Knowledge

Pressurized heavy-water reactor

Source đź“ť

1945: 1935: 1915: 427: 217: 25: 1925: 550:, a radioactive isotope of hydrogen, is also produced as a fission product in minute quantities in other reactors, tritium can more easily escape to the environment if it is also present in the cooling water, which is the case in those PHWRs which use heavy water both as moderator and as coolant. Some CANDU reactors separate out the tritium from their heavy water inventory at regular intervals and sell it at a profit, however. 324:
or above. No amount of U can be made "critical" since it will tend to parasitically absorb more neutrons than it releases by the fission process. U, on the other hand, can support a self-sustained chain reaction, but due to the low natural abundance of U, natural uranium cannot achieve criticality by
521:
Pressurised heavy-water reactors do have some drawbacks. Heavy water generally costs hundreds of dollars per kilogram, though this is a trade-off against reduced fuel costs. The reduced energy content of natural uranium as compared to enriched uranium necessitates more frequent replacement of fuel;
348:
to physically separate the neutron energy moderation process from the uranium fuel itself, as U has a high probability of absorbing neutrons with intermediate kinetic energy levels, a reaction known as "resonance" absorption. This is a fundamental reason for designing reactors with separate solid
359:
atoms in the water molecules are very close in mass to a single neutron, and so their collisions result in a very efficient transfer of momentum, similar conceptually to the collision of two billiard balls. However, as well as being a good moderator, ordinary water is also quite effective at
336:, is to slow down the emitted neutrons (without absorbing them) to the point where enough of them may cause further nuclear fission in the small amount of U which is available. (U which is the bulk of natural uranium is also fissionable with fast neutrons.) This requires the use of a 469:), which means that it can be operated without expensive uranium enrichment facilities. The mechanical arrangement of the PHWR, which places most of the moderator at lower temperatures, is particularly efficient because the resulting thermal neutrons have lower energies ( 488:
the lower the neutron temperature is, and thus lower temperatures in the moderator make successful interaction between neutrons and fissile material more likely. These features mean that a PHWR can use natural uranium and other fuels, and does so more efficiently than
360:
absorbing neutrons. And so using ordinary water as a moderator will easily absorb so many neutrons that too few are left to sustain a chain reaction with the small isolated U nuclei in the fuel, thus precluding criticality in natural uranium. Because of this, a
588:
nuclear proliferation, this opinion has changed drastically in light of the ability of several countries to build atomic bombs out of plutonium, which can easily be produced in heavy water reactors. Heavy-water reactors may thus pose a
653:
wrongfully dismissed graphite as a suitable moderator due to overlooking impurities and thus made unsuccessful attempts using heavy water (which they correctly identified as an excellent moderator). The
189:. As of the beginning of 2001, 31 PHWRs were in operation, having a total capacity of 16.5 GW(e), representing roughly 7.76% by number and 4.7% by generating capacity of all current operating reactors. 293:
to stimulate another nuclear fission event (in another fissionable nucleus). With careful design of the reactor's geometry, and careful control of the substances present so as to influence the
414:, or deuterium-oxide. Although it reacts dynamically with the neutrons in a fashion similar to light water (albeit with less energy transfer on average, given that heavy hydrogen, or 465:
The use of heavy water as the moderator is the key to the PHWR (pressurized heavy water reactor) system, enabling the use of natural uranium as the fuel (in the form of ceramic UO
1438: 473:
after successive passes through a moderator roughly equals the temperature of the moderator) than in traditional designs, where the moderator normally is much hotter. The
