuous operation in the infrared (U.S. Patent 3,149,290); later, Javan received the
1697:
between an excited state and a lower excited state, not the ground state, facilitating the maintenance of a
1429:
Other applications rely on the peak pulse power (rather than the energy in the pulse), especially to obtain
1198: 898:. Spontaneous emission is a quantum-mechanical effect and a direct physical manifestation of the Heisenberg 515:. Spatial (or transverse) coherence is typically expressed through the output being a narrow beam, which is 8222: 3573: 2947: 2238: 2044: 1891: 1588:) for the absorption, spontaneous emission, and stimulated emission of electromagnetic radiation. In 1928, 1068:. A coherent beam of light is formed by single-frequency quantum photon states distributed according to a 102: 6547:
Proceedings of International Conference on Multiphoton Processes (ICOMP) IV, July 13–17, 1987, Boulder, CA
5557: 1035:
Red (660 & 635 nm), green (532 & 520 nm), and blue-violet (445 & 405 nm) lasers
8237: 8212: 8113: 2883: 2811: 1690: 1510:), which has a very wide gain bandwidth and can thus produce pulses of only a few femtoseconds duration. 1156:. That is possible due to the light being of a single spatial mode. This unique property of laser light, 6570:"A solvable approximate model for the response of atoms subjected to strong oscillatory electric fields" 2206:(3800 nm) the reaction is the combination of hydrogen or deuterium gas with combustion products of 1399:
impractical, or destroying the laser by producing excessive heat. Such lasers cannot be run in CW mode.
8242: 7917: 4799: 3693: 3562: 3500: 3365:
Hobbyists have also used surplus lasers taken from retired military applications and modified them for
3334: 3235: 3169: 2752:
atomic or molecular states, FELs use a relativistic electron beam as the lasing medium, hence the term
2358: 1530: 1526: 1273: 845: 7778: 5376:"Long-term mutual phase locking of picosecond pulse pairs generated by a semiconductor nanowire laser" 5066: 2074:, established a new world record by developing an erbium-doped fiber laser with a linewidth of only 10 7825: 7360: 5041:
The Ann Arbor Conference on Optical Pumping, the University of Michigan, 15 June through 18 June 1959
3713: 3047: 2995: 2939: 2908: 2825: 2824:
Living cells have been used to produce laser light. The cells were genetically engineered to produce
2464: 2362: 1772: 428: 182: 82: 7195: 4494: 3651:
Lasers are usually labeled with a safety class number, which identifies how dangerous the laser is:
7814:
Advancing the Laser anniversary site by SPIE: Video interviews, open-access articles, posters, DVDs
6149:
Baldwin, G.C.; Solem, J.C. (1982). "Is the time ripe? Or must we wait so long for breakthroughs?".
5190: 2565:
emit at wavelengths from 375 nm to 3500 nm. Low to medium power laser diodes are used in
2370: 2338: 2330: 2203: 2174: 1974: 6250:
Baldwin, G.C.; Solem, J.C. (1980). "Two-stage pumping of three-level Mössbauer gamma-ray lasers".
2225:
are a special sort of gas laser powered by an electric discharge in which the lasing medium is an
1592:
confirmed the existence of the phenomena of stimulated emission and negative absorption. In 1939,
1255: 423:
A laser normally produces a very narrow beam of light in a single wavelength, in this case, green.
8232: 6906:
Dalrymple B.E., Duff J.M., Menzel E.R. "Inherent fingerprint luminescence – detection by laser".
5522: 5443:"The Physikalisch-Technische Bundesanstalt has developed a laser with a linewidth of only 10 mHz" 4915: 3986: 3628:
characterized the first laser as having the power of one "Gillette" as it could burn through one
3398:
greater than its average power. The average output power is always less than the power consumed.
3298: 3090: 3055: 2999: 2714: 2365:
or quadrupled in frequency to produce 532 nm (green, visible), 355 nm and 266 nm (
2199: 1327: 1233: 745: 592: 551: 377: 270:
Today, all such devices operating at frequencies higher than microwaves (approximately above 300
131: 110: 7860:
website with animations, applications and research about laser and other quantum based phenomena
7755: 7739: 7723: 7707: 7691: 7675: 7659: 7643: 7627: 6867: 5135: 4768:"Il rischio da laser: cosa è e come affrontarlo; analisi di un problema non così lontano da noi" 2904: 1072:. As a result, the arrival rate of photons in a laser beam is described by Poisson statistics. 860:. Thus, electrons are found in specific energy levels of an atom, two of which are shown below: 8087: 7907: 5085: 4464: 4456: 4148: 3758: 3728: 3718: 3323: 3134: 3070: 3043: 3034: 3003: 2987: 2700: 2278: 1926: 1729: 1240: 1065: 752: 599: 384: 210: 31: 17: 7075: 6883: 6876: 4606: 4299: 4064: 683:
For the gain medium to amplify light, it needs to be supplied with energy in a process called
468:
Thermal radiation is a random process, and thus the photons emitted have a range of different
313:" is frequently used in the field, meaning "to give off coherent light," especially about the 7975: 5139: 4266: 4121: 3925: 3843: 3788: 3733: 3700: 2644: 2640: 2605: 2319: 2114: 1906:, and Gould, at the TRG (Technical Research Group) company. Maiman's functional laser used a 1717: 1593: 1585: 1514: 1495: 1137: 983:. When an optical amplifier is placed inside a resonant optical cavity, one obtains a laser. 927: 899: 848:, the energy of an electron orbiting an atomic nucleus is larger for orbits further from the 797: 711: 74: 6919:
Dalrymple B.E. "Visible and infrared luminescence in documents : excitation by laser".
6286: 4188: 4097: 3979: 3600: 535:
that vary randomly with respect to time and position, thus having a short coherence length.
527:
wave at a single frequency, whose phase is correlated over a relatively great distance (the
8082: 7965: 7953: 7880: 6817: 6743: 6662: 6581: 6518: 6476: 6426: 6337: 6294: 6259: 6212: 6111: 6053: 5983: 5793: 5620: 5479: 5397: 5329: 5097: 5008: 4949: 4736: 4691: 4621: 4577: 4524: 4295: 4184: 4060: 3662:
of the eye will prevent damage. Usually up to 1 mW power, for example, laser pointers.
2896: 2648: 2636: 2533: 2304: 2211: 2118: 1698: 1092: 1069: 976: 895: 524: 480:, which allows materials to be determined through the specific wavelengths that they emit. 432: 225:
as a white light source; this permits a much smaller emitting area due to the much greater
218: 55: 6803: 6704: 4057:
Military Laser Technology for Defense: Technology for Revolutionizing 21st Century Warfare
1482:
A mode-locked laser is capable of emitting extremely short pulses on the order of tens of
465:, that we see as light. This is the process that causes a candle flame to give off light. 344:
A laser that produces light by itself is technically an optical oscillator rather than an
8: 8133: 8052: 7992: 7912: 7475: 6863: 5827: 4227: 3784: 3395: 2911:
using lasers is a key technology in modern communications, allowing services such as the
2837: 2748: 2744: 2628: 2087: 2070:, a joint institute of the National Institute of Standards and Technology (NIST) and the 1954: 1895: 1818: 1784:, began a serious study of infrared "optical masers". As ideas developed, they abandoned 1745: 1694: 1616:, which was experimentally demonstrated two years later by Brossel, Kastler, and Winter. 1589: 1202: 1186: 1164: 1141: 1084: 995: 931: 817: 664: 512: 505: 485: 331: 314: 117: 78: 6821: 6747: 6666: 6623: 6585: 6522: 6480: 6430: 6341: 6298: 6263: 6216: 6115: 6057: 5987: 5797: 5624: 5586: 5483: 5401: 5333: 5220: 5101: 5012: 4953: 4740: 4695: 4625: 4581: 4528: 3900:"Laser Lighting: White-light lasers challenge LEDs in directional lighting applications" 3152: billion. In the same year, approximately 733 million diode lasers, valued at 3148:
In 2004, excluding diode lasers, approximately 131,000 lasers were sold with a value of
2781: 2717:
in the bubble produce an output spectrum composed of hundreds of evenly spaced peaks; a
2269: 967:. The gain medium absorbs pump energy, which raises some electrons into higher energy (" 550:
with slightly different wavelengths. Although temporal coherence implies some degree of
8227: 7553: 6991: 5809: 5783: 5636: 5503: 5469: 5418: 5387: 5375: 5353: 5319: 5113: 4972: 4937: 4709: 4482: 4335: 4231: 4200: 3203: 2168: 1930: 1899: 1868: 1844:
At a conference in 1959, Gordon Gould first published the acronym "LASER" in the paper
1741: 1170: 1010: 856:. However, quantum mechanical effects force electrons to take on discrete positions in 676:
one frequency dominates over all others, meaning that a coherent beam has been formed.
571: 166: 151: 147: 6734:
Malte C. Gather & Seok Hyun Yun (June 12, 2011). "Single-cell biological lasers".
2840:, irradiated planetary or stellar gases may amplify light producing a natural laser. 476:", which release photons with distinct wavelengths. This gives rise to the science of 318: 8153: 8027: 8002: 7751: 7746: 7735: 7719: 7714: 7703: 7687: 7671: 7655: 7639: 7623: 7600: 7585: 7557: 7543: 7514: 7498: 7483: 7465: 7450: 7435: 7420: 7405: 6887: 6833: 6808: 6550: 6530: 6438: 6395: 6181: 5999: 5813: 5701: 5674: 5640: 5507: 5495: 5423: 5345: 5170: 5131: 5044: 4977: 4919: 4852: 4713: 4590: 4565: 4468: 4435: 4390: 4351: 4303: 4270: 4237: 4204: 4101: 4068: 4035: 3994: 3823: 3792: 3565:, a 192-beam, 1.8-megajoule laser system adjoining a 10-meter-diameter target chamber 3255: 3247: 3179: 2624: 2521: 2520:
lasers are lasers based on nano-structures that provide the mode confinement and the
2487: 2415: 2284: 2048: 1966: 1894:, Malibu, California, ahead of several research teams, including those of Townes, at 1674: 1663: 1653: 1518: 1507: 1430: 1206: 1157: 1088: 987: 980: 672: 559: 462: 345: 206: 123: 106: 7804:
Northrop Grumman's Press Release on the Firestrike 15 kW tactical laser product
5632: 4431: 4347: 3648:, resulting in localized burning and permanent damage in seconds or even less time. 2647:, materials that allow coherent light to be produced from silicon. These are called 90: 50: 8163: 8128: 8108: 8077: 7774:
A Practical Guide to Lasers for Experimenters and Hobbyists by Samuel M. Goldwasser
7535: 7266:. Lawrence Livermore National Laboratory, July/August 2005. Retrieved May 27, 2006. 7252: 6825: 6751: 6670: 6589: 6526: 6434: 6368: 6345: 6302: 6267: 6220: 6173: 6168:
Solem, J.C. (1979). "On the feasibility of an impulsively driven gamma-ray laser".
6119: 6061: 5991: 5801: 5744: 5628: 5491: 5487: 5413: 5405: 5357: 5337: 5117: 5105: 5016: 4967: 4957: 4699: 4629: 4585: 4532: 4192: 2963: 2710: 2661: 2632: 2517: 2494: 2430: 2246: 2140: 1958: 1713: 1709: 1538: 1522: 1360: 1280: 1116: 1050: 1015: 964: 907: 688: 528: 442: 256: 190: 155: 135: 59: 4257:
Al-Amri, Mohammad D.; El-Gomati, Mohamed; Zubairy, M. Suhail (December 12, 2016).
3952:"Laser light for headlights: Latest trend in car lighting | OSRAM Automotive" 3815:
Proceedings of Laser Surgery: Advanced Characterization, Therapeutics, and Systems
2399:-doped YAG crystals emit at 2097 nm and form an efficient laser operating at 1095:-Gaussian functions. Some high-power lasers use a flat-topped profile known as a " 310: 255:, for "microwave amplification by stimulated emission of radiation". When similar 8217: 8191: 8072: 8062: 7873: 7832: 7820: 7785: 7529: 7259: 7151: 5995: 5073: 4846: 4806: 4031: 4027: 4023: 3813: 3723: 3629: 3625: 3382: 3377: 3219: 3138: 3108: 2979: 2919: 2900: 2774: 2687: 2652: 2444:) can cause thermal lensing and reduce the quantum efficiency. Diode-pumped thin 2233:
in existing designs. These are molecules that can only exist with one atom in an
2014: 1970: 1826: 1794: 1670: 1613: 1569: 1374: 1201:
which applies to absorption and stimulated emission. However, in the case of the
1190: 1174: 1121: 1080: 1046: 960: 555: 446: 299: 290: 202: 174: 98: 7768: 7118:. National Institutes of Health, National Cancer Institute. September 13, 2011. 6829: 6688:
Robinson, Clarence A. (February 23, 1981). "Advance made on high-energy laser".
5883: 1167:
is used to measure the intensity profile, width, and divergence of laser beams.
8168: 8158: 8118: 8067: 7985: 7938: 7922: 7730: 7335:"Theodore Maiman, 79; harnessed light to build the world's first working laser" 7308: 6200: 6123: 3514: 3251: 3227: 3165: 3078: 3066: 3022: 3011: 2971: 2887: 2807: 2769: 2765: 2718: 2501: 2194: 1978: 1950: 1864: 1856: 1725: 1609: 1597: 1423: 1129: 1111: 1104: 1057: 991: 857: 849: 699: 695: 651: 493: 450: 306: 7539: 6878:
A Century of Nature: Twenty-One Discoveries that Changed Science and the World
6201:"Maximum density and capture rates of neutrons moderated from a pulsed source" 6065: 5774:
Wu, X.; et al. (October 25, 2004). "Ultraviolet photonic crystal laser".
4196: 8206: 8123: 8103: 8044: 7970: 7581: 7365: 7110: 5021: 4996: 4633: 4424: 4340: 3669:
Class 3B lasers (5–499 mW) can cause immediate eye damage upon exposure.
3545: 3513:
Output of the majority of commercially available solid-state lasers used for
3449: 3420: 3231: 3223: 3175: 3130: 3116: 3104: 3098: 2983: 2975: 2967: 2959: 2928: 2695: 2574: 2570: 2566: 2468: 2419: 2234: 2222: 1989: 1962: 1884: 1789: 1682: 1149: 1145: 1120:: the wavefronts are planar, normal to the direction of propagation, with no 1076: 1061: 1041: 972: 968: 951: 942: 890: 788: 703: 684: 532: 516: 501: 497: 473: 198: 194: 178: 170: 139: 127: 7773: 6755: 6674: 6399: 6079:
Baldwin, G.C.; Solem, J.C. (1995). "Recent proposals for gamma-ray lasers".
5341: 5048: 4537: 4175:
Strelnitski, Vladimir (1997). "Masers, Lasers and the Interstellar Medium".
3874:"Semiconductor Sources: Laser plus phosphor emits white light without droop" 2463:
Solid-state lasers or laser amplifiers where the light is guided due to the
1890:
On May 16, 1960, Theodore H. Maiman operated the first functioning laser at
1596:
predicted the use of stimulated emission to amplify "short" waves. In 1947,
1555:
excimer laser and the copper vapor laser, can never be operated in CW mode.