509:
and there is ongoing research into the ability of CANDU type reactors to operate exclusively on such fuels in a commercial setting. (More on that in the article on the
406:
absorb neutrons as readily as water. In this case potentially all of the neutrons being released can be moderated and used in reactions with the U, in which case there
1632: 161:. The heavy water coolant is kept under pressure to avoid boiling, allowing it to reach higher temperature (mostly) without forming steam bubbles, exactly as for a 522:
this is normally accomplished by use of an on-power refuelling system. The increased rate of fuel movement through the reactor also results in higher volumes of
1948: 645:. Although this process takes place with natural uranium using other moderators such as ultra-pure graphite or beryllium, heavy water is by far the best. The 383:
One complication of this approach is the need for uranium enrichment facilities, which are generally expensive to build and operate. They also present a
1079: 1030: 787: 1743: 399:. This is not a trivial exercise by any means, but feasible enough that enrichment facilities present a significant nuclear proliferation risk. 238: 42: 1888: 816: 89: 61: 849:
An International Spent Nuclear Fuel Storage Facility - Exploring a Russian Site as a Prototype: Proceedings of an International Workshop
68: 1138: 344:, slowing them down to the point that they reach thermal equilibrium with surrounding material. It has been found beneficial to the 1377: 576:
While prior to India's development of nuclear weapons (see below), the ability to use natural uranium (and thus forego the need for
1588: 1428: 1367: 75: 1508: 1333: 1072: 349:
fuel segments, surrounded by the moderator, rather than any geometry that would give a homogeneous mix of fuel and moderator.
865: 57: 1969: 1384: 1301: 1035: 418:, is about twice the mass of hydrogen), it already has the extra neutron that light water would normally tend to absorb. 1583: 1065: 264: 108: 246: 1918: 1893: 1758: 700:
nuclei in the heavy water absorb neutrons, a very inefficient reaction. Tritium is essential for the production of
727:, its first nuclear weapon test, by extraction from the spent fuel of a heavy-water research reactor known as the 530:
than enriched uranium fuel, however, it generates less heat, allowing more compact storage. While deuterium has a
1836: 1670: 1150: 353: 1826: 1675: 1133: 242: 46: 158: 1600: 1433: 82: 1680: 1389: 1143: 881:
Lestani, H.A.; González, H.J.; Florido, P.C. (2014). "Negative power coefficient on PHWRS with CARA fuel".
368:, generally between 3% and 5% U by weight (the by-product from this process enrichment process is known as 1040: 1938: 1900: 1738: 1565: 1503: 1328: 1232: 1118: 1786: 1465: 526:
than in LWRs employing enriched uranium. Since unenriched uranium fuel accumulates a lower density of
1763: 1372: 1155: 824: 767: 682: 162: 294: 1928: 1853: 1753: 1665: 762: 724: 227: 681:. As a result, if the fuel of a heavy-water reactor is changed frequently, significant amounts of 1883: 1858: 1472: 1249: 692:
In addition, the use of heavy water as a moderator results in the production of small amounts of
663: 527: 231: 198: 185:. The high cost of the heavy water is offset by the lowered cost of using natural uranium and/or 146: 35: 1841: 847: 1748: 701: 655: 298: 278: 372:, and so consisting mainly of U, chemically pure). The degree of enrichment needed to achieve 1778: 1733: 1195: 1123: 594: 474: 441: 384: 666:
without the need for heavy water or - at least according to initial design specifications -
1728: 1713: 967: 936: 705: 686: 1011: 8: 1863: 1648: 1242: 1110: 1089: 598: 502: 494: 490: 470: 449: 388: 361: 971: 940: 719:
The proliferation risk of heavy-water reactors was demonstrated when India produced the
1768: 1605: 1532: 1343: 993: 926: 667: 606: 577: 523: 498: 186: 182: 658:
likewise used graphite as a moderator and ultimately developed the graphite moderated
1100: 985: 861: 646: 614: 535: 453: 337: 150: 997: 980: 955: 894: 380:
moderator depends on the exact geometry and other design parameters of the reactor.
1057: 975: 898: 890: 853: 674: 601:
due to the low neutron absorption properties of heavy water, discovered in 1937 by
561: 369: 365: 956:"Tritium supply and use: a key issue for the development of nuclear fusion energy" 1846: 1806: 1260: 712:. This process is currently expected to provide (at least partially) tritium for 602: 543: 345: 290: 282: 202: 178: 154: 130: 1338: 1801: 1796: 1791: 1541: 1448: 1417: 1399: 954:
Pearson, Richard J.; Antoniazzi, Armando B.; Nuttall, William J. (2018-11-01).
740: 678: 396: 341: 1821: 1963: 1277: 989: 746: 728: 642: 638: 426: 392: 329: 320:. U can only be fissioned by neutrons that are relatively energetic, about 1 302: 649:
ultimately used graphite moderated reactors to produce plutonium, while the
1552: 709: 662:
as a reactor capable of producing both large amounts of electric power and
634: 542:
and thus part of the heavy water moderator will inevitably be converted to
493:(LWRs). CANDU type PHWRs are claimed to be able to handle fuels including 410:
enough U in natural uranium to sustain criticality. One such moderator is
1610: 1200: 622: 610: 411: 332:
using only natural or low enriched uranium, for which there is no "bare"
317: 313: 206: 166: 134: 931: 685:
can be chemically extracted from the irradiated natural uranium fuel by
452:
will increase the likelihood of fission, thus explaining the need for a
364:
will require that the U isotope be concentrated in its uranium fuel, as
1316: 903: 650: 626: 402:
An alternative solution to the problem is to use a moderator that does
169:
is very expensive to isolate from ordinary water (often referred to as
1321: 1311: 756: 752: 720: 697: 445: 415: 138: 1816: 216: 24: 1690: 1685: 1625: 1294: 1222: 1205: 1190: 1165: 923:
Department of Physics and Astronomy, University of British Columbia
857: 630: 581: 565: 506: 456:
and the desirability of keeping its temperature as low as feasible.
391:
used to enrich the U can also be used to produce much more "pure"
1831: 1811: 1210: 1185: 693: 618: 547: 309: 1036:
Nuclear Power Program – Stage1 – Pressurised Heavy Water Reactor
564:
of reactivity, the Argentina designed CARA fuel bundles used in
1620: 1615: 1595: 1575: 1560: 1443: 1180: 1160: 1128: 921:
Waltham, Chris (June 2002). "An Early History of Heavy Water".
448:
relationship is apparent, it is clear that in most cases lower
1657: 1513: 1306: 1170: 554: 510: 1518: 1407: 1217: 1175: 713: 659: 1491: 1355: 845: 321: 953: 557:
derived fuel bundles, the reactor design has a slightly
177:), its low absorption of neutrons greatly increases the 1012:"India's Nuclear Weapons Program: Smiling Buddha: 1974" 1052: 880: 568:, are capable of the preferred negative coefficient. 316:
and a much smaller amount (about 0.72% by weight) of
1087: 1031:
Economics of Nuclear Power from Heavy Water Reactors