894:
to different levels having different time constants. This process is called
126:
allows a laser to be focused to a tight spot, enabling applications such as
8143: 8012: 8007: 7948: 6871: 6837: 6593: 6003: 5499: 5427: 5349: 5280: 5036: 4981: 4675: 3659: 3590: 3291: 3271: 3243: 3183: 3062: 2795: 2706: 2677: 2651:. Recent developments have also shown the use of monolithically integrated 2613: 2426: 2350: 2164: 2056: 1852: 1822: 1809: 1641: 1487: 1477: 1450: 1408: 1388: 1020: 935: 903: 477: 222: 116:
A laser differs from other sources of light in that it emits light that is
6224: 2810:
reaction, replacing the banks of hundreds of lasers currently employed in
8173: 8034: 8017: 7997: 7838: 3112: 3051: 3007: 2991: 2871: 2818: 2792: 2691: 2672: 2657: 2562: 2472: 2458: 2366: 2242: 2175:
Lasing without maintaining the medium excited into a population inversion
2092: 1721: 1462: 1434: 1153: 1133: 1125: 1100: 1096: 284: 214: 159: 7859: 7278:"Magurele Laser officially becomes the most powerful laser in the world" 7173: 5788: 5409: 4962: 4820:"American Institute of Physics Oral History Interview with Joseph Weber" 4809:
Presentation Speech by Professor Ivar Waller. Retrieved January 1, 2007.
3577: 3301:
for information on how to incorporate it into this article's main text.
1319: 245:
The first device using amplification by stimulated emission operated at
8022: 7511:
LASER: The inventor, the Nobel laureate, and the thirty-year patent war
6554: 5251:"Scientists Finally Created a White Laser—and It Could Light Your Home" 4223: 3781:
Laser: The Inventor, The Nobel Laureate, and The Thirty-Year Patent War
3686: 3445: 3366: 3359: 3124: 3074: 2738: 2608:
are semiconductor lasers that have an active transition between energy
2573:
and CD/DVD players. Laser diodes are also frequently used to optically
2547: 2500:
Fiber lasers, like other optical media, can suffer from the effects of
2445: 2288: 2160: 1780:
That same year, Charles H. Townes and Arthur Leonard Schawlow, then at
1705: 1584:'s law of radiation, conceptually based upon probability coefficients ( 1581: 1551: 1483: 1247: in this section. Unsourced material may be challenged and removed. 883: 759: in this section. Unsourced material may be challenged and removed. 707: 606: in this section. Unsourced material may be challenged and removed. 539: 520: 519:. Laser beams can be focused to very tiny spots, achieving a very high 469: 391: in this section. Unsourced material may be challenged and removed. 337: 42: 6372: 6185: 5805: 5656:
Ode to a quantum physicist: A festschrift in honor of Marlan O. Scully
4879: 2542:
A 5.6 mm 'closed can' commercial laser diode, such as those used in a
1630: 863: 263:, until "microwave" was replaced by "light" in the acronym, to become 8138: 7980: 7960: 7943: 7140: 7015:"Laser Marketplace 2005: Consumer applications boost laser sales 10%" 6960: 6271: 5109: 4019: 3738: 3641: 3195: 3120: 3094: 2923: 2879: 2799: 2764:
The pursuit of a high-quantum-energy laser using transitions between
2683: 2579: 2543: 2480: 2376: 2354: 2315: 2152: 2136: 2131: 2107: 1993:
Graph showing the history of maximum laser pulse intensity since 1960
1934: 1922: 1907: 1903: 1876: 1838: 1801: 1781: 1678: 1351: 1002: 801: 706:), the light coming out of the laser may spread out or form a narrow 295: 246: 38: 7813: 6569: 6414: 6349: 6306: 6177: 6099: 3624:
Even the first laser was recognized as being potentially dangerous.
2318:
is a common dopant in various solid-state laser crystals, including
1395:
is to create very short pulses at the rate of the round-trip time.)
1222: 734: 581: 449:. A common way to release photons is to heat an object; some of the 366: 5474: 5392: 5324: 3569: 3558: 3259: 3214: 3018: 2912: 2791:
reported that there was speculation about the possibility of using
2788: 2422: 2411: 2407: 2400: 2346: 2300: 2296: 2254: 2230: 2207: 2182: 1830: 1785: 1503: 1499: 793: 668: 458: 454: 234: 226: 134:. It also allows a laser beam to stay narrow over great distances ( 5693: 4704: 4679: 4448: 1851:
Gould's notes included possible applications for a laser, such as
1846:
The LASER, Light Amplification by Stimulated Emission of Radiation
1346: 1334: 7855:
Virtual Museum of Laser History, from the touring exhibit by SPIE
7769:
Encyclopedia of laser physics and technology by Rüdiger Paschotta
7109:
This article incorporates text from this source, which is in the
6466:"Primer on coupling collective electronic oscillations to nuclei" 6287:"Interlevel transfer mechanisms and their application to grasers" 3572:(10×10 W)—world's most powerful laser as of 2019, located at the 3355: 3239: 3238:. Laser therapy is often combined with other treatments, such as 2849: 2620: 2396: 2384: 2380: 2226: 1914: 1880: 1659: 922: 805: 671:. The gain medium is a material with properties that allow it to 4090:
Basics of Laser Physics: For Students of Science and Engineering
3609: 1580:" ("On the Quantum Theory of Radiation") via a re-derivation of 840:
Animation explaining stimulated emission and the laser principle
329:
are also used for naturally occurring coherent emissions, as in
3748: 3645: 3637: 3432: 3358:
players (violet), or even higher power laser diodes from CD or
3210: 3199: 2601: 2586: 2476: 2388: 2342: 2334: 2178: 2144: 2008: 1938: 1645: 1136:
theory. Thus, the "pencil beam" directly generated by a common
875: 871: 667:, a mechanism to energize it, and something to provide optical 546:. Most "single wavelength" lasers produce radiation in several 543: 437: 6549:. Cambridge, England: Cambridge University Press. p. 58. 5611:
Mompart, J.; Corbalán, R. (2000). "Lasing without inversion".
3394:
power of each pulse. The peak power of a pulsed laser is many
2918:
The first widely noticeable use of lasers was the supermarket
2866: 2538: 2429:. It is also notable for use as a mode-locked laser producing 2137:
transverse electrical discharge in gas at atmospheric pressure
1572:
established the theoretical foundations for the laser and the
419: 7854: 3632: 3476: 3462: 3369:. Pulsed ruby and YAG lasers work well for this application. 3082: 3030: 3026: 2845: 2597: 2590: 2554: 2250: 1860: 1625: 1573: 1323: 1006: 461:
within the object to gain energy, which is then lost through
271: 251: 143: 70: 7808: 7699:
Journal of the Optical Society of America B: Optical Physics
7076:"Laser therapy for cancer: MedlinePlus Medical Encyclopedia" 6934:"Laser Technology Enhances Experience for Sports Fans, Refs" 6733: 3703:
may be more sensitive to laser damage than biological eyes.
3329: 2806:
proposed that a single such laser could be used to ignite a
2373:(DPSS) lasers are used to make bright green laser pointers. 2245:
wavelengths with major applications including semiconductor
1060:
showed that coherent states are formed from combinations of
233:
suffered by LEDs; such devices are already used in some car
6775: 6511:
Journal of Quantitative Spectroscopy and Radiative Transfer
6419:
Journal of Quantitative Spectroscopy and Radiative Transfer
6043: 5944:"Picolight ships first 4-Gbit/s 1310-nm VCSEL transceivers" 4364: 4236:. Vol. 83. National Academy of Sciences. p. 202. 3819: 3191: 2841: 2292: 2148: 2067: 1942: 1918: 1911: 1180: 853: 511:
Lasers are distinguished from other light sources by their
158:
of light with a broad spectrum but durations as short as a
154:. Alternatively, temporal coherence can be used to produce 6653:
Hecht, Jeff (May 2008). "The history of the x-ray laser".
2890:
research and other high energy density physics experiments
1704:
Townes reports that several eminent physicists—among them
1185:
The mechanism of producing radiation in a laser relies on
7865: 7580:. Prentice Hall International Series in Optoelectronics, 5373: 4673: 2656:
for on-chip optical signal processing. Another type is a
2156: 1649: 1075:
Many lasers produce a beam that can be approximated as a
1031: 445:
interactions with other fundamental particles that carry
146:(light detection and ranging). Lasers can also have high 5854:"High-power direct-diode lasers for cutting and welding" 5459: 5309: 5221:"Researchers demonstrate the world's first white lasers" 4727:
Einstein, A (1917). "Zur Quantentheorie der Strahlung".
3402:
The continuous or average power required for some uses:
3337:
has been used to shoot down rockets and artillery shells
2729: 1875:(USPTO) denied his application, and awarded a patent to 634: 317:
of a laser; when a laser is operating it is said to be "
7850:
MIT Video Lecture: Understanding Lasers and Fiberoptics
6987:"Football Tech That's More Than a Laser and Light Show" 6365:
Proc. SPIE 0875, Short and Ultrashort Wavelength Lasers
4756:
Steen, W.M. "Laser Materials Processing", 2nd Ed. 1998.
4655: 4607:"Coherent and incoherent states of the radiation field" 4256: 4218: 4216: 4214: 3744:
Sound amplification by stimulated emission of radiation
2899:, information technology, science, medicine, industry, 213:
for entertainment. Semiconductor lasers in the blue to
95:
light amplification by stimulated emission of radiation
7667:
IEEE Journal of Selected Topics in Quantum Electronics
5972: 4230:(2003). "Arthur Schawlow". In Edward P. Lazear (ed.). 3680:
Infrared lasers with wavelengths longer than about 1.4
2878:) with numerous applications, to football field sized 2493:
Pump light can be used more efficiently by creating a
1965:
band of the spectrum at 850 nm. Later that year,
1612:(Nobel Prize for Physics 1966) proposed the method of 150:, which permits them to emit light with a very narrow 7839:
Free software for Simulation of random laser dynamics
7835:
history of the invention, with audio interview clips.
7300: 7013:
Kincade, Kathy; Anderson, Stephen (January 1, 2005).
6567: 6385: 6362: 3981:
The Oxford Companion to the History of Modern Science
1833:. When Gould and Townes met, they spoke of radiation 986:
For lasing media with extremely high gain, so-called
870:
An electron in an atom can absorb energy from light (
37:"Laser beam" redirects here. Not to be confused with 7809:
Website on Lasers 50th anniversary by APS, OSA, SPIE
7166:"Howto: Make a DVD burner into a high-powered laser" 7154:
Sam Barros June 21, 2006. Retrieved January 1, 2007.
6568:
Biedenharn, L.C.; Rinker, G.A.; Solem, J.C. (1989).
6543: 6331: 5191:"For The First Time, A Laser That Shines Pure White" 4680:"Laser Optics: Fractal modes in unstable resonators" 4211: 2737:
at the FOM Institute for Plasma Physics Rijnhuizen,
694:
The most common type of laser uses feedback from an
500:, which stay excited for a relatively long time. In 7791:
Powerful laser is 'brightest light in the universe'