395:material (90% or more U), suitable for producing a 49:. Unsourced material may be challenged and removed. 308:Natural uranium consists of a mixture of various 1961: 814: 704:, which in turn enable the easier production of 421: 340:, which absorbs virtually all of the neutrons' 192: 1744:Small sealed transportable autonomous (SSTAR) 1073: 641:, and the second one transmuting the Np into 245:. Unsourced material may be challenged and 1924: 1080: 1066: 979: 930: 902: 265:Learn how and when to remove this message 109:Learn how and when to remove this message 1656: 571: 425: 352:Water makes an excellent moderator; the 1041:IAEA - Technical Reports Series No. 407 920: 637:, the first one transmuting the U into 289:one of the neutrons released from each 1962: 1671:Liquid-fluoride thorium reactor (LFTR) 181:of the reactor, avoiding the need for 1676:Molten-Salt Reactor Experiment (MSRE) 1061: 916: 914: 243:adding citations to reliable sources 210: 47:adding citations to reliable sources 18: 1681:Integral Molten Salt Reactor (IMSR) 625:. The U then rapidly undergoes two 534:neutron capture cross section than 13: 1490: 846:National Research Council (2005). 305:" can be achieved and maintained. 14: 1981: 1046: 911: 58:"Pressurized heavy-water reactor" 1944: 1943: 1934: 1933: 1923: 1914: 1913: 1764:Fast Breeder Test Reactor (FBTR) 609:. Occasionally, when an atom of 516: 215: 157:as fuel, but sometimes also use 23: 981:10.1016/j.fusengdes.2018.04.090 895:10.1016/j.nucengdes.2013.12.056 759:, PHWR types developed in India 743:, the first heavy water reactor 123:pressurized heavy-water reactor 34:needs additional citations for 1754:Energy Multiplier Module (EM2) 1004: 947: 883:Nuclear Engineering and Design 874: 839: 808: 780: 749:: The predominant type of PHWR 651:German wartime nuclear project 1: 960:Fusion Engineering and Design 773: 617:, its nucleus will capture a 460: 1554:Uranium Naturel Graphite Gaz 422:Advantages and disadvantages 193:Purpose of using heavy water 7: 1970:Nuclear power reactor types 1901:Aircraft Reactor Experiment 734: 10: 1986: 1739:Liquid-metal-cooled (LMFR) 196: 1909: 1876: 1864:Stable Salt Reactor (SSR) 1777: 1759:Reduced-moderation (RMWR) 1724: 1707: 1647: 1574: 1566:Advanced gas-cooled (AGR) 1540: 1531: 1483: 1463: 1416: 1398: 1354: 1259: 1241: 1109: 1096: 768:Pressurized water reactor 477:for fission is higher in 277:The key to maintaining a 163:pressurized water reactor 159:very low enriched uranium 1929:List of nuclear reactors 1769:Dual fluid reactor (DFR) 1385:Steam-generating (SGHWR) 1053:Official website of AECL 763:List of nuclear reactors 725:Operation Smiling Buddha 584:technology) was seen as 153:. PHWRs frequently use 1919:Nuclear fusion reactors 1884:Organic nuclear reactor 1090:nuclear fission reactor 788:"Pocket Guide Reactors" 702:boosted fission weapons 683:weapons-grade plutonium 664:weapons grade plutonium 328:The trick to achieving 285:is to use, on average, 199:Nuclear reactor physics 187:alternative fuel cycles 815:Marion BrĂĽnglinghaus. 656:Soviet nuclear program 457: 279:nuclear chain reaction 16:Nuclear reactor design 706:thermonuclear weapons 595:nuclear proliferation 572:Nuclear proliferation 475:neutron cross section 429: 385:nuclear proliferation 354:ordinary hydrogen or 291:nuclear fission event 1749:Traveling-wave (TWR) 1233:Supercritical (SCWR) 687:nuclear reprocessing 677:suitable for use in 599:light-water reactors 503:light water reactors 501:from "conventional" 491:light water reactors 297:, a self-sustaining 239:improve this section 43:improve this article 1119:Aqueous homogeneous 972:2018FusED.136.1140P 941:2002physics...6076W 629:— both emitting an 553:While with typical 538:, this value isn't 495:reprocessed uranium 471:neutron temperature 450:neutron temperature 362:light-water reactor 1939:Nuclear technology 668:uranium enrichment 597:versus comparable 578:uranium enrichment 499:spent nuclear fuel 458: 1957: 1956: 1949:Nuclear accidents 1872: 1871: 1703: 1702: 1699: 1698: 1643: 1642: 1527: 1526: 1459: 1458: 867:978-0-309-09688-1 817:"Natural uranium" 795:World-Nuclear.org 647:Manhattan Project 621:, changing it to 615:neutron radiation 454:neutron moderator 338:neutron moderator 275: 274: 267: 151:neutron moderator 119: 118: 111: 93: 1977: 1947: 1946: 1937: 1936: 1927: 1926: 1917: 1916: 1859:Helium gas (GFR) 1722: 1721: 1717: 1654: 1653: 1538: 1537: 1488: 1487: 1481: 1480: 1476: 1475: 1257: 1256: 1253: 1252: 1082: 1075: 1068: 1059: 1058: 1023: 1022: 1020: 1018: 1008: 1002: 1001: 983: 951: 945: 944: 934: 918: 909: 908: 906: 878: 872: 871: 843: 837: 836: 834: 832: 823:. Archived from 812: 806: 805: 803: 802: 792: 784: 675:fissile material 562:Void coefficient 528:fission products 513:reactor itself) 487: 485: 484: 439: 437: 436: 370:depleted uranium 366:enriched uranium 270: 263: 259: 256: 250: 219: 211: 114: 107: 103: 100: 94: 92: 51: 27: 19: 1985: 1984: 1980: 1979: 1978: 1976: 1975: 1974: 1960: 1959: 1958: 1953: 1905: 1868: 1773: 1718: 1711: 1710: 1695: 1639: 1570: 1545: 1523: 1495: 1477: 1470: 1469: 1468: 1455: 1421: 1412: 1394: 1359: 1350: 1264: 1247: 1246: 1245: 1237: 1151:Natural fission 1105: 1104: 1092: 1086: 1049: 1027: 1026: 1016: 1014: 1010: 1009: 1005: 952: 948: 932:physics/0206076 919: 912: 879: 875: 868: 844: 840: 830: 828: 827:on 12 June 2018 821:euronuclear.org 813: 809: 800: 798: 790: 786: 785: 781: 776: 737: 679:nuclear weapons 603:Hans von Halban 574: 544:tritiated water 519: 483: 481: 480: 479: 478: 468: 463: 435: 433: 432: 431: 430: 424: 346:neutron economy 283:nuclear reactor 271: 260: 254: 251: 236: 220: 209: 203:Nuclear fission 195: 179:neutron economy 173:in contrast to 155:natural uranium 144: 131:nuclear reactor 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 1983: 1973: 1972: 1955: 1954: 1952: 1951: 1941: 1931: 1921: 1910: 1907: 1906: 1904: 1903: 1898: 1897: 1896: 1891: 1880: 1878: 1874: 1873: 1870: 1869: 1867: 1866: 1861: 1856: 1851: 1850: 1849: 1844: 