4752: 4750: 2664:to produce a laser from materials such as silicon. 2345:). All these lasers can produce high powers in the 7196:"Laser Diode Power Output Based on DVD-R/RW specs" 6875: 6394:. New York: American Institute of Physics: 75–86. 4423: 4339: 3978: 1148:system, as is always included, for instance, in a 427:Modern physics describes light and other forms of 27:Device which emits light via optical amplification 7800:" an online course by F. Balembois and S. Forget. 6862: 4911:How the Laser Happened: Adventures of a Scientist 3553:Examples of pulsed systems with high peak power: 2612:of an electron in a structure containing several 2081: 1669:In 1953, Charles H. Townes and graduate students 8204: 5088:(1960). "Stimulated optical radiation in ruby". 4747: 4510:"Phase aspect in photon emission and absorption" 3811: 1652:asked Weber to give a seminar on this idea, and 1173:of a laser beam from a matte surface produces a 259:devices were developed they were first known as 7012: 6508: 6463: 6170:Los Alamos Scientific Laboratory Report LA-7898 5610: 5585:. Photon Systems, Covina, Calif. Archived from 4563: 3182:), laser healing (photobiomodulation therapy), 2483:ions are common active species in such lasers. 1867:. He continued developing the idea and filed a 6473:Los Alamos National Laboratory Report LA-10878 4994: 4938:"Extension of frequencies from maser to laser" 2486:Quite often, the fiber laser is designed as a 1415: 7881: 7779:Homebuilt Lasers Page by Professor Mark Csele 7326: 7253:Orchestrating the world's most powerful laser 3174:Lasers have many uses in medicine, including 2578:good beam quality, wavelength-tunable narrow- 2198:industrial applications. As examples, in the 1879:, in 1960. That provoked a twenty-eight-year 6249: 6198: 6148: 6097: 6078: 5520: 4720: 1648:, Ontario, Canada. After this presentation, 1367: 1128:, that can only remain true well within the 862: 538:Lasers are characterized according to their 441:. Photons are released and absorbed through 7223:"How to select a surgical veterinary laser" 7046:"Diode-laser market grows at a slower rate" 6574:Journal of the Optical Society of America B 6019:"Bubble lasers can be sturdy and sensitive" 5440: 5281:"Researchers demonstrate new type of laser" 4851:(2nd ed.). CRC Press. pp. 89–91. 4674:Karman, G.P.; McDonald, G.S.; New, G.H.C.; 4598: 4557: 4501: 4174: 3006:, and non-contact measurement of parts and 2676:Close-up of a table-top dye laser based on 1193:, who derived the relationship between the 453:being applied to the object will cause the 7888: 7874: 4995:Schawlow, Arthur; Townes, Charles (1958). 4844: 4292:Understanding Lasers: An Entry-Level Guide 4013: 2512: 138:), a feature used in applications such as 7844:Video Demonstrations in Lasers and Optics 7098: 6617: 6615: 5787: 5668: 5473: 5417: 5391: 5323: 5029: 5020: 4971: 4961: 4935: 4848:Masers and Lasers: An Historical Approach 4703: 4589: 4536: 4222: 3812:Ross T., Adam; Becker G., Daniel (2001). 3290:This article should include a summary of 2596:Vertical cavity surface-emitting lasers ( 2369:) beams, respectively. Frequency-doubled 2066:(PTB), together with US researchers from 2032:and this research continues to this day. 1873:United States Patent and Trademark Office 1720:and hence could not work. Others such as 1326:measurements of lunar topography made by 1307:Learn how and when to remove this message 917: 775:Learn how and when to remove this message 622:Learn how and when to remove this message 407:Learn how and when to remove this message 7576:Wilson, J. & Hawkes, J.F.B. (1987). 7527: 7497:. 4th ed. Trans. David Hanna. Springer. 7432:Fundamentals of Light Sources and Lasers 6882:. University of Chicago Press. pp.  6687: 4726: 4661: 4382: 4370: 3976: 3376: 3328: 3252:Laser-induced interstitial thermotherapy 2865: 2728: 2671: 2627:. Silicon is the material of choice for 2537: 2268: 2091: 1988: 1800: 1716:—argued the maser violated Heisenberg's 1658: 1629: 1345: 1333: 1318: 1197:describing spontaneous emission and the 1181:Quantum vs. classical emission processes 1030: 941: 921: 821: 633: 418: 49: 8149:Multiple-prism grating laser oscillator 7534:. Graduate Texts in Physics. Springer. 7400:Bertolotti, Mario (1999, trans. 2004). 6984: 6622:Fildes, Jonathan (September 12, 2007). 5654:Javan, A. (2000). "On knowing Marlan". 5369: 5367: 4604: 4507: 4454: 4421: 4334: 4054: 3844:"December 1958: Invention of the Laser" 3658:Class 2 is safe during normal use; the 3190:, and cosmetic skin treatments such as 2724: 2703:use dye-doped polymers as laser media. 2582:radiation, or ultrashort laser pulses. 2527: 2277:, based on a Nd:YAG laser, used at the 97:. The first laser was built in 1960 by 14: 8205: 7564:from the original on February 25, 2021 7508: 7275: 7202:from the original on November 22, 2011 7086:from the original on February 24, 2021 7044:Steele, Robert V. (February 1, 2005). 7043: 6844:from the original on February 17, 2022 6702: 6621: 6612: 6464:Solem, J.C.; Biedenharn, L.C. (1987). 6313:from the original on November 27, 2018 6010: 5261:from the original on December 16, 2019 5231:from the original on December 16, 2019 5201:from the original on December 16, 2019 5084: 4765: 4376: 3932:from the original on November 16, 2011 3854:from the original on December 10, 2021 3778: 3027:electro-optical countermeasures (EOCM) 2870:Lasers range in size from microscopic 1947:Albert Einstein World Award of Science 811: 800:are important in our understanding of 7869: 7373:from the original on February 2, 2019 7358: 7306: 7221:Peavy, George M. (January 23, 2014). 7220: 6958: 6801: 6652: 6412: 6284: 6231:from the original on February 7, 2016 6167: 5834:from the original on December 7, 2015 5742: 5714:from the original on February 8, 2023 5653: 5547: 5529:from the original on October 11, 2014 5164: 5035: 4936:Nishizawa, Jun-ichi (December 2009). 4545:from the original on February 8, 2023 4289: 4094:Springer Science & Business Media 4055:McAulay, Alastair D. (May 31, 2011). 4014:Bertolotti, Mario (October 1, 2004). 3958:from the original on February 7, 2019 3906:from the original on February 7, 2019 2773:breakthrough is near, an operational 2264: 2163:), making them candidates for use in 2064:Physikalisch-Technische Bundesanstalt 1984: 1350:Mercury Laser Altimeter (MLA) of the 1212: 1064:states, for which he was awarded the 189:, semiconducting chip manufacturing ( 7635:IEEE Journal of Lightwave Technology 7619:Applied Physics B: Lasers and Optics 6768: 6705:"Laser is produced by a living cell" 6690:Aviation Week & Space Technology 5966: 5864:from the original on August 11, 2018 5364: 4929: 4430:. University Science Books. p.  4346:. University Science Books. p.  4087: 3977:Heilbron, John L. (March 27, 2003). 3644:into an extremely small spot on the 3372: 3275: 1788:radiation to instead concentrate on 1245:adding citations to reliable sources 1216: 1026: 757:adding citations to reliable sources 728: 714:, this device is sometimes called a 604:adding citations to reliable sources 575: 389:adding citations to reliable sources 360: 7651:IEEE Journal of Quantum Electronics 7578:Lasers: Principles and Applications 7307:Zurer, Rachel (December 27, 2011). 7288:from the original on April 14, 2021 7233:from the original on April 19, 2016 7170:Transmissions from Planet Stephanie 7056:from the original on April 12, 2015 7025:from the original on April 13, 2015 6783:from the original on April 14, 2021 6634:from the original on April 21, 2009 6600:from the original on March 21, 2020 6445:from the original on March 18, 2020 6199:Baldwin, G.C.; Solem, J.C. (1979). 6098:Baldwin, G.C.; Solem, J.C. (1997). 5924:from the original on March 18, 2014 5894:from the original on March 18, 2014 4890:from the original on April 24, 2019 3926:"How Laser-powered Headlights Work" 3017:Military: marking targets, guiding 2804:University of California, Riverside 2623:laser is important in the field of 2312:referred to as solid-state lasers. 2130:laser is unusually high: over 30%. 1973:temperatures (77 K). In 1970, 1829:about the energy levels of excited 1808:First page of the notebook wherein 1656:asked him for a copy of the paper. 1402: 24: 7513:. New York: Simon & Schuster. 7389: 7332: 7122:from the original on April 5, 2020 6802:Mumma, Michael J (April 3, 1981). 6715:from the original on June 13, 2011 6624:"Mirror particles form new matter" 6490:from the original on March 4, 2016 6130:from the original on July 28, 2019 6016: 5950:. December 9, 2005. Archived from 5773: 5755:from the original on June 25, 2023 5291:from the original on March 3, 2017 5146:from the original on April 4, 2004 5130: 4826:from the original on March 8, 2016 4564:Pollnau, M.; Eichhorn, M. (2020). 4088:Renk, Karl F. (February 9, 2012). 3880:from the original on June 13, 2016 3381:Laser application in astronomical 2189: 1689:were independently working on the 93:that originated as an acronym for 25: 8254: 7762: 7683:IEEE Photonics Technology Letters 7333:Jr, John Johnson (May 11, 2007). 7309:"Three Smart Things About Lasers" 6985:Randall, Kevin (April 20, 2022). 6205:Nuclear Science & Engineering 5671:Handbook of the Eurolaser Academy 4942:Proc Jpn Acad Ser B Phys Biol Sci 4386:Photonics Essentials, 2nd edition 4290:Hecht, Jeff (December 27, 2018). 2831: 2357:. These lasers are also commonly 2217: 1740:In April 1957, Japanese engineer 1544: 197:and skin treatments, cutting and 8187: 8186: 7359:Hecht, Jeff (January 24, 2018). 7352: 7276:Dragan, Aurel (March 13, 2019). 7269: 7245: 7214: 7188: 7163: 7157: 7134: 7104: 7068: 6769:Chen, Sophia (January 1, 2020). 5167:Beam: The Race to Make the Laser 4643:from the original on May 8, 2021 4591:10.1016/j.pquantelec.2020.100255 3608: 3599: 3280: 2953: 2944:free-space optical communication 1759: 1578:Zur Quantentheorie der Strahlung 1521:), for maximizing the effect of 1221: 1114:) of a laser beam, it is highly 733: 724: 580: 365: 294:), whereas devices operating at 217:have also been used in place of 205:devices for marking targets and 187:free-space optical communication 7417:The Laser in America, 1950–1970 7037: 7006: 6978: 6959:Woods, Susan (April 13, 2015). 6952: 6926: 6913: 6900: 6856: 6795: 6762: 6727: 6703:Palmer, Jason (June 13, 2011). 6696: 6681: 6646: 6561: 6537: 6502: 6457: 6406: 6379: 6356: 6325: 6278: 6243: 6192: 6161: 6142: 6091: 6072: 6037: 6025:. American Institute of Physics 5936: 5906: 5876: 5846: 5820: 5767: 5736: 5726: 5687: 5662: 5647: 5604: 5572: 5541: 5514: 5453: 5445:(Press release). Archived from 5434: 5303: 5273: 5243: 5213: 5183: 5158: 5124: 5078: 5063:The Laser in America, 1950–1970 5055: 4988: 4902: 4872: 4838: 4812: 4800:The Nobel Prize in Physics 1966 4793: 4759: 4667: 4570:Progress in Quantum Electronics 4415: 4328: 4316: 4283: 4250: 4168: 4141: 4114: 4081: 4048: 3038: 2882:glass lasers (bottom) used for 2862:List of applications for lasers 2759: 2452: 2147:-silver (HeAg) 224 nm and 1798:, which was published in 1958. 1471: 1232:needs additional citations for 1124:at that point. However, due to 950:The gain medium is put into an 744:needs additional citations for 638:Components of a typical laser: 591:needs additional citations for 504:, such a material is called an 376:needs additional citations for 356: 105:, based on theoretical work by 8058:Amplified spontaneous emission 7611: 7531:Quantum Photonics, 2nd edition 7482:. Cambridge University Press. 7361:"Can Lidars Zap Camera Chips?" 5492:10.1103/PhysRevLett.118.263202 4177:Astrophysics and Space Science 4007: 3970: 3944: 3918: 3892: 3866: 3836: 3805: 3772: 3254:(LITT), or interstitial laser 3159: 2433:of extremely high peak power. 2082:Types and operating principles 2072:University of Colorado Boulder 2062:In 2017, researchers from the 2053:Technical University of Munich 2051:. In 2017, researchers at the 2041:Delft University of Technology 1765:"The Man, the Myth, the Laser" 1563: 1535:optical parametric oscillators 1525:in optical materials (e.g. in 1456: 1152:whose light originates from a 249:frequencies, and was called a 240: 13: 1: 7826:Bright Idea: The First Lasers 7447:Solid-State Laser Engineering 7264:Science and Technology Review 7198:. elabz.com. April 10, 2011. 6100:"Recoilless gamma-ray lasers" 5441:Erika Schow (June 29, 2017). 4997:"Infrared and Optical Masers" 3765: 3489:DVD 24× dual-layer recording 3322:is a laser that is used as a 3265: 3087:laser capture microdissection 3050:. Lasers are used for latent 2667: 2497:, or a stack of such lasers. 2101: 2019:minimum output pulse duration 1177:with interesting properties. 558:more than is required by the 58:system producing four orange 7464:. University Science Books. 7460:Siegman, Anthony E. (1986). 7415:Bromberg, Joan Lisa (1991). 7116:"Lasers in Cancer Treatment" 7052:. Vol. 41, no. 2. 7021:. Vol. 41, no. 1. 6921:Journal of Forensic Sciences 6908:Journal of Forensic Sciences 6531:10.1016/0022-4073(88)90066-0 6439:10.1016/0022-4073(88)90067-2 5996:10.1021/acs.nanolett.5b03404 5700:. McGraw Hill Professional. 5550:"The TEA Nitrogen Gas Laser" 4422:Siegman, Anthony E. (1986). 2948:laser communication in space 2802:laser. David Cassidy of the 2604:are external-cavity VCSELs. 2202:(2700–2900 nm) and the 2177:was demonstrated in 1992 in 2039:In 2017, researchers at the 2004:maximum average output power 1892:Hughes Research Laboratories 103:Hughes Research Laboratories 7: 8114:Chirped pulse amplification 7449:. 3rd ed. Springer-Verlag. 6830:10.1126/science.212.4490.45 5169:. Oxford University Press. 4908:Townes, Charles H. (1999). 4455:Walker, Jearl (June 1974). 3706: 3534: 3520: 3507: 3493: 3483: 3469: 3455: 3439: 3426: 3414: 3349: 3347: 3335:Tactical High Energy weapon 3213:by shrinking or destroying 2884:inertial confinement fusion 2812:inertial confinement fusion 2660:, which takes advantage of 1927:William R. Bennett Jr. 1748:" in a patent application. 1746:semiconductor optical maser 1744:proposed the concept of a " 1502:-doped, artificially grown 1494:(also known as energy–time 1447:vibronic solid-state lasers 796:and how they interact with 10: 8259: 7918:List of laser applications 7895: 7258:November 21, 2008, at the 6334:AIP Conference Proceedings 6291:AIP Conference Proceedings 6252:Journal of Applied Physics 6124:10.1103/RevModPhys.69.1085 5523:"The Carbon Dioxide Laser" 4845:Bertolotti, Mario (2015). 4463:. W. H. Freeman. pp.  3754:Fabry–Pérot interferometer 3694:Lasers and aviation safety 3588: 3563:National Ignition Facility 3544:lasers used in industrial 3501:Holographic Versatile Disc 3341: 3269: 3236:non-small cell lung cancer 3170:Lasers in cancer treatment 3163: 3156: billion, were sold. 2922:, introduced in 1974. The 2859: 2713:as the optical resonator. 2709:are dye lasers that use a 2531: 2456: 2105: 2085: 2055:demonstrated the smallest 1623: 1558: 1531:parametric down-conversion 1527:second-harmonic generation 1486:down to less than 10  1475: 1460: 1406: 815: 786: 569: 274:) are called lasers (e.g. 229:of a laser and avoids the 179:DNA sequencing instruments 36: 29: 8182: 8096: 8043: 7931: 7903: 7540:10.1007/978-3-030-47325-9 7528:Pearsall, Thomas (2020). 7445:Koechner, Walter (1992). 6655:Optics and Photonics News 6104:Reviews of Modern Physics 6066:10.1103/RevModPhys.53.687 6046:Reviews of Modern Physics 5633:10.1088/1464-4266/2/3/201 5521:Nolen, Jim; Derek Verno. 4729:Physikalische Zeitschrift 4383:Pearsall, Thomas (2010). 3714:Coherent perfect absorber 3584: 3209:Lasers are used to treat 3048:LIDAR traffic enforcement 2996:selective laser sintering 2940:fiber-optic communication 2909:Fiber-optic communication 2903:, entertainment, and the 2852:exhibit this phenomenon. 2826:green fluorescent protein 2798:to drive a very powerful 2553:Semiconductor lasers are 2522:density of optical states 2465:total internal reflection 2425:laser, commonly used for 2181:gas and again in 1995 in 1773:Science History Institute 1758: 1753: 1368:Continuous-wave operation 1083:often approximated using 963:: gas, liquid, solid, or 565: 431:as the group behavior of 429:electromagnetic radiation 83:electromagnetic radiation 7831:October 3, 2012, at the 7404:. Institute of Physics. 7402:The History of the Laser 7394: 7150:August 14, 2005, at the 5948:Laser Focus World Online 5022:10.1103/PhysRev.112.1940 4766:Batani, Dimitri (2004). 4634:10.1103/PhysRev.131.2766 4016:The History of the Laser 3696:for more on this topic. 2938:Communications: besides 2733:The free-electron laser 2715:Whispering gallery modes 2631:, and so electronic and 2371:diode-pumped solid-state 2339:yttrium aluminium garnet 2331:yttrium lithium fluoride 2235:excited electronic state 2204:deuterium fluoride laser 2025:maximum power efficiency 1933:, constructed the first 1735: 1619: 1342:optical wireless network 201:materials, military and 7819:April 23, 2021, at the 7493:Svelto, Orazio (1998). 6756:10.1038/nphoton.2011.99 6675:10.1364/opn.19.5.000026 5776:Applied Physics Letters 5342:10.1126/science.aah6640 4916:Oxford University Press 4538:10.1364/OPTICA.5.000465 4197:10.1023/A:1000892300429 4189:1997Ap&SS.252..279S 3987:Oxford University Press 3299:Knowledge:Summary style 3135:laser lighting displays 3091:fluorescence microscopy 3056:forensic identification 3000:selective laser melting 2855: 2787:In September 2007, the 2777:is yet to be realized. 2513:Photonic crystal lasers 2229:, or more precisely an 2200:hydrogen fluoride laser 1953:demonstrated the first 1931:Donald R. Herriott 1900:Arthur L. Schawlow 1387:term is not applied to 211:laser lighting displays 111:Arthur Leonard Schawlow 69:is a device that emits 7908:List of laser articles 6923:, 28(3), 1983, 692–696 6910:, 22(1), 1977, 106–115 6874:; Tim Lincoln (eds.). 6594:10.1364/JOSAB.6.000221 5669:Schuocker, D. (1998). 4605:Glauber, R.J. (1963). 3759:Ultrashort pulse laser 3729:List of laser articles 3719:Homogeneous broadening 3701:charge-coupled devices 3503:prototype development 3386: 3338: 3324:directed-energy weapon 3004:laser metal deposition 2988:additive manufacturing 2942:, lasers are used for 2891: 2741: 2701:solid-state dye lasers 2680: 2606:Quantum cascade lasers 2550: 2281: 2279:Starfire Optical Range 2261:is a stable compound. 2098: 1994: 1814: 1730:Nobel Prize in Physics 1675:Herbert J. Zeiger 1666: 1654:Charles H. Townes 1637: 1355: 1343: 1331: 1066:Nobel Prize in physics 1036: 947: 939: 918:Gain medium and cavity 867: 841: 798:electromagnetic fields 712:electronic oscillators 663:A laser consists of a 660: 424: 107:Charles H. Townes 62: 32:Laser (disambiguation) 7784:June 1, 2009, at the 7595:Yariv, Amnon (1989). 7509:Taylor, Nick (2000). 6225:10.13182/NSE79-A20384 5858:industrial-lasers.com 5560:on September 11, 2007 5554:Homebuilt Lasers Page 5380:Nature Communications 5140:University of Chicago 5072:May 28, 2014, at the 4805:June 4, 2011, at the 4296:John Wiley & Sons 4061:John Wiley & Sons 3902:. February 22, 2017. 3779:Taylor, Nick (2000). 3734:List of light sources 3380: 3332: 3103:Commercial products: 2934:Some other uses are: 2869: 2732: 2675: 2645:gallium(III) arsenide 2641:indium(III) phosphide 2637:optical interconnects 2619:The development of a 2541: 2320:yttrium orthovanadate 2272: 2095: 2086:Further information: 2045:AC Josephson junction 1992: 1804: 1718:uncertainty principle 1662: 1633: 1594:Valentin A. Fabrikant 1586:Einstein coefficients 1515:femtosecond chemistry 1349: 1337: 1322: 1110:Near the "waist" (or 1034: 945: 925: 900:uncertainty principle 866: 839: 691:or by another laser. 637: 433:fundamental particles 422: 219:light-emitting diodes 75:optical amplification 73:through a process of 53: 8083:Population inversion 7862:Universite Paris Sud 7495:Principles of Lasers 7476:Silfvast, William T. 7430:Csele, Mark (2004). 7176:on February 17, 2022 6940:. September 10, 2014 6413:Solem, J.C. (1988). 6285:Solem, J.C. (1986). 5828:"Laser Diode Market" 5749:www.rp-photonics.com 5743:Paschotta, Rüdiger. 5548:Csele, Mark (2004). 5525:. Davidson Physics. 5165:Hecht, Jeff (2005). 5132:Townes, Charles Hard 5061:Joan Lisa Bromberg, 4508:Pollnau, M. (2018). 4233:Biographical Memoirs 3928:. November 7, 2011. 3876:. November 7, 2013. 3785:Simon & Schuster 2897:consumer electronics 2838:astrophysical masers 2745:Free-electron lasers 2725:Free-electron lasers 2649:hybrid silicon laser 2635:components (such as 2534:Semiconductor lasers 2528:Semiconductor lasers 2418:) produces a highly 2305:population inversion 2212:nitrogen trifluoride 2001:new wavelength bands 1957:, which was made of 1699:population inversion 1695:stimulated emissions 1671:James P. Gordon 1241:improve this article 1070:Poisson distribution 996:astrophysical masers 977:population inversion 896:spontaneous emission 889:When an electron is 753:improve this article 645:Laser pumping energy 600:improve this article 385:improve this article 56:Very Large Telescope 30:For other uses, see 8223:American inventions 8134:Laser beam profiler 8053:Active laser medium 7993:Free-electron laser 7913:List of laser types 7597:Quantum Electronics 6822:1981Sci...212...45M 6748:2011NaPho...5..406G 6667:2008OptPN..19R..26H 6586:1989JOSAB...6..221B 6523:1988JQSRT..40..707S 6481:1987pcce.rept.....S 6431:1988JQSRT..40..713S 6342:1986AIPC..146...50B 6299:1986AIPC..146...22S 6264:1980JAP....51.2372B 6217:1979NSE....72..281B 6116:1997RvMP...69.1085B 6058:1981RvMP...53..687B 5988:2016NanoL..16..152M 5920:. August 19, 2015. 5830:. Hanel Photonics. 5798:2004ApPhL..85.3657W 5625:2000JOptB...2R...7M 5484:2017PhRvL.118z3202M 5410:10.1038/ncomms15521 5402:2017NatCo...815521M 5334:2017Sci...355..939C 5102:1960Natur.187..493M 5013:1958PhRv..112.1940S 4963:10.2183/pjab.85.454 4954:2009PJAB...85..454N 4741:1917PhyZ...18..121E 4696:1999Natur.402..138K 4626:1963PhRv..131.2766G 4582:2020PQE....7200255P 4529:2018Optic...5..465P 4336:Siegman, Anthony E. 4325:, Paul Hewitt, 2002 3403: 3396:orders of magnitude 3033:, blinding troops, 2749:terahertz radiation 2629:integrated circuits 2471:are instead called 2239:noble gas compounds 2088:List of laser types 2013:maximum peak pulse 2007:maximum peak pulse 1961:and emitted in the 1955:semiconductor laser 1951:Robert N. Hall 1896:Columbia University 1871:in April 1959. The 1819:Columbia University 1687:Aleksandr Prokhorov 1635:Aleksandr Prokhorov 1598:Willis E. Lamb 1590:Rudolf W. Ladenburg 1203:free electron laser 1187:stimulated emission 1165:laser beam profiler 1142:semiconductor laser 818:Stimulated emission 812:Stimulated emission 680:for the amplifier. 517:diffraction-limited 506:active laser medium 486:stimulated emission 332:astrophysical maser 302:are called masers. 167:optical disc drives 165:Lasers are used in 79:stimulated emission 54:A telescope in the 8238:Russian inventions 8213:1960 introductions 7798:Laser Fundamentals 7480:Laser Fundamentals 6992:The New York Times 5197:. March 18, 2019. 5065:(1991), pp. 74–77 4461:Light and Its Uses 4403:on August 17, 2021 4373:, p. 276=285. 4323:Conceptual physics 4259:Optics in Our Time 4154:Collins Dictionary 4127:Collins Dictionary 3401: 3387: 3339: 2994:processes such as 2892: 2742: 2694:). Although these 2681: 2551: 2285:Solid-state lasers 2282: 2265:Solid-state lasers 2169:Raman spectroscopy 2119:carbon dioxide (CO 2099: 1995: 1985:Recent innovations 1949:in 1993. In 1962, 1910:-pumped synthetic 1869:patent application 1815: 1742:Jun-ichi Nishizawa 1691:quantum oscillator 1667: 1638: 1391:lasers, where the 1356: 1344: 1332: 1213:Modes of operation 1171:Diffuse reflection 1037: 948: 940: 868: 842: 661: 572:Laser construction 425: 280:ultraviolet lasers 209:and speed, and in 152:frequency spectrum 148:temporal coherence 63: 8243:Soviet inventions 8200: 8199: 8154:Optical amplifier 8003:Solid-state laser 7747:Photonics Spectra 7715:Laser Focus World 7599:. 3rd ed. Wiley. 7549:978-3-030-47324-2 7520:978-0-684-83515-0 7425:978-0-262-02318-4 7339:Los Angeles Times 7164:Maks, Stephanie. 7050:Laser Focus World 7019:Laser Focus World 6965:Shop Floor Lasers 6893:978-0-226-28413-2 6868:"The first laser" 6864:Charles H. Townes 6692:. pp. 25–27. 6373:10.1117/12.943887 6017:Miller, Johanna. 5954:on March 13, 2006 5806:10.1063/1.1808888 5707:978-0-07-163314-7 5680:978-0-412-81910-0 5318:(6328): 939–942. 5257:. July 30, 2015. 5176:978-0-19-514210-5 5136:"The first laser" 5096:(4736): 493–494. 4924:978-0-19-512268-8 4880:"Guide to Lasers" 4858:978-1-4822-1780-3 4678:(November 1999). 4474:978-0-7167-1185-8 4441:978-0-935702-11-8 4396:978-0-07-162935-5 4357:978-0-935702-11-8 4309:978-1-119-31064-8 4276:978-3-319-31903-2 4243:978-0-309-08699-8 4107:978-3-642-23565-8 4074:978-0-470-25560-5 4041:978-1-4200-3340-3 4000:978-0-19-974376-6 3829:978-0-8194-3922-2 3699:Cameras based on 3551: 3550: 3540:Typical sealed CO 3526:Typical sealed CO 3373:Examples by power 3316: 3315: 3248:radiation therapy 3054:detection in the 2625:optical computing 2488:double-clad fiber 2467:in a single mode 2431:ultrashort pulses 2115:helium–neon laser 2049:quantum computing 2022:minimum linewidth 1967:Nick Holonyak Jr. 1825:was working on a 1821:graduate student 1778: 1777: 1664:Charles H. Townes 1519:ultrafast science 1431:nonlinear optical 1414:cannot be run in 1384:frequency spacing 1317: 1316: 1309: 1291: 1207:quantum mechanics 1158:spatial coherence 1138:helium–neon laser 1027:The light emitted 988:superluminescence 981:optical amplifier 928:helium–neon laser 837: 785: 784: 777: 632: 631: 624: 560:diffraction limit 498:metastable states 463:thermal radiation 417: 416: 409: 346:optical amplifier 300:radio frequencies 221:(LEDs) to excite 156:ultrashort pulses 124:Spatial coherence 60:laser guide stars 16:(Redirected from 8250: 8190: 8189: 8164:Optical isolator 8129:Injection seeder 8109:Beam homogenizer 8088:Ultrashort pulse 8078:Lasing threshold 7890: 7883: 7876: 7867: 7866: 7573: 7571: 7569: 7524: 7383: 7382: 7380: 7378: 7356: 7350: 7349: 7347: 7345: 7330: 7324: 7323: 7321: 7319: 7304: 7298: 7297: 7295: 7293: 7273: 7267: 7251:Heller, Arnie, " 7249: 7243: 7242: 7240: 7238: 7218: 7212: 7211: 7209: 7207: 7192: 7186: 7185: 7183: 7181: 7172:. Archived from 7161: 7155: 7138: 7132: 7131: 7129: 7127: 7108: 7107: 7102: 7096: 7095: 7093: 7091: 7072: 7066: 7065: 7063: 7061: 7041: 7035: 7034: 7032: 7030: 7010: 7004: 7003: 7001: 6999: 6982: 6976: 6975: 6973: 6971: 6956: 6950: 6949: 6947: 6945: 6930: 6924: 6917: 6911: 6904: 6898: 6897: 6881: 6860: 6854: 6853: 6851: 6849: 6799: 6793: 6792: 6790: 6788: 6766: 6760: 6759: 6736:Nature Photonics 6731: 6725: 6724: 6722: 6720: 6700: 6694: 6693: 6685: 6679: 6678: 6650: 6644: 6643: 6641: 6639: 6619: 6610: 6609: 6607: 6605: 6565: 6559: 6558: 6541: 6535: 6534: 6506: 6500: 6499: 6497: 6495: 6489: 6470: 6461: 6455: 6454: 6452: 6450: 6410: 6404: 6403: 6383: 6377: 6376: 6360: 6354: 6353: 6329: 6323: 6322: 6320: 6318: 6282: 6276: 6275: 6272:10.1063/1.328007 6258:(5): 2372–2380. 6247: 6241: 6240: 6238: 6236: 6196: 6190: 6189: 6165: 6159: 6158: 6146: 6140: 6139: 6137: 6135: 6110:(4): 1085–1117. 6095: 6089: 6088: 6076: 6070: 6069: 6041: 6035: 6034: 6032: 6030: 6014: 6008: 6007: 5970: 5964: 5963: 5961: 5959: 5940: 5934: 5933: 5931: 5929: 5910: 5904: 5903: 5901: 5899: 5880: 5874: 5873: 5871: 5869: 5850: 5844: 5843: 5841: 5839: 5824: 5818: 5817: 5791: 5771: 5765: 5764: 5762: 5760: 5745:"Photodarkening" 5740: 5734: 5730: 5724: 5723: 5721: 5719: 5691: 5685: 5684: 5666: 5660: 5659: 5651: 5645: 5644: 5608: 5602: 5601: 5599: 5597: 5591: 5584: 5580:"Deep UV Lasers" 5576: 5570: 5569: 5567: 5565: 5556:. Archived from 5545: 5539: 5538: 5536: 5534: 5518: 5512: 5511: 5477: 5457: 5451: 5450: 5449:on July 3, 2017. 5438: 5432: 5431: 5421: 5395: 5371: 5362: 5361: 5327: 5307: 5301: 5300: 5298: 5296: 5277: 5271: 5270: 5268: 5266: 5247: 5241: 5240: 5238: 5236: 5217: 5211: 5210: 5208: 5206: 5187: 5181: 5180: 5162: 5156: 5155: 5153: 5151: 5128: 5122: 5121: 5110:10.1038/187493a0 5082: 5076: 5059: 5053: 5052: 5037:Gould, R. Gordon 5033: 5027: 5026: 5024: 5007:(6): 1940–1949. 4992: 4986: 4985: 4975: 4965: 4933: 4927: 4906: 4900: 4899: 4897: 4895: 4876: 4870: 4869: 4867: 4865: 4842: 4836: 4835: 4833: 4831: 4816: 4810: 4797: 4791: 4790: 4788: 4786: 4781:on June 14, 2007 4780: 4772:wwwold.unimib.it 4763: 4757: 4754: 4745: 4744: 4724: 4718: 4717: 4707: 4671: 4665: 4659: 4653: 4652: 4650: 4648: 4642: 4620:(6): 2766–2788. 4611: 4602: 4596: 4595: 4593: 4561: 4555: 4554: 4552: 4550: 4540: 4514: 4505: 4499: 4498: 4492: 4488: 4486: 4478: 4457:"Nitrogen Laser" 4452: 4446: 4445: 4429: 4419: 4413: 4412: 4410: 4408: 4399:. Archived from 4380: 4374: 4368: 4362: 4361: 4345: 4332: 4326: 4320: 4314: 4313: 4287: 4281: 4280: 4254: 4248: 4247: 4220: 4209: 4208: 4172: 4166: 4165: 4163: 4161: 4145: 4139: 4138: 4136: 4134: 4118: 4112: 4111: 4085: 4079: 4078: 4052: 4046: 4045: 4011: 4005: 4004: 3984: 3974: 3968: 3967: 3965: 3963: 3948: 3942: 3941: 3939: 3937: 3922: 3916: 3915: 3913: 3911: 3896: 3890: 3889: 3887: 3885: 3870: 3864: 3863: 3861: 3859: 3840: 3834: 3833: 3809: 3803: 3802: 3776: 3683: 3612: 3603: 3537: 3530:surgical lasers 3523: 3510: 3496: 3486: 3472: 3458: 3442: 3429: 3417: 3404: 3400: 3353: 3311: 3308: 3302: 3284: 3283: 3276: 3256:photocoagulation 3155: 3151: 3139:laser turntables 3109:barcode scanners 2966:thin materials, 2782:Mössbauer effect 2662:Raman scattering 2633:silicon photonic 2518:Photonic crystal 2495:fiber disk laser 2353:and for pumping 2247:photolithography 2141:deep ultraviolet 2077: 2043:demonstrated an 1959:gallium arsenide 1817:Simultaneously, 1763: 1762: 1751: 1750: 1714:Llewellyn Thomas 1710:John von Neumann 1607: 1603: 1403:Pulsed operation 1312: 1305: 1301: 1298: 1292: 1290: 1249: 1225: 1217: 1105:optical vortexes 1081:transverse modes 1051:injection seeder 1016:lasing threshold 908:thermal emission 838: 780: 773: 769: 766: 760: 737: 729: 716:laser oscillator 710:. In analogy to 627: 620: 616: 613: 607: 584: 576: 552:monochromaticity 529:coherence length 412: 405: 401: 398: 392: 369: 361: 351:laser amplifiers 291:gamma-ray lasers 191:photolithography 175:barcode scanners 21: 8258: 8257: 8253: 8252: 8251: 8249: 8248: 8247: 8203: 8202: 8201: 8196: 8178: 8092: 8073:Laser linewidth 8063:Continuous wave 8039: 7932:Types of lasers 7927: 7899: 7894: 7833:Wayback Machine 7821:Wayback Machine 7786:Wayback Machine 7765: 7614: 7567: 7565: 7550: 7521: 7397: 7392: 7390:Further reading 7387: 7386: 7376: 7374: 7357: 7353: 7343: 7341: 7331: 7327: 7317: 7315: 7305: 7301: 7291: 7289: 7282:Business Review 7274: 7270: 7260:Wayback Machine 7250: 7246: 7236: 7234: 7219: 7215: 7205: 7203: 7194: 7193: 7189: 7179: 7177: 7162: 7158: 7152:Wayback Machine 7144: 7139: 7135: 7125: 7123: 7114: 7105: 7103: 7099: 7089: 7087: 7080:medlineplus.gov 7074: 7073: 7069: 7059: 7057: 7042: 7038: 7028: 7026: 7011: 7007: 6997: 6995: 6983: 6979: 6969: 6967: 6957: 6953: 6943: 6941: 6932: 6931: 6927: 6918: 6914: 6905: 6901: 6894: 6861: 6857: 6847: 6845: 6816:(4490): 45–49. 6800: 6796: 6786: 6784: 6767: 6763: 6732: 6728: 6718: 6716: 6701: 6697: 6686: 6682: 6651: 6647: 6637: 6635: 6620: 6613: 6603: 6601: 6566: 6562: 6542: 6538: 6507: 6503: 6493: 6491: 6487: 6468: 6462: 6458: 6448: 6446: 6411: 6407: 6384: 6380: 6361: 6357: 6350:10.1063/1.35928 6330: 6326: 6316: 6314: 6307:10.1063/1.35861 6283: 6279: 6248: 6244: 6234: 6232: 6197: 6193: 6178:10.2172/6010532 6166: 6162: 6147: 6143: 6133: 6131: 6096: 6092: 6077: 6073: 6042: 6038: 6028: 6026: 6015: 6011: 5971: 5967: 5957: 5955: 5942: 5941: 5937: 5927: 5925: 5912: 5911: 5907: 5897: 5895: 5882: 5881: 5877: 5867: 5865: 5852: 5851: 5847: 5837: 5835: 5826: 5825: 5821: 5789:physics/0406005 5772: 5768: 5758: 5756: 5741: 5737: 5731: 5727: 5717: 5715: 5708: 5692: 5688: 5681: 5667: 5663: 5652: 5648: 5609: 5605: 5595: 5593: 5592:on July 1, 2007 5589: 5582: 5578: 5577: 5573: 5563: 5561: 5546: 5542: 5532: 5530: 5519: 5515: 5462:Phys. Rev. Lett 5458: 5454: 5439: 5435: 5372: 5365: 5308: 5304: 5294: 5292: 5279: 5278: 5274: 5264: 5262: 5249: 5248: 5244: 5234: 5232: 5219: 5218: 5214: 5204: 5202: 5195:Popular Science 5189: 5188: 5184: 5177: 5163: 5159: 5149: 5147: 5129: 5125: 5083: 5079: 5074:Wayback Machine 5060: 5056: 5043:. p. 128. 5034: 5030: 5001:Physical Review 4993: 4989: 4948:(10): 454–465. 4934: 4930: 4907: 4903: 4893: 4891: 4878: 4877: 4873: 4863: 4861: 4859: 4843: 4839: 4829: 4827: 4822:. May 4, 2015. 4818: 4817: 4813: 4807:Wayback Machine 4798: 4794: 4784: 4782: 4778: 4764: 4760: 4755: 4748: 4725: 4721: 4672: 4668: 4660: 4656: 4646: 4644: 4640: 4609: 4603: 4599: 4562: 4558: 4548: 4546: 4512: 4506: 4502: 4490: 4489: 4480: 4479: 4475: 4453: 4449: 4442: 4420: 4416: 4406: 4404: 4397: 4389:. McGraw-Hill. 4381: 4377: 4369: 4365: 4358: 4333: 4329: 4321: 4317: 4310: 4288: 4284: 4277: 4255: 4251: 4244: 4228:Townes, Charles 4221: 4212: 4173: 4169: 4159: 4157: 4147: 4146: 4142: 4132: 4130: 4120: 4119: 4115: 4108: 4086: 4082: 4075: 4053: 4049: 4042: 4012: 4008: 4001: 3975: 3971: 3961: 3959: 3950: 3949: 3945: 3935: 3933: 3924: 3923: 3919: 3909: 3907: 3898: 3897: 3893: 3883: 3881: 3872: 3871: 3867: 3857: 3855: 3842: 3841: 3837: 3830: 3822:. p. 396. 3810: 3806: 3799: 3777: 3773: 3768: 3763: 3724:Laser linewidth 3709: 3681: 3626:Theodore Maiman 3622: 3621: 3620: 3619: 3615: 3614: 3613: 3605: 3604: 3593: 3587: 3543: 3535: 3529: 3521: 3515:micro machining 3508: 3499:Green laser in 3494: 3484: 3470: 3456: 3440: 3427: 3415: 3383:adaptive optics 3375: 3344: 3333:The US–Israeli 3312: 3306: 3303: 3296: 3285: 3281: 3274: 3268: 3202:reduction, and 3172: 3164:Main articles: 3162: 3153: 3149: 3129:Entertainment: 3044:Law enforcement 3023:missile defense 2920:barcode scanner 2901:law enforcement 2888:nuclear weapons 2864: 2858: 2834: 2775:gamma-ray laser 2766:isomeric states 2762: 2727: 2688:on the order of 2670: 2653:nanowire lasers 2536: 2530: 2515: 2461: 2455: 2394: 2327: 2267: 2260: 2220: 2195:Chemical lasers 2192: 2190:Chemical lasers 2186:been canceled. 2129: 2122: 2110: 2104: 2090: 2084: 2075: 1987: 1971:liquid nitrogen 1827:doctoral thesis 1806:LASER notebook: 1795:Physical Review 1760: 1738: 1628: 1622: 1614:optical pumping 1605: 1601: 1570:Albert Einstein 1566: 1561: 1547: 1480: 1474: 1465: 1459: 1411: 1405: 1375:continuous-wave 1370: 1361:cavity lifetime 1313: 1302: 1296: 1293: 1250: 1248: 1238: 1226: 1215: 1191:Albert Einstein 1183: 1175:speckle pattern 1122:beam divergence 1047:laser linewidth 1029: 920: 882:one particular 822: 820: 814: 791: 781: 770: 764: 761: 750: 738: 727: 659: 628: 617: 611: 608: 597: 585: 574: 568: 447:electric charge 443:electromagnetic 413: 402: 396: 393: 382: 370: 359: 276:infrared lasers 243: 207:measuring range 203:law enforcement 99:Theodore Maiman 46: 35: 28: 23: 22: 15: 12: 11: 5: 8256: 8246: 8245: 8240: 8235: 8233:Quantum optics 8230: 8225: 8220: 8215: 8198: 8197: 8195: 8194: 8183: 8180: 8179: 8177: 8176: 8171: 8169:Output coupler 8166: 8161: 8159:Optical cavity 8156: 8151: 8146: 8141: 8136: 8131: 8126: 8121: 8119:Gain-switching 8116: 8111: 8106: 8100: 8098: 8094: 8093: 8091: 8090: 8085: 8080: 8075: 8070: 8068:Laser ablation 8065: 8060: 8055: 8049: 8047: 8041: 8040: 8038: 8037: 8032: 8031: 8030: 8025: 8020: 8015: 8010: 8000: 7995: 7990: 7989: 7988: 7983: 7978: 7973: 7968: 7966:Carbon dioxide 7958: 7957: 7956: 7954:Liquid-crystal 7951: 7941: 7939:Chemical laser 7935: 7933: 7929: 7928: 7926: 7925: 7923:Laser acronyms 7920: 7915: 7910: 7904: 7901: 7900: 7893: 7892: 7885: 7878: 7870: 7864: 7863: 7857: 7852: 7847: 7841: 7836: 7823: 7811: 7806: 7801: 7794: 7788: 7776: 7771: 7764: 7763:External links 7761: 7760: 7759: 7743: 7731:Optics Letters 7727: 7711: 7695: 7679: 7663: 7647: 7631: 7613: 7610: 7609: 7608: 7593: 7574: 7548: 7525: 7519: 7506: 7491: 7473: 7458: 7443: 7428: 7413: 7396: 7393: 7391: 7388: 7385: 7384: 7351: 7325: 7299: 7268: 7244: 7213: 7187: 7156: 7142: 7133: 7097: 7067: 7036: 7005: 6977: 6951: 6925: 6912: 6899: 6892: 6855: 6794: 6761: 6742:(7): 406–410. 