1839: 1834: 1829: 1824: 1819: 1814: 1809: 1804: 1799: 1794: 1783: 1781: 1775: 1774: 1772: 1771: 1766: 1761: 1756: 1751: 1746: 1741: 1736: 1734:Integral (IFR) 1731: 1725: 1719: 1708: 1705: 1704: 1701: 1700: 1697: 1696: 1694: 1693: 1688: 1683: 1678: 1673: 1668: 1662: 1660: 1651: 1645: 1644: 1641: 1640: 1638: 1637: 1636: 1635: 1630: 1629: 1628: 1623: 1618: 1613: 1598: 1593: 1592: 1591: 1580: 1578: 1572: 1571: 1569: 1568: 1563: 1558: 1549: 1547: 1543: 1535: 1529: 1528: 1525: 1524: 1522: 1521: 1516: 1511: 1506: 1500: 1498: 1493: 1485: 1478: 1464: 1461: 1460: 1457: 1456: 1454: 1453: 1452: 1451: 1446: 1441: 1436: 1425: 1423: 1419: 1414: 1413: 1411: 1410: 1404: 1402: 1396: 1395: 1393: 1392: 1387: 1382: 1381: 1380: 1375: 1364: 1362: 1357: 1352: 1351: 1349: 1348: 1347: 1346: 1341: 1336: 1331: 1326: 1325: 1324: 1319: 1314: 1304: 1299: 1298: 1297: 1292: 1289: 1286: 1283: 1269: 1267: 1262: 1254: 1239: 1238: 1236: 1235: 1230: 1229: 1228: 1225: 1220: 1215: 1214: 1213: 1208: 1198: 1193: 1188: 1183: 1178: 1173: 1168: 1163: 1153: 1148: 1147: 1146: 1141: 1136: 1131: 1121: 1115: 1113: 1107: 1106: 1098: 1097: 1094: 1093: 1085: 1084: 1077: 1070: 1062: 1056: 1055: 1048: 1047:External links 1045: 1044: 1043: 1038: 1033: 1025: 1024: 1003: 946: 910: 873: 866: 858:10.17226/11320 838: 807: 778: 777: 775: 772: 771: 770: 765: 760: 750: 744: 741:Chicago Pile-3 736: 733: 613:is exposed to 573: 570: 518: 515: 482: 466: 462: 459: 434: 423: 420: 397:nuclear weapon 342:kinetic energy 299:chain reaction 273: 272: 223: 221: 214: 194: 191: 142: 117: 116: 31: 29: 22: 15: 9: 6: 4: 3: 2: 1982: 1971: 1968: 1967: 1965: 1950: 1942: 1940: 1932: 1930: 1922: 1920: 1912: 1911: 1908: 1902: 1899: 1895: 1892: 1890: 1887: 1886: 1885: 1882: 1881: 1879: 1875: 1865: 1862: 1860: 1857: 1855: 1852: 1848: 1845: 1843: 1840: 1838: 1835: 1833: 1830: 1828: 1825: 1823: 1820: 1818: 1815: 1813: 1810: 1808: 1805: 1803: 1800: 1798: 1795: 1793: 1790: 1789: 1788: 1785: 1784: 1782: 1780: 1779:Generation IV 1776: 1770: 1767: 1765: 1762: 1760: 1757: 1755: 1752: 1750: 1747: 1745: 1742: 1740: 1737: 1735: 1732: 1730: 1729:Breeder (FBR) 1727: 1726: 1723: 1720: 1715: 1706: 1692: 1689: 1687: 1684: 1682: 1679: 1677: 1674: 1672: 1669: 1667: 1664: 1663: 1661: 1659: 1655: 1652: 1650: 1646: 1634: 1631: 1627: 1624: 1622: 1619: 1617: 1614: 1612: 1609: 1608: 1607: 1604: 1603: 1602: 1599: 1597: 1594: 1590: 1587: 1586: 1585: 1582: 1581: 1579: 1577: 1573: 1567: 1564: 1562: 1559: 1557: 1555: 1551: 1550: 1548: 1546: 1539: 1536: 1534: 1530: 1520: 1517: 1515: 1512: 1510: 1507: 1505: 1502: 1501: 1499: 1497: 1489: 1486: 1482: 1479: 1474: 1467: 1462: 1450: 1447: 1445: 1442: 1440: 1437: 1435: 1432: 1431: 1430: 1427: 1426: 1424: 1422: 1415: 1409: 1406: 1405: 1403: 1401: 1397: 1391: 1388: 1386: 1383: 1379: 1376: 1374: 1371: 1370: 1369: 1366: 1365: 1363: 1361: 1353: 1345: 1342: 1340: 1337: 1335: 1332: 1330: 1327: 1323: 1320: 1318: 1315: 1313: 1310: 1309: 1308: 1305: 