6726: 6695: 6680: 6645: 6611: 6580:(2): 221–227. 6560: 6536: 6517:(6): 707–712. 6501: 6456: 6425:(6): 713–715. 6405: 6378: 6355: 6324: 6277: 6242: 6211:(3): 281–289. 6191: 6160: 6141: 6090: 6071: 6052:(4): 687–744. 6036: 6009: 5982:(1): 152–156. 5965: 5935: 5905: 5875: 5845: 5819: 5766: 5735: 5725: 5706: 5686: 5679: 5661: 5646: 5603: 5571: 5540: 5513: 5468:(26): 263202. 5452: 5433: 5363: 5302: 5272: 5242: 5212: 5182: 5175: 5157: 5123: 5077: 5054: 5028: 4987: 4928: 4901: 4871: 4857: 4837: 4811: 4792: 4758: 4746: 4719: 4676:Woerdman, J.P. 4666: 4664:, p. 276. 4654: 4597: 4556: 4523:(4): 465–474. 4500: 4473: 4447: 4440: 4414: 4395: 4375: 4363: 4356: 4327: 4315: 4308: 4282: 4275: 4249: 4242: 4210: 4167: 4140: 4113: 4106: 4080: 4073: 4047: 4040: 4006: 3999: 3969: 3943: 3917: 3891: 3865: 3835: 3828: 3804: 3798:978-0684835150 3797: 3770: 3769: 3767: 3764: 3762: 3761: 3756: 3751: 3746: 3741: 3736: 3731: 3726: 3721: 3716: 3710: 3708: 3705: 3674: 3673: 3670: 3667: 3663: 3656: 3617: 3616: 3607: 3606: 3598: 3597: 3596: 3595: 3594: 3589:Main article: 3586: 3583: 3582: 3581: 3566: 3549: 3548: 3541: 3538: 3532: 3531: 3527: 3524: 3518: 3517: 3511: 3505: 3504: 3497: 3491: 3490: 3487: 3481: 3480: 3473: 3467: 3466: 3459: 3453: 3452: 3443: 3437: 3436: 3430: 3424: 3423: 3421:Laser pointers 3418: 3412: 3411: 3408: 3374: 3371: 3343: 3340: 3314: 3313: 3288: 3286: 3279: 3270:Main article: 3267: 3264: 3188:ophthalmoscopy 3178:(particularly 3166:Laser medicine 3161: 3158: 3146: 3145: 3142: 3127: 3117:laser pointers 3105:laser printers 3101: 3079:interferometry 3067:laser ablation 3059: 3041: 3035:firearms sight 3015: 3012:laser cleaning 2972:heat treatment 2956: 2952:Medicine: see 2950: 2929:laser printers 2860:Main article: 2857: 2854: 2833: 2832:Natural lasers 2830: 2808:nuclear fusion 2770:atomic nucleus 2761: 2758: 2726: 2723: 2719:frequency comb 2696:tunable lasers 2669: 2666: 2571:laser printers 2567:laser pointers 2532:Main article: 2529: 2526: 2514: 2511: 2502:photodarkening 2457:Main article: 2454: 2451: 2392: 2325: 2266: 2263: 2258: 2223:Excimer lasers 2219: 2218:Excimer lasers 2216: 2191: 2188: 2155:, less than 3 2127: 2120: 2106:Main article: 2103: 2100: 2083: 2080: 2030: 2029: 2026: 2023: 2020: 2017: 2011: 2005: 2002: 1986: 1983: 1979:heterojunction 1975:Zhores Alferov 1865:nuclear fusion 1857:interferometry 1776: 1775: 1756: 1755: 1754:External audio 1737: 1734: 1726:Polykarp Kusch 1624:Main article: 1621: 1618: 1610:Alfred Kastler 1576:in the paper " 1565: 1562: 1560: 1557: 1546: 1545:Pulsed pumping 1543: 1476:Main article: 1473: 1470: 1461:Main article: 1458: 1455: 1424:laser ablation 1407:Main article: 1404: 1401: 1369: 1366: 1340:point to point 1315: 1314: 1229: 1227: 1220: 1214: 1211: 1182: 1179: 1130:Rayleigh range 1058:Roy J. Glauber 1028: 1025: 992:nitrogen laser 973:quantum states 919: 916: 846:classical view 816:Main article: 813: 810: 783: 782: 741: 739: 732: 726: 723: 700:output coupler 696:optical cavity 658: 657: 654: 652:Output coupler 649: 648:High reflector 646: 643: 639: 630: 629: 588: 586: 579: 570:Main article: 567: 564: 494:chain reaction 474:excited states 451:thermal energy 415: 414: 373: 371: 364: 358: 355: 261:optical masers 242: 239: 171:laser printers 140:laser pointers 26: 9: 6: 4: 3: 2: 8255: 8244: 8241: 8239: 8236: 8234: 8231: 8229: 8226: 8224: 8221: 8219: 8216: 8214: 8211: 8210: 8208: 8193: 8185: 8184: 8181: 8175: 8172: 8170: 8167: 8165: 8162: 8160: 8157: 8155: 8152: 8150: 8147: 8145: 8142: 8140: 8137: 8135: 8132: 8130: 8127: 8125: 8124:Gaussian beam 8122: 8120: 8117: 8115: 8112: 8110: 8107: 8105: 8104:Beam expander 8102: 8101: 8099: 8095: 8089: 8086: 8084: 8081: 8079: 8076: 8074: 8071: 8069: 8066: 8064: 8061: 8059: 8056: 8054: 8051: 8050: 8048: 8046: 8045:Laser physics 8042: 8036: 8033: 8029: 8026: 8024: 8021: 8019: 8016: 8014: 8011: 8009: 8006: 8005: 8004: 8001: 7999: 7996: 7994: 7991: 7987: 7984: 7982: 7979: 7977: 7974: 7972: 7969: 7967: 7964: 7963: 7962: 7959: 7955: 7952: 7950: 7947: 7946: 7945: 7942: 7940: 7937: 7936: 7934: 7930: 7924: 7921: 7919: 7916: 7914: 7911: 7909: 7906: 7905: 7902: 7898: 7891: 7886: 7884: 7879: 7877: 7872: 7871: 7868: 7861: 7858: 7856: 7853: 7851: 7848: 7845: 7842: 7840: 7837: 7834: 7830: 7827: 7824: 7822: 7818: 7815: 7812: 7810: 7807: 7805: 7802: 7799: 7795: 7792: 7789: 7787: 7783: 7780: 7777: 7775: 7772: 7770: 7767: 7766: 7757: 7753: 7749: 7748: 7744: 7741: 7737: 7733: 7732: 7728: 7725: 7721: 7717: 7716: 7712: 7709: 7705: 7701: 7700: 7696: 7693: 7689: 7685: 7684: 7680: 7677: 7673: 7669: 7668: 7664: 7661: 7657: 7653: 7652: 7648: 7645: 7641: 7637: 7636: 7632: 7629: 7625: 7621: 7620: 7616: 7615: 7606: 7605:0-471-60997-8 7602: 7598: 7594: 7591: 7590:0-13-523697-5 7587: 7583: 7582:Prentice Hall 7579: 7575: 7563: 7559: 7555: 7551: 7545: 7541: 7537: 7533: 7532: 7526: 7522: 7516: 7512: 7507: 7504: 7503:0-306-45748-2 7500: 7496: 7492: 7489: 7488:0-521-55617-1 7485: 7481: 7477: 7474: 7471: 7470:0-935702-11-3 7467: 7463: 7459: 7456: 7455:0-387-53756-2 7452: 7448: 7444: 7441: 7440:0-471-47660-9 7437: 7433: 7429: 7426: 7422: 7419:. MIT Press. 7418: 7414: 7411: 7410:0-7503-0911-3 7407: 7403: 7399: 7398: 7372: 7368: 7367: 7366:IEEE Spectrum 7362: 7355: 7340: 7336: 7329: 7314: 7310: 7303: 7287: 7283: 7279: 7272: 7265: 7261: 7257: 7254: 7248: 7232: 7228: 7224: 7217: 7201: 7197: 7191: 7175: 7171: 7167: 7160: 7153: 7149: 7146: 7137: 7121: 7117: 7112: 7111:public domain 7101: 7085: 7081: 7077: 7071: 7055: 7051: 7047: 7040: 7024: 7020: 7016: 7009: 6994: 6993: 6988: 6981: 6966: 6962: 6961:"Front Lines" 6955: 6939: 6938:Photonics.com 6935: 6929: 6922: 6916: 6909: 6903: 6895: 6889: 6885: 6880: 6879: 6873: 6869: 6865: 6859: 6843: 6839: 6835: 6831: 6827: 6823: 6819: 6815: 6811: 6810: 6805: 6798: 6782: 6778: 6777: 6772: 6771:"Alien Light" 6765: 6757: 6753: 6749: 6745: 6741: 6737: 6730: 6714: 6710: 6706: 6699: 6691: 6684: 6676: 6672: 6668: 6664: 6660: 6656: 6649: 6633: 6629: 6625: 6618: 6616: 6599: 6595: 6591: 6587: 6583: 6579: 6575: 6571: 6564: 6556: 6552: 6548: 6540: 6532: 6528: 6524: 6520: 6516: 6512: 6505: 6486: 6482: 6478: 6474: 6467: 6460: 6444: 6440: 6436: 6432: 6428: 6424: 6420: 6416: 6409: 6401: 6397: 6393: 6389: 6382: 6374: 6370: 6366: 6359: 6351: 6347: 6343: 6339: 6335: 6328: 6312: 6308: 6304: 6300: 6296: 6292: 6288: 6281: 6273: 6269: 6265: 6261: 6257: 6253: 6246: 6230: 6226: 6222: 6218: 6214: 6210: 6206: 6202: 6195: 6187: 6183: 6179: 6175: 6171: 6164: 6157:(6): 6&8. 6156: 6152: 6145: 6129: 6125: 6121: 6117: 6113: 6109: 6105: 6101: 6094: 6087:(2): 231–239. 6086: 6082: 6081:Laser Physics 6075: 6067: 6063: 6059: 6055: 6051: 6047: 6040: 6024: 6023:Physics Today 6020: 6013: 6005: 6001: 5997: 5993: 5989: 5985: 5981: 5977: 5969: 5953: 5949: 5945: 5939: 5923: 5919: 5915: 5914:"Green Laser" 5909: 5893: 5889: 5885: 5884:"LASER Diode" 5879: 5863: 5859: 5855: 5849: 5838:September 26, 5833: 5829: 5823: 5815: 5811: 5807: 5803: 5799: 5795: 5790: 5785: 5781: 5777: 5770: 5754: 5750: 5746: 5739: 5729: 5713: 5709: 5703: 5699: 5698: 5690: 5682: 5676: 5672: 5665: 5657: 5650: 5642: 5638: 5634: 5630: 5626: 5622: 5619:(3): R7–R24. 5618: 5614: 5607: 5588: 5581: 5575: 5564:September 15, 5559: 5555: 5551: 5544: 5528: 5524: 5517: 5509: 5505: 5501: 5497: 5493: 5489: 5485: 5481: 5476: 5471: 5467: 5463: 5456: 5448: 5444: 5437: 5429: 5425: 5420: 5415: 5411: 5407: 5403: 5399: 5394: 5389: 5385: 5381: 5377: 5370: 5368: 5359: 5355: 5351: 5347: 5343: 5339: 5335: 5331: 5326: 5321: 5317: 5313: 5306: 5290: 5286: 5282: 5276: 5260: 5256: 5252: 5246: 5230: 5226: 5222: 5216: 5200: 5196: 5192: 5186: 5178: 5172: 5168: 5161: 5145: 5141: 5137: 5133: 5127: 5119: 5115: 5111: 5107: 5103: 5099: 5095: 5091: 5087: 5086:Maiman, T. H. 5081: 5075: 5071: 5068: 5064: 5058: 5050: 5046: 5042: 5038: 5032: 5023: 5018: 5014: 5010: 5006: 5002: 4998: 4991: 4983: 4979: 4974: 4969: 4964: 4959: 4955: 4951: 4947: 4943: 4939: 4932: 4925: 4921: 4917: 4913: 4912: 4905: 4889: 4885: 4881: 4875: 4860: 4854: 4850: 4849: 4841: 4825: 4821: 4815: 4808: 4804: 4801: 4796: 4777: 4773: 4769: 4762: 4753: 4751: 4742: 4738: 4734: 4730: 4723: 4715: 4711: 4706: 4705:10.1038/45960 4701: 4697: 4693: 4690:(6758): 138. 4689: 4685: 4681: 4677: 4670: 4663: 4662:Pearsall 2020 4658: 4639: 4635: 4631: 4627: 4623: 4619: 4615: 4608: 4601: 4592: 4587: 4583: 4579: 4575: 4571: 4567: 4560: 4544: 4539: 4534: 4530: 4526: 4522: 4518: 4511: 4504: 4496: 4484: 4476: 4470: 4466: 4462: 4458: 4451: 4443: 4437: 4433: 4428: 4427: 4418: 4402: 4398: 4392: 4388: 4387: 4379: 4372: 4371:Pearsall 2020 4367: 4359: 4353: 4349: 4344: 4343: 4337: 4331: 4324: 4319: 4311: 4305: 4301: 4297: 4293: 4286: 4278: 4272: 4268: 4264: 4260: 4253: 4245: 4239: 4235: 4234: 4229: 4225: 4219: 4217: 4215: 4206: 4202: 4198: 4194: 4190: 4186: 4182: 4178: 4171: 4156: 4155: 4150: 4144: 4129: 4128: 4123: 4117: 4109: 4103: 4099: 4095: 4091: 4084: 4076: 4070: 4066: 4062: 4058: 4051: 4043: 4037: 4033: 4029: 4025: 4021: 4017: 4010: 4002: 3996: 3992: 3988: 3983: 3982: 3973: 3957: 3953: 3947: 3931: 3927: 3921: 3905: 3901: 3895: 3879: 3875: 3869: 3853: 3849: 3845: 3839: 3831: 3825: 3821: 3817: 3816: 3808: 3800: 3794: 3790: 3786: 3782: 3775: 3771: 3760: 3757: 3755: 3752: 3750: 3747: 3745: 3742: 3740: 3737: 3735: 3732: 3730: 3727: 3725: 3722: 3720: 3717: 3715: 3712: 3711: 3704: 3702: 3697: 3695: 3690: 3688: 3678: 3671: 3668: 3664: 3661: 3657: 3654: 3653: 3652: 3649: 3647: 3643: 3639: 3634: 3631: 3627: 3611: 3602: 3592: 3579: 3575: 3571: 3567: 3564: 3560: 3556: 3555: 3554: 3547: 3546:laser cutting 3539: 3533: 3525: 3519: 3516: 3512: 3506: 3502: 3498: 3492: 3488: 3482: 3478: 3475:Consumer 16× 3474: 3468: 3464: 3460: 3454: 3451: 3450:DVD-ROM drive 3447: 3444: 3438: 3434: 3431: 3425: 3422: 3419: 3413: 3409: 3406: 3405: 3399: 3397: 3393: 3384: 3379: 3370: 3368: 3363: 3361: 3357: 3351: 3350:§ Safety 3336: 3331: 3327: 3325: 3321: 3310: 3307:December 2019 3300: 3295: 3293: 3287: 3278: 3277: 3273: 3263: 3261: 3257: 3253: 3249: 3245: 3241: 3237: 3233: 3229: 3225: 3221: 3216: 3212: 3207: 3205: 3201: 3197: 3193: 3189: 3185: 3181: 3177: 3176:laser surgery 3171: 3167: 3157: 3143: 3140: 3136: 3132: 3131:optical discs 3128: 3126: 3122: 3118: 3114: 3110: 3106: 3102: 3100: 3099:laser cooling 3096: 3092: 3088: 3084: 3080: 3076: 3072: 3068: 3064: 3060: 3057: 3053: 3049: 3045: 3042: 3040: 3036: 3032: 3028: 3024: 3020: 3016: 3013: 3009: 3005: 3001: 2997: 2993: 2989: 2985: 2981: 2977: 2976:marking parts 2973: 2969: 2965: 2961: 2957: 2955: 2951: 2949: 2945: 2941: 2937: 2936: 2935: 2932: 2930: 2925: 2921: 2916: 2914: 2910: 2906: 2902: 2898: 2889: 2885: 2881: 2877: 2873: 2868: 2863: 2853: 2851: 2847: 2843: 2839: 2829: 2827: 2822: 2820: 2815: 2814:experiments. 2813: 2809: 2805: 2801: 2797: 2794: 2790: 2785: 2783: 2778: 2776: 2771: 2767: 2757: 2755: 2754:free-electron 2750: 2746: 2740: 2736: 2731: 2722: 2720: 2716: 2712: 2708: 2707:Bubble lasers 2704: 2702: 2697: 2693: 2689: 2685: 2679: 2674: 2665: 2663: 2659: 2654: 2650: 2646: 2642: 2638: 2634: 2630: 2626: 2622: 2617: 2615: 2614:quantum wells 2611: 2607: 2603: 2599: 2594: 2592: 2588: 2583: 2581: 2576: 2572: 2568: 2564: 2559: 2556: 2549: 2545: 2540: 2535: 2525: 2523: 2519: 2510: 2508: 2507:color centers 2503: 2498: 2496: 2491: 2489: 2484: 2482: 2478: 2474: 2470: 2469:optical fiber 2466: 2460: 2450: 2447: 2443: 2439: 2434: 2432: 2428: 2424: 2421: 2417: 2413: 2409: 2405: 2402: 2398: 2390: 2386: 2382: 2378: 2374: 2372: 2368: 2364: 2360: 2356: 2352: 2348: 2344: 2340: 2336: 2332: 2328: 2321: 2317: 2313: 2311: 2306: 2302: 2298: 2294: 2290: 2286: 2280: 2276: 2271: 2262: 2256: 2252: 2248: 2244: 2240: 2236: 2232: 2228: 2224: 2215: 2213: 2209: 2205: 2201: 2196: 2187: 2184: 2180: 2176: 2172: 2170: 2166: 2162: 2158: 2154: 2150: 2146: 2143:wavelengths. 2142: 2138: 2133: 2124: 2116: 2109: 2094: 2089: 2079: 2073: 2069: 2065: 2060: 2058: 2054: 2050: 2046: 2042: 2037: 2033: 2027: 2024: 2021: 2018: 2016: 2012: 2010: 2006: 2003: 2000: 1999: 1998: 1991: 1982: 1980: 1976: 1972: 1968: 1964: 1963:near-infrared 1960: 1956: 1952: 1948: 1944: 1940: 1936: 1932: 1928: 1924: 1920: 1916: 1913: 1909: 1905: 1901: 1897: 1893: 1888: 1886: 1885:gas discharge 1882: 1878: 1874: 1870: 1866: 1862: 1858: 1854: 1849: 1847: 1842: 1840: 1836: 1832: 1828: 1824: 1820: 1811: 1807: 1803: 1799: 1797: 1796: 1791: 1790:visible light 1787: 1783: 1774: 1770: 1769:Distillations 1766: 1757: 1752: 1749: 1747: 1743: 1733: 1731: 1727: 1723: 1719: 1715: 1711: 1707: 1702: 1700: 1696: 1692: 1688: 1684: 1683:Nikolay Basov 1680: 1676: 1672: 1665: 1661: 1657: 1655: 1651: 1647: 1643: 1636: 1632: 1627: 1617: 1615: 1611: 1599: 1595: 1591: 1587: 1583: 1579: 1575: 1571: 1556: 1553: 1542: 1540: 1536: 1532: 1528: 1524: 1520: 1516: 1511: 1509: 1505: 1501: 1497: 1493: 1492:Fourier limit 1489: 1485: 1479: 1469: 1464: 1454: 1452: 1448: 1444: 1438: 1436: 1432: 1427: 1425: 1419: 1417: 1410: 1400: 1396: 1394: 1390: 1385: 1381: 1377: 1376: 1365: 1362: 1353: 1348: 1341: 1336: 1329: 1325: 1321: 1311: 1308: 1300: 1297:February 2023 1289: 1286: 1282: 1279: 1275: 1272: 1268: 1265: 1261: 1258: –  1257: 1253: 1252:Find sources: 1246: 1242: 1236: 1235: 1230:This section 1228: 1224: 1219: 1218: 1210: 1208: 1204: 1200: 1199:B coefficient 1196: 1195:A coefficient 1192: 1188: 1178: 1176: 1172: 1168: 1166: 1161: 1159: 1155: 1151: 1150:laser pointer 1147: 1143: 1139: 1135: 1131: 1127: 1123: 1119: 1118: 1113: 1108: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1078: 1077:Gaussian beam 1073: 1071: 1067: 1063: 1062:photon number 1059: 1054: 1052: 1048: 1043: 1033: 1024: 1022: 1018: 1017: 1012: 1011:exponentially 1008: 1004: 999: 997: 993: 989: 984: 982: 978: 974: 970: 966: 962: 956: 953: 952:excited state 944: 937: 933: 929: 924: 915: 911: 909: 905: 901: 897: 892: 887: 885: 881: 877: 873: 865: 861: 859: 855: 851: 847: 819: 809: 807: 803: 799: 795: 790: 789:Laser science 779: 776: 768: 758: 754: 748: 747: 742:This section 740: 736: 731: 730: 725:Laser physics 722: 719: 717: 713: 709: 705: 701: 697: 692: 690: 686: 681: 677: 674: 670: 666: 655: 653: 650: 647: 644: 641: 640: 636: 626: 623: 615: 605: 601: 595: 594: 589:This section 587: 583: 578: 577: 573: 563: 561: 557: 553: 549: 545: 541: 536: 534: 530: 526: 522: 518: 514: 509: 507: 503: 502:laser physics 499: 495: 489: 487: 481: 479: 475: 471: 466: 464: 460: 456: 452: 448: 444: 440: 439: 434: 430: 421: 411: 408: 400: 390: 386: 380: 379: 374:This section 372: 368: 363: 362: 354: 352: 347: 342: 340: 339: 334: 333: 328: 324: 321:". The terms 320: 316: 312: 308: 303: 301: 297: 293: 292: 287: 286: 281: 277: 273: 268: 266: 262: 258: 254: 253: 248: 238: 236: 232: 228: 224: 220: 216: 212: 208: 204: 200: 196: 195:laser surgery 192: 188: 184: 180: 176: 172: 168: 163: 161: 157: 153: 149: 145: 141: 137: 133: 129: 128:laser cutting 125: 121: 120: 114: 112: 108: 104: 100: 96: 92: 88: 84: 80: 77:based on the 76: 72: 68: 61: 57: 52: 48: 44: 40: 33: 19: 8144:Mode locking 8097:Laser optics 7896: 7745: 7729: 7713: 7697: 7681: 7665: 7649: 7633: 7617: 7596: 7577: 7568:February 23, 7566:. Retrieved 7530: 7510: 7494: 7479: 7461: 7446: 7431: 7416: 7401: 7375:. Retrieved 7364: 7354: 7344:February 16, 7342:. Retrieved 7338: 7328: 7318:February 16, 7316:. Retrieved 7312: 7302: 7290:. Retrieved 7281: 7271: 7263: 7247: 7235:. Retrieved 7226: 7216: 7206:December 10, 7204:. Retrieved 7190: 7178:. Retrieved 7174:the original 7169: 7159: 7141:PowerLabs CO 7136: 7126:December 15, 7124:. Retrieved 7100: 7090:December 15, 7088:. Retrieved 7079: 7070: 7058:. Retrieved 7049: 7039: 7027:. Retrieved 7018: 7008: 6996:. Retrieved 6990: 6980: 6968:. Retrieved 6964: 6954: 6942:. Retrieved 6937: 6928: 6920: 6915: 6907: 6902: 6877: 6872:Laura Garwin 6858: 6846:. Retrieved 6813: 6807: 6797: 6785:. Retrieved 6774: 6764: 6739: 6735: 6729: 6717:. Retrieved 6708: 6698: 6689: 6683: 6661:(5): 26–33. 6658: 6654: 6648: 6636:. Retrieved 6627: 6602:. Retrieved 6577: 6573: 6563: 6546: 6539: 6514: 6510: 6504: 6492:. Retrieved 6472: 6459: 6449:September 8, 6447:. Retrieved 6422: 6418: 6408: 6391: 6387: 6381: 6364: 6358: 6333: 6327: 6317:November 27, 6315:. Retrieved 6290: 6280: 6255: 6251: 6245: 6233:. Retrieved 6208: 6204: 6194: 6169: 6163: 6154: 6150: 6144: 6132:. Retrieved 6107: 6103: 6093: 6084: 6080: 6074: 6049: 6045: 6039: 6027:. Retrieved 6022: 6012: 5979: 5976:Nano Letters 5975: 5968: 5956:. Retrieved 5952:the original 5947: 5938: 5926:. Retrieved 5918:osram-os.com 5917: 5908: 5896:. Retrieved 5888:nichia.co.jp 5887: 5878: 5866:. Retrieved 5857: 5848: 5836:. Retrieved 5822: 5782:(17): 3657. 5779: 5775: 5769: 5757:. Retrieved 5748: 5738: 5728: 5716:. Retrieved 5696: 5689: 5673:. Springer. 5670: 5664: 5655: 5649: 5616: 5612: 5606: 5594:. Retrieved 5587:the original 5574: 5562:. Retrieved 5558:the original 5553: 5543: 5531:. Retrieved 5516: 5465: 5461: 5455: 5447:the original 5436: 5383: 5379: 5315: 5311: 5305: 5293:. Retrieved 5284: 5275: 5265:December 16, 5263:. Retrieved 5254: 5245: 5235:December 16, 5233:. Retrieved 5224: 5215: 5205:December 16, 5203:. Retrieved 5194: 5185: 5166: 5160: 5148:. Retrieved 5126: 5093: 5089: 5080: 5062: 5057: 5040: 5031: 5004: 5000: 4990: 4945: 4941: 4931: 4926:, pp. 69–70. 4910: 4904: 4892:. Retrieved 4883: 4874: 4862:. Retrieved 4847: 4840: 4828:. Retrieved 4814: 4795: 4783:. Retrieved 4779:(Powerpoint) 4776:the original 4771: 4761: 4732: 4728: 4722: 4687: 4683: 4669: 4657: 4647:February 23, 4645:. Retrieved 4617: 4613: 4600: 4573: 4569: 4559: 4547:. Retrieved 4520: 4516: 4503: 4460: 4450: 4425: 4417: 4407:February 23, 4405:. Retrieved 4401:the original 4385: 4378: 4366: 4341: 4330: 4322: 4318: 4291: 4285: 4258: 4252: 4232: 4180: 4176: 4170: 4158:. Retrieved 4152: 4143: 4131:. Retrieved 4125: 4116: 4089: 4083: 4056: 4050: 4015: 4009: 3980: 3972: 3960:. Retrieved 3946: 3934:. Retrieved 3920: 3908:. Retrieved 3894: 3882:. Retrieved 3868: 3856:. Retrieved 3847: 3838: 3814: 3807: 3780: 3774: 3698: 3691: 3679: 3675: 3660:blink reflex 3650: 3623: 3591:Laser safety 3576:facility in 3552: 3391: 3388: 3364: 3345: 3320:laser weapon 3319: 3317: 3304: 3292:Laser weapon 3289: 3272:Laser weapon 3244:chemotherapy 3208: 3204:hair removal 3184:kidney stone 3173: 3147: 3113:thermometers 3063:spectroscopy 2946:, including 2933: 2917: 2893: 2875: 2872:diode lasers 2835: 2823: 2819:X-ray lasers 2817:Space-based 2816: 2796:annihilation 2786: 2779: 2763: 2760:Exotic media 2753: 2743: 2734: 2705: 2692:femtoseconds 2682: 2678:Rhodamine 6G 2618: 2609: 2595: 2584: 2563:laser diodes 2560: 2552: 2516: 2499: 2492: 2485: 2473:fiber lasers 2462: 2453:Fiber lasers 2441: 2437: 2435: 2427:spectroscopy 2406: 2375: 2351:spectroscopy 2314: 2309: 2291:, made from 2283: 2221: 2193: 2173: 2165:fluorescence 2111: 2078:millihertz. 2061: 2057:mode locking 2038: 2034: 2031: 2028:minimum cost 1996: 1889: 1853:spectrometry 1850: 1845: 1843: 1823:Gordon Gould 1816: 1810:Gordon Gould 1805: 1793: 1779: 1768: 1739: 1703: 1668: 1642:Joseph Weber 1639: 1577: 1567: 1548: 1523:nonlinearity 1512: 1488:femtoseconds 1481: 1478:Mode locking 1472:Mode locking 1466: 1451:femtoseconds 1446: 1442: 1439: 1428: 1420: 1412: 1409:Pulsed laser 1397: 1392: 1379: 1373: 1371: 1357: 1303: 1294: 1284: 1277: 1270: 1263: 1251: 1239:Please help 1234:verification 1231: 1184: 1169: 1162: 1115: 1112:focal region 1109: 1101:Bessel beams 1074: 1055: 1038: 1021:spatial mode 1014: 1001:The optical 1000: 985: 957: 949: 912: 904:fluorescence 888: 869: 843: 792: 771: 762: 751:Please help 746:verification 743: 720: 715: 693: 682: 678: 662: 618: 612:October 2023 609: 598:Please help 593:verification 590: 547: 537: 510: 490: 482: 478:spectroscopy 467: 436: 426: 403: 397:October 2023 394: 383:Please help 378:verification 375: 357:Fundamentals 350: 343: 336: 330: 326: 322: 304: 289: 285:X-ray lasers 283: 279: 275: 269: 264: 260: 250: 244: 223:fluorescence 164: 118: 115: 94: 86: 66: 64: 47: 8174:Q-switching 8035:X-ray laser 8028:Ti-sapphire 7998:Laser diode 7976:Helium–neon 7612:Periodicals 7377:February 1, 6848:February 9, 6787:February 9, 6494:January 13, 6235:January 13, 6151:Laser Focus 5658:. Elsevier. 5255:gizmodo.com 4735:: 121–128. 4491:|work= 4224:Chu, Steven 4183:: 279–287. 4022:. pp.  3989:. pp.  3962:February 4, 3936:February 4, 3910:February 4, 3884:February 4, 3858:January 27, 3561:(700×10 W)— 3461:High-speed 3360:DVD burners 3194:treatment, 3186:treatment, 3180:eye surgery 3160:In medicine 3125:bubblegrams 3052:fingerprint 3008:3D scanning 2992:3D printing 2970:, material 2793:positronium 2658:Raman laser 2561:Commercial 2459:Fiber laser 2446:disk lasers 2416:Ti:sapphire 2243:ultraviolet 2167:suppressed 1981:structure. 1813:mirrors..." 1722:Isidor Rabi 1564:Foundations 1508:Ti:sapphire 1496:uncertainty 1484:picoseconds 1463:Q-switching 1457:Q-switching 1435:Q-switching 1422:pulses. In 1389:mode-locked 1154:laser diode 1134:diffraction 1126:diffraction 1097:tophat beam 936:overexposed 932:gain medium 874:) or heat ( 665:gain medium 642:Gain medium 470:wavelengths 315:gain medium 307:back-formed 241:Terminology 183:fiber-optic 160:femtosecond 136:collimation 132:lithography 85:. The word 8207:Categories 7227:Aesculight 6998:August 30, 6970:August 23, 6944:August 23, 5868:August 11, 5533:August 17, 5475:1702.04669 5393:1603.02169 5325:1703.05404 4785:January 1, 4576:: 100255. 4298:. p.  4265:. p.  4160:January 6, 4133:January 6, 4096:. p.  4063:. p.  3787:. p.  3766:References 3687:Q-switched 3580:, Romania. 3536:100–3000 W 3446:DVD player 3367:holography 3266:As weapons 3075:scattering 3061:Research: 2964:converting 2962:including 2958:Industry: 2739:Nieuwegein 2684:Dye lasers 2668:Dye lasers 2548:DVD player 2355:dye lasers 2289:ruby laser 2161:picometers 2153:linewidths 2102:Gas lasers 1921:physicist 1706:Niels Bohr 1582:Max Planck 1552:capacitors 1443:dye lasers 1416:continuous 1354:spacecraft 1338:Laserlink 1328:Clementine 1267:newspapers 1117:collimated 884:wavelength 787:See also: 689:flash lamp 656:Laser beam 540:wavelength 521:irradiance 338:atom laser 43:Lazer Beam 8228:Photonics 8139:M squared 7961:Gas laser 7944:Dye laser 7756:0731-1230 7740:0146-9592 7724:0740-2511 7708:0740-3224 7692:1041-1135 7676:1077-260X 7660:0018-9197 7644:0733-8724 7628:0946-2171 7558:240934073 7434:. Wiley. 7292:March 23, 7237:March 30, 5928:March 18, 5898:March 18, 5814:119460787 5641:121209763 5613:J. Opt. B 5508:206293342 5386:: 15521. 4894:April 24, 4864:March 15, 4830:March 16, 4714:205046813 4614:Phys. Rev 4493:ignored ( 4483:cite book 4205:115181195 4020:CRC Press 3739:Nanolaser 3196:cellulite 3121:holograms 3095:metrology 3071:annealing 3019:munitions 2980:engraving 2924:laserdisc 2880:neodymium 2800:gamma ray 2610:sub-bands 2585:In 2012, 2580:linewidth 2481:ytterbium 2377:Ytterbium 2316:Neodymium 2132:Argon-ion 2108:Gas laser 2097:details). 1935:gas laser 1923:Ali Javan 1908:flashlamp 1904:Bell Labs 1877:Bell Labs 1839:resonator 1782:Bell Labs 1771:Podcast, 1679:microwave 1640:In 1951, 1568:In 1917, 1539:envelopes 1393:intention 1352:MESSENGER 1056:In 1963, 1003:resonator 998:/lasers. 802:chemistry 794:Electrons 525:polarized 513:coherence 459:electrons 455:molecules 435:known as 298:or lower 296:microwave 247:microwave 235:headlamps 91:anacronym 39:LazarBeam 8192:Category 7986:Nitrogen 7829:Archived 7817:Archived 7782:Archived 7562:Archived 7478:(1996). 7371:Archived 7286:Archived 7256:Archived 7231:Archived 7200:Archived 7180:April 6, 7148:Archived 7120:Archived 7084:Archived 7060:April 6, 7054:Archived 7029:April 6, 7023:Archived 6866:(2003). 6842:Archived 6838:17747630 6781:Archived 6719:June 13, 6713:Archived 6709:BBC News 6632:Archived 6628:BBC News 6604:June 13, 6598:Archived 6555:10147730 6485:Archived 6443:Archived 6400:16971600 6311:Archived 6229:Archived 6134:June 13, 6128:Archived 6029:April 2, 6004:26618638 5922:Archived 5892:Archived 5862:Archived 5832:Archived 5759:July 22, 5753:Archived 5718:July 16, 5712:Archived 5527:Archived 5500:28707932 5428:28534489 5350:28254938 5295:March 4, 5289:Archived 5285:Phys.org 5259:Archived 5229:Archived 5225:phys.org 5199:Archived 5144:Archived 5070:Archived 5049:02460155 4982:20009378 4888:Archived 4824:Archived 4803:Archived 4638:Archived 4549:June 28, 4543:Archived 4338:(1986). 4263:Springer 4149:"LASING" 3956:Archived 3930:Archived 3904:Archived 3878:Archived 3852:Archived 3707:See also 3630:Gillette 3578:Măgurele 3522:30–100 W 3260:bleeding 3220:cervical 3154:US$ 3.20 3150:US$ 2.19 3077:, laser 3073:, laser 3069:, laser 2913:Internet 2905:military 2789:BBC News 2423:infrared 2412:sapphire 2408:Titanium 2401:infrared 2347:infrared 2301:corundum 2297:chromium 2255:fluorine 2231:exciplex 2208:ethylene 2183:rubidium 2123:) lasers 1937:, using 1835:emission 1831:thallium 1786:infrared 1504:sapphire 1500:titanium 1453:(10 s). 1093:Laguerre 1089:Gaussian 858:orbitals 765:May 2017 669:feedback 227:radiance 119:coherent 7971:Excimer 6818:Bibcode 6809:Science 6744:Bibcode 6663:Bibcode 6638:May 22, 6582:Bibcode 6519:Bibcode 6477:Bibcode 6427:Bibcode 6338:Bibcode 6295:Bibcode 6260:Bibcode 6213:Bibcode 6186:6010532 6112:Bibcode 6054:Bibcode 5984:Bibcode 5958:May 27, 5794:Bibcode 5621:Bibcode 5596:May 27, 5480:Bibcode 5419:5457509 5398:Bibcode 5358:1364541 5330:Bibcode 5312:Science 5150:May 15, 5118:4224209 5098:Bibcode 5009:Bibcode 4973:3621550 4950:Bibcode 4884:Hobarts 4737:Bibcode 4692:Bibcode 4622:Bibcode 4578:Bibcode 4525:Bibcode 4185:Bibcode 3848:aps.org 3666:retina. 3479:burner 3465:burner 3441:5–10 mW 3385:imaging 3356:Blu-ray 3342:Hobbies 3240:surgery 3228:vaginal 2984:bonding 2968:welding 2960:cutting 2850:MWC 349 2621:silicon 2602:VECSELs 2420:tunable 2410:-doped 2397:Holmium 2385:thulium 2381:holmium 2363:tripled 2359:doubled 2303:). The 2299:-doped 2273:A 50 W 2227:excimer 1919:Iranian 1915:crystal 1881:lawsuit 1559:History 1330:mission 1281:scholar 1256:"Laser" 1085:Hermite 969:excited 891:excited 876:phonons 872:photons 850:nucleus 844:In the 806:physics 685:pumping 673:amplify 556:diverge 438:photons 311:to lase 257:optical 215:near-UV 199:welding 8218:Lasers 8013:Nd:YAG 8008:Er:YAG 7949:Bubble 7897:Lasers 7754:  7738:  7722:  7706:  7690:  7674:  7658:  7642:  7626:  7603:  7588:  7556:  7546:  7517:  7501:  7486:  7468:  7462:Lasers 7453:  7438:  7423:  7408:  7145:LASER! 7113:: 6890:  6884:107–12 6836:  6553:  6398:  6184:  6002:  5812:  5733:35–41. 5704:  5677:  5639:  5506:  5498:  5426:  5416:  5356:  5348:  5173:  5116:  5090:Nature 5067:online 5047:  4980:  4970:  4922:  4855:  4712:  4684:Nature 4517:Optica 4471:  4438:  4426:Lasers 4393:  4354:  4342:Lasers 4306:  4273:  4240:  4203:  4122:"LASE" 4104:  4071:  4038:  3997:  3826:  3795:  3749:Spaser 3682:  3646:retina 3638:cornea 3585:Safety 3574:ELI-NP 3509:1–20 W 3485:400 mW 3471:250 mW 3457:100 mW 3435:drive 3433:CD-ROM 3416:1–5 mW 3234:, and 3232:vulvar 3224:penile 3215:tumors 3211:cancer 3200:striae 3037:. See 3010:, and 2768:of an 2711:bubble 2690:a few 2598:VCSELs 2587:Nichia 2555:diodes 2477:Erbium 2389:erbium 2387:, and 2343:Nd:YAG 2337:) and 2335:Nd:YLF 2324:Nd:YVO 2179:sodium 2145:Helium 2076:  2009:energy 1939:helium 1929:, and 1925:, and 1863:, and 1712:, and 1646:Ottawa 1606:  1602:  1600:and R. 1418:mode. 1283:  1276:  1269:  1262:  1254:  965:plasma 938:there. 880:absorb 852:of an 704:curved 566:Design 544:vacuum 319:lasing 309:verb " 185:, and 89:is an 18:Lasers 8018:Raman 7554:S2CID 7395:Books 7313:WIRED 6870:. In 6488:(PDF) 6475:: 1. 6469:(PDF) 5810:S2CID 5784:arXiv 5637:S2CID 5590:(PDF) 5583:(PDF) 5504:S2CID 5470:arXiv 5388:arXiv 5354:S2CID 5320:arXiv 5114:S2CID 4710:S2CID 4641:(PDF) 4610:(PDF) 4513:(PDF) 4465:40–43 4201:S2CID 3633:razor 3477:DVD-R 3463:CD-RW 3407:Power 3348:(see 3246:, or 3083:lidar 3058:field 3039:below 3031:lidar 2954:below 2846:Venus 2836:Like 2735:FELIX 2591:OSRAM 2275:FASOR 2251:LASIK 2159:(0.5 2015:power 1902:, at 1861:radar 1736:Laser 1626:Maser 1620:Maser 1574:maser 1324:Lidar 1288:JSTOR 1274:books 1042:phase 1007:maser 961:state 548:modes 542:in a 533:phase 327:maser 323:laser 265:laser 252:maser 231:droop 144:lidar 87:laser 71:light 67:laser 8023:Ruby 7752:ISSN 7736:ISSN 7720:ISSN 7704:ISSN 7688:ISSN 7672:ISSN 7656:ISSN 7640:ISSN 7624:ISSN 7601:ISBN 7586:ISBN 7570:2021 7544:ISBN 7515:ISBN 7499:ISBN 7484:ISBN 7466:ISBN 7451:ISBN 7436:ISBN 7421:ISBN 7406:ISBN 7379:2019 7346:2024 7320:2024 7294:2021 7239:2016 7208:2011 7182:2015 7128:2017 7092:2017 7062:2015 7031:2015 7000:2023 6972:2023 6946:2023 6888:ISBN 6850:2021 6834:PMID 6789:2021 6776:SPIE 6721:2011 6640:2008 6606:2019 6551:OSTI 6496:2016 6451:2019 6396:OCLC 6319:2018 6237:2016 6182:OSTI 6136:2019 6031:2024 6000:PMID 5960:2006 5930:2014 5900:2014 5870:2018 5840:2014 5761:2023 5720:2017 5702:ISBN 5675:ISBN 5598:2007 5566:2007 5535:2014 5496:PMID 5424:PMID 5346:PMID 5297:2017 5267:2019 5237:2019 5207:2019 5171:ISBN 5152:2008 5045:OCLC 4978:PMID 4920:ISBN 4896:2017 4866:2016 4853:ISBN 4832:2016 4787:2007 4649:2021 4551:2020 4495:help 4469:ISBN 4436:ISBN 4409:2021 4391:ISBN 4352:ISBN 4304:ISBN 4271:ISBN 4238:ISBN 4162:2024 4135:2024 4102:ISBN 4069:ISBN 4036:ISBN 3995:ISBN 3964:2019 3938:2019 3912:2019 3886:2019 3860:2022 3824:ISBN 3820:SPIE 3793:ISBN 3557:700 3428:5 mW 3410:Use 3392:peak 3297:See 3198:and 3192:acne 3168:and 2998:and 2982:and 2856:Uses 2848:and 2842:Mars 2589:and 2575:pump 2479:and 2293:ruby 2249:and 2149:neon 2068:JILA 1943:neon 1941:and 1912:ruby 1724:and 1685:and 1673:and 1517:and 1445:and 1260:news 1146:lens 1103:and 906:and 854:atom 804:and 708:beam 457:and 335:and 325:and 305:The 142:and 130:and 109:and 7981:Ion 7536:doi 7262:." 6826:doi 6814:212 6752:doi 6671:doi 6590:doi 6527:doi 6435:doi 6392:160 6369:doi 6346:doi 6303:doi 6268:doi 6221:doi 6174:doi 6120:doi 6062:doi 5992:doi 5802:doi 5629:doi 5488:doi 5466:118 5414:PMC 5406:doi 5338:doi 5316:355 5106:doi 5094:187 5017:doi 5005:112 4968:PMC 4958:doi 4700:doi 4688:402 4630:doi 4618:131 4586:doi 4533:doi 4300:201 4193:doi 4181:252 4065:127 4032:219 4028:218 4024:215 3991:447 3642:eye 3568:10 3495:1 W 3448:or 2990:or 2986:), 2876:top 2643:or 2546:or 2329:), 2310:not 2210:in 2157:GHz 1650:RCA 1243:by 1091:or 971:") 755:by 602:by 387:by 272:GHz 193:), 101:at 81:of 41:or 8209:: 7584:. 7560:. 7552:. 7542:. 7369:. 7363:. 7337:. 7311:. 7284:. 7280:. 7229:. 7225:. 7168:. 7082:. 7078:. 7048:. 7017:. 6989:. 6963:. 6936:. 6886:. 6840:. 6832:. 6824:. 6812:. 6806:. 6779:. 6773:. 6750:. 6738:. 6711:. 6707:. 6669:. 6659:19 6657:. 6630:. 6626:. 6614:^ 6596:. 6588:. 6576:. 6572:. 6525:. 6515:40 6513:. 6483:. 6471:. 6441:. 6433:. 6423:40 6421:. 6417:. 6390:. 6344:. 6309:. 6301:. 6289:. 6266:. 6256:51 6254:. 6227:. 6219:. 6209:72 6207:. 6203:. 6180:. 6172:. 6155:18 6153:. 6126:. 6118:. 6108:69 6106:. 6102:. 6083:. 6060:. 6050:53 6048:. 6021:. 5998:. 5990:. 5980:16 5978:. 5946:. 5916:. 5890:. 5886:. 5860:. 5856:. 5808:. 5800:. 5792:. 5780:85 5778:. 5751:. 5747:. 5710:. 5635:. 5627:. 5615:. 5552:. 5502:. 5494:. 5486:. 5478:. 5464:. 5422:. 5412:. 5404:. 5396:. 5382:. 5378:. 5366:^ 5352:. 5344:. 5336:. 5328:. 5314:. 5287:. 5283:. 5253:. 5227:. 5223:. 5193:. 5142:. 5138:. 5134:. 5112:. 5104:. 5092:. 5015:. 5003:. 4999:. 4976:. 4966:. 4956:. 4946:85 4944:. 4940:. 4918:, 4914:, 4886:. 4882:. 4749:^ 4733:18 4731:. 4708:. 4698:. 4686:. 4682:. 4636:. 4628:. 4616:. 4612:. 4584:. 4574:72 4572:. 4568:. 4541:. 4531:. 4519:. 4515:. 4487:: 4485:}} 4481:{{ 4467:. 4459:. 4434:. 4350:. 4302:. 4294:. 4269:. 4267:76 4261:. 4226:; 4213:^ 4199:. 4191:. 4179:. 4151:. 4124:. 4100:. 4092:. 4067:. 4059:. 4034:. 4026:, 4018:. 3993:. 3985:. 3954:. 3850:. 3846:. 3818:. 3791:. 3789:66 3783:. 3570:PW 3559:TW 3362:. 3326:. 3318:A 3250:. 3242:, 3230:, 3226:, 3222:, 3206:. 3137:, 3133:, 3123:, 3119:, 3115:, 3111:, 3107:, 3097:, 3093:, 3089:, 3085:, 3081:, 3065:, 3046:: 3029:, 3025:, 3021:, 3002:, 2974:, 2931:. 2915:. 2907:. 2886:, 2844:, 2756:. 2616:. 2569:, 2544:CD 2509:. 2440:/d 2383:, 2379:, 2367:UV 2361:, 2214:. 2171:. 2126:CO 1898:, 1859:, 1855:, 1767:, 1708:, 1604:C. 1533:, 1529:, 1437:. 1380:CW 1209:. 1163:A 1107:. 926:A 910:. 808:. 718:. 353:. 341:. 288:, 282:, 278:, 267:. 237:. 181:, 177:, 173:, 169:, 162:. 122:. 113:. 65:A 7889:e 7882:t 7875:v 7796:" 7758:) 7750:( 7742:) 7734:( 7726:) 7718:( 7710:) 7702:( 7694:) 7686:( 7678:) 7670:( 7662:) 7654:( 7646:) 7638:( 7630:) 7622:( 7607:. 7592:. 7572:. 7538:: 7523:. 7505:. 7490:. 7472:. 7457:. 7442:. 7427:. 7412:. 7381:. 7348:. 7322:. 7296:. 7241:. 7210:. 7184:. 7143:2 7130:. 7094:. 7064:. 7033:. 7002:. 6974:. 6948:. 6896:. 6852:. 6828:: 6820:: 6791:. 6758:. 6754:: 6746:: 6740:5 6723:. 6677:. 6673:: 6665:: 6642:. 6608:. 6592:: 6584:: 6578:6 6557:. 6533:. 6529:: 6521:: 6498:. 6479:: 6453:. 6437:: 6429:: 6402:. 6375:. 6371:: 6352:. 6348:: 6340:: 6321:. 6305:: 6297:: 6274:. 6270:: 6262:: 6239:. 6223:: 6215:: 6188:. 6176:: 6138:. 6122:: 6114:: 6085:5 6068:. 6064:: 6056:: 6033:. 6006:. 5994:: 5986:: 5962:. 5932:. 5902:. 5872:. 5842:. 5816:. 5804:: 5796:: 5786:: 5763:. 5722:. 5683:. 5643:. 5631:: 5623:: 5617:2 5600:. 5568:. 5537:. 5510:. 5490:: 5482:: 5472:: 5430:. 5408:: 5400:: 5390:: 5384:8 5360:. 5340:: 5332:: 5322:: 5299:. 5269:. 5239:. 5209:. 5179:. 5154:. 5120:. 5108:: 5100:: 5051:. 5025:. 5019:: 5011:: 4984:. 4960:: 4952:: 4898:. 4868:. 4834:. 4789:. 4743:. 4739:: 4716:. 4702:: 4694:: 4651:. 4632:: 4624:: 4594:. 4588:: 4580:: 4553:. 4535:: 4527:: 4521:5 4497:) 4477:. 4444:. 4432:4 4411:. 4360:. 4348:2 4312:. 4279:. 4246:. 4207:. 4195:: 4187:: 4164:. 4137:. 4110:. 4098:4 4077:. 4044:. 4030:– 4003:. 3966:. 3940:. 3914:. 3888:. 3862:. 3832:. 3801:. 3542:2 3528:2 3352:) 3309:) 3305:( 3294:. 3141:. 3014:. 2978:( 2874:( 2442:T 2438:n 2414:( 2393:2 2341:( 2333:( 2326:4 2322:( 2295:( 2259:2 2128:2 2121:2 1506:( 1378:( 1310:) 1304:( 1299:) 1295:( 1285:· 1278:· 1271:· 1264:· 1237:. 1087:– 778:) 772:( 767:) 763:( 749:. 625:) 619:( 614:) 610:( 596:. 410:) 404:( 399:) 395:( 381:. 45:. 34:. 20:)

Index

Lasers
Laser (disambiguation)
LazarBeam
Lazer Beam
A telescope emitting four orange laser beams.
Very Large Telescope
laser guide stars
light
optical amplification
stimulated emission
electromagnetic radiation
anacronym
Theodore Maiman
Hughes Research Laboratories
Charles H. Townes
Arthur Leonard Schawlow
coherent
Spatial coherence
laser cutting
lithography
collimation
laser pointers
lidar
temporal coherence
frequency spectrum
ultrashort pulses
femtosecond
optical disc drives
laser printers
barcode scanners

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.