1303: 1300: 1296: 1293: 1290: 1287: 1284: 1281: 1280: 1279: 1276: 1275: 1274: 1271: 1270: 1268: 1266: 1258: 1255: 1251: 1244: 1240: 1234: 1231: 1226: 1224: 1221: 1219: 1216: 1212: 1209: 1207: 1204: 1203: 1202: 1199: 1197: 1194: 1192: 1189: 1187: 1184: 1182: 1179: 1177: 1174: 1172: 1169: 1167: 1164: 1162: 1159: 1158: 1157: 1154: 1152: 1149: 1145: 1142: 1140: 1137: 1135: 1132: 1130: 1127: 1126: 1125: 1122: 1120: 1117: 1116: 1114: 1112: 1108: 1103: 1102: 1095: 1091: 1083: 1078: 1076: 1071: 1069: 1064: 1063: 1060: 1054: 1051: 1050: 1042: 1039: 1037: 1034: 1032: 1029: 1028: 1013: 1007: 999: 995: 991: 987: 982: 977: 973: 969: 966:: 1140–1148. 965: 961: 957: 950: 942: 938: 933: 928: 924: 917: 915: 905: 900: 896: 892: 888: 884: 877: 869: 863: 859: 855: 851: 850: 842: 826: 822: 818: 811: 796: 789: 783: 779: 769: 766: 764: 761: 758: 754: 751: 748: 747:CANDU reactor 745: 742: 739: 738: 732: 730: 729:CIRUS reactor 726: 722: 717: 715: 711: 710:neutron bombs 707: 703: 699: 695: 690: 688: 684: 680: 676: 671: 669: 665: 661: 657: 652: 648: 644: 640: 636: 632: 628: 624: 620: 616: 612: 608: 604: 600: 596: 592: 587: 583: 579: 569: 567: 563: 560: 556: 551: 549: 545: 541: 537: 533: 529: 525: 517:Disadvantages 514: 512: 508: 504: 500: 496: 492: 476: 472: 455: 451: 447: 443: 442:cross section 428: 419: 417: 413: 409: 405: 400: 398: 394: 393:weapons-grade 390: 387:concern; the 386: 381: 379: 375: 371: 367: 363: 358: 357: 350: 347: 343: 339: 335: 334:critical mass 331: 326: 323: 319: 315: 311: 306: 304: 300: 296: 292: 288: 284: 280: 269: 266: 258: 248: 244: 240: 234: 233: 229: 224:This section 222: 218: 213: 212: 208: 204: 200: 190: 188: 184: 183:enriched fuel 180: 176: 172: 168: 165:(PWR). While 164: 160: 156: 152: 148: 140: 136: 132: 128: 124: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: â€“  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 1787:Sodium (SFR) 1714:fast-neutron 1553: 1272: 1099: 1015:. Retrieved 1006: 963: 959: 949: 922: 886: 882: 876: 848: 841: 831:11 September 829:. Retrieved 825:the original 820: 810: 799:. Retrieved 794: 782: 718: 708:, including 691: 672: 635:antineutrino 590: 585: 575: 558: 552: 539: 531: 520: 464: 407: 403: 401: 389:same systems 382: 377: 373: 355: 351: 333: 327: 312:, primarily 307: 286: 276: 261: 252: 237:Please help 225: 174: 170: 126: 122: 120: 105: 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 1822:SuperphĂ©nix 1649:Molten-salt 1601:VHTR (HTGR) 1378:HW BLWR 250 1344:R4 Marviken 1273:Pressurized 1243:Heavy water 1227:many others 1156:Pressurized 1111:Light water 904:11336/32479 889:: 185–197. 607:Otto Frisch 580:which is a 505:as well as 412:heavy water 378:light-water 374:criticality 330:criticality 303:criticality 207:Heavy water 175:heavy water 171:light water 167:heavy water 135:heavy water 1606:PBR (PBMR) 801:2021-12-24 774:References 524:spent fuel 461:Advantages 444:- while a 295:reactivity 197:See also: 145:O) as its 133:that uses 69:newspapers 1658:Fluorides 1322:IPHWR-700 1317:IPHWR-540 1312:IPHWR-220 1101:Moderator 1088:Types of 990:0920-3796 757:IPHWR-220 753:IPHWR-700 721:plutonium 698:deuterium 696:when the 586:hindering 446:nonlinear 416:deuterium 281:within a 226:does not 139:deuterium 1964:Category 1691:TMSR-LF1 1686:TMSR-500 1666:Fuji MSR 1626:THTR-300 1466:Graphite 1329:PHWR KWU 1295:ACR-1000 1223:IPWR-900 1206:ACPR1000 1201:HPR-1000 1191:CPR-1000 1166:APR-1400 998:53560490 735:See also 673:Pu is a 631:electron 627:β decays 593:risk of 582:dual use 566:Atucha I 559:positive 546:. While 507:MOX fuel 497:or even 440:fission 325:itself. 310:isotopes 255:May 2015 99:May 2015 1832:FBR-600 1812:CFR-600 1807:BN-1200 1473:coolant 1400:Organic 1285:CANDU 9 1282:CANDU 6 1250:coolant 1211:ACP1000 1186:CAP1400 1124:Boiling 1017:23 June 968:Bibcode 937:Bibcode 694:tritium 633:and an 619:neutron 591:greater 548:tritium 536:protium 376:with a 356:protium 287:exactly 247:removed 232:sources 147:coolant 141:oxide D 129:) is a 83:scholar 1877:Others 1817:PhĂ©nix 1802:BN-800 1797:BN-600 1792:BN-350 1621:HTR-PM 1616:HTR-10 1596:UHTREX 1561:Magnox 1556:(UNGG) 1449:Lucens 1444:KS 150 1181:ATMEA1 1161:AP1000 1144:Kerena 996:  988:  925:: 28. 864:  797:. 2015 205:, and 85:  78:  71:  64:  56:  1894:Piqua 1889:Arbus 1847:PRISM 1589:MHR-T 1584:GTMHR 1514:EGP-6 1509:AMB-X 1484:Water 1429:HWGCR 1368:HWLWR 1307:IPHWR 1278:CANDU 1139:ESBWR 994:S2CID 927:arXiv 791:(PDF) 555:CANDU 532:lower 511:CANDU 90:JSTOR 76:books 1854:Lead 1837:CEFR 1827:PFBR 1709:None 1519:RBMK 1504:AM-1 1434:EL-4 1408:WR-1 1390:AHWR 1334:MZFR 1302:CVTR 1291:AFCR 1218:VVER 1176:APWR 1171:APR+ 1134:ABWR 1019:2017 986:ISSN 862:ISBN 833:2015 755:and 723:for 714:ITER 660:RBMK 605:and 540:zero 301:or " 230:any 228:cite 149:and 127:PHWR 62:news 1842:PFR 1633:PMR 1611:AVR 1533:Gas 1471:by 1439:KKN 1373:ATR 1288:EC6 1248:by 1196:EPR 1129:BWR 976:doi 964:136 899:hdl 891:doi 887:270 854:doi 404:not 322:MeV 241:by 45:by 1966:: 1576:He 1542:CO 1418:CO 1339:R3 992:. 984:. 974:. 962:. 958:. 935:. 913:^ 897:. 885:. 860:. 852:. 819:. 793:. 731:. 716:. 689:. 670:. 643:Pu 639:Np 408:is 201:, 121:A 1716:) 1712:( 1544:2 1496:O 1494:2 1492:H 1420:2 1360:O 1358:2 1356:H 1265:O 1263:2 1261:D 1081:e 1074:t 1067:v 1021:. 1000:. 978:: 970:: 943:. 939:: 929:: 907:. 901:: 893:: 870:. 856:: 835:. 804:. 623:U 611:U 486:U 467:2 438:U 318:U 314:U 268:) 262:( 257:) 253:( 249:. 235:. 143:2 137:( 125:( 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Pressurized heavy-water reactor"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
nuclear reactor
heavy water
deuterium
coolant
neutron moderator
natural uranium
very low enriched uranium
pressurized water reactor
heavy water
neutron economy
enriched fuel
alternative fuel cycles
Nuclear reactor physics
Nuclear fission
Heavy water

cite
sources
improve this